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Solvability of a Class of Differential Equations

in the Sheaf of Microfunctions

with Holomorphic Parameters

By Shota Funakoshi

Abstract. The aim of this paper is to give results of solvability
of a class of differential equations in the framework of microfunctions
with holomorphic parameters. In particular we study transversally
elliptic operators and other related operators.

1. Introduction

We study solvability of some class of differential equations in the sheaf of

2-analytic functions, that is, microfunctions with holomorphic parameters.

In particular we treat transversally elliptic operators and other related oper-

ators, which are difficult to study in the former theory of second microlocal

analysis.

The theory of the second microlocalization is a very useful method in

studying solutions of linear partial differential equations in various situa-

tions. M. Kashiwara has constructed the sheaf C2
V of 2-microfunctions by

applying the microlocalization functor to the sheaf of rings OX of holomor-

phic functions twice. Refer to Kashiwara-Laurent [8] for details.

Since this sheaf is larger than the decomposition of second microlo-

cal singularities of microfunctions, Kataoka-Tose [12] and Kataoka-Okada-

Tose [11] gave each definition of a new subsheaf of C2
V what is called the

sheaf of small 2-microfunctions. By introducing a bimicrolocalization func-

tor, Schapira-Takeuchi [16] constructed later the same sheaf. In [2] the

author also gave elementary reconstruction of the sheaf C̃2
V of small 2-

microfunctions based on the idea of K. Kataoka. Using our construction

of C̃2
V , we reached a result of the theorem of supports, that is, we gave

a simple sufficient condition under which a solution complex with coeffi-

cients in C̃2
V vanishes locally in the derived category. Our construction of

C̃2
V enabled us to estimate the support of solution complexes.
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Let M be an open subset of R
n with coordinates x = (x1, . . . , xn), X

a complex neighborhood of M in C
n with coordinates z = (z1, . . . , zn),

and T ∗
MX the conormal bundle of M in the cotangent vector bundle T ∗X

of X. We take coordinates of T ∗
MX(�

√
−1T ∗M) as (x,

√
−1ξ · dx) with

ξ = (ξ1, . . . , ξn) ∈ R
n. Let V and Σ be the following regular involutive and

Lagrangian submanifolds of T ∗
MX respectively:

V =
{

(x,
√
−1ξ · dx) ∈ Ṫ ∗

MX; ξ1 = · · · = ξn−1 = 0
}
,

Σ =
{

(x,
√
−1ξ · dx) ∈ Ṫ ∗

MX; ξ1 = · · · = ξn−1 = xn = 0
}
,

where Ṫ ∗
MX = T ∗

MX \M . Then we write x = (x′, xn), ξ = (ξ′, ξn), etc.

Let P be a differential operator with analytic coefficients defined on M .

Let p◦ = (x◦,
√
−1ξ◦ · dx) be a point of Σ with σ(P )(p◦) = 0, where σ(P )

denotes the principal symbol of P . Assume P is transversally elliptic in a

neighborhood of p◦, that is, P satisfies:

|σ(P )(x,
√
−1ξ/|ξ|)| ∼ (|xn|+ |ξ′|/|ξ|)l

for some positive integer l. Then Grigis-Schapira-Sjöstrand [4] has given

a theorem on the propagation of analytic singularities for this operator P

along the bicharacteristic leaf of V passing through p◦.
On the other hand, we assume:

|σ(P )(x,
√
−1ξ/|ξ|)| ∼ (|xn|k + |ξ′|/|ξ|)l

for some positive integers k and l in a neighborhood of p◦. Then the author

has proved in [2] unique solvability in C̃2
V for this operator P . This result

was obtained by using our elementary construction of C̃2
V and the estimate

of the support of solution complexes with coefficients in C̃2
V . In this case, the

structure of solutions of Pu = f in the sheaf CM of Sato microfunctions is

reduced to that in the sheaf A2
V of 2-analytic functions. Therefore our result

implies the above theorem due to Grigis-Schapira-Sjöstrand [4] because any

section of A2
V has the property of the uniqueness of analytic continuation

along the bicharacteristic leaves of V . The principal symbol of P studied in

[2] is written as:

σ(P )(x, ξ) =
∑
|α|=l

aα(x, ξ)(ξ
′)α

′
(xn)

kαn
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in a neighborhood of x◦ ∈M . Here aα(x, ξ) are real analytic functions and

homogeneous in ξ of degree m− |α′|, α = (α′, αn) = (α1, . . . , αn) ∈ N
n, and

|α| = α1 + · · ·+ αn.
As for the property of solvability for those operators, our previous result

of [2] is not sufficient. Funakoshi-Kataoka [3] proved solvability for similar

operators by using the theory of the Szegö kernel. Wakabayashi [20] also

proved local solvability of micro-hyperbolic operators and some second order

operators in a different way.

Let p◦ = (x◦,
√
−1ξ◦ · dx) be any point of Σ. In connection with those

operators we consider the following differential operator of order m with

analytic coefficients defined on M :

P (x,Dx′ , xnDxn) =
∑

|α|≤m
aα(x)D

α′
x′ (xnDxn)αn ,

where Dαx = Dα1
1 . . . Dαn

n , Dj = Dxj = ∂/∂xj . One makes the hypothesis:

a(0,...,0,m)(x◦) �= 0.

Then we have:

Ker(A2
V −→

P
A2
V )p◦ ⊂ CRY |X ,p◦ ,

where Y = {z ∈ X; zn = 0}, and CRY |X is the sheaf defined by Sato-Kawai-

Kashiwara [15]. And furthermore, one makes the hypothesis:

a(m,0,...,0)(x◦) �= 0.

Then we get results of solvability of Pu = f in A2
V at p◦ on some suitable

condition of f ∈ A2
V .

In this paper, we show these theorems in the following way. For the

theorem of the kernel of P , we continue analytically a defining function of a

2-analytic function by means of the Cauchy-Kowalewski theorem. For the

theorem of solvability, we turn a defining function of a 2-analytic function

into the form of integral representation by means of the Fourier transforma-

tion. This is easier to deal with than the original form. For that purpose

one extends a domain of the defining function by using the method due to

Hörmander [5] so that some growth condition holds. Next, regarding the

variable of integration as a parameter, we consider the differential equation
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with the parameter. Then we get a real solution by superposing a solution

with respect to the parameter in the end. At this time, the solution with the

parameter needs to be infra-exponential, that is, slowly increasing. For this

purpose we find out an approximate solution and estimate the remainder

by means of majorant series in the Cauchy-Kowalewski theorem with the

parameter.

We give the plan of this paper.

Section 2 is preliminaries of subsequent sections. We review the theory of

2-microlocal analysis, some results about transversally elliptic operators, L2

estimates and existence theorems for the ∂̄ operator due to Hörmander [5],

etc.

In Section 3, we give the theorem of solvability of Pu = f in A2
V . We

also give the theorem of the kernel of P : A2
V → A2

V .

In Section 4, we give the proof of the main theorem of solvability, which

is decomposed into several steps.

I would like to express my gratitude to Professor Kiyoomi Kataoka for

guidance, encouragement and very valuable suggestions.

2. Preliminaries

2.1. 2-microlocal analysis

Let M be an open subset of R
n with coordinates x = (x1, . . . , xn) and

X a complex neighborhood of M in C
n with coordinates z = (z1, . . . , zn).

One denotes by OX the sheaf of rings of holomorphic functions on X. Let

(z, ζ) be the associated coordinates on T ∗X with z = x +
√
−1y, ζ =

ξ +
√
−1η. Then (x,

√
−1ξ · dx) denotes a point of a conormal bundle

T ∗
MX(�

√
−1T ∗M) with ξ = (ξ1, . . . , ξn) ∈ R

n. Let V be the following

regular involutive submanifold of T ∗
MX:

V =
{

(x,
√
−1ξ · dx) ∈ Ṫ ∗

MX; ξ1 = · · · = ξd = 0
}

(1 ≤ d < n),

where Ṫ ∗
MX = T ∗

MX \ M . We put x = (x′, x′′) with x′ = (x1, . . . , xd),

x′′ = (xd+1, . . . , xn), z = (z′, z′′) with z′ = (z1, . . . , zd), z
′′ = (zd+1, . . . , zn),

and ξ = (ξ′, ξ′′) with ξ′ = (ξ1, . . . , ξd), ξ
′′ = (ξd+1, . . . , ξn). We set, moreover,

N =
{
z ∈ X; Im z′′ = 0

}
,

Ṽ = T ∗
NX.
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This space Ṽ is called a partial complexification of V . It is equipped with

the sheaf

CṼ = µN (OX)[n− d]

of microfunctions with holomorphic parameters z′, where µN denotes the

functor of Sato’s microlocalization alongN . Refer to Kashiwara-Schapira [9,

10]. And furthermore, we set

Y =
{
z ∈ X; z′′ = 0

}
,

and the sheaf CRY |X of microfunctions on a complex submanifold Y :

CRY |X = µY (OX)[n− d].

M. Kashiwara constructed the sheaf C2
V of 2-microfunctions along V on T ∗

V Ṽ

by

C2
V = µV (CṼ )[d].

We also define

A2
V = CṼ |V ,
B2
V = RΓV (CṼ )[d] = C2

V |V .

We call A2
V the sheaf of 2-analytic functions along V and B2

V the sheaf of

2-hyperfunctions along V . Note that these complexes CṼ , CRY |X , C2
V and B2

V

are concentrated in degree 0.

Concerning C2
V , there are fundamental exact sequences on V :

0 −→ A2
V −→ B2

V −→ π̇V ∗
(
C2
V |Ṫ ∗

V Ṽ

)
−→ 0,(2.1)

0 −→ CM |V −→ B2
V .(2.2)

Here π̇V is the restriction of the projection πV : T ∗
V Ṽ → V to Ṫ ∗

V Ṽ , and

CM (= µM (OX)[n]) is the sheaf of Sato microfunctions on M constructed in

Sato-Kawai-Kashiwara [15]. We note that the inclusion CM |V ↪→ B2
V is not

surjective. Refer to Kataoka-Okada-Tose [11] for a counter-example.

Moreover there exists the canonical spectrum map

Sp2
V : π−1

V B2
V −→ C2

V
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on T ∗
V Ṽ . By using Sp2

V we define

SS2
V (u) = supp

(
Sp2

V (u)
)

for u ∈ B2
V . This subset SS2

V (u) is called the second singular spectrum of u

along V .

Refer to Kashiwara-Laurent [8] for more details.

The exact sequence (2.1) shows that C2
V gives second microlocal analytic

singularities for sections of B2
V . This sheaf C2

V is, however, too large to

study microfunction solutions of a class of differential equations because

the inclusion in (2.2) is not surjective.

For this reason Kataoka-Tose [12] constructed the subsheaf
◦
C2
V of C2

V |Ṫ ∗
V Ṽ

satisfying the exact sequence

0 −→ A2
V −→ CM |V −→ π̇V ∗

◦
C2
V −→ 0(2.3)

by using the comonoidal transformation. Kataoka-Okada-Tose [11] also con-

structed C̃2
V as the image sheaf of the morphism

π̇−1
V (CM |V ) −→ C2

V |Ṫ ∗
V Ṽ

to have the same exact sequence as (2.3). Schapira-Takeuchi [16] con-

structed later the same sheaf

CMN = µMN (OX)[n]

by using the functor µMN of Schapira-Takeuchi’s bimicrolocalization. Refer

also to Takeuchi [19] for details.

Also, the author has given in [2] elementary reconstruction of C̃2
V based

on the idea of K. Kataoka in order to show the theorem of supports. One

sets

X̃ = X × (Rd \ {0}),

Hc =
{

(z, ξ′) ∈ X̃; 〈Im z′, ξ′〉 ≤ c| Im z′′|
}
,

G =
{

(z, ξ′) ∈ X̃; Im z′′ = 0
}



Solvability of a Class of Differential Equations 421

for c > 0, where 〈Im z′, ξ′〉 = Im z1 · ξ1 + · · ·+ Im zd · ξd. We identify{
(z′, x′′, ξ′,

√
−1ξ′′ · dx′′) ∈ Ṫ ∗

GX̃; Im z′ = 0
}

with Ṫ ∗
V Ṽ through the correspondence

(x, ξ′,
√
−1ξ′′ · dx′′) ←→ (x,

√
−1ξ′′ · dx′′,

√
−1ξ′ · dx′).

We denote by p the projection X̃ → X and by i the inclusion Ṫ ∗
V Ṽ ↪→ T ∗

GX̃.

Definition 2.1. One sets

C̃2
V = lim−→

c

Hn
(
i−1µGRΓHc(p

−1OX)
)
,

where c tends to +∞. One calls C̃2
V the sheaf of small 2-microfunctions

along V .

Then we have the essential exact sequence:

0 −→ A2
V −→ CM |V −→ π̇V ∗C̃2

V −→ 0.(2.4)

We take the following regular involutive submanifold of T ∗X:

V C =
{

(z, ζ · dz) ∈ Ṫ ∗X; ζ1 = · · · = ζd = 0
}

(1 ≤ d < n),

where Ṫ ∗X = T ∗X \ X. We put ζ = (ζ ′, ζ ′′) with ζ ′ = (ζ1, . . . , ζd),

ζ ′′ = (ζd+1, . . . , ζn). For this space, one sets Ṽ C ⊂ T ∗(X × X) as in Lau-

rent [13]. We note that V C and T ∗
V CṼ

C are complexifications of V and T ∗
V Ṽ

respectively.

We denote by DX the sheaf of rings of finite-order holomorphic differ-

ential operators on X. We also denote by EX the sheaf of rings of mi-

crodifferential operators and by E2
V C the sheaf of rings of 2-microdifferential

operators. We denote, moreover, by σ(P ) (resp. σV C(P )) the principal

symbol of a microdifferential (resp. 2-microdifferential) operator P . We can

regard a microdifferential operator P as a 2-microdifferential operator in a

neighborhood of a point of V C:

EX |V C

∼−→ D2
V C := E2

V C|V C.
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For this operator P , σV C(P ) is the lowest degree term of the Taylor expan-

sion of σ(P ) along V C:



σ(P )(z, ζ) =

∑
|α|≥m

aα(z, ζ
′′)ζ ′α,

σV C(P )(z, ζ ′′, z′∗) =
∑

|α|=m
aα(z, ζ

′′)z′∗α.

Let U be an open subset of T ∗
V CṼ

C. Then, for a 2-microdifferential operator

P ∈ E2
V C(U), P is invertible on U if and only if σV C(P ) �= 0 on U .

Let M be a coherent EX -module defined in a neighborhood of a point

of V . One says that M is partially elliptic along V if:

Ch2
V C(M) ∩ Ṫ ∗

V Ṽ = ∅.

Here the subset Ch2
V C(M) of T ∗

V CṼ
C is the microcharacteristic variety of

M along V C. Next let P be a microdifferential operator defined in a neigh-

borhood of a point of V , which is partially elliptic along V . Since this

operator P induces an isomorphism P : C2
V

∼→ C2
V , any microfunction (or

any 2-hyperfunction) solution of the equation Pu = 0 always belongs to

A2
V .

Refer to Laurent [13] and Bony-Schapira [1] for more details.

Let M be an arbitrary coherent DX -module, and we denote by char(M)

the characteristic variety of M. Assume d+ 1 = n, that is to say, a regular

involutive submanifold V is defined by ξ1 = · · · = ξn−1 = 0. In this case,

the author has obtained an estimate of the support of solution complexes

with coefficients in C̃2
V .

Theorem 2.2. Let q◦ = (x◦,±
√
−1 dxn,

√
−1η′◦ · dx′) be a point of

Ṫ ∗
V Ṽ . Then we have

RHomDX
(M, C̃2

V )q◦ = 0

if there exists a positive constant δ such that{
(z, (ξ′ +

√
−1εη′) · dz′ ± (ξn +

√
−1) dzn) ∈ T ∗X;

|z − x◦|+ |η′ − η′◦| < δ, | Im zn|+ |ξ| < εδ
}
∩ char(M) = ∅
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for any ε with 0 < ε < δ.

In the proof of Theorem 2.2, we have made use of our construction of C̃2
V

and the method of micro-support due to Kashiwara-Schapira [9, 10]. Refer

to [2] for the proof of Theorem 2.2.

2.2. Transversally elliptic operators

We review in this subsection some results on transversally elliptic oper-

ators. Let Σ ⊂ V be the following Lagrangian submanifold of T ∗
MX:

Σ =
{

(x,
√
−1ξ · dx) ∈ Ṫ ∗

MX; ξ1 = · · · = ξd = xd+1 = · · · = xn = 0
}
.

Let P be a differential operator with analytic coefficients defined on M .

Let p◦ = (x◦,
√
−1ξ◦ · dx) be a point of Σ with σ(P )(p◦) = 0, where σ(P )

denotes the principal symbol of P .

Theorem 2.3 (Grigis-Schapira-Sjöstrand [4]). Let Γ0 be the bicharac-

teristic leaf of V passing through p◦. We suppose that for some positive

integer l

|σ(P )(x,
√
−1ξ/|ξ|)| ∼ (|x′′|+ |ξ′|/|ξ|)l(2.5)

in a neighborhood W of p◦ such that Γ0 ∩W is connected. If u is a distri-

bution defined on M , such that Γ0 ∩WFa(Pu) = ∅, then either Γ0 ∩W ⊂
WFa(u) or

Γ0 ∩W ∩WFa(u) = ∅.

The operator which satisfies (2.5) is called transversally elliptic in a

neighborhood of p◦. Refer also to Sjöstrand [17, 18].

On the other hand, we consider a case where d+ 1 = n, that is, V and

Σ are defined respectively by ξ1 = · · · = ξn−1 = 0 and ξ1 = · · · = ξn−1 =

xn = 0. In this case the author has proved in [2] unique solvability in C̃2
V

for some class of partial differential operators by using Theorem 2.2.

Theorem 2.4. One sets M = DX/DXP . We suppose that for some

positive integers k and l

|σ(P )(x,
√
−1ξ/|ξ|)| ∼ (|xn|k + |ξ′|/|ξ|)l
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in a neighborhood of p◦. Then for any q◦ ∈ π̇−1
V (p◦), one has

RHomDX
(M, C̃2

V )q◦ = 0.

In the situation of Theorem 2.4, we can get the following isomorphism

in a neighborhood of p◦ ∈ Σ in V by the fundamental exact sequence (2.4):

RHomDX
(M,A2

V )
∼−→ RHomDX

(M, CM |V ).

This shows that the structure of solutions of Pu = f in CM |V has been

reduced to that in A2
V . Hence, any microfunction solution of Pu = 0 always

belongs to A2
V . Since any section of A2

V has the property of the uniqueness

of analytic continuation along the bicharacteristic leaves of V , we find that

Theorem 2.4 implies Theorem 2.3.

Note that the principal symbol of P in Theorem 2.4 is written:

σ(P )(x, ξ) =
∑
|α|=l

aα(x, ξ)(ξ
′)α

′
(xn)

kαn

in a neighborhood of x◦ ∈M . Here aα(x, ξ) are real analytic functions and

homogeneous in ξ of degree m− |α′|, α = (α′, αn) = (α1, . . . , αn) ∈ N
n, and

|α| = α1 + · · ·+ αn.

2.3. L2 estimates and existence theorems for the ∂̄ operator

Let Ω be an open set in C
n and ϕ a real-valued continuous function in

Ω. Recall the L2(Ω, ϕ) space of Hörmander, that is, f ∈ L2(Ω, ϕ) if and

only if

‖f‖2
ϕ :=

∫
|f |2e−ϕ dV <∞.

Here the symbol dV is the standard Euclidean volume form on C
n:

dV = dV (z) = (dx1 ∧ dy1) ∧ · · · ∧ (dxn ∧ dyn).

This is a subspace of the space L2(Ω, loc) of functions in Ω which are locally

square integrable with respect to the Lebesgue measure, and it is clear that
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every function in L2(Ω, loc) belongs to L2(Ω, ϕ) for some ϕ. By L2
(p,q)(Ω, ϕ)

we denote the space of forms of type (p, q) with coefficients in L2(Ω, ϕ),

f =
∑′

|I|=p

∑′

|J |=q
fI,J dz

I ∧ dz̄J ,

where
∑′ means that the summation is performed only over strictly in-

creasing multi-indices. We set

|f |2 =
∑′

I,J

|fI,J |2,

and

‖f‖2
ϕ =

∫
|f |2e−ϕ dV =

∑′

I,J

‖fI,J‖2
ϕ.

Note that L2(Ω, ϕ) is a Hilbert space with this norm. Similarly one defines

the space L2
(p,q)(Ω, loc).

The following theorem is of fundamental importance.

Theorem 2.5 (Hörmander [5]). Let Ω be a pseudoconvex open set in

C
n and ϕ any plurisubharmonic function in Ω. For every g ∈ L2

(p,q+1)(Ω, ϕ)

with ∂̄g = 0 there is a solution u ∈ L2
(p,q)(Ω, loc) of the equation ∂̄u = g

such that ∫
Ω
|u|2e−ϕ(1 + |z|2)−2 dV ≤

∫
Ω
|g|2e−ϕ dV.

3. Solvability in the Sheaf of Microfunctions with Holomorphic

Parameters

In this section, we give the theorem of solvability of some class of differ-

ential equations in the sheaf of 2-analytic functions, that is, microfunctions

with holomorphic parameters. In Theorems 2.3 and 2.4, we have seen the

propagation of analytic singularities for each operator along the bicharac-

teristic leaves of the regular involutive submanifold. However, they are not

sufficient to get results of solvability for these operators.
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Assume d+ 1 = n in the notation of the previous subsections. We shall

use the following notation. LetM be an open subset of R
n with coordinates

x = (x1, . . . , xn), X a complex neighborhood of M in C
n with coordinates

z = (z1, . . . , zn), and Y = {z ∈ X; zn = 0}. The letter N denotes the set

of non-negative integers. We write |α| = α1 + · · · + αn, α! = α1! . . . αn!,

Dαx = Dα1
1 . . . Dαn

n , and Dj = Dxj = ∂/∂xj for α = (α1, . . . , αn) ∈ N
n. Let

V and Σ be the following regular involutive and Lagrangian submanifolds

of T ∗
MX respectively:

V =
{

(x,
√
−1ξ · dx) ∈ Ṫ ∗

MX; ξ1 = · · · = ξn−1 = 0
}
,

Σ =
{

(x,
√
−1ξ · dx) ∈ Ṫ ∗

MX; ξ1 = · · · = ξn−1 = xn = 0
}
,

where Ṫ ∗
MX = T ∗

MX \M . So, we put x = (x′, xn) with x′ = (x1, . . . , xn−1),

z = (z′, zn) with z′ = (z1, . . . , zn−1), ξ = (ξ′, ξn) with ξ′ = (ξ1, . . . , ξn−1),

and α = (α′, αn) with α′ = (α1, . . . , αn−1).

Let p◦ be any point of Σ, and let p◦ = (x◦,
√
−1ξ◦ · dx), x◦ = (x′◦, 0) =

(x◦,1, . . . , x◦,n−1, 0), ξ◦ = (0, ξ◦,n). In connection with the transversally

elliptic operator in Subsection 2.2, we consider the following differential

operator of order m with analytic coefficients defined on M :

P (x,Dx′ , xnDxn) =
∑

|α|≤m
aα(x)D

α′
x′ (xnDxn)αn .(3.1)

Assume P is the restriction to M of a holomorphic differential operator of

order m defined on X:

P (z,Dz′ , znDzn) =
∑

|α|≤m
aα(z)D

α′
z′ (znDzn)αn .

Note that 

σ(P )(z, ζ) =

∑
|α|=m

aα(z)ζ
′α′

(znζn)
αn ,

σV C(P )(z, ζn, z
′∗) = a(0,...,0,m)(z)(znζn)

m

provided a(0,...,0,m)(x◦) �= 0. Hence, one cannot apply Bony-Schapira’s the-

ory to this operator, since P is not partially elliptic along V . See Subsec-

tion 2.1 and Bony-Schapira [1].
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Now recall that A2
V = CṼ |V = H1(µN (OX))|V and that

A2
V ,p◦ � H1

Z(OX)x◦(3.2)

� lim−→
r>0

O(Dn−1
r × Ur)/O(Dnr ).

Here we have set the closed subset Z ⊂ X, the open polydisc Dkr ⊂ C
k and

the open subset Ur ⊂ C respectively by:

Z = {z ∈ X; Im(ξ◦,nzn) ≤ 0},
Dkr = {z ∈ C

k; |zj − x◦,j | < r, j = 1, . . . , k},
Ur = {zn ∈ C; |zn| < r, Im(ξ◦,nzn) > 0}

for k ≤ n and r > 0. Then any germ f(x) ∈ A2
V ,p◦ is obtained as boundary

value of a holomorphic function:

f(x) = bDn−1
r ×Ur

(F (z)),(3.3)

where F (z) ∈ O(Dn−1
r × Ur) for some r > 0.

Recall, moreover, the sheaf CRY |X of microfunctions on Y defined by:

CRY |X = H1(µY (OX)). The stalk of CRY |X at p◦ ∈ Σ is also written:

CRY |X ,p◦ � lim−→
r>0

H1
Zr

(OX)x◦(3.4)

� lim−→
r>0

O(Dn−1
r × Vr)/O(Dnr ).

Here we have set the closed subset Zr ⊂ X and the open subset Vr ⊂ C

respectively by:

Zr = {z ∈ X; Im(ξ◦,nzn) ≤ −r|Re(ξ◦,nzn)|},
Vr = {zn ∈ C; |zn| < r, Im(ξ◦,nzn) > −r|Re(ξ◦,nzn)|}.

Also any germ f(x) ∈ CRY |X ,p◦ is obtained as boundary value of a holomor-

phic function:

f(x) = bDn−1
r ×Vr(F (z)),

where F (z) ∈ O(Dn−1
r × Vr) for some r > 0.
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It is clear by the definitions that there exists the exact sequence on Σ

concerning these sheaves:

0 −→ CRY |X |Σ −→ A2
V |Σ .

Now one makes the hypothesis:

a(0,...,0,m)(x◦) �= 0.(3.5)

We can prove the following theorem of the kernel of P : A2
V → A2

V .

Theorem 3.1. Assume (3.5) for the differential operator (3.1). Then:

Ker(A2
V −→

P
A2
V )p◦ ⊂ CRY |X ,p◦ .

Proof. We can suppose from the beginning that x◦ = 0, ξ◦ = (0, . . . ,

0, 1). The 2-analytic function u ∈ Ker(A2
V −→

P
A2
V )p◦ is written as boundary

value of a holomorphic function:

u(x) = bDn−1
r ×Ur

(U(z)),

where U(z) ∈ O(Dn−1
r × Ur) for some small r > 0. Then one has by the

assumption

P (x,Dx′ , xnDxn)u(x) = bDn−1
r ×Ur

(P (z,Dz′ , znDzn)U(z)) = 0

in the space A2
V ,p◦ . Therefore the holomorphic function

F (z) := P (z,Dz′ , znDzn)U(z)(3.6)

can be also an element of O(Dnr1) for a sufficiently small r1 > 0 by the

isomorphisms in (3.2). We can assume that a(0,...,0,m)(z) ≡ 1 from the

hypothesis (3.5) in advance.

One introduces the new local coordinates (z′, w) = (z1, . . . , zn−1, w) with

w = log zn, −1

2
π < arg zn <

3

2
π.
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By this local coordinate system, our differential equation (3.6) is turned

into:

P (z′, ew, Dz′ , Dw)U(z′, ew) = F (z′, ew)

on the unbounded domain {(z′, w); z′ ∈ Dn−1
r1 ,Rew < log r1, 0 < Imw < π},

where the operator P is written as:

P (z′, ew, Dz′ , Dw) =
∑

|α|≤m
aα(z

′, ew)Dα
′

z′D
αn
w .

Consider the Cauchy problem:{
P (z′, ew, Dz′ , Dw)V (z′, w) = F (z′, ew),

DjwV = DjwU when w = w◦, 0 ≤ j < m
(3.7)

for any fixed w◦ ∈ C with Rew◦ < log r1 − 1, 0 < Imw◦ < π. Set:

Ωw◦,r = {(z′, w) ∈ C
n; |z1|+ · · ·+ |zn−1|+ |w − w◦| < r},

Ωw◦,L,r = {(z′, w) ∈ C
n; |z1|+ · · ·+ |zn−1|+ L|w − w◦| < r},

Ω′
r = {z′ ∈ C

n−1; |z1|+ · · ·+ |zn−1| < r}.

Note that aα(z
′, ew) ∈ O(Ωw◦,r), F (z′, ew) ∈ O(Ωw◦,r1), and that

DjwU |w=w◦ ∈ O(Ω′
r1). By the Cauchy-Kowalewski theorem, there exists

a unique solution V (z′, w) of the Cauchy problem (3.7) that is holomorphic

at (z′, w) = (0, w◦). Moreover, this solution V (z′, w) is holomorphic on

Ωw◦,L,r1 , where L is a constant with L ≥ 1. Note that we can choose the

constant L independent of w◦, because there exists a constant M such that

|aα(z′, ew)| ≤M

for any w◦, (z′, w) ∈ Ω̄w◦,r/2, and any α. See Ōshima-Komatsu [14] for the

detailed way to choose the constant L.

Then U(z′, ew) extends holomorphically to the domain{
(z′, w) ∈ C

n; z′ ∈ Dn−1
r2 ,Rew < log r1 − 1,−δ < Imw < π + δ

}
through the unique solution V (z′, w) of the Cauchy problem (3.7), where r2
and δ are sufficiently small positive constants. By using the original system
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of local coordinates, the function U(z) is holomorphic on Dn−1
r3 × Vr3 for a

small r3 > 0. Hence one obtains

u(x) = bDn−1
r3

×Ur3
(U(z)) = bDn−1

r3
×Vr3

(U(z)) ∈ CRY |X ,p◦

by the isomorphisms in (3.4). �

Now one makes the hypothesis:{
a(m,0,...,0)(x◦) �= 0,

a(0,...,0,m)(x◦) �= 0.
(3.8)

One can obtain the following theorem on the solvability for the operator

P : A2
V → A2

V .

Theorem 3.2. Assume (3.8) for the differential operator (3.1). We

assume, furthermore, a germ f ∈ A2
V ,p◦ represented by (3.3) satisfies the

following growth condition. There exist positive constants p < 1, C such

that

|F (z)| ≤ C| Im zn|−p, z ∈ Dn−1
r × Ur.(3.9)

Then we can find a solution u ∈ A2
V ,p◦ of Pu = f .

Remark 3.3. Assume the real analytic functions aα in (3.1) are con-

stants on M for any α, and the complex constants aα are not all equal

to 0. In this case, for any given f ∈ A2
V ,p◦ there exists a solution u ∈

A2
V ,p◦ of Pu = f . Indeed, we can suppose p◦ = (0,

√
−1 dxn) and set

u = bDn−1
r ×Ur

(U), f = bDn−1
r ×Ur

(F ) for some r > 0. It suffices to consider

the differential equation:

P (Dz′ , znDzn)U(z) = F (z)(3.10)

on the complex domain Dn−1
r ×Ur. By using the system of local coordinates

(z′, w) in the proof of Theorem 3.1, (3.10) is reduced to the differential

equation:

P (Dz′ , Dw)U(z′, ew) = F (z′, ew)(3.11)
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with constant coefficients on {(z′, w); z′ ∈ Dn−1
r ,Rew < log r, 0 < Imw <

π}. Note that this unbounded domain is C convex (i.e. the intersection of

this open set and L is a connected and simply connected open subset of

L for every affine complex line L). Therefore the equation (3.11) can be

solved globally. Refer to Hörmander [6] for the notion of C convexity and

global existence theorems for analytic differential equations with constant

coefficients.

Remark 3.4. For similar microdifferential equations, we cannot prove

solvability by using the method of Section 4.

4. Proof of the Main Theorem

4.1. Integral representation of holomorphic functions

In order to show the existence of solutions in Theorem 3.2, we will make

the following steps. First, we turn holomorphic functions into the form of

integral representation which is easy to deal with by means of Fourier trans-

formation. Secondly, regarding the variable of integration as a parameter,

we solve the differential equation with the parameter. Then we get a real

solution by superposing a solution with respect to the parameter. At this

time, we have to find a infra-exponential solution with the parameter. For

that purpose, we construct an approximate solution with infra-exponential

growth order. Thirdly, we estimate the remainder by means of majorant

series in the Cauchy-Kowalewski theorem with the parameter.

Now we can suppose x◦ = 0, ξ◦ = (0, . . . , 0, 1), and p◦ = (0,
√
−1 dxn).

Set:

U∞
r = P

1 \ {zn ∈ C; |zn| ≤ r, Im zn ≤ 0} .

Note that the open set (Dn−1
r ×U∞

r )∪Dnr ⊂ C
n−1×P

1 is a Stein manifold.

Therefore one can find functions F∞ ∈ O(Dn−1
r × U∞

r ) and F0 ∈ O(Dnr )

such that F = F∞ − F0 in Dn−1
r ×Ur and F∞(z′,∞) ≡ 0 by the solvability

of the first Cousin problem. Then one obtains:

f(x) = bDn−1
r ×Ur

(F (z)) = bDn−1
r ×Ur

(F∞(z))

by the isomorphisms in (3.2). In this way it is enough to consider F∞ ∈
O(Dn−1

r × U∞
r ) which satisfies F∞(z′,∞) ≡ 0 instead of F .
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Next, choose the system of local coordinates (z′, w) = (z1, . . . , zn−1, w)

with

w = log zn, 0 < arg zn < π,

and set w = u +
√
−1v. We choose a C∞-function ψ : R → R such that

0 ≤ ψ(v) ≤ 1 for v ∈ R, ψ(v) = 0 for v ≤ δ◦ and ψ(v) = 1 for v ≥ π − δ◦,
where δ◦ > 0 is a small constant. Using this function, we define:

G(z′, w) =
∂

∂w̄
(F∞(z′, ew)ψ(v)) =

i

2
F∞(z′, ew)ψ′(v)

for 0 < v < π. We can consider G(z′, w) as a C∞-function on Dn−1
r ×C by

setting G(z′, w) ≡ 0 for Imw ∈ R \ (0, π).

Lemma 4.1. Let q be a positive constant with 0 < p < q < 1, and set

ϕ(u) = −2qu. Then G(z′, w) ∈ L2(Dn−1
r × C, ϕ) by shrinking Dn−1

r , that

is, one has ∫
Dn−1

r ×C
|G(z′, w)|2e−ϕ(u) dV (z′, w) <∞.

Proof. Because of the fact that F∞ ∈ O(Dn−1
r × U∞

r ) and that

F∞(z′,∞) ≡ 0, there exists a constant C1 such that one has the inequality

|F∞(z)| ≤ C1|zn|−1 for z′ ∈ Dn−1
r , |zn| $ 1.

Then we have the inequality:

|F∞(z′, ew)| ≤ C1e
−Rew for z′ ∈ Dn−1

r , Rew $ 1.(4.1)

On the other hand, by the condition (3.9) and the fact that F = F∞ − F0,

there exists C2 > 0 such that

|F∞(z′, ew)| ≤ C2| Im ew|−p ≤ C2(e
Rew sin δ◦)

−p = C3e
−pRew(4.2)

for z′ ∈ Dn−1
r , Rew % −1, δ◦ ≤ Imw ≤ π − δ◦, where we set C3 =

C2(sin δ◦)−p. Therefore we obtain

(4.3)

∫
Dn−1

r ×C
|G(z′, w)|2e−ϕ(u) dV (z′, w)

≤ C ′
∫
Dn−1

r ×{w∈C;δ◦≤v≤π−δ◦}
|F∞(z′, ew)|2e−ϕ(u) dV (z′, w).
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Here we set C ′ = 1/4 maxδ◦≤v≤π−δ◦ |ψ′(v)|2. We get by the inequalities in

(4.1) and (4.2),

|F∞(z′, ew)|2e−ϕ(u) ≤
{
C2

1e
−2(1−q)u if u$ 1

C2
3e

2(q−p)u if u% −1.

Therefore one can find that the integral in the right-hand side of (4.3) is

convergent. �

By Lemma 4.1, we can apply Theorem 2.5 due to Hörmander [5]

to G(z′, w) dw̄ ∈ L2
(0,1)(D

n−1
r × C, ϕ), that is to say, there is a solution

H(z′, w) ∈ L2(Dn−1
r × C, loc) of the equation ∂̄H = Gdw̄ such that∫

Dn−1
r ×C

|H|2e−ϕ
(
1 + |(z′, w)|2

)−2
dV ≤

∫
Dn−1

r ×C
|G|2e−ϕ dV.

In fact, H ∈ L2(Dn−1
r ×C,Φ), where Φ(z′, w) := ϕ(u)+2 log(1+ |(z′, w)|2).

Set:

V = {w ∈ C; 0 < Imw < π},
V+ = {w ∈ C; Imw > 0},
V− = {w ∈ C; Imw < π},

and

F+(z′, w) = F∞(z′, ew)(1− ψ(v)) +H(z′, w),

F−(z′, w) = F∞(z′, ew)ψ(v)−H(z′, w).

We find immediately that F± ∈ O(Dn−1
r × V±) and that

F∞(z′, ew) = F+(z′, w) + F−(z′, w) for (z′, w) ∈ Dn−1
r × V.

Indeed, one obtains on Dn−1
r × V±:

∂̄(F+) =
∂

∂w̄
(F∞(1− ψ)) dw̄ + ∂̄H = −Gdw̄ + ∂̄H = 0,

∂̄(F−) =
∂

∂w̄
(F∞ψ) dw̄ − ∂̄H = Gdw̄ − ∂̄H = 0.
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We study values of the holomorphic functions F± as |w| → ∞. Let

V+δ = {w ∈ C; Imw > δ},
V−δ = {w ∈ C; Imw < π − δ}

for δ > 0, and set r1 = r/2 > 0.

Proposition 4.2. For any small positive δ there exists a positive con-

stant Cδ such that one has

|F±(z′, w)| ≤ Cδ
∣∣w2e−qw

∣∣(4.4)

for (z′, w) ∈ Dn−1
r1 × V±δ with |w| $ 1.

Proof. First, one has

F+|Dn−1
r ×V+δ/2

∈ L2(Dn−1
r × V+δ/2,Φ),

F−|Dn−1
r ×V−δ/2

∈ L2(Dn−1
r × V−δ/2,Φ).

Indeed, we have the fact that H ∈ L2(Dn−1
r ×V±δ/2,Φ) and the inequalities

∫
Dn−1

r ×V+δ/2

|F∞(1− ψ)|2e−Φ dV

≤
∫
Dn−1

r ×{w∈C;δ/2≤v≤π−δ◦}
|F∞|2e−ϕ dV <∞,∫

Dn−1
r ×V−δ/2

|F∞ψ|2e−Φ dV

≤
∫
Dn−1

r ×{w∈C;δ◦≤v≤π−δ/2}
|F∞|2e−ϕ dV <∞

in the same way as in the proof of Lemma 4.1.

Choose any point (z′◦, w◦) ∈ Dn−1
r1 × V±δ. Since F± is holomorphic on

Dn−1
r × V±, we have

F±(z′◦, w◦) =
1

vol(B((z′◦, w◦), δ/2))

∫
B((z′◦,w◦),δ/2)

F±(z′, w) dV (z′, w),
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where we set the open ball:

B((z′◦, w◦), δ/2) = {(z′, w) ∈ C
n; |(z′, w)− (z′◦, w◦)| < δ/2}.

Note that B̄((z′◦, w◦), δ/2) ⊂ Dn−1
r × V±δ/2. Then we have the inequalities:

|F±(z′◦, w◦)|

≤ 1

vol(B((z′◦, w◦), δ/2))

∫
B((z′◦,w◦),δ/2)

|F±|e−Φ/2eΦ/2 dV

≤ 1

vol(B((z′◦, w◦), δ/2))

(∫
B((z′◦,w◦),δ/2)

|F±|2e−Φ dV

)1/2

×
(∫

B((z′◦,w◦),δ/2)
eΦ dV

)1/2

≤ 1

vol(B((z′◦, w◦), δ/2))1/2

∥∥∥F±|Dn−1
r ×V±δ/2

∥∥∥
Φ

sup
B((z′◦,w◦),δ/2)

eΦ/2.

From these inequalities and the fact that eΦ/2 = e−qu(1+ |(z′, w)|2), we can

get the required inequality (4.4). �

Now, we define the following holomorphic functions on Dn−1
r × V+:

F̃+(z′, w) = eqwF+(z′, w),

F̃−(z′, w) = e−qwF−(z′, πi− w).

Corollary 4.3. For any small positive δ there exists a positive con-

stant Cδ such that one has∣∣∣F̃±(z′, w)
∣∣∣ ≤ Cδ ∣∣w2

∣∣(4.5)

for (z′, w) ∈ Dn−1
r1 × V+δ with |w| $ 1.

This corollary shows that the holomorphic function F̃± is slowly increas-

ing with respect to w. Therefore, the boundary value

bDn−1
r ×V+

(
F̃±(z′, w)

)
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represents a slowly increasing Fourier hyperfunction with respect to the

variable w. Refer to Kaneko [7] for the notion of Fourier hyperfunctions.

We introduce the Fourier transformation of bDn−1
r ×V+

(F̃±) with respect to

w in the following way. First we decompose F̃± by using

χ1(w) =
ew

1 + ew
,

χ2(w) =
1

1 + ew

into the form of:

F̃±(z′, w) = χ1(w)F̃±(z′, w) + χ2(w)F̃±(z′, w).

Then we define

G±j(z
′, ζ) =

∫
Imw=v

e−iwζχj(w)F̃±(z′, w) du(4.6)

for an arbitrary fixed v with 0 < v < π and j = 1, 2. Set ζ = ξ+
√
−1η and

define the open subsets:

W = {ζ ∈ C;−1 < Im ζ < 1} \ [0,+∞),

W+ = {ζ ∈ C; 0 < Im ζ < 1},
W− = {ζ ∈ C;−1 < Im ζ < 0}.

Lemma 4.4. In the preceding situation, the integral transform (4.6) is

independent of the choice of Imw = v in the path of integration as long as

0 < v < π. We have, moreover,

{
G±1 ∈ O(Dn−1

r1 ×W−),

G±2 ∈ O(Dn−1
r1 ×W+).

Proof. One considers the case of G±1. It is all the same to another

case. Choose any positive constants c1, c2 and c3 with −1 < −c2 < −c3 < 0.
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Let (z′, ζ) be any point of Dn−1
r1 ×W− with |ξ| < c1, −1 < −c2 < η < −c3 <

0. Then one has∣∣∣e−iwζχ1(w)F̃±(z′, w)
∣∣∣

≤ euη+vξeu|1 + eu(cos v + i sin v)|−1
∣∣∣F̃±(z′, u+ iv)

∣∣∣
≤



e−c3u+c1v| sin v|−1

∣∣∣F̃±(z′, u+ iv)
∣∣∣ if u ≥ 0

e(1−c2)u+c1v(1− | cos v|)−1
∣∣∣F̃±(z′, u+ iv)

∣∣∣ if u ≤ 0.

On the other hand, there exists a positive constant Cv depending on the

path of integration Imw = v such that |F̃±(z′, u+ iv)| ≤ Cv|u|2 for |u| $ 1

by Corollary 4.3. Therefore the integral in (4.6) converges uniformly on

every compact subset of Dn−1
r1 ×W−. Thus one has G±1 ∈ O(Dn−1

r1 ×W−).

It is easy to verify the independence of the integral transform from the

choice of v in the path of integration by virtue of Cauchy’s integral theorem

and Corollary 4.3. �

From this lemma, we can introduce the Fourier transformation:

FbDn−1
r ×V+

(
F̃+

)
= bDn−1

r1
×W−

(G+1) + bDn−1
r1

×W+
(G+2),

FbDn−1
r ×V+

(
F̃−
)

= bDn−1
r1

×W−
(G−1) + bDn−1

r1
×W+

(G−2).

Using the holomorphic functions G±j , one defines

G±(z′, ζ) =

{
G±2(z

′, ζ) on Dn−1
r1 ×W+

−G±1(z
′, ζ) on Dn−1

r1 ×W−.

Note that the function F̃± is holomorphic not only on Dn−1
r × V but also

on Dn−1
r × V+, and that F̃± satisfies the growth condition (4.5) in Corol-

lary 4.3. In this special situation we can claim the following proposition on

the holomorphic function G±.

Proposition 4.5. The holomorphic function G±(z′, ζ) can be ex-

tended to a function in O(Dn−1
r1 ×W ).

Proof. We make use of the following function:

H±(z′, ζ) =

{
H±2(z

′, ζ) on Dn−1
r1 ×W+

−H±1(z
′, ζ) on Dn−1

r1 ×W−,



438 Shota Funakoshi

where one sets

H±j(z
′, ζ) =

∫
Imw=v

e−iwζχj(w)F̃±(z′, w)(w + i)−4 du

for an arbitrary fixed v with 0 < v < π. We find immediately that

H±1 ∈ O(Dn−1
r1 ×W−),

H±2 ∈ O(Dn−1
r1 ×W+)

and that H±j are independent of the choice of v as long as 0 < v < π,

similarly as in Lemma 4.4. Note that there is the relation between G± and

H± on Dn−1
r1 × (W+ ∪W−):

(Dζ + 1)4H±(z′, ζ) = G±(z′, ζ).(4.7)

The holomorphic functions H±j have finite boundary values at any point

of Dn−1
r1 × R:

H±1(z
′, ξ) = lim

W−�ζ→ξ
H±1(z

′, ζ)

=

∫
Imw=v

e−iwξχ1(w)F̃±(z′, w)(w + i)−4 du,

H±2(z
′, ξ) = lim

W+�ζ→ξ
H±2(z

′, ζ)

=

∫
Imw=v

e−iwξχ2(w)F̃±(z′, w)(w + i)−4 du.

For each fixed ξ ∈ R, H±j(z′, ξ) is holomorphic on Dn−1
r1 . Furthermore,

the functions −H±1 and H±2 have the same boundary values at (z′, ξ) ∈
Dn−1
r1 × R with ξ < 0. We have indeed on Dn−1

r1 × R

H±1(z
′, ξ) +H±2(z

′, ξ) =

∫
Imw=v

e−iwξF̃±(z′, w)(w + i)−4 du(4.8)

= evξ
∫

Imw=v
e−iuξF̃±(z′, w)(w + i)−4 du.

Since the function F̃±(z′, w)(w + i)−4 in (4.8) is holomorphic not only on

Dn−1
r ×V but also on Dn−1

r ×V+, we can choose an arbitrary v in the path

of integration as long as v > 0. By using the estimation in Corollary 4.3,
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there exists a positive constant C such that we have the inequalities for

v $ 1: ∣∣∣∣evξ
∫

Imw=v
e−iuξF̃±(z′, w)(w + i)−4 du

∣∣∣∣
≤ evξ

∫ ∞

−∞

∣∣∣F̃±(z′, u+ iv)(u+ iv + i)−4
∣∣∣ du

≤ evξ
∫ ∞

−∞
C|u+ iv|2|u+ iv + i|−4 du

≤ Cevξ
∫ ∞

−∞

u2 + v2

(u2 + v2)2
du

≤ Cevξ
∫ ∞

−∞

1

1 + u2
du.

Therefore one obtains

H±1(z
′, ξ) +H±2(z

′, ξ) = 0 for ξ < 0,

since v is arbitrary as long as v > 0 in the preceding inequalities. Thus

the function H± is holomorphic on Dn−1
r1 × (W+ ∪W−) and extended to a

continuous function on Dn−1
r1 ×W . Then we find that H± is holomorphic on

Dn−1
r1 ×W . We find, furthermore, that G± can be extended to a holomorphic

function on the domain Dn−1
r1 ×W through the relation (4.7). �

Now we consider values of the holomorphic function G± as Re ζ → ±∞.

We can show that G± possesses infra-exponential growth order as Re ζ →∞
and decreases exponentially as Re ζ → −∞.

Proposition 4.6. For any compact subset K of (−1, 0) ∪ (0, 1) and

any positive ε there exists a positive constant CK,ε such that one has

|G±(z′, ζ)| ≤ CK,εeεRe ζ(4.9)

for z′ ∈ Dn−1
r1 , Re ζ > 0, Im ζ ∈ K.

Proof. It is enough to prove this proposition for 0 < ε < π. Choose

the path of integration Imw = ε in (4.6), and let η1, η2 be positive constants
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satisfying 0 < η1 < |η| < η2 < 1 for any η ∈ K. Then one has:

|G±1(z
′, ζ)| ≤

∫
Imw=ε

∣∣∣e−iwζχ1(w)F̃±(z′, w)
∣∣∣ du

=

∫ ∞

−∞
euη+εξ

∣∣∣χ1(u+ iε)F̃±(z′, u+ iε)
∣∣∣ du.

Let u◦ be a sufficiently large constant. We decompose this integral into

integrals over intervals (−∞,−u◦], [−u◦, u◦] and [u◦,∞). By Corollary 4.3

the first part is as follows:∫ −u◦

−∞
euη+εξeu|1 + eu(cos ε+ i sin ε)|−1

∣∣∣F̃±(z′, u+ iε)
∣∣∣ du(4.10)

≤ eεξ
∫ −u◦

−∞
e(1−η2)u(1− | cos ε|)−1Cε|u|2 du,

where Cε is a positive constant depending on ε. The second estimation is

as follows: ∫ u◦

−u◦
euη+εξ

∣∣∣χ1(u+ iε)F̃±(z′, u+ iε)
∣∣∣ du(4.11)

≤ 2u◦e
u◦+εξ max

|u|≤u◦, z′∈D̄n−1
r1

∣∣∣χ1(u+ iε)F̃±(z′, u+ iε)
∣∣∣ .

Also the third estimation is as follows:∫ ∞

u◦
euη+εξeu|1 + eu(cos ε+ i sin ε)|−1

∣∣∣F̃±(z′, u+ iε)
∣∣∣ du(4.12)

≤ eεξ
∫ ∞

u◦
e−η1u| sin ε|−1Cε|u|2 du.

Then by summing up the right-hand sides of (4.10), (4.11) and (4.12), we

can get the required inequality (4.9) for Im ζ < 0. It is all the same for

Im ζ > 0. �

Proposition 4.7. For any compact subset K of (−1, 1) and any pos-

itive ε there exists a positive constant C ′
K,ε such that one has

|G±(z′, ζ)| ≤ C ′
K,εe

(π−ε) Re ζ



Solvability of a Class of Differential Equations 441

for z′ ∈ Dn−1
r1 , Re ζ < −1, Im ζ ∈ K.

Proof. We use the function H± in the proof of Proposition 4.5. It

is enough to show this proposition for 0 < ε < π. Choose the path of

integration Imw = π − ε in the definition of H±j . Then one has:

|H±1(z
′, ζ)| ≤

∫
Imw=π−ε

∣∣∣e−iwζχ1(w)F̃±(z′, w)(w + i)−4
∣∣∣ du

=

∫ ∞

−∞
euη+(π−ε)ξeu|1 + eu(− cos ε+ i sin ε)|−1

×
∣∣∣F̃±(z′, u+ i(π − ε))(u+ i(π − ε+ 1))−4

∣∣∣ du.
In exactly the same way as in the proof of Proposition 4.6, we decompose

this integral into integrals over intervals (−∞,−u◦], [−u◦, u◦] and [u◦,∞)

for a sufficiently large constant u◦. The integral over (−∞,−u◦] is less than

or equal to:

e(π−ε)ξ
∫ −u◦

−∞
(1− | cos ε|)−1Cε|u|−2 du,(4.13)

where Cε is a positive constant depending on ε. The integrals over [−u◦, u◦]
and [u◦,∞) are not greater than

2u◦e
u◦+(π−ε)ξ max

|u|≤u◦, v=π−ε, z′∈D̄n−1
r1

∣∣∣χ1(w)F̃±(z′, w)(w + i)−4
∣∣∣(4.14)

and

e(π−ε)ξ
∫ ∞

u◦
| sin ε|−1Cε|u|−2 du(4.15)

respectively. Then by summing up (4.13), (4.14), (4.15), and estimating

H±2 in like manner, one has the following estimate. There exists a positive

constant C ′
ε such that we have

|H±(z′, ζ)| ≤ C ′
εe

(π−ε) Re ζ(4.16)

for z′ ∈ Dn−1
r1 , Re ζ < 0, −1 < Im ζ < 1.
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Let ρ be a positive constant which satisfies |η| + 4ρ < 1 for all η ∈ K.

Choose any point (z′◦, ζ◦) with z′◦ ∈ Dn−1
r1 , Re ζ◦ < −1, Im ζ◦ ∈ K, and let

ζ◦ = ξ◦ +
√
−1η◦. Then we have by Cauchy’s inequalities:

|(Dζ + 1)H±(z′◦, ζ◦)| ≤
(
ρ−1 + 1

)
sup

|ζ−ζ◦|≤ρ
|H±(z′◦, ζ)|.

Hence we have by the relation (4.7) and the inequality (4.16):

|G±(z′◦, ζ◦)| =
∣∣(Dζ + 1)4H±(z′◦, ζ◦)

∣∣
≤
(
ρ−1 + 1

)4
sup

|ζ−ζ◦|≤4ρ
|H±(z′◦, ζ)|

≤
(
ρ−1 + 1

)4
sup

z′∈Dn−1
r1

, |ξ−ξ◦|≤4ρ, |η|<1

|H±(z′, ζ)|

≤
(
ρ−1 + 1

)4
C ′
εe

(π−ε)(ξ◦+4ρ).

Thus we set C ′
K,ε = (ρ−1 + 1)4C ′

εe
4ρ(π−ε) > 0. �

We have constructed the holomorphic function G± from F̃± by using

the Fourier transformation with the estimation of Propositions 4.6 and 4.7.

Now we shall restore G± to the original holomorphic function F̃± by using

Fourier’s inversion formula.

Set the infinite path

γ : ζ = ζ(t) =




(t− 1) + i/2, t ≥ 1

1/2e(1−t/2)πi, −1 ≤ t ≤ 1

−(t+ 1)− i/2, t ≤ −1.

Figure 1 shows the infinite path γ.

Proposition 4.8. For (z′, w) ∈ Dn−1
r1 × V , one has

F̃±(z′, w) =
1

2π

∫
γ
eiwζG±(z′, ζ) dζ.



Solvability of a Class of Differential Equations 443

Fig. 1. The path γ.

Proof. Let η1 and η2 be arbitrary fixed constants which satisfy −1 <

η1 < 0 < η2 < 1. Note that

G±j(z
′, ζ) =

∫
Imw=v

e−iwζχj(w)F̃±(z′, w) du

= evζ
∫ ∞

−∞
e−iuξeuηχj(u+ iv)F̃±(z′, u+ iv) du

= evζFu
(
euηχj(u+ iv)F̃±(z′, u+ iv)

)
(ξ).



444 Shota Funakoshi

Then:

e−wηjF−1
ξ

(
e−vξG±j(z

′, ξ + iηj)
)

(u)

= e−uηjF−1
ξ

(
Fu
(
euηjχj(u+ iv)F̃±(z′, u+ iv)

)
(ξ)
)

(u)

= χj(w)F̃±(z′, w).

Here Fu denotes the Fourier transformation, and F−1
ξ the inverse transfor-

mation. Therefore for any point (z′, w) ∈ Dn−1
r1 × V it follows that:

χj(w)F̃±(z′, w) =
1

2π

∫
Im ζ=ηj

eiwζG±j(z
′, ζ) dξ.(4.17)

Note that the integral in (4.17) converges. Indeed, when we choose

positive constants ε1, ε2 with 0 < ε1 < Imw, 0 < ε2 < π− Imw, there exist

positive constants Cε1 , C
′
ε2 such that∣∣∣eiw(ξ+iηj)G±j(z

′, ξ + iηj)
∣∣∣

≤
{
e−(uηj+vξ)Cε1e

ε1ξ = Cε1e
−uηj−(v−ε1)ξ if Re ζ > 0

e−(uηj+vξ)C ′
ε2e

(π−ε2)ξ = C ′
ε2e

−uηj+(π−v−ε2)ξ if Re ζ < −1

by the estimates of Propositions 4.6 and 4.7.

Therefore by (4.17):

F̃±(z′, w) = χ1(w)F̃±(z′, w) + χ2(w)F̃±(z′, w)

= − 1

2π

∫
Im ζ=η1

eiwζG±(z′, ζ) dξ +
1

2π

∫
Im ζ=η2

eiwζG±(z′, ζ) dξ.

We can deform the path of integration into γ, since the integration as Re ζ →
−∞ can be neglected by the exponential decay of the integrand that we

have proved in Proposition 4.7. Then we can get the required integral

representation of the holomorphic function F̃±. �

By Proposition 4.8 and the definition of F̃±, it follows that

eqwF+(z′, w) =
1

2π

∫
γ
eiwζG+(z′, ζ) dζ,

e−qwF−(z′, πi− w) =
1

2π

∫
γ
eiwζG−(z′, ζ) dζ,
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that is,

F+(z′, w) =
1

2π

∫
γ
e(iζ−q)wG+(z′, ζ) dζ,

F−(z′, w) =
1

2π

∫
γ
e(iζ+q)(πi−w)G−(z′, ζ) dζ

for (z′, w) ∈ Dn−1
r1 × V . Then we reach a conclusion of the following repre-

sentation through the variable zn in the first situation.

Corollary 4.9. One has F∞(z) = F+(z′, log zn) +F−(z′, log zn) with

F+(z′, log zn) =

1

2π

∫
γ
(zn)

iζ−qG+(z′, ζ) dζ,

F−(z′, log zn) =
1

2π

∫
γ
e(−ζ+iq)π(zn)

−iζ−qG−(z′, ζ) dζ

(4.18)

for z′ ∈ Dn−1
r1 , 0 < arg zn < π.

4.2. Solutions of infra-exponential type

In this subsection, regarding the variable of integration as a parameter,

we construct an approximate solution with infra-exponential growth order.

We may assume from the beginning that the holomorphic differential

operator P (z,Dz′ , znDzn) satisfies{
a(m,0,...,0)(z) �= 0,

a(0,...,0,m)(z) ≡ (−i)m
(4.19)

on the open polydisc Dnr by the hypothesis (3.8).

By Corollary 4.9, our differential equation is turned into:

Pu+(x) = bDn−1

r1
×Ur1

(F+(z′, log zn)),

Pu−(x) = bDn−1
r1

×Ur1
(F−(z′, log zn))

at p◦ = (0,
√
−1 dxn) ∈ Σ with the integral representation (4.18). It suffices

to consider the differential equation on the complex domain Dn−1
r1 × Ur1

P (z,Dz′ , znDzn)U±(z) = F±(z′, log zn).
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Of course it is enough to show the existence of a holomorphic solution U±(z)

on a smaller domain Dn−1
r′ × Ur′ for 0 < r′ < r1.

Now in order to study the existence of U±(z), we consider the differential

equations with a parameter ζ on Dn−1
r1 × Ur1 :

P (z,Dz′ , znDzn)U+(z, ζ) = (zn)
iζ−qG+(z′, ζ),(4.20)

P (z,Dz′ , znDzn)U−(z, ζ) = e(−ζ+iq)π(zn)
−iζ−qG−(z′, ζ).(4.21)

Here the parameter ζ ranges through the path γ. Note that these equations

are equivalent to:

P (z,Dz′ , znDzn ± iζ − q)Ũ±(z, ζ) = G±(z′, ζ),(4.22)

where we set

Ũ+(z, ζ) = (zn)
−iζ+qU+(z, ζ),

Ũ−(z, ζ) = e(ζ−iq)π(zn)
iζ+qU−(z, ζ).

Lemma 4.10. For any ζ ∈ C the differential operator P (z,Dz′ , znDzn±
iζ − q) is written as:

P (z,Dz′ , znDzn ± iζ − q) =
m∑
j=0

(±ζ)jPj(z,Dz),(4.23)

where the Pj’s are holomorphic differential operators of order m− j defined

on Dnr

Pj(z,Dz) =
∑

|α|≤m−j
ajα(z)D

α
z .

Proof. It is easy to verify that

P (z,Dz′ , znDzn ± iζ − q) =
∑

|α|≤m
aα(z)D

α′
z′ (znDzn ± iζ − q)αn

=
∑

|α|≤m

∑
0≤j≤m−|α|

(±ζ)jajα(z)Dαz ,
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where ajα(z) ∈ O(Dnr ). Thus we get the required equation (4.23). �

From the condition (4.19) it follows that

P (z,Dz′ , znDzn ± iζ − q) = (±ζ)m +
m−1∑
j=0

(±ζ)jPj(z,Dz).

One has a solution

U±(z) =
1

2π

∫
γ
U±(z, ζ) dζ

if we can find a solution U±(z, ζ) and this integral is convergent. Then it

suffices to show the existence of a solution Ũ±(z, ζ) of infra-exponential type

with respect to ζ on the path γ, so we study the differential equation (4.22)

with the parameter ζ.

By the differential equation (4.22) one has formally:

Ũ±(z, ζ) = (±ζ)−m
∞∑
k=0


−m−1∑

j=0

(±ζ)j−mPj(z,Dz)



k

G±(z′, ζ),

but in general this infinite sum is divergent. So we introduce another mod-

ified function instead of Ũ±. Let A be a sufficiently large constant. We set

W0 =W and Wk = {ζ ∈W ; Re ζ > Ak} for k ∈ N \ {0}. Then we define:

U±1(z, ζ)(4.24)

= (±ζ)−m
∞∑
k=0

χWk
(ζ)


−m−1∑

j=0

(±ζ)j−mPj(z,Dz)



k

G±(z′, ζ)

for (z, ζ) ∈ Dnr1 ×W , where χWk
is the characteristic function of Wk:

χWk
(ζ) =

{
1 if ζ ∈Wk

0 if ζ �∈Wk.

We find immediately that the function U±1 is well-defined, since the sum in

(4.24) is locally finite on Dnr1 ×W . The function U±1(z, ζ) is holomorphic
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in Dnr1 for each fixed ζ ∈ W . We can claim that U±1 is the function of

infra-exponential type as Re ζ →∞. Set r2 = r1/2.

Proposition 4.11. For any positive ε there exists a positive constant

Mε such that one has

|U±1(z, ζ)| ≤Mεe
εRe ζ(4.25)

for z ∈ Dnr2 and ζ on the path γ.

Proof. First choose a positive constant M such that∣∣ajα(z)∣∣ ≤M for j, α, z ∈ Dnr1 .

Let ζ be any point on the path γ with Re ζ > 1, and ρ = r1/(8k) > 0 for

k ∈ N \ {0}. Then we have by Cauchy’s inequalities:

max
z∈D̄n

r2

∣∣∣∣∣∣−
m−1∑
j=0

(±ζ)j−mPj(z,Dz)G±(z′, ζ)

∣∣∣∣∣∣
≤

∑
0≤j≤m−1, |α|≤m−j

|ζ|j−mM max
z∈D̄n

r2

|DαzG±(z′, ζ)|

≤ mM
∑

|α|≤m
|ζ|−max{|α|,1}α!ρ−|α| max

z∈D̄n
r2+ρ

|G±(z′, ζ)|.

Similarly, we have for k ∈ N \ {0}:

max
z∈D̄n

r2

∣∣∣∣∣∣∣χWk
(ζ)


−m−1∑

j=0

(±ζ)j−mPj(z,Dz)



k

G±(z′, ζ)

∣∣∣∣∣∣∣
≤ χWk

(ζ)


mM ∑

|α|≤m
|ζ|−max{|α|,1}α!r1

−|α|(8k)|α|



k

× max
z∈D̄n

r2+kρ

|G±(z′, ζ)|

≤


mM ∑

|α|≤m
A−1k−max{|α|,1}α!r1

−|α|(8k)|α|



k

max
z∈D̄n

r2+kρ

|G±(z′, ζ)|
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≤ A−k


mM ∑

|α|≤m
α!r1

−|α|8|α|



k

sup
z′∈Dn−1

r1

|G±(z′, ζ)|.

At the definition of U±1 we take a sufficiently large constant A so that

we have:

B1 :=

∞∑
k=0

A−k


mM ∑

|α|≤m
α!r1

−|α|8|α|



k

<∞.

Then we get the following inequalities:

|U±1(z, ζ)| ≤ |ζ|−m
∞∑
k=0

∣∣∣∣∣∣∣χWk
(ζ)


−m−1∑

j=0

(±ζ)j−mPj(z,Dz)



k

G±(z′, ζ)

∣∣∣∣∣∣∣
≤ B1 sup

z′∈Dn−1
r1

|G±(z′, ζ)|

for z ∈ Dnr2 and ζ on the path γ with Re ζ > 1. From these inequalities and

Proposition 4.6, we obtain the required inequality (4.25). �

Needless to say, the function U±1 is not a solution of (4.22), but it gives

sufficient approximation of solutions of (4.22) in the following sense. By its

construction, we have:

P (z,Dz′ , znDzn ± iζ − q)U±1(z, ζ)

=


(±ζ)m +

m−1∑
j=0

(±ζ)jPj(z,Dz)


U±1(z, ζ)

=

∞∑
k=0

χWk
(ζ)


−m−1∑

j=0

(±ζ)j−mPj(z,Dz)



k

G±(z′, ζ)

−
∞∑
k=0

χWk
(ζ)


−m−1∑

j=0

(±ζ)j−mPj(z,Dz)



k+1

G±(z′, ζ)

= G±(z′, ζ)−
∞∑
k=1

χWk−1\Wk
(ζ)


−m−1∑

j=0

(±ζ)j−mPj(z,Dz)



k

G±(z′, ζ).
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Setting:

G±0(z, ζ)(4.26)

=

∞∑
k=1

χWk−1\Wk
(ζ)


−m−1∑

j=0

(±ζ)j−mPj(z,Dz)



k

G±(z′, ζ),

one has the equation on Dnr1 ×W :

P (z,Dz′ , znDzn ± iζ − q)U±1(z, ζ) = G±(z′, ζ)−G±0(z, ζ).(4.27)

Here the error G±0(z, ζ) is also a holomorphic function in Dnr1 for each fixed

ζ ∈ W , since the sum in (4.26) is locally finite on Dnr1 ×W . Then one can

claim that G±0 is exponentially decreasing as Re ζ →∞.

Proposition 4.12. There exist positive constants δ1 and M1 such that

one has

|G±0(z, ζ)| ≤M1e
−δ1 Re ζ(4.28)

for z ∈ Dnr2 and ζ on the path γ.

Proof. In exactly the same way as in the proof of Proposition 4.11,

we estimate G±0(z, ζ). Similarly, we define a positive constant M . Let ζ

be any point on the path γ with Re ζ > A, and ρ = r1/(8(k − 1)) > 0 for

k ∈ N \ {0, 1}. Then we have for k ∈ N \ {0, 1}:

max
z∈D̄n

r2

∣∣∣∣∣∣∣χWk−1\Wk
(ζ)


−m−1∑

j=0

(±ζ)j−mPj(z,Dz)



k

G±(z′, ζ)

∣∣∣∣∣∣∣
≤ χWk−1\Wk

(ζ)


mM ∑

|α|≤m
|ζ|−max{|α|,1}α!r1

−|α|(8(k − 1))|α|



k

× max
z∈D̄n

r2+kρ

|G±(z′, ζ)|

≤ χWk−1\Wk
(ζ)A−k


mM ∑

|α|≤m
α!r1

−|α|8|α|



k

sup
z′∈Dn−1

r1

|G±(z′, ζ)|.
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Hence we also obtain the following estimates:

|G±0(z, ζ)|(4.29)

≤
∞∑
k=2

∣∣∣∣∣∣∣χWk−1\Wk
(ζ)


−m−1∑

j=0

(±ζ)j−mPj(z,Dz)



k

G±(z′, ζ)

∣∣∣∣∣∣∣
≤ e−2δ1 Re ζe2δ1 Re ζ sup

z′∈Dn−1
r1

|G±(z′, ζ)|

×
∞∑
k=2

χWk−1\Wk
(ζ)A−k


mM ∑

|α|≤m
α!r1

−|α|8|α|



k

≤ e−2δ1 Re ζ sup
z′∈Dn−1

r1

|G±(z′, ζ)|

×
∞∑
k=2

e2δ1AkA−k


mM ∑

|α|≤m
α!r1

−|α|8|α|



k

for any positive δ1.

We have set the constant A so that

A−1mM
∑

|α|≤m
α!r1

−|α|8|α| < 1

in the proof of Proposition 4.11. So we choose a sufficiently small δ1 > 0 so

that the following geometric series converges:

B2 :=

∞∑
k=2

e2δ1AkA−k


mM ∑

|α|≤m
α!r1

−|α|8|α|



k

<∞.(4.30)

On the other hand, by Proposition 4.6 there exists a positive constant Cδ1
such that one has

|G±(z′, ζ)| ≤ Cδ1eδ1 Re ζ for z′ ∈ Dn−1
r1 .(4.31)

By (4.29), (4.30), and (4.31), we obtain the inequality

|G±0(z, ζ)| ≤ B2Cδ1e
−δ1 Re ζ

for z ∈ Dnr2 and ζ on the path γ with Re ζ > A. Then setting a constant

M1 such that M1 > B2Cδ1 , we obtain the required inequality (4.28). �
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4.3. The Cauchy-Kowalewski theorem with a parameter

In this subsection, we estimate the remainder by means of majorant

series in the Cauchy-Kowalewski theorem with a parameter.

In Subsection 4.2, we have considered the differential equation (4.22)

with the parameter ζ, and constructed the approximate solution U±1 of

infra-exponential type with respect to ζ. Now we show the existence of

exponentially decreasing solutions of the differential equation

P (z,Dz′ , znDzn ± iζ − q)U±0(z, ζ) = G±0(z, ζ)

by using the classical Cauchy-Kowalewski theorem with a parameter. One

sets:

Ũ± = U±0 + U±1.

At that time we find immediately that Ũ± is a solution of infra-exponential

type of (4.22) by the results in the preceding subsection.

First of all set:

Ωr = {z ∈ C
n; |z1|+ |z2|+ · · ·+ |zn| < r},

ΩL,r = {z ∈ C
n;L|z1|+ |z2|+ · · ·+ |zn| < r}

for r > 0, L ≥ 1. Note that the differential operator

P (z,Dz′ , znDzn ± iζ − q) =

m∑
j=0

(±ζ)jPj(z,Dz)

=
∑

|α|≤m

∑
0≤j≤m−|α|

(±2ζ)j2−jajα(z)D
α
z

is defined on Ωr and G±0(z, ζ) ∈ O(Ωr1) for each fixed ζ ∈ W . Here we

have set r1 = r/2, r2 = r1/2 in the previous subsections. Note, moreover,

that the principal symbol of P (z,Dz′ , znDzn ± iζ − q) does not depend on

the parameter ζ.

By the condition (4.19), we may assume from the beginning that

a0
(m,0,...,0)(z) = a(m,0,...,0)(z) ≡ 1.
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Consider the Cauchy problem:{
P (z,Dz′ , znDzn ± iζ − q)U±0 = G±0

Djz1U±0 = 0 when z1 = 0, j < m.
(4.32)

Proposition 4.13. There exists L ≥ 1 such that the Cauchy prob-

lem (4.32) has a unique solution U±0 ∈ O(ΩL,r2) for any ζ on the path γ.

Moreover, there exist r3 > 0, M0 > 0, δ2 > 0 such that for any z ∈ ΩL,r3,

any ζ, we have

|U±0(z, ζ)| ≤M0e
−δ2 Re ζ .

Proof. We make use of majorant series in the same way as in Ōshima-

Komatsu [14]. We consider power series of z for each fixed ζ on the path γ,

where |ζ| ≥ 1/2.

To begin with, the Cauchy problem (4.32) has a unique power series

solution at z = 0. It is easy to verify this fact: if

U±0 =
∑
α∈Nn

u±α(ζ)z
α =

∑
α=(α1,...,αn)∈Nn

u±α(ζ)z
α1
1 . . . zαn

n

is a solution, we find that u±α(ζ) = 0 for α1 ≤ m−1 by the Cauchy boundary

conditions in (4.32). And furthermore, we compare the both sides of the

differential equation in (4.32) for α1 ≥ m. We find easily that the coefficient

of zα1−m
1 zα2

2 . . . zαn
n in the left-hand side is α1(α1−1) . . . (α1−m+1)u±α(ζ)

and the remainder which depends only on uβ(ζ) with β = (β1, . . . , βn),

β1 ≤ α1 − 1, |β| ≤ |α|. Thus we can fix the coefficients u±α(ζ) uniquely in

turn.

Next, we show that the power series solution U±0 is holomorphic in ΩL,r2
for some L ≥ 1 by the method of majorant series. We set

s = Lz1 + z2 + · · ·+ zn

for L ≥ 1, and construct a majorant series V (s, ζ) of U±0(z, ζ) as a power

series of z for each ζ.
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There exist positive constants M1, M2, δ1 such that for any j and any

α:

2−jajα(z) %
M2

1− r1−1s
,

G±0(z, ζ) %
M1e

−δ1 Re ζ

1− r2−1s
.

Indeed, the functions 2−jajα(z) =
∑

β a
j
α,βz

β are holomorphic in Dnr , so we

can choose a positive constant M2 such that |2−jajα(z)| ≤ M2 on Dnr1 for

any j and any α. Then by Cauchy’s inequalities, we have |ajα,β | ≤M2r1
−|β|

and hence

2−jajα(z) %
M2

(1− r−1
1 z1) . . . (1− r−1

1 zn)
.

It is all the same to this case for G±0(z, ζ) by using the estimate in Propo-

sition 4.12.

Note the way to set the coefficients u±α(ζ) and the equation

Dαz V (s, ζ) = Lα1D|α|
s V (s, ζ).

Then, if a power series V (s, ζ) satisfies:




LmDms V $ M2

1− r1−1s

(
(m+ n− 1)!

m!(n− 1)!
− 1

)
Lm−1Dms V

+
M2

1− r1−1s

m−1∑
k=0

(m− k + 1)(k + n− 1)!

k!(n− 1)!

× |2ζ|m−kLkDksV

+
M1e

−δ1 Re ζ

1− r2−1s
,

V $ 0,

(4.33)

it follows that U±0(z, ζ) % V (s, ζ) for each fixed ζ.
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And furthermore, if power series Wk(s, ζ) (k = 0, . . . ,m− 1) satisfy:




LDsWm−1 $
M2M3

1− r1−1s
DsWm−1

+
M2M3

1− r1−1s

m−1∑
k=0

|2ζ|Wk +
M1e

−δ1 Re ζ

1− r2−1s
,

DsWk $ |2ζ|Wk+1 (k = 0, . . . ,m− 2),

Wk $ 0 (k = 0, . . . ,m− 1),

(4.34)

then there exists a power series V (s, ζ) which satisfies (4.33) and

|2ζ|m−k−1DksV (s, ζ) % L1−mWk(s, ζ) %Wk(s, ζ)(4.35)

for any k. Here we define:

M3 = max
0≤k≤m

(m− k + 1)(k + n− 1)!

k!(n− 1)!
.

Indeed, we find that for any non-negative integer j ≥ m and power series

Wk(s, ζ) which satisfy (4.34),

(
the coefficient of sj−k in |2ζ|m−k−1DksV (s, ζ)

)
=

|2ζ|m−k−1

(j − k) . . . (j −m+ 1)
×
(
the coefficient of sj−m in Dms V (s, ζ)

)
and (

the coefficient of sj−k in L1−mWk(s, ζ)
)

≥ |2ζ|m−k−1

(j − k) . . . (j −m+ 1)

×
(
the coefficient of sj−m in L1−mDsWm−1(s, ζ)

)
.

Set:

L = max{2M2M3, 1},
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and consider the following ordinary differential equation:




DsW =

(
L− M2M3

1− r1−1s

)−1( M2M3

1− r1−1s
m|2ζ|W

+
M1e

−δ1 Re ζ

1− r2−1s
+ (L−M2M3)|2ζ|W

)
,

W (0, ζ) = 0.

(4.36)

The functions a, b defined respectively by:

a(s, ζ) =

(
L− M2M3

1− r1−1s

)−1( M2M3

1− r1−1s
m+ (L−M2M3)

)
|2ζ|,

b(s, ζ) =

(
L− M2M3

1− r1−1s

)−1 M1e
−δ1 Re ζ

1− r2−1s

are holomorphic in Dr2 := {s ∈ C; |s| < r2} for each fixed ζ, since one has:

∣∣∣∣ M2M3

1− r1−1s

∣∣∣∣ < M2M3

1− r1−1r2
= 2M2M3 ≤ L, s ∈ Dr2 .

Moreover, it is clear that a(s, ζ) $ 0, b(s, ζ) $ 0 as the Taylor series at

s = 0. Therefore there exists a unique power series solution of (4.36) so

that W (s, ζ) $ 0.

On the other hand, the solution of (4.36) is written concretely as:

W (s, ζ) = exp

(∫ s

0
a(s2, ζ) ds2

)∫ s

0
b(s1, ζ) exp

(
−
∫ s1

0
a(s2, ζ) ds2

)
ds1

=

∫ s

0
b(s1, ζ) exp

(∫ s

s1

a(s2, ζ) ds2

)
ds1, s ∈ Dr2 .

Then it follows that W (s, ζ) ∈ O(Dr2) for each fixed ζ.

For the solution W (s, ζ), we set:

Wk(s, ζ) =W (s, ζ), k = 0, . . . ,m− 1.
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Then the power series Wk(s, ζ) satisfy (4.34). Indeed, one has:

LDsW =
M2M3

1− r1−1s
DsW +

M2M3

1− r1−1s
m|2ζ|W

+
M1e

−δ1 Re ζ

1− r2−1s
+ (L−M2M3)|2ζ|W

$ M2M3

1− r1−1s
DsW +

M2M3

1− r1−1s
m|2ζ|W +

M1e
−δ1 Re ζ

1− r2−1s
,

DsW $
(
L− M2M3

1− r1−1s

)−1

(L−M2M3)|2ζ|W

$ |2ζ|W.

From (4.35), we can obtain for each fixed ζ:

U±0(z, ζ) % V (s, ζ) %W (s, ζ)(4.37)

and

W (Lz1 + z2 + · · ·+ zn, ζ) ∈ O(ΩL,r2),

U±0(z, ζ) ∈ O(ΩL,r2).

Finally we estimate the solution U±0(z, ζ) by using the majorant series

W (s, ζ), that is to say, we show the exponential decay of U±0(z, ζ) as Re ζ →
∞. Set:

M4 = sup
s∈Dr2/2

∣∣∣∣∣
(
L− M2M3

1− r1−1s

)−1( M2M3

1− r1−1s
m+ (L−M2M3)

)∣∣∣∣∣ ,
M5 = sup

s∈Dr2/2

∣∣∣∣∣
(
L− M2M3

1− r1−1s

)−1 M1

1− r2−1s

∣∣∣∣∣ .
Then by the definitions of the functions a, b, one has the following inequal-

ities for s ∈ Dr2/2:

|a(s, ζ)| ≤M4|2ζ|,
|b(s, ζ)| ≤M5e

−δ1 Re ζ .
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Choose a constant r3 with 0 < r3 < min{r2/2, δ1/(2M4)}. Then we have

for s ∈ Dr3 :

|W (s, ζ)| ≤
∫ s

0
|b(s1, ζ)| exp

(∫ s

s1

|a(s2, ζ)| · |ds2|
)
|ds1|

≤
∫ s

0
M5e

−δ1 Re ζ exp

(∫ s

s1

M4|2ζ| · |ds2|
)
|ds1|

≤ r3M5e
−δ1 Re ζer3M4|2ζ|

≤ r3M5e
3r3M4e−(δ1−2r3M4) Re ζ .

We set M0 = r3M5e
3r3M4 > 0, δ2 = δ1 − 2r3M4 > 0. Thus we obtain

from (4.37) for z ∈ ΩL,r3 :

|U±0(z, ζ)| ≤
∑
α

|u±α(ζ)zα|

≤W (L|z1|+ |z2|+ · · ·+ |zn|, ζ)
≤M0e

−δ2 Re ζ .

This completes the proof of Proposition 4.13. �

Remark 4.14. In the situation of Proposition 4.13, we can choose the

constant L independent of the parameter ζ because the principal symbol

of P (z,Dz′ , znDzn ± iζ − q) does not depend on ζ. So the domain ΩL,r2 in

which the solution is holomorphic does not shrink as Re ζ →∞.

As the corollary of Propositions 4.11 and 4.13, we can get the following

result of the existence of solutions of (4.22) with infra-exponential growth

order.

Corollary 4.15. There exists r4 > 0 such that for any ζ on the path

γ, the differential equation (4.22) has a solution Ũ± ∈ O(Dnr4) with the

following estimate. For any ε > 0 there exists a constant Mε > 0 such that

one has ∣∣∣Ũ±(z, ζ)
∣∣∣ ≤Mεe

εRe ζ

for any z ∈ Dnr4, any ζ on the path γ.
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Proof. We set r4 = r3/(nL) > 0 and Ũ±(z, ζ) = U±0(z, ζ)+U±1(z, ζ)

for z ∈ Dnr4 , ζ on the path γ. From the equations (4.27) and (4.32) it follows

that Ũ± is a solution of (4.22). We also get the estimate of infra-exponential

type by Propositions 4.11 and 4.13. �

Remark 4.16. Our construction of the solution Ũ± has made it possi-

ble to get the results in Corollary 4.15. If we consider (4.22) and the Cauchy

boundary conditions directly, we cannot find a solution of infra-exponential

type. For this reason one has reduced G± to G±0 which is exponentially

decreasing, and considered the Cauchy problem (4.32).

Finally we define the following holomorphic functions on Dn−1
r4 ×Ur4 for

each fixed ζ on the path γ:

U+(z, ζ) = (zn)
iζ−qŨ+(z, ζ),

U−(z, ζ) = e(−ζ+iq)π(zn)
−iζ−qŨ−(z, ζ),

where 0 < arg zn < π. Then we have the differential equations (4.20) and

(4.21) on Dn−1
r4 × Ur4 , as we considered in the preceding subsection.

One defines for z ∈ Dn−1
r4 × Ur4 :

U±(z) =
1

2π

∫
γ
U±(z, ζ) dζ

=
1

2π

∫ ∞

−∞
U±(z, ζ(t))ζ ′(t) dt.

Lemma 4.17. The function U±(z, ζ(t))ζ ′(t) is integrable over R for

each z ∈ Dn−1
r4 × Ur4. Moreover, it follows that U±(z) ∈ O(Dn−1

r4 × Ur4).

Proof. First, note that the functions G±0(z, ζ(t)) and U±1(z, ζ(t)) are

measurable with respect to t ∈ R for each z ∈ Dn−1
r4 × Ur4 . All coefficients

of the Taylor series of G±0:

G±0 =
∑
α

g±α(ζ(t))z
α

are measurable functions, too. Therefore we also find that U±0(z, ζ(t))

is measurable with respect to t ∈ R from its construction in the Cauchy
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problem (4.32). Thus Ũ±(z, ζ(t)) and U±(z, ζ(t)) are measurable functions

for each fixed z ∈ Dn−1
r4 × Ur4 .

Secondly, by Corollary 4.15, for any ε > 0 there exists Mε > 0 such that

one has:

|U+(z, ζ)| ≤ eRe((iζ−q) log zn)
∣∣∣Ũ+(z, ζ)

∣∣∣
≤Mεe

−2 log |zn|−(arg zn−ε) Re ζ ,

|U−(z, ζ)| ≤ eRe((−ζ+iq)π+(−iζ−q) log zn)
∣∣∣Ũ−(z, ζ)

∣∣∣
≤Mεe

−2 log |zn|−(π−arg zn−ε) Re ζ .

Let z be any point of Dn−1
r4 × Ur4 such that 2ε < arg zn < π − 2ε, ε < |zn|.

Then we find that U±(z, ζ(t))ζ ′(t) is integrable over R for each z from the

estimate:

|U±(z, ζ(t))ζ ′(t)| ≤



Mεe

−2 log ε−ε(t−1), t > 1

π/4Mεe
−2 log ε+π/2, −1 < t < 1

Mεe
−2 log ε+ε(t+1), t < −1.

Furthermore, the function U±(z) is holomorphic in Dn−1
r4 ×Ur4 , because the

integral ∫ ∞

−∞
|U±(z, ζ(t))ζ ′(t)| dt

is locally finite on Dn−1
r4 × Ur4 . �

By using the holomorphic function U±(z), we can now obtain a solution

in Theorem 3.2.

Integrate the both sides of (4.20) and (4.21) over the path γ. By Corol-

lary 4.9 and Lemma 4.17, we have on Dn−1
r4 × Ur4 :

P (z,Dz′ , znDzn)U±(z) = F±(z′, log zn).

Then we define the elements of A2
V ,p◦ :

u±(x) = bDn−1
r4

×Ur4
(U±(z))
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and

u(x) = u+(x) + u−(x).

Thus one obtains at p◦:

P (x,Dx′ , xnDxn)u(x)

= P (x,Dx′ , xnDxn)u+(x) + P (x,Dx′ , xnDxn)u−(x)

= bDn−1
r4

×Ur4
(F+(z′, log zn)) + bDn−1

r4
×Ur4

(F−(z′, log zn))

= bDn−1
r4

×Ur4
(F∞(z))

= f(x).

This completes the proof of Theorem 3.2.
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Sūrikaisekikenkyūsho Kōkyūroku (1988), no. 660, 52–63, Several Aspects
of Algebraic Analysis (Kyoto, 1987).
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Math. France, Paris, 1982, pp. 1–166.
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