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Generalized Okubo systems
and the middle convolution

Hiroshi KAWAKAMI |

The present thesis consists of the two part:
I Generalized Okubo systems and the middle convolution
IT Confluence of singular points and the Okubo systems

In the first part, we give a generalization, called a generalized Okubo
system, of a system of linear differential equations of the Okubo normal form
and define a mapping 7 from a set of generalized Okubo systems to a set of
linear differential systems. We consider the operation, the middle convolution
introduced by Katz, using 7, and show that any system of linear differential
- equations, not necessarily of the Fuchsian type, with a regular singularity at
infinity, can be transformed into generalized Okubo system.

For any non-Fuchsian system, we can construct a Fuchsian system with
a parameter € which tends to the given equation as £ — 0.

In the second part, we consider a confluence of the convolution in the sense
of Katz-Dettweiler-Reiter and we show that convolutions of each equation is
‘compatible with the confluence.
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1 Introduction

We call as an Okubo system, a system of linear differential equations of the
form '

(zI — T)%‘; = Ay, (1.1)

where T is a constant diagonal matrix and A is an arbitrary constant matrix.
We note that an Okubo system appears from the system:

 dd B :
——=(r+2)o .
dz < +z) o , (12)

which is called the Birkhoff canonical form of Poincaré rank 1. By means of
the Laplace transform

U(z) :/e_”zcb(z)dz, | (1.3)

the equation (1.2) transforms into the Okubo system (1.1), with A = —B—1.
In this way, studies on behavior of solutions of (1.2) reduces to those on
connection problem of equation (1.1) ([1], [2]).

Moreover the Gauss’ hypergeometric equation

d%y | dy |
x(l—x)@—k{’y—(a+ﬁ+1)x}@-—aﬂy—0 (1.4)
is equivalent to an Okubo system of the following form:
1 d¥ _ (y—a-0 -7\,
I-— — = U, .
) (i =
By regarding system (1.1) as a good generalization of the hypergeometric
equation, Okubo studied the case when these equations have no accessory
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parameter, and representation of monodromy of such a system ([11], [12], [8]);
we say, following Katz ([7]) that (1.1) is rigid, if the system has no accessory
parameter. Since the hypergeometric equation is rigid, it is important for
the theory of special functions to obtain all rigid Fuchsian systems and to
investigate them as extensions of the Gauss hypergeometric equation. In this
paper, we study the Okubo systems from a different point of view.

Katz introduced the operations, called addition and middle convolution,
taking a Fuchsian system to another Fuchsian system, which do not change
the number of accessory parameters. He showed the following theorem [7]:

Theorem (Katz) . Every irreducible rigid Fuchsian system is obtained from
rank 1 Fuchsian system by a finite iteration of the addition and the middle
convolution.

This is an algorithm that construct all rigid Fuchsian systems.

Katz described the operations in terms of local systems. Here we follow
the terminology of Dettweiler and Reiter ([3]) where the operations of Katz
are reformulated in terms of linear algebra.

On the other hand, Yokoyama ([13]) introduced the operations eztension
and restriction for Okubo systems, and he proved the following theorem.

Theorem (Yokoyama) . Every irreducible rigid semisimple Okubo system
is obtained from rank 1 Okubo system by a finite iteration of the extension
and the restriction.

In Section 4 we define a mapping 7 from the set of generalized Okubo
systems to the set of linear differential equations which are not necessarily
of the Fuchsian type. We give an interpretation of middle convolutlon of
Dettweiler and Reiter version through the mapping 7. :

We will see in Section 5 that the middle convolution is closely related to
transforming given equation into Okubo system (see Proposition 5.2).

In the present article, we will show that any non-Fuchsian system with a
regular singular point at infinity into generalized Okubo system.

In Section 2, we recall Katz-Dettweiler-Reiter operations and in Section
3, we introduce a concept of the generalized Okubo system. Section 6 is
devoted to the proof of surjectivity of the mapping .

In what follows we denote by I the k x k identity matrix, O the k x k
null matrix, Ok, the k& x [ null matrix and N the k x k nilpotent matrix of



the following form:

01

2 Katz’s operations

In this section, we recall the Katz’s operations, in terms of the linear algebraic
version, reformulated by Dettweiler and' Reiter [3].
For the sake of simplicity, we represent the Fuchsian system of the form

dY_( A L4 )Y (m )

P P A —
as A= (Ay,...,A,) in this section.
Definition (addition) . For a = (a,... ,a,) € CP, an operation

A= (Ar+anly, ... Ay + oply) |
15 called addiﬁon.

Let A be a complex parameter. We put a pm X pm matrix G, as follows:

Om e Onm
G, = Al‘ e Ap+ AL, L A (v=1,...,p).
O, Om
Definition (convolution) . The system (G, ... ,G,) is called convolution

with A of A. We denote this system by cx(A).
Let I, £ be the linear subspaces of CP™:

[Ker(A;)
K= ] 2.1)
Ker(4,)

L :=Ker(G1+ -+ Gp).



We remark that K, £ are G1,. .. , Gp-invariant subspaces.
Let G, be the linear transformation on quotient space C*™/(K + L) in-
duced by G,,.

Definition (middle convolution) . We call the operation A+ (Gy, ... ,G,)
middle convolution with A and denote by mcy.

3 Generalized Okubo system

The system of linear differential equations of the form:
dv
I, —T)— = A¥ 1
@ -G (31)

is called a system of Okubo normal form, in this paper, we call it Okubo
system in short. Here T' is an n x n constant diagonal matrix and A is an
n X n arbitrary constant matrix. When we suppose

13VIN
T —

tPIlp
then the systém (3.1) has regular singularities at T = t;,1,... ,1,, and at
T = oo. :
When a matrix T is not semisimple, a system of the form (3.1) may
have irregular singularities. In the case when T is a Jordan matrix, non-
semisimple, call (3.1) generalized Okubo system.

In the following of this paper, we assume that the matrix A is semisimple
and denote its non-zero eigenvalues by —p1,... , —pm, namely, we put

A=-GRG™', R=diag(p1,.-- ,Pm,0,...,0). | (3.2)
Then systems of the form (3.1) can be written in the following form:
dv
~T)S= = —GRG ',
(eI - T)— = —GRG™'¥

We représent such a system as (T, R, G).
Let Stab(M) be the stabilizer of M € M (n,C):

Stab(M) = {g € GL(n,C) | gM = Mg}.
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For a Jordan matrix T and a diagonal matrix R = diag(py, . .. , pm, 0, ... , 0),
let O(T, R) be the following set of systems:

O, R) ={(T\R,G)}/ r - (3-3)
Here the equivalent relation > in (3.3) is defined by
G~ hGg

for h € Stab(T), g € Stab(R) We write the set of Okubo and generalized
Okubo systems as follows:

= ]_[ o, R)

‘where T runs over all Jordan matrices, including diagonal matrices, and R

runs over all diagonal matrices of the form (3.2). Similarly, we denote the

set of Okubo systems, a subset of GO, by
o :=]Jo, R
T,R

where T runs over all diagonal matrices.
To define the set of linear differential systems we put I'¢, ) and i p) 88

F(mp =CP x (Z>0)p X (CX)m’ .
= x (C)™,

We regard the set I‘* p) 352 subset of I'(, ) through the inclusion mapping

(3.4)

(mp) -

r(m,p) — F(m,p) . :
: ’ P (3.5)
——
(tlv' - 7tp7p17' . 7p'l'n)'_> (t17~ . 7tp107' N 7O)p17 s 7pm)
For every element v = (t1,... ,tp, 71, ... sTps P1s - - - > Pm) Of Iy, We denote
by R, the m x m diagonal matrix diag(p;, ... ,pm). Then we define &, by

Ty A,(,_k)
8 - {A(IL') Z Z _ t,,)k"'l

v=1 k:—O

v=1

p
ATH € M(m,©), AT #0, =3 AP = R«} / 5 (39)



Here equivalent relation I~ in (3.6) is defined by

Ale) » 9A(2)g™ (3.7)

for some g € Stab(R,). We identify an element A(z) of £, with the system

of differential equations % = A(z)Y.
We put

c- 11 I e

m,pEZ>1 YE (1, p)

.7-":;—— H H &y;

m,p€Z>1 'yel"z‘m,p)

(3.8)

namely £ is the set of systems of linear differential equatioﬁs on P! which
have regular singularity at infinity, and F is the set of Fuchsian systems on
Pl ‘

4 Definition of 7: GO — &

In this section we define the mapping 7 : GO — &£, which is a generalization
of correspondence in [9] (cf. Remark 2).
We begin with notations; let Jx(a) be a k x k Jordan block

Jk(a) = aIk + Nk

where a € C and k € Z>;. For a partition of a positive integer A =
(mq,...,my;), we put

I(a) == Jn,(a) ® -+ ® I, (a).
Let [T, R, G] be an arbitrary element of GO, that is, a system of the form
-1 - _gre1w. (4.1)
dz
Here T is a Jordan matrix of the following form:

T= D (t) @ & J, (1) (4.2)



A1, ..., Ap being partitions. We write n = |[A;| + --- + |\,|. The matrix R
stands for diag(py, ... , pm,0,... ,0). Set R = dlag(pl, -+, Pm)- By changing
the unknown function of (4. 1) mto U = GV, we have

d¥
dz

The coefficient matrix of the right-hand side is rewritten into the following
form:

= —~G*(zI - T)"'GRV. (4.3)

) Aul_l ( k)
~G Y (zI -T)'GR = Z Z T 4
v=1 k=0
with
B(® .= G JCMGR, (4.5)

where JS™ denotes the coefficient matrix of 1/(z —t,)*™ in (z] — T) ~1 We
have:

J]S_k) — O')\1I++l)"’_1| @ Nmu 1 @ @ Nm 1 @ O|AV+1|++‘)‘PI7 (4.6)

where we write A, = (m,1,...,m,,, ). Since the last n — m columns of R
are zero, the matrix BS™® is of the form

ACR o |
B = mnsme ) 4.7
(X‘ ™ Onmpem “0

AS™ being some m x m matrix and X5 some (n—m) xm matrix. Starting
from [T, R, G] we obtain

2. o €t (4.8)

From (4.4), an arbitraliness by Stab(7") does not change (4.8) and that by
Stab(R) induces the modification of B{™ like

AR o L [ASP o
(Xé"") ol 79 ' X0 )9 (g € Stab(R)).

8



. ! -
Here matrix g is parted into blocks such that (g Z>' where ¢’ € Stab(R)
and Z € GL(n —m,C). Thus AS™ changes as follows:
AR = (¢) ATy

However, from (3.7), they are precisely equivalent. Therefore this is well-
defined and thus we complete the definition of 7.
Taken together, the definition of mapping 7 is the following:

Definition 1. For [T, R,G] € GO, we define the mapping ™ : GO — £ as
follows:

7(T, R, G) := the principal m x m part of (—G™*(zI —T)"'GR) (4.9)

Conversely, suppose we are given an system

P T A( —k) 14 o =
A= ZZ(;,;—t)kH £, -2 AD=ER
. v=1k=0 v=1

of size m. Fix a Jordan matrix T'= J),(t1) ® - - - @ J,,(¢,) of size n > m and

a diagonal R = Ro On—m.n—m- Let us write down an equation which G of
(T, R,G) € 77'(A) should satisfy. From (4.7) the matrix G must satisfy

ASR o

~G'JHGR = ( k) O) (v=1,...,p, k=0,...,1,). (4.10)

Since 7(T, R, G) does not depend on X$s, we give (n —m) X m matrices
XM suitably. For instance, X, (F)s must satisfy

(=) | |
rank(—G~1J"¥ GR) = rank (;;( k)) (4.11)
Multiplying G from the left of both sides of (4.10), we have

_ AP o\
JS ’“)GR+G<XIS_,C) o) =0 (4.12)



This is equivalent to

AR (k) o
J(F) I v v = .
{V ® R+ ®<O O )}g 0 - (4.13)
where g is the column vector
9
g=1: 1
9./

consist of the row vectors of G, i.e. G =Yg,...,g,). Exchanging the rows
of the above equation (4.13) properly, we find that the vector g satisfies the
equation g = 0. Here the matrix €2 is-defined by

Q=000

where
Q, = JO®Q® + JIV @ RCY 4 ... At @ Ri-Ma+l)
and | |
(A %O 0w Omnm
00| aP x|, RP| R Opn
\tA;irp) tXIg:—rp) ) o, O

The matrix 2 is made by blocks (tA,(,_k) tX,S‘k)) v=1,...,p, k=0,...,1,)
except for (FAQX ") and the matrix RS™ has only non-null block R at the

position correspond to tAS™ of Q9. For example, in the case of \; =
(37 3)7 AQ :(2) : »

®2
t: 1 0 ty 1
T: : tl ]. @ ,
t2
ty _



Q is expressed as

‘ _ _o\ 92
Q¥ R§(0§) R% 2 QO DY
_ ~ Shp T Lt
| Q= Q R10 : ) Q(O)
QY 2
where _
tAg—I) txf"l) tAgo) tXfo)
Qo _ | A X o [ATY %
1 tAgO) tX2(0) ) 4 2 tAg——2) t){](;—2)
tAg_l) tXQ(_l) ' tAg—l) tX2(—1)
and .
(R O 0 0 o 0
-n_ | O O -2 | R O (-1) 0O O
R = ool R, 7 = O O r;le 0 O
O O O O R O

Thus we arrive at the following lemma:

Lemma 4.1. n(T, R,G) = A is equivalent to the following equation: Qg = 0
and det G # 0.
5 Relation to the middle convolution

In this section, we investigate the map 7|p : O — F, and we discuss the
relation to the middle0 convolution. :

P
Ay . . .
Let A = Z pe— be an element of F whose matrix size is m. Put
) » v=1 Bt
rankAf,O) = 1,. We can factorize AS,O) into AY — B,C, where B, is an
m X [, matrix and C, is an [, X m matrix and rankB, = rankC, = [,. Put
Tl:.l1+"’+lp. ’
We define the matrices Tp,;, and A, as follows:
tIIll \ Cl .
Tmin = ( - 1, Amin =1.: (Bl s BP)? (51)
' tPIlP Cp ’

both are n x n matrices. Then following proposition holds.
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Proposition 5.1. The minimal size Okubo system in w~1(A) uniquely exists
up to conjugate action of Stab(Ty:,) and is given as follows:

4w
(o] = Toin) - = Awin¥. (5.2)

In particular, 7lo : O — F is surjective.

Remark 1. Since —(A” + ... + A,(,O)) = R (= diag(ps, ... , pm)), by com-
 paring the rank of both sides, we get the inequality n > m. ‘

Proof. First, we show that the Okubo system (5.2) is the minimal size system
in 771(A). By the assumption —(A{” +. .. +A) = R, we have the relation:

Gy
. Cp

Since the matrix R is invertible, we have
. Cy
rank(B;...B,) =rank | : | =m.
C,/]

In this case, from (4.11), we can write XO of (4.7) as X = X,C,. Since
x© + -+ X\ = O (corresponds to —(B” + .-+ BY”) = R where
R:=R® Op_n), X,’s satisfy

Cy
(X1...Xp) | | =0. (53)
CP
We choose Xj, ..., X, so that
rank(Xy,... ,X,) =n—m. ' (5.4)
. (Br ... B, . . : '
Now we show that the matrix is invertible. Let us assume
‘ X ... X _
that

(B, ...B,) +(X;...X,) =0, (5.5)

12



| - (G
where u € C™, v € C"™™. By multiplying the matrix | : | from the right

Cp
of both sides of (5.5), we have R = 0. This implies u = 0. By the condition
Z1
(5.7), we have v = 0. Then we can put G := By ... By
' X1 ... X,

We also define [, x (n —m) matrix Y, (v = 1,...,p) by the following
equations:

Y1 |
(Bi...By) | : | =0. (5.6)
Y, : _
Here we choose Y3, ...,Y), so that
}/1 -
rank [ ¢ | =n—m. (5.7)
Y, .
Ci h .
We set G' := | : i |. We can show that G’ is also invertible. Then we
C, Y,
have
B B (C: Y
—1pv _ 1o Bp) |
G G—<X1 Xp) : :
G Y (5.8)
_(-R O
- (’O Z) € Stab(R)
Moreover we have the relation

—~GRG™ = Anin, (5.9)

13



because

= <_OR) (By...B,) | - (510

_(-R O\ (B: ... B,

~\0 0O0)\X: ... X,)°
Therefore the residue matrices arround each finite singularity of (5.2) read
as (cf.(4.4)): \

Oll+ -1
B = _Gg~! I, GR
Olu+1+ lp
<B1 Bp) (Oll+"'lu—1 Il )
X X, v
1 ! Ottt (5.11)

_(B,C, O
—\X.c, 0)°
By the definition of 7, we ﬁnd this Okubo system lies in the ﬁber of Fuchsian

‘system A.
Note the following inequality concerned with the rank of BY.

| Ol1+"‘lu~1 ‘
rank |Gt I GR| <1,.

v

Ol,,+1+~~~lp

Therefore the Okubo system whose size is less than'n or different T of same
size n can not realize the given rank of A,, 5. Thus we can conclude that
(5.2) is the minimal size.
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Next, we consider the uniqueness of the system (5.2). Owing to the
Lemma 4.1 and (5.11), G satisfies g = 0, where Q = Q; @ --- ® Q, and for
v=1,...,p, . :

(tAgO) t(X 1G1 )\ _ ‘C, ‘B X,
©0=|u® x| = a B, X,
KtAI(,O) (XpCyp) ) | ‘C,) \'By X,

~ Here rank of Q, is n — l,. Thus a freedom of representation of the solution
space of g = 0 corresponds to Stab(7,,;,), that is, this arbitrariness is given
by G — hG where h € Stab(Tyn). We note that, from (5.9), ~GRG™!
does not depend on a choice of X,. Finally it is easily seen that freedom
of factorization ALY —= B,C, corresponds also Stab(Ty,;,). Therefore this
minimal size Okubo system is uniquely determined by A up to conjugate
action of Stab(T yin)- - O

Remark 2. In the case of m = 2, {) = 3 and eigenvalues of A are 0,0,
(v = 1,2,3), we can parametrize AP generically as

Then A, is given as follows:

a161+91 a1 .

2a1 2 .
A L a2b2+02 _ a2 a : Q2 . as
min — 2a; 2 aibi—61 azba—02 azbs—03

azb3+03 __az ap | az az

2a3 2
]_ 261 a2b1—axb2+91-2-% +92% a31’1—t11l>3+91%3L+93%3L
= — | aib2 —azb1+023L +6,22 262 agzbz — az2b3 + 62 32 +93%% .

a1bs — agby + 6331 +01%} azbs — agby + 60352 + 0232 203

This correspondence between AY)’s and A, appeared in [4], [9].

In the above settings, we can show the following proposition.
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Proposition 5.2. Forany\ € C, the middle convolution of A =

F with A coincides with the image of following system under :

(2] — Tmm)% = (Amin + . (5.12)

Proof. We consider the vector space CP™ /(K + L) as the quotient of CP™/K
by L because K does not depend on the parameter X (cf. Section 2). First, by
a direct computation, we can show that the middle convolution with generic
A (ie. A#0,p1,...,pm) of A coincides with (5.12). This corresponds to
~dividing CP™ by K.

Next we consider the cases of A = pp (v=1,...,m). Now we take a
quotient by £. We explain the case A = p; and the other cases are quite
similar. Then “dividing by £” corresponds to “dividing by Ker(Ami, + pl)”
Notice that Ay, = —~GRG™! (see (5.9)), we have

Ker(Amin + p1) = Ker(R — p1)G™! = CG .
0
| Namely, the first column 6f G is a basis of Ker(Amin + p1). We set A, as the

(n — 1) X (n — 1) submatrix of

G (Ontttyy ® L, ® Oppyyeit,) (Amain + p1I)G
= -.G—l (Ol1+"'+lu—1 @ Ilu @ Olu+1+'”+lp)G(R - pl‘[)

obtained by eliminating the first column and row, then the system

dy & A4,
FraD D

is mc,, (A), and is also the image of A by 7. If there are p,’s which are equal
to p1, the proof goes in a same manner.

Finally, when A = 0, both mcy(A) and the image of (5.12) under =
coincide with the original system A. Thus we complete the proof. O

Hence, the middle convolution is obtained by the following procedure:

16
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1. Lift a system in F to O in the minimal size.
2. Shift its right-hand side with scalar matrix (representing this operation
3. Carry it to F through 7.

0O —— 0
"Tlol lfflo
T

The shift of right-hand side of Okubo systems by a scalar matrix is realized
by the Euler transformation:

U(z) > / U(t)(z — £t

Therefore, we can state that the middle convolution is “Transformation
into Okubo system + Euler transform”. By taking the above considera-
tion into account, we can define an analogue of the middle convolution for
non-Fuchsian systems by the same procedure. -

GO —— GO

ﬂl | lﬂ

E —— €&

“ch”

It is necessary to show the surjectivity of 7 so that this procedure may work.
In the next section we consider the surjectivity of .

At the end of this section, we see a correspondence of solutions under 7.
Let ¥ be a solution of generalized Okubo system

A
I-T)— =-GRG™'V.
(z )d:z: G-
Then from (4.3), ¥ = G~V satisfies the equation of the following form:
B( k)
D) Ner ]

17



From the form of BS™ (cf.(4.7)),

(@) (G o)
Y= kK = :
(©)rm (GT)m
solves the equation (T, R,G). Thus at the level of solutions, the map =
induces the following:

(G_I‘Il)l
T s : . (5.14)
(G10),

6 Surjectivity of 7

In this section, we prove the surjectivity of 7, that is, any linear differen-
tial system which has an regular singularity at infinity can be converted
into generalized Okubo system. This is done by considering an extension of
convolution of Fuchsian system (see section 2) to non-Fuchsian case.

p Ty (—k)
AV . . .
Let Z Z —————— be an element of £ whose matrix size is m. Put

v=1 k=0 5
n=>y"r_ 7, where 7, := m(r, +1). Let A, be the following 7, x n matrix
A o ’ ‘ Omr,,,n
vmAlrm AL Al A

We set the matrices A, T, T, and P as

A
A= : 5

Ay

6.1
T := r1+1(t1)®m BB er+1(tp)€Bm’ ( )

T = 7"1+1(t1) ©---D J"p+1(tp)7
P := -P(m,r1+1) S---D P(m,'rp+1)-

Here P j is a permutation matrix of the form

P(i1j) = (I’l ®61,Ii X €2,... 7Ii ®e])

18



where ey, ... ,e; are the j—dimensional‘unit vectors. ‘It is easily seen that
P>l =P, s = P, and thus we can show the relation
(%,9) (2,9) (4,
Py (i) Pagy = (J;(t)") ® L. (6.2)
By using this formula, we have P"'TP =T ® I,,,.
Definition 2. We call the following (generalized) Okubo system.:

W] . ‘
(zI, — T)i—x = (PAP' +AL,)¥ | (6.3)

convolution of A with X, and we denote it by c\(A).

Remark 3. When r; = --- =7, = 0, this coincides with the convolution of
Fuchsian systems; see section 2.

By changing the unknown ¥ of (6.3) to ¥ = P~!W, we can express the
equation cy(A) as follows: '

(L, - T ® Im’% — (A4 AL (6.4)

We prove the following

Theorem 6.1. For any element A of €, co(A) lies in the fiber of A In
particular, the mapping 7 : GO — & is surjection.

Proof. We set the 7, x 7, matrix I',,, such that

) Omr1 71 D
_m ) | T K ®R (v=1
I [ ORS= ) EL R
g Om'ry,ﬁ (y =92 p) ’
Lo AT LoAf™ TR
(6.5)
and for u=2,...,p,
Om'r'u,?,, “‘ ’ : D 7
AD Uoppr | TR @R =)
r, = Y ’ ’ (6.6)
H O -
mry,fu v
AD AL 70

19



where K, denotes the r x r anti—diagonal matrix whose non-zero entries are
all one and R = —(A” + .- + A"). We set G as follows:

Fll . FIp
G:= o (6.7)
[y I '
Then G~ is given as follows:
Fll Flp
é~1 = :
' TPl |NZ4

where I'"* is the 7, x 7, matrix defined by the following:

—ATRY L (A9 4 1,)R 8
P ) Y NEY SRR
Plu - B mry,r1 _ o
~ATWRTY L —ADR (=2 )
. . | p=2,....p
' (6.8)
_p-1
= <Om,’""“ R ) (v=2,...,p), (6.9)
Om'r,,,ﬁu
and for v, u=2,... ,p,
Knm®RT (v= |
poe = 1 @ v=n) (6.10)
Or, 7, (v # 1)

We set G := P(I4srpip @ R)™'G. Then we can show the relation:
—GRG™! = PAP!,

‘where R := R® Opn_,,. Now let us compute the image of the generalized
Okubo system [T, R, G] under the mapping 7. Notice that I ® R commutes

20



with P-1TP = T®I,,, then P(I ® R)P~! commutes with 7. Then from the
definition of , '

G '(zI-T)'GR
=G'I®R)P(aI-T)'P(I® R)'GR
=GP YPUIQRP Yzl - T) {P(I® R)"'P- 1}PGR
=GPV (zI - T)'PGR.
Here
P el - T)'P = Z 0 N & In o, 6.1
@1 -1)P =32 Y Onp, 0 PSR 00y s (6D
Then the coefficient matrix of 1/(z — t,)*+! in —G"l(:vl —T)'GRis
—é'102:;i - @ (NF ®Im) ®Osr_ 5 GR

v1 T
I“lu

(6.12)

(Nk +1 ® Im)(Fvl VP)R'
Irev

Therefore the coefficient matrix of 1/(z — ¢,)**" in the 7(T, R,G) is the
following:

{the principal m x m part of — I‘l"( k1 ® L)) x R, (6.13)

Since the inside of { } of (6.13) is expressed as follows:

Onrie AR AR\ [Om o X
( * I;n Agim
’ ACPRT *
= . (6.14)
| * ok
we obtain w(cp(A4)) = A. -

Remark 4. The assumption that A has at least one regular singularity is
not essintial since, by a gauge transformatlon Y — (z — a)*Y, we can add

toA
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Remark 5. For any A the generalized Okubo system of size n = D Ty
lying in 77'(A) is unique up to conjugate action of Stab(7T"). This can be

proved in a similar way to the case of Proposition 5.1.

Remark 6. When the corank of leading terms AL (v=1,...,p) are all
zero, this gives the minimal size generalized Okubo system in the fiber.

Remark 7. There is the following relation between a solution of A €& and
a solution of its convolution cy(A). Let Y be a solution of the following
equation: '

Y Ees  AFH
0

v=1 k=
If we put
- (Fl()
Fle)=1 :
\ Fy(x)
where
Y(z)
(z—ty,)rv 1
F,(z) = : (v=1,...,p). - (6.16)
Y@ )
x—t,
Then

2(z) = /C F(t)(x — £ dt

with suitable C' is a solution of (6.4).

7 Examples
Ih this section, we compute two examples of non-Fuchsian analog of the

middle convolution and discuss the relations to Backlund transformations of
P, v and P V-
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- 7.1 The fifth Painlevé equafion (PV)

We consider a system of linear differential equation Ly with the following
properties: ‘

1. Ly has singularities at z = 0, 1, oo,

2. £ =0 is a regular singular point,

3. & = o0 is a regular singular point,

4. z =11is an irregular singular point of Poincaré rank 1.

By means of suitable changes of the dependent variables, the system Ly is

written as follows: :

dz (x—1)2'+x,—1 x ’

Ag)) _ (( 2o + Q3 —uzo) ,

z0 -+ a3)/u —20 (71)
‘ A(._l) _ 21+t —vzi .
1 (1 +t)/v —2 )7
© _ 40 [ 0
Al o AO <0 0[0+(11—1)7
where
(1 —a1)zo = N2\ — 1)2p2
+{ao(A— 1) — a — H{(r ~ 1+ ao}A
+ {aoA(A — 1) =t} u + az(a; — 1),
(1 - 011)21 = A()‘ - 1)3/1’2 (72)

+ {26!0)\2 - (20!0 — O3 + t))\ - Ot3}{()\ - 1)/,(, —+ O!o} i
— agAA — 1) + (g + a; — 1),
- A—1 20
V= —/—"—Uu.

A Z1

The parameter A represents a position of apparent singular point.
The holonomic deformation of (7.1) is governed by the following system:
H H |
dA _ 9oy du _ OHv (7.3)
- dt ou dt oA
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here the Hamiltonian Hy is given as follows:

tHy = M\ — 1)%2
+ {2+ 1) A =1+ (g~ +1—t) (A= 1) — t}p
+ ao(ao + al))\. (74)

By eliminating p from (7.3), we obtain the fifth Painlevé eQuation Py:

A1 1Ay 1dA
dez2 \22 A -—1 dt t dt

(A—1)2 g A AA+T)

+ v a)\+)\ +7t+6»)\—1’ (7'5),
where

2 2
_ @ _ W _ 1
a = 27 :8_ 27 Y= Qgp Qy, 0= 27
and ag + a; + ag + a3 = 1.

The Backlund transformations of Py are given as follows:

T Qg ay Qg Qg t
So(x) —ag | a1 +ag Qs az+ag | t
St (il)) ag + o —Q7 ‘ Qs + oy g t
sa() o ar + as —ay az+ag |t
ss(z) || a0+ as o as + as —ag t
w(z) o1 Qs o3 o t
0'(:13) (67)) (0%} » Qo a; | —t

Here we omit an expression of A, p.

Proposition 7.1. The minimal size generalized Okubo system in w~*(Lv)
1s uniquely given as follows:
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where

/110
Tv=101 0},
\o o0 o0 |
Q9 — O —% det Ago) (Cv)l'g
Cy = t 0 (A=1p+a)r+as |,

t—{(A-Dp+a}r-1) (Cv)s as
| (7.7)

and o
t(Cv)32 = (a1 — 1)21 + (ao +a; — ].)(t — (()\ - 1)/.& + 040)(>\ — 1)),

1
(Cvhs = t—{(A=-1Dp+a}(A—1)
{(on = 1)z0 = ((A = Dp + )X + a3)(Cv)s2 — as(ao + 3)}.
| | (7.8)

Proof. Let R be diag(ao, ag + a1 — 1,0). Suppose [Ty, R,G] € n~Y(Ly). By
the Lemma, the matrix G satisfies an equation Qg = 0. Here the coefficient

matrix €2 is given by
Q, R{Y
Q = | Ql )
Qs

where ‘ _
& tAg_l), tX§~1) 0 — tA§0) tX£0)
1= tAgO) tXéO) ) 2= tAg—J) tXl(—l) )
and

Qg - 0 0
-1 _ |0 a+ar—1 0
Ry = 0 0 0
0 -0 0

Xéo), X§O), and Xf_l) are 1x2 matrices. By a direct computation;, we
can show that G is uniquely determined by the equation, and the matrix
—GRG™! coincides with Cy. O
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By translating the right-hand side of (7.6) with a scalar matrix and send
it by m, we obtain a middle convolution of the system (7.1). The middle
convolution of (7.1) with aq is given as follows:

(A A,y

dr (a:——l)2+:c—1+ x

A(O) _ 2o+ a3+ g —UZy
0 (20 + Qs + Oéo)/'ﬁ '—20 ’

(7.9)
A(_l) _ zZ1+1t —0Z; )
! (zZ+t)/v -z )’
30 _ _z0 _ (a0 0
Al o AO ( 0 al,—l)’
where
Zy = -1 Z
O aptar—1 0’_
z = “-l z 7.10
1_a0+a1—1 1 (.‘ )
17:/\+a0/'u_1@@

A+ ao//,l, Z1 '
By comparing (7.1) and (7.9), we have the transformation
Qg — —0g, 07— a1+ ay, O+ Qg,. aé, — a3 + Qp,

t—t, )\l—%)\+%, W

We gain the transformation s;.
Next we consider an analogue of addition. The addition at z = 0 is given
by : '

(AT, AP, AP) = (AT, A9, AP — as1). (7.11)
This induces a transformation

S agrraptaz, aprap, Q> ogt+aoaz, . g —as,
, s
Sttt A pr—>u—7.
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* This is the simple reflection ss.
Similarly, the addition at z = 1 is given by

(AT, AQ, AP = (AT =11, A — (4 — ap)I, AD). (7.12)
This induces a transformation

Qg — 2, Q1+ Q1, Q> Qy, Qa3+ as,
Qg — O i

t=—t, A=A pu—pu— 1 ‘_()\—1)2'

We write this transformation add;. It is easy to see that transformation
(addy)so(add;) coincides with the simple reflection s.

In order to obtain the simple reflection s;, we exchange the exponent at
infinity. It is realized by a gauge transformation by

p=<(1’ (1))

This induces a transformation

oo tar—1, ag—=—-ag+2, a—rata—1, a3~ as,
t—t.

Since the expression of transformed X and p is complicated, we omitted it. |
By performing the Schlesinger transformation

ag — ag — 1, alr—>a1+2, as—as—1, a3z as

~successively, we obtain S1.
Let T be the Schlesinger transformation

‘aor——>a0+1, ar—ar—1, a = g, Q34— Q3.
It is easy to see the relation @ = T1s15,53 and 0 = (add;)w?.

Remark 8. For a system of linear differential equation, the Schlesinger
transformation is a discrete deformation of parameters that does not change
the monodromy; see [6].

Then we obtain all the Bécklund transformations of Py by means of
associate linear differential equation Ly . ‘
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7.2 The fourth Painlevé equation (Py)

Next we consider a system of linear differential equation LIV which has the
following properties:

1. Ly has smgulantles at r = 0 0,
2. z = 0 is an irregular singular point of Poincaré rank 2,
3. £ = oo is a regular singular point.

By means of suitable changes of the dependent variables, the System Lyy is

- written as follows:
ACD 4GD 4@
o ( oA ATy

dz 3 2 T

47 = (S 2)

(7.13)
'A(—l) _ [Q1r G12
0 as az)’ ,
© _ (a0 0
Ao” = (0 a0+a1—1> ’
where » .
2(1 — ar)z = (2X%u + 20p2% — 26X — 1)(Ap + ap) + g + a7 — 1,
Aarr = — (2 +1/2) + A3u+ ap)?,
= A
1z "j/ ’ a1 (7.14)
ag + ay —
a1 = " {all(t —an)— (a1 — 1)z — 0—21““‘} )

Qoo = t— ‘a11-
The holonomic deformation of (7.13) is governed by the following system:

d\ _dHy dp _ OHw
dt  op’ dt  or’

(7.15)

here t_he Hamiltonian Hyy is

| HIV = 2)\3[L2 + {2(1 - OZ2.+ Ol()))\2 — 2N — 1}/1: + 2&0(0[0 + al))\.
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By putting ¢ = 1/, we have the fourth Painlevé equation Ppy:

d?¢ 1 [(d¢\® 3, ) ) Jé;
P = 4 —a)a+ =
a2 (dt) +350 +4tg +2(¢ a)q+q,

where
— _ /B =_9 2
a = Qg Qg, - ag,

and ap + a; + ap = 1.
The Backlund transformations of Py are given as follows:

T (o)) Qaq (6%)

i
So(l') —Oto“ ay +ap | as + g t
s1(z) || a0+ —ay as + ay t
so(z) || ap+ g | a1 + ay —Qy t
’W(.’L') a7 Qo (7)) t
o1(x) o Qo o V-1t
o9(x) a; | o Qg V-1t

we have the

Proposition 7.2. The minimal size generalized Okubo system in 7 (Lv)
is uniquely given as follows:

dv
I — Try) = = Cry ¥ -
(xI3 — Try) o Crv (7.16)
where .
010
Iiy=|0 0 1},
0 00
2(a1 — 1)z — (Crv)12 (Crv)is
Cry = (%) —2(y —tl)z+a2 (CI(\)’)23 ) (7.17)

(Crv)iz = 4o — 1)/\{2)\()\N.+ a)® — p}z,

(Clv)gg = —-4(0{1 — 1))\()\# + ao)z,
((—2(q = 1)z + 03)(Crv )13

(Crv)iz = o

+ 2t(2(a1 — 1)z — ).
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Remark 9. When we perform the Laplace transform
U(z) = /e‘”@(z)dz

~ to (7.16), we obtain

This system is essentially one of the Lax pair of Noumi-Yamada system of
type AL, that is, symmetric form of Pry (cf. [10]).

The middle convolution of (7.13) with ap is given as follows:

A(=2) A(=1) 1(0)
vy (Ao LAY A )Y, |

dz 3 T2 T

40— (b 5):

A(()—l): a11 Q12
Qo1 G2)’

70 _ [0 0
AO o ( 0 al—-l)’

(7.18)

where

— BZ | (7.19)

Cl(o-l—Olz}

_ - a _
g1 = ———— {an( a11) + ez + 5

Ggg =t — Q13- o » ,
By comparing (7.13) and (7.18), we have the transformation
op — —ap, o1 Foptap, Q2> ar, Qg > as+ ag,

t—t, )\k—))\+%, W
o’
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We obtain the simple reflection sy. Next we consider an addition. The
addition at x = 0 is given by

_ _ _ 1 _ :
(457, AT, AP) = (ATD = SL ALY 1 AP — (as — a0)]). (7.20)

Let us change the independent variable £ — y/—1z, this induces a transfor-
mation '

Qo — g, Qpr> o, 02 Qg,

, V=1
t= V=1t A= —V/=1\, p— 55 (2N — 2(aa — ap) A2 — 2tA — 1).
We denote this transformation by addy. We can see easily that s, = (addp)so(addy).
We can obtain the simple reflection s; by exchanging the exponent at
infinity and the Schlesinger transformation (similar to the case of Py). Let
T; be the Schlesinger transformation

aor—>ao—|—1, ar—ay—1, ay— as.
It is easy to see the relation w = Tis;s2, 01 = w(addy), and o3 = (addy)w.

Then we obtain all the Backlund transformations of Py by means of
associate linear differential equation Lyy. :

Part IT |
Confluence of singular points
and the Okubo systems

8 Introduction

For a Fuchsian differential equation, the characteristic exponents are defined
at each regular singularities. If a Fuchsian equation is completely determined
by giving only these characteristic exponents, then we call such a equation
rigid. Here “rigid” can be paraphrased as “accessory parameter free”. Thus,
for rigid Fuchsian systems, global behavior of solutions is determined by local
behavior. '
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Since the Gauss’ hypergeometric equation

2 - .
’z(l—a;)g:—g-—l—{’y—(a—l—ﬁ+1)x}g—z-aﬁy=0
is rigid, it is important for the theory of special functions to obtain all rigid
Fuchsian systems. Concerning this problem, Katz introduced the operations,
called addition and middle convolution, which takes a Fuchsian system to an-
- other Fuchsian system without changing the number of accessory parameters.
Here we follow the terminology of Dettweiler and Reiter [3].
Katz [7] showed the following theorem:

-~ Theorem (Katz) . Every irreducible rigid Fuchsian system is obtained from
rank 1 Fuchsian system by a finite iteration of the addition and the middle
convolution.

Here we recall the Katz-Dettweiler-Reiter operations for systems of the
Fuchsian type. For the sake of simplicity, we represent the Fuchsian system
of the form '

dy Ay A\
- = Yy
-~ dzx (:c-tl + +:c‘— t,,) (m > m)
as A= (Aq,... ,4,).
Definition (addition) . Fora = (0q,...,ap) € CP, an operation

A= (Ai+ardnm, ..., A+ aply)
18 called addition.

Let X be a complex parameter. We put a pm X pm matrix G, as follows:

O i On,
G, = | A Ay + AL, A, (v=1,...,p)
On, . - O
Definition (convolution) . The system (G1,...,Gp) is called convolution

with A of A. We denote this system by cx(A).
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Let K, £ be the following linear subspaces of CP™:

Ker(A;)
K= :

Ker.(Ap) ’ (8.1)

L:=Ker(Gi+---+Gp).

We can see easily that IC, £ are Gy, ... , Gp-invariant subspaces.
Let G, be the linear transformation on quotient space CP™ /(K + L) in-
duced by G,. , ‘ : '

Definition (middle convolution) . We call the operation A — (G, ... ,G))
middle convolution with A and denote by mcy.

In Part I, we extend the notion of convolution for systems, not necessarily
of the Fuchsian type. If a system of differential equations has an irregular
singular point, £ = a, then we can construct a system with regular singular
points arround z = a with a parameter € such that these regular singularities
merge to the irregular singularity when € — 0. That is, a system, not
necessarily of the Fuchsian type, defined on P*(C) is obtained by confluence
of singularities from a system of the Fuchsian type. In Part II, we show that
convolutions of each equation is compatible with confluence.

9 Generalized Okubo system

The system of linear differential equations of the form
dv
w—T)— = AV i
| (va T) o ’ (9.1)

is called a system of Okubo normal form, in this paper, we call it Okubo
system in short. Here T' is an n X n constant diagonal matrix and A is an
n X n arbitrary constant matrix.

When a matrix T is not semisimple, a system.of the form (9.1) may
have irregular singularities. In the case when T is a Jordan matrix, non-
semisimple, call (9.1) generalized Okubo system.

In this paper, we assume that the matrix A is semisimple and denote its
non-zero eigenvalues by —py, ... , —pm, namely, we put

A= -GRG™', R=diag(ps,---,pm,0,...,0). - (9.2)
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- Then systems of the form (9.1) can be written in the following form:

(z] — T)'g = —GRG™'V.

We represent such a system as (T, R,G).
Let Stab(M) be the stabilizer of M € M (n,C):

Stab(M) = {g € GL(n,C) | gM = Mg}.

For a Jordan matrix T" and a diagonal matrix R = diag(p, - - . , pm,0, ..

let O(T, R) be the following set of systems:
O(T, R) = {(T,R,G)}/ >
Here the equivalent relation ~ in (9.3) is defined by

GghGg

-0,

(9.3)

for h € Stab(T), g € Stab(R). We write the set of Okubo and generalized

Okubo systems as follows:

=[J o, R

where T' runs over all Jordan matrices, including diagonal matrices, and R
runs over all diagonal matrices of the form (9.2). Similarly, we denote the

set of Okubo systems, a subset of GO, by

0= [To@, Rr)

where T runs over all diagonal matrices.

Furthermore, we define another sets of linear differential systems. We put

Pimp) and I,y as
Fimp) =€ X (Zzo)" > (C*)™,
=CP x (C)™.

(mp) -
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We regard the set I‘(m p) 358 subset of I'(, ) through the inclusion mapping

F?m,p) (_—> P(map)

p
——

(tl,-" 7tpap1>"' 7pm) = (t17-" 7tp707"' 707P17~~ 7p'm.)
For every element ¥=(t1,-- stp,T1,--- 1 Tp, P1,- - - 5 Pm) Of Ty, we denote

an m X m diagonal matrix diag(py, ... ,pm) by Ry Then we define &, by

(k)

{A(m Z e (z — t,)F+1

v=1 k=0

P
AT € M(m,©), AT™ #0, =3 AP = R, } [z @
) v=1 - v

Here equivalent relation o in (9.4) is defined by
) Y
A(z)  gA(z)g™ (9:5)

where g € Stab(R,). We identify an element A(z) of £, with the system of

Y
differential equation-((li—x = A(z)Y.
We set

I 1II &

m,pEL>1 V€ (m,p)

I II &

m,p€Z>1 'yEFzm‘p)

namely £ is a set of linear differential equations on P! which have regular
singularity at infinity, and F is a set of Fuchsian equations on P!.
Now we give the definition of the mapping 7 : GO — £.

Definition 3. For [T, R,G] € GO, we define the mapping m : GO — & as
follows:

7(T, R, G) := the principal m x m part of (~G~'(zI —T)"'GR). (9.6)

We can show that the definition is Well—deﬁned.

35



10 Cor"lﬂuence‘

In this section, we define the operation convolution for non-Fuchsian systems.
This is an operation which transforms given equation into Okubo system (in
larger system size). .

For a given non-Fuchsian system, we can construct a Fuchsian system
with parameter € which tends to the given equation as ¢ — 0. Then we can
consider the convolutions of both systems. We define a compatible confluence

which connects both Okubo systems.
Ty A( —k)

J

Let A = Z Z (@ =1, be an element of £ whose matrix size is m.
V—-l k=0 ’
Put n = SP_ m(r, +1). Then we can construct a (generalized) Okubo

system o~f 51ze n lying in 771(A) in the following manner.
Let A, be the following m(r, + 1) x n matrix

e Om'r,,,n ‘
A”:(A(;”) o AD Al A,S‘”)f (10-1)

~ We set further matrices A, T, T, and P by
Ay
A= :

Ay
T = Jo1(t)®" @ -+ ® Jrpya(tp)®™,
T= Jrg1(t1) ® - ® Jrpp1(tp),
P = Pumris1) @ ® Punyrpr1)-

(102

Here P j) is a permutation matrix of the form
P(i,j) = (L X el,Ii Qe ..., ® ej)
where ey, ... ,e; are the j-dimensional unit vectors.

Definition 4. We call the following (generalized) Okubo system:
AU —_—
(I, — T)—(E = (PAP™ + A\I,)¥ (10.3)
convolution of A with A, and we denote it by cx(A).
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By changing the unknown ¥ of (10.3) to ¥ = P~!¥, we can express the
equation cy(A) as follows:

- dv - -
(zI, - T® Im)a = (A+ \[,)¥. (10.4)

We proved in Part I that, for any element A of £, m(co(A)) = A
Now we define a Fuchsian system related to A by

c(liY = A(s )Y, Ae) = Z 5:

x—s,,,

where

sJ ‘ ’l“,,-l—l ;(CI/ 8) llv )

'Sl/,j :t —|-—<j_1 /

Here ¢, is a primitive (r, + 1)th root of umty We can show the proposﬂ:mn
(see [5]):

Propesition 10.1.

Pl 4 pr AGR)
i (252 ) -5 A

v=1 j=1 v=1 k=0

(10.5)

The convolution of the system A(e) is given by
)\ -
(2l — 5(6))%; — (A(e) + ALY,

where S(¢) is

51,10m » Sp,1dm :
R | (10.6)
31,r1+1Im Sp,rp+1 Im

Al,l .. Al r1+1 A2 1 .- AQ’T2+1 . Ap,l — AP,Tp'H
Al,l ERN Al r1+1 A2 S R A2,7.2_|_1 Cen Ap,l Ce ATaT‘p'H

The purpose of present article is to prove the following
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Theorem 10.2. The system

(2l — S(e))%—\i’— — (A(e) + ML) ¥

tends to the system

, _ \i’ _ _
(eI, —T® Im)%; — (A4 AL)T

as € = 0. More precisely, there ezists a matriz j(e) which depends on the
- parameter € such that the following hold:

lim j(e)S(€)j(e) ™ = T ® I,
. . 1 - -1 _ 3
lim j(e)A(e)j(e) ™ = A.
Now we define the following (r + 1) x (r + 1) diagonal matrices:

ATH(C,¢) = ding(l, ... ,¢SHR i Ty
AT = diag(1,...,¢L ., ¢0)
and (j + 1) x (j + 1) matrix
| | 11 1
Gao=| "9
| ¥;(<)

where ;(¢) := (¢ — 1. Here ( is a complex parameter.
We will verify the Theorem 10.2 step-by-step in the next section.

11 Proof of the Theorem

11.1 Thecasem=1,p=1
First, we consider the case of m =1, p =1, i.e,,

_ a(o) N a(_l) N } a‘(_"')
-t (z—t)? (x —t)r+1
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where a(=%) € C. We put a; and s; as to (10.5), ﬁha;t is,

a; = r+IZ(C] te)*alH

sj=t+ ¢~ 15 (G=1,...,r+1)

Here ( is a primitive (r 4 1)th root of unity. Then from Proposition 10.1, we
have

. 41 a( k)
lim

e—0 o T — 3] = Z (z_t)k-l'l

In this case, the matrices concerned are

(o ()

S(e) =

.and

We put the matrix j(g) as

j(€) = AT(C, &) (Lt ® G2)(Lr—2 @ Gs) -+ (I @ Gr)Graa AT (Q).
Then we prove the

Proposition 11.1.

I

lim j(€)S(e)j(e) ™ =T
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Proof. Since
S2

/31 € .

(I ® Gr_ky1)

S2

we obtain

Ck—?g

Sk+1

(It ® Gr—p1) !

Ck&. ’

3r+1)

(Ir-1 ® Ga) -+ Gr1S(€)Grily -+ (I ® G2) ™!

Hence

S1

i(€)S(e)i(e) ™ = AT (( e)

S1 €
So CE:
g
S CEZ

40

¢re

Sr41



Here the (4,7 + 1)—entry" is

Cuwei_l(ci_ls)g“_ﬂ%us“i =1.
‘Therefore we have |
st 1
i©sEiEe) = 1
_ Sr+1
By taking a limit ¢ ‘——> 0, we complete the proof. o O

We can show easily the following lemma by an induction:

Lemma 11.2. Forp e {1,...,r—k} and a primitive (r + 1)th root of unity
¢, the relation :

r—k+1
Z PPty - ko1 =0
1=1 :
holds.
For [ =0,...,r — 1, we define a;[l|s recursively as follows:
o i=1,...,01+1 ‘
a;[l +1] = ol 1 (]._ R (11.1)
(a[l] - al+1[l])¢j—l—1 (G=1+2,...,7r+1)

and q;[0] = ¢#*a; (j =1,...,r +1). Then we show the following

Proposition 11.3.

0 0
soaEse = S A | L A
ar[r] ... apylr]

(11.2)
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Proof. In general, by virtue of the Lemma 11.2, the following holds:

0y Og41
(Ik @ Gr——k-H) Ck% : '¢kaj _ Ck+1¢1 ¢k+1@g ,
Croin-tra;)  \ T thoay
where 0y is the zero vector in C*. Thus we obtaih |
| 0 ... 0
(118 o)+ (18 G)Grab QA = EEED )
G o Gra

Next, by the definition of a;[l], we have

(arlk], - arsa[K]) X (I @ Grogsn) ! = (aalk + 1], , @yl + 1]).
Taking above into consideration, we obtain (11.2). O

We define a;[l] by the following:

a;[l] = Za][l ke Fal=h),

then from (11.1), these satisfy the difference eqliation: |

i+ 10 = (@l — e, G=1+2...,r+1).  (1L3)
Then we can show the following |
Proposition 11.4. qa;[l],_x is ezxpressed explicitly as follows:

k ked;  k—di——dj_y

(3= 1)’c — i - I<k<r l<i
P (0 v SIS SRRSO BT )

di=1dy=1
0 - (otherwise)

forle,‘...,r,jzl,... ,7+ 1.
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Proof. Induction on k. : O
It follows that

G=13G-2)
2

Corollary 11.5. a;[j — 1],_j11 =¢

Hence the (r + 1, j)-entry of (11.2) reads as

(G-1)(G—=2) 1)(2 -2

(r+1)¢”

e ayr]

=(r+1)¢ T et
r—j+1

=¢ e Z a;lj — 1]ks’"“j+1_ka(‘k) (11.4)
k=0

em0 ,_G=DG=D

L()) C . 2J a][.] — 1],,._j+1(1

a;lj — 1]

(=r+5-1)

B a(—r+]_1)’

we finish the proof in this case.

11.2 The case m = 1 and general p

p (—k)
(=k)
In this subsection, we consider the case A = Z Z m wherea, ' €
v=1 k-—O
C.Putn=3" (r,+1). Forv=1,...,p,j=1,...,m+1, let ayj, s,
be '

7

| 1 N ik (ok
Wi = > () Fal™
k=0 .
Suji = tu + Cz_ls

where (, is a primitive (r, + 1)th root of unity. Then from Proposition 10.1,
we have

P T+l
(35 ) -3

v=1 j=1 ulkO
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In this case, the matrices concerned are

( (81,1 Sp,1
S(g) = . @ e e @
< K S1,r1+1 Sprp+1
)
(0,1,1 cee Qrpe41 Q21 ... 2ro+1 ~-- Qp1 ... ap’.,-p+1
L \al,l ce Qrpe4r Q21 .. a/?,r2+1 cee Qp1 - a,‘,’rpH

Cand T = Jr41(t1) @ -+ © Jrpqa(ty). Ais given by the formula (10.1) and
(10.2). ' |
Let Gg.”) = G,(¢,) and

ho(€) == AP (G, ) Try—1 ® GYY(Tr,—2 & G
- (L@ GG, AT (G). (11.5)

Now we define the matrices h(e), k(¢) by

h(e) = hi(e) ® - - ® hy(e) (11.6)
and ‘ |
e e
k(e) = : v (11.7).
=

Let j(e) = k(¢)h(e). Since S(e) is a direct sum of ones of the case p = 1, the
following is clear. ’

Proposition 11.6.

lim j(e)S(e)j(e) ™ =T
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Next let us compute h(s)fi(s)h(e)‘l. First we note that

(= 1)T1(T1+1)Ar1+1(c 8)

h(e)A(e) = |
' (=1)"P(rp+1) ATp+1,»
St D AT (G )

| Orin

ayr --- Q141 ... Ap1  --- Qpryt1

x L | . (11.8)

O’rp,n

a1 ... Q141 e ap1 .- a,p,,,-p_'_l

This can be shown in a similar manner to the previous subsection. Then, by
multiplying h(e)~! from the right, we obtain

(= 1)T1(T1+1)Ar1+1((; 6)
 h(e)A(e)h(e)t =

—1)"P (r rp+1
Vs (D)

Avg ... Ay | A;1+1((1:€), -
x|+ . (11.9)
Apy ... Ay ' ATF(¢, )

Here the (r, + 1) x (r, + 1) matrices A, , are given as follows:

0 o 0
a#,l[ru] cee Ay m+1[7'u]

and a, ;[r,]s are defined by same procedure (11 1) with replacing ¢ by (.
Hence the (v, u)-block of h(e)A(e)h(e)™! is given by

=)™ (r, +1)
¢

and its (r, + 1, j)-entry is written as

AT, €) Apu AT (Cue)

_G=1@GE-2) i
(v +1)¢ 2 €™ ]Haw[ru]
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Then by considering a conjugate action of k(¢), the above expression is mul-
tiplied by f‘ierﬂ“’“ together with (11.4), we complete the verification in
this case.

- 11.3 The case general m, p
p Tv A(—k)

In this subsectlon we con81der the most general case: A = ; ; kz_: ?—t—)kﬁ
where A5 € M (m,C). The matrices S(¢), A(e), T, and A are the same
as (10.6), (10.7), (10.1), and (10.2). Putting j(¢) = (k(e)h(¢)) ® In, where
h(g), k(e) are same as (11.6), (11.7). Then the proof goes in quite a similar
way to the previous subsections. Thus we can conclude that the Theorem
10.2 is valid.
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