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Optimal Partial Regularity for Nonlinear Elliptic
Systems of Higher Order

By Frank DUzAAR, Andreas GASTEL and Joseph F. GROTOWSKI

Abstract. We consider the question of partial regularity for weak
solutions to homogeneous nonlinear elliptic systems of higher order in
divergence form. As well as characterizing the singular set, we show
optimal regularity for the solution on its regular set, optimality here
being determined by the regularity of the coefficients.

0. Introduction

In this paper we are concerned with the regularity of weak solutions to
homogeneous nonlinear elliptic systems of higher order in divergence form,
i.e. we consider systems of the type

N
(0-1) Z Z /QA?( -, du, D™u)D%p" dz = 0 for all p € C§°(Q,RY).

i=1 |a|=m;

Here € is a bounded domain in R", each m; > 1 is an integer, m =
(m1,...my), u takes values in RY, D™y stands for {D%;} with i =
1,...,N and |a| = m;, and similarly du stands for {D%u;} withi=1,..., N
and |a| < m; — 1. We assume that the coefficients A% (x,&,v) are differen-
tiable with respect to v with bounded continuous derivatives, and further
that they satisfy a uniform strong ellipticity condition. Moreover, we as-
sume that (z,€) — (1 + |v|) "t A(z, &, v) is Holder continuous (uniformly in
v) for some exponent s € (0,1). Under these assumptions our main result
can be stated as follows:

Let u € H™2(Q,RYN) be a weak solution to (0-1) in Q. Then there exists
an open set Qo C Q such that u € C™%(Qo,RY) and L™(Q\ Q) = 0.

Here H™2(Q,RY) stands for H™2(Q,R) x ... x H™2(Q,R), with C™*
being defined analogously, and L™ denotes n-dimensional Lebesgue measure
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on R™. A simple example shows that the demonstrated Holder continuity
of D™u on the regular set (g is optimal (see Example 1.2).

The simplest case of systems of the form (0-1) are second-order systems
(i.e., the case m; = 1 for ¢ = 1, ... n). We note here that we make no
new contribution to the theory in this case, and refer the reader to the
monographs of Giaquinta [G1, G2] for results and discussions. In further
discussion, we assume that at least one of the equations is of fourth or higher
order.

In 1978 and 1979 Giaquinta—Modica obtained regularity results for weak
solutions of (0-1). The first result [GM1] concerns the case of a quasilinear
leading part, i.e. A(x,&,v) = Az, €)v. In that case it is sufficient to assume
that the coeflicients fl(w, €) are bounded and continuous, and that a strong
ellipticity condition holds. Then, in the homogeneous case it is shown that
a weak solution u is of class C™~1:%(Qg, RY) for all a € (0,1), for some
open set Qp C €2 whose complement has vanishing (n — ¢)-dimensional
Hausdorff measure for some ¢ strictly greater than 2. The second paper
[GM2] treats the case of general nonlinear systems, as in (0-1), under the
assumptions given above on the coefficients A(z,&,v). Giaquinta-Modica
showed that a weak solution u of (0-1) admits Hélder continuous m-th order
derivatives D™u for some positive Holder exponent on an open set €2y with
L2\ Qo) = 0. In principle one would expect to be able to improve this
result to obtain C™*-regularity on §2y. In the case m; =1fori=1,...,N
this can be done by interpreting the system (0-1) as a nonlinear system of
the form

N .
(0-2) S /Q B (z, D™u(2)) D" (x) dz = 0,

=1 |a‘:7’nZ

with B(z,v) given by A(z,du(x),v), and applying the results of Hamburger
concerning systems of that particular form, i.e., [Ha, Theorem 1.1, Theorem
1.2]. If one could generalize Hamburger’s results to systems of the form (0-
2) of higher order one would the be able to conclude the optimal regularity
on the regular set €, i.e., C™*-regularity. Apart from other things one
advantage of the method used in our paper is the fact that the optimal
regularity is obtained in one step.

The existing proof combines three essential elements. The first element
is an inequality of Caccioppoli type. For a given polynominal P(z) =
(Pi(x),...,Pn(x)) of degree m, this allows one to control the mean square
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deviation of D™y from D™P on a ball in terms of the mean square devia-
tion of u from P on a concentric larger ball. If P is chosen such that D™ P
is chosen to be the mean value of D™wu on that ball, this quantity is often
called the excess of u. The second step of proof then consists in a way of
improving the integrability of D™(u — P). This is achieved by using the
Sobolev-Poincaré inequality on the left-hand side of Caccioppoli’s inequal-
ity to obtain a reverse Holder-type inequality for D™(u — P), i.e. an L2-L9
estimate with some g < 2. Then, Gehring’s Lemma in a form established
by Giaquinta & Modica [GM1] implies higher LP-integrability of D™ (u— P)
for some p > 2. The third step in the regularity proof is excess improve-
ment, i.e. assuming that the excess ® is small on some given ball one has
to show that the excess on a concentric smaller ball is substantially smaller
than ®. This discrete excess decay estimate leads to a growth condition for
the excess on concentric balls as a function of the radius of the ball. From
this excess growth condition a so called e-regularity theorem follows along
well-known lines, yielding also the partial regularity result.

The essential new feature in which our proof differs from the previous one
is the method of improving the excess. In the work of Giaquinta—Modica,
this is done by linearizing the system and freezing the coefficients on some
ball with small excess, and then solving the associated Dirichlet problem
for the elliptic constant coefficient operator (with coefficients I', say) on
that ball with boundary values given by u. Our method here is to replace
the solution u of our system (0-1) which is known to be approximatively
I-harmonic (see Lemma 3.1), by a closest I'-harmonic function A (i.e. har-
monic with respect to the elliptic constant coefficient operator of order 2m
defined by T'). This is made possible by a simple Lemma (see Lemma 3.2)
analogous to [Si2, Lemma 21.1]. In order to show that the m-jet of h at the
center of the ball gives the desired excess improvement we use Caccioppoli’s
inequality which is established in Lemma 2.1. This technique, which has
its origin in Simon’s proof of the Allard regularity theorem [Si2], avoids the
use of reverse Holder inequalities (which, in principle, are the obstacle for
proving the optimal regularity result with respect to the Holder exponent in
one step; see the remark above). This technique was applied by the first and
third authors in [DG] to obtain optimal partial regularity in a single step in
the case of second order systems. A similar technique was used by the first
author and Steffen in [DS], where optimal boundary regularity is established
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for almost minimizing rectifiable currents of general elliptic integrands. Fi-
nally, we mention that Kronz [Kr] has obtained a similar partial regularity
result for minimizers of quasi-convex variational integrals [, f(D™u)dx of
higher order m > 2 with the technique of I'-harmonic approximation de-
scribed above. It is worth noting that his paper also deals with the case of
integrands of nonquadratic growth, i.e. f(v) < a|v|P 4+ b for some exponent
p > 2, using the same technique.

We close this section by briefly summarizing the notation we use in this
paper. As noted above, we consider a domain 2 C R", and maps from {2 to
RYN, where we take n > 2, N > 1. For a given set X we denote by £"(X) its
n—dimensional Lebesgue measure. We write B,(xo) = {z € R" : | — x| <
p}, and further set B, = B,(0), B = By. For bounded X C R" we denote
the average of a given g € L'(X) by f \gdz, i.e. fgdx = ﬁ Jx g dx.
In particular, we write gz, , = F B,(z0)9 dz. We let a;, denote the volume
of the unit-ball in R”, i.e. ay, = L"(B). We write L(k,n) for the space of
k-linear maps on R™.

Throughout the paper we consider a fixed domain 2 C R™. We further
consider a fixed multiindex m = (mq,...,my) € IN?Y, and define the space

H™2(Q,RY) = H™2(QR) x ... x H™2(Q,R).

We set m = maxj<g<y mg. Given polynomials R'(z),..., RV (x) defined
on R”, where the degree of RF is j, for k =1,..., N we let R(z) denote the
(vector-valued) polynomial given by (R!(z),..., R¥(z)), which we term a

polynomial of degree j (on R™), where j is the multiindex (ji,...,Jn).
For later use we recall also some elementary calculations useful in con-
nection with multiindices. For given m € INU {0} we have

n+m-—1 n-+m
d = = d d < = .
card {|a| = m} < . > and card {|a| < m} ( . )

Further, setting
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1. Assumptions, Preliminary Lemmas and the Partial Regularity
Theorem

We wish to consider a weak solution u € H™2(Q,RY) of the equation

N .
oy Y /Q A%z, du(z), D™u(z)) D' (x) da = 0

i=1 |a|=m;

for all p e Cgo(Bp(:EO)aRN)?

where
du(zx) = {Dvuk(m)}l'y‘gmki1 and D™Mu(x) = {Do‘ui(x)yé‘:mi .
k=1,....N i=1,..,N
For later use we also abbreviate {Dau"(w)}iallzmijvl by D™~ 1lu(z). Note

that du and D™u take values in Rf and R”, respectively. The coefficients
AX(x, &, v), o] =m;,i=1,..., N, are defined on 2 x RY x R™. They define
linear maps A(z,&,v) : R™ — R and g—f(m,g,y) : (R™)2 — L(R7,R); we
denote their operator norms by | - |. We impose the following structure
conditions:

(H1) A(zx,&,v) is differentiable with respect to v with bounded, continuous
derivatives, i.e. for some L > 0 there holds

A
g—y(x,f,l/)’ <L forallze®, ¢cRl, veRT

(H2) A is uniformly strongly elliptic, i.e. for some A > 0 we have
0A 2 l T
(%(x,g,v)n>n2)\|n| forall z € Q, £ € R v, n € R7;

(H3) There exist s € (0,1) and a nondecreasing function x: [0, 00) — [1, 00)
such that

A, £.0) — AG.E)| < w(el) (12— 3 +1e — 82) " (0 o).

forallz, 2 e Q, & EeRE and v e R,
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From (H2) we obtain
(1-2) (AF(,€,v) — AT (2,€,9)) () = 7) = Av — 7.

Further, (H1) guarantees the existence of a modulus of continuity w: [0, c0) x
[0,00) — [0,00) with w(t, ()) = 0 for all ¢ such that ¢t — w(t,s) is nonde-
creasing for fixed s, s — w?(t, s) is concave and nondecreasing for fixed t,
and such that for all z, 7 € Q, £, € € RY, v, € R” with €|+ [v| < M we
have

0A 0A , . = -
(1_3) E(wagﬂj) (1‘ f, ) SW(Ma’x_i"Q—F’£_§‘2+|V_ﬂ‘2>'

We will prove the following partial regularity theorem concerning
weak solutions of (1-1).

THEOREM 1.1. OnQxRxRT” consider coefficients A(x, €, v) satisfying
(H1), (H2), and (H3) and let uw € H™2(Q,RY) be a weak solution of (1-1).
Then there exists a relatively closed set Sing(u) such that w € C™*(Q\
Sing(u), RY). Moreover Sing(u) C X1 U X where

Y, = {ZL’O €. hmlnff ]Dmu—(Dmu)xo,pIZd:E>0} and
=0 Bp(mw

Yo = {moeﬂ hmsupz Z |(D%u kxo,p oo}.
P00 kT ol <my,

The following (essentially one-dimensional) example shows that the as-
serted Holder continuity of D™w on the regular set is optimal:

Ezample 1.2. Letm>1,n>2 N=1,Q=DB,sec (0,1), and

1%

A(I‘,E,I/) = T’ml‘s .

Then (H1)—(H3) are fulfilled, and

uta) = sgn(ar) o7+ (76 o
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solves the equation (1-1). We have X1 = Y9 = (), and u is of class C"*, but
no more regular, on B.

We note here that any ¢ € Hy" ’Z(Q, RY) is admissible as test function in
the weak formulation of our system. This is a straightforward consequence
of (H1) and (H3).

We also record here for later use a standard result. Consider u €
H*(Q,R) with & > 1. Then there exists a unique polynomial @ of degree
less than or equal to k£ such that

/ D*(u—Q)dx=0
BP(J»’O)

for all a with |a| < k. This polynomial takes the form
b
(1-4) =3 > SO )y ol — a0)®
|| <k \a+ﬂ|<k :

with coefficients bg depending on k and n only. Indeed, the constants bg
can be defined recursively by

bo=1,
by =0, if o] =1,
(1-5)
bo=— > ][ 2P dr, if |o| > 2.
0<B<o

2. A Caccioppoli-type Inequality

THEOREM 2.1. Let B,(xg) CC Q, with p < 1. Consider an arbitrary
solution uw € H™2(Q,RN) of (1-1), where the structure conditions (H1),
(H2) and (H3) are valid, and an arbitrary polynomial P of degree at most
m. Then there holds:

/ D™ (u — P da
B, /2(z0)

[Z Y. phlm /B( )ymu_p)mx

i=1 |y|<m;—1
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-t (k(tp) (1 + tp) 12_5/)"*28] ,

for a constant ¢y > 1 depending only onn, N, m, \, and L. Here p is given
by

N
p=3"3 [D7PHao)l

k=1 |y|<my

PRrROOF. We consider a fixed cut-off function n € Cg°(B,(xo),[0,1])
with 7 = 1 on B,3(w0), and c2 depending only on n and m such that
|D7n| < (Cgp)_m for |y| < m (recalling that m = max;—1,_ nm;). Note
that we have the elementary estimate

(2-1) D (™) < eap PPV for |6] < m,

for ¢3 depending only on n and m. Taking the function ¢ with components
o= nzm(ui — P%,i=1,...,N, as a test-function in (1-1), we have

Z > / ,du, D™u)D(u’ — PHn*™ dx:

i=1 |a|=m p(xo)
D> z()
= 1\a| m; V<&

. / A%( -, du, D™u)DY (u' — PY)D* (n*™) dz .
By (o)

By the definition of ¢ we further have

—Z > / A% (z, du, D™ P)D(u’ — PHn*™ dx
o (20)

i=1 |a|
1=1 ‘a| m; 'y<a< >
: / A%(-, du, D™P)D" (u’ — P")D*(n*™) da
Bp(ﬁo)

N

> Y / ,du, D™ PYD¢' du: .

i=1 |a|=m; B, (x0)
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Finally we note

N
= Z Z / AX(zg, dP(z0), D™ P)D¢ dux.
i=1 |a|=m By (x0)

Combining these three equations, we arrive at the inequality

(2-2) Z > / ,du, D™u) — AY( -, du, D™P)]

i=1 |a|=m, ’ Br(z0)
. Da(ui —Pi)ﬁ2m dx
<T+II+IIT+IV 4V,

where [-V are defined as follows:

- ‘Z 3 Z( )/Bm) o(. du, D™u) — A%(-,du, D™ P)]

=1 ‘a| m; ’Y<C¥

D7 (uf — PYD*(5P™) da

I = ‘Z S / ,du, D™P) — A%(-,dP, D™ P)]

i=1 |a|=m p(mO)

. Da(ui _ Pz)n2m dx ’

I = ‘i 3 <7> /Bp(xo)[Ag“(.7du, D™P) — A%(-,dP, D™P)]

=1 \a|:ml <o

-DY(u' — PY)YD* (n*™) dz|

N
w=|y / (AP, D™P) — A%(z0,dP(x0), D™P)]
p(J»’O

=1 |a|=m;

X Da(uz o PZ)an dx ,

and
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: / [A%(-,dP, D™ P) — A%(xq,dP(zq), D™ P)]
Bp(l”O)
-DY(u' — PYYD* Y (n*™) dx| .

Using (H1) we have

I < L/ |D™(u — P)|
BP(IO)

' [i > <Z @) DY (u’ — Pi)D“‘”nQ’“ﬂ v dx .

=1 \04|:mi <o

Applying the elementary inequality a? + ... + a7 < (a1 + ... + ap)? <
{(a}+...+a?) (where £ denotes the number of components of du, as defined
in Section 1), Young’s inequality, and (2-1) we see, for € > 0 to be specified
later:

~
IN

L/ D™ (u — P |Z > Z()|D7uPl)||Da72m|dz
Bﬂ(xo)

=1 |a| m; <o

S LCg/ ’Dm(u—P)|
By (o)
Z Z Z( >|D’Y Pi)|p—(ml'—|’Y\)772m—(mi_|,y‘)dx
=1 |a|]=m,; 7<
<

8/ |D™(u — P)|*n*™ dx
BP(IU)

Ay s e (e [ P

=1 |a| m; ‘y<a

= 8/ |D™(u — P)|*n*™ dx
By (o)
m;—1

2 272

cs(m!)* L7l 2(j— ,)/ p i

e i D7 (u* — P")|*dz.
+ > > Do | D™ (u )" d

i=1 j=0 |y|=j Bp(o)

To estimate IT we first note that |dP| < ¢p and recall D P(x) = DPP'(x)
for | 8| = my; hence | D™ P| < p. We introduce the function & from [0, c0) to
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[0,00), defined by k(s) = x(¢s). Now using (H3), the fact that p < 1, and

repeatedly using Young’s inequality, we see

o< / k([dP])|d(u — P)* (1 + D™ P|) [D™(u — P)|1?™ da
By (o)

< R(p)(1 +p)/ |d(u — P)|*|D™(u — P)| ™ dz
BP(CL’O)
< pmu- PP
BP(IO)
1. d(u — P)|\*
+—/€2(p)(1—|—p)2/ p25<‘ (u )’) dr
€ By (zo) p
1 = s
S N R (LI R
BP(IO)
1
+—2/ d(u — P)|? da
ep Bp(ffO)
1 2 .
< o[ apmae Py ()0 )
Bp(mo)
N m;—1 A .
XY YA [ - PP s
i=1 =0 |y|=j By (wo)

We argue similarly to estimate 111:

1 < ®p)(1+p) /B =Py

X S () P

=1 |a‘ m; y<o
25 (|d(u— P)|\2s
P —_— dx

N
——~
gl
z
_
+
=
SN—

(V]
m\

! (i 2 <a> /Bp(mo) D7 (' — P)|[ D da:>2

2
2 .1

M ld(u — P)|? dz
P Bp(xo)

IN
T~
A
=
—_
+
=
SN—
R

S
+
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+EC3Z Z Z < > 2(1y[=mi) /Bp(mo) DY (uf — PY)|? da

1= 1‘a| m; V<«
N m;—1

< <1_|_ (m!) ECS)Z Z Zp j= mz)/ o )’DV(ui_Pz‘HQdﬂ?

i=1 j=0 |y|=j *

+ <7<5(p)(1 + p)) ﬁOznp"“i :

To estimate IV we use again (H3) and Young’s inequality and obtain
w o< 5/ D™ (0 — P)r2™ d
BP(IO)

+ %%2@)(1 +p)2/ [yx ~ o+ |dP — dP(:po)\2]s dz .

Bp(ffO)

Noting
(2-3) |dP — dP(xo)|

N
<> > |D'P'—D'Pi(xo)]

i=1 [y|<m;—1

N
Y S D) < o,

i=1 |y|<m;—1 lal<m;
a>y

we can further estimate IV (recalling also p < 1)
1
o< g/ D™~ P)Pr" de + LR()(1 +p) (14 ) g™
By (o)
1
< 2,:_/ |Dm<u . P)‘2772m dr + 2%2(19)(1 + gp)2(1+s)anpn+25 )
By (o)

Finally, we estimate V', again using (H3) and (2-1), to obtain the estimate

Z > / :m) ,dP,D™P) — A%(z¢,dP(x), D™P)]

i=1 |a]=m
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3 (§) 7o - pomiva

<o
9 9 s/2
< W(dP@O)+) [ [l aof + [P - dP(ao)f’]
Bp(ffo)
z > Z( >|D7 u' — P)|| D" dx
=1 |a| m; y<a
< k(p )(1+€p)1+5 °
gl Sy > (2) D = Py o
By(20) i=1 |a|=m, v<a
< ( ) (1_'_€ ) (1+S)OL pn+2s
_|_£Z Z Z < > / ‘DV(uz _ Pi)|2|Da—7n2m|2 dr
= 1|a| m; V<o Bp(iﬂo)
< w(p)’(1+ p)* )y, pn e
N mi—l
WIS p2<f—mz'>/ D — P2 da.
i=1 j=0 |y|=j Bp(o)

Combining these estimates and applying (1-2) to the left hand side of (2-2),
we arrive at

)\/ |D™(u— P)*n*"de < T+ IT+IIT+IV+V
BP(IO)

< 35/ D™ (0 — P)2n?™ da
BP(IO)

12 il .
+ (zcg(m!)2 + 1) (— + 2) Z ‘ ‘p2(]_m")

9

/ D7 (u — P2 da.
By (o)

Choosing € := A\/6 we obtain the desired conclusion with ¢; appropriately
chosen. [
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3. Approximately m-harmonic Functions

The next lemma is required in order to be able to apply the harmonic
approximation technique. For a function f € H™?2(B,(xo),RY) we set

Q(l‘@a P f) = \)CBp(xo) |Dm(u - f)|2 dx.

LEMMA 3.1. Let u € H™2(Q,RY) be a weak solution of (1-1). Then
for every polynomial P of degree m and every ball B,(x9) CC Q with p <1,
there holds:

\zzzf

B
i.j=1 |a|=m; |8|=m, * Br(®0)

dP(x0), D™P)D?(ud — PI)DOl d:v‘
2 S
< |:2(I)($0,p, P) +W(p, anpa \/ IOapa +4 fp 1+€p))175p
N
—i-ZZ Z p2(7|_mi)f3( )\Dv(ui—Pi)\Qdac] sup |D™¢|,
p{Z0

i=1 |y|<mi—1 Bp(@o)

for all p € C(B,(x0), RY), where p = Zl 1 2 |aj=m | D*P(x0)].

PROOF. We begin by assuming |D™p| < 1. From (1-1) we have, using
(1-3):

By > Y zf

By (
i,j=1 |a|=m; | 8|=m, * Br(z0)

zzzf

i.j=1|a|=m; |8|=m, * Br(®0)

Mg (w0, dP(x0), D™ (P + t(u — P)))) dt|

dP(z), D™P)DP (W) — PYD¢" dx

0AY
/ : ' (zg,dP(xo), D™ P) —
]

- DP(w! — P))D%pt dx:

(A?(xo, dP(z0), D™u)

— A¥(-, du, Dmu))Do‘npi dx
— T4+ II+I1T,
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where I denotes the first term of the right-hand side of (3-1) and I and
111 are defined as follows

I = Z Z (Af (w0, dP(x0), D™u)

i=1 |a|=m B,(zo)

— A%(-,dP,D™u)) D" dz,

nr = Z 3 ][ (AP, D™u) — AY( -, du, D™u)) D dz.

i=1 |a|=m B,(zo)

From (1-3), supg, (z,) |D™¢| < 1, Cauchy-Schwarz’s inequality the concav-
ity of the function s w(t, s)?, and Jensen’s inequality we infer

| < ]{B )w(ydp(:co)\+|DmP(:co)\,\Dm(u—P)lz)\Dm(u—Pﬂdw

: (]{Bp(xo) W, [D™ (= PF) dx)1/2< ]{3 |D™(u— P)? dw)1/2

»(70)
< w(pa(b(:COap? P))q)1/2(1‘07pa P) .

The second term can be estimated using (H3), Young’s inequality and (2-3)
via:

(1] < rK(ldP(xo)])

s/2
][ (1 = 20l? + [P — dP(0) ?) " (1 + | D™ul) d
By (o)

< n<p><1+6p>8psf (1+4p+ [D™(u— P)|)da
By(wo)

< R(p)(L+ )5 p* + K2(D)(1+ )25 + B (0, p. P)

< 26%(p)(1+ €p)'°p° + ®(x0,p, P);

in the last line we also have used p < 1 and x > 1. Similarly we obtain,
since |dP| < fp on B,(xo):

11| < ][ w(|dP])|d(u — P)*(1 + | D™ul) do
Bﬂ(xo)

IN

5(p)(1 + p) 7[ d(u— P)J° dz

Bﬂ(xo)
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+ (tp) 7{3 i PG = Pl

< w)4p){ i P ds
Bﬂ(xo)
+/~t2(€p)][ |d(u — P)|** dz + ® (w0, p, P)
Bﬂ(wo)
2 2s 2 9
= (k(tp)(1+p))7=p> + ld(u — P)|? dz
P* JBp(xo)
+ (K (tp)p™) ™= + ®(x0,p, P)
2 —_—=
< = 7[ |d(u — P)|? dz + ®(z0, p, P) + 2(k(¢p)(1 + p)) lfsps '
p By (o)

Combining these estimates in (3-1) yields the desired conclusion for ¢ with
|D™p| < 1; a simple rescaling argument then yields the result for arbitrary
p € C(Bp(x0), RY). O

The next result, the m-harmonic approximation lemma, is central to
our technique. We refer the reader to the introduction for more comments
on this technique, and confine ourselves here to noting that, in the case of
a second-order system the result was given in a more general form in [DS,
Lemma 3.3] (cf. [Sil, Section 1.6] for the case of Laplace’s equation; see also
[DG, Lemma 2.1] for the m = 1 analogue).

LEMMA 3.2 (m-harmonic approximation lemma). For any given ¢ >
0, there exists 6 = 6(n, N, X\, L,m,¢) € (0, 1] with the following property: for
any given coefficients {a%’g}, (1 <i,j <N, |a| =m, |B] =m;) satisfying:

N
(3-2) Z Z Z af‘jﬁvf‘l/f > My|? for allv € RT, and

3,j=1 |a|=m; |5|:mj

N
(3-3) Z Z Z afjﬁyf“f < L||p| forallv,veRT,

1,j=1 |a|=m; |B|=m;

for any g € Hva(Bp(:ro),RN) satisfying

(3-4) ]Z |D™g|>de <1, and
BP(IO)
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N
(3-5) ‘Z Z Z ]{?( )af‘jﬁDﬁngagoidm <6 sup |D™y|
. p(Z0

i,j=1 |a|=m; |8]=m, By (o)

fO’f’ all (NS Cgo(Bp(x())vRN) y

there exists a function v € Hm’2(Bp(x0),RN) with the following properties:
(3-6) ][ D™ d < 1;
BP(IO)

N
(3-7) Y ]{B(O;L%BDﬂijo‘cpidx:O
(T

1,j=1 |a|=m; |B|=m;

for all p € CX(B,(z0), RY);

(3-8) and p~2 ][ ld(v — g)]*dz < e.
Bn(fEO

PRrROOF. We assume first that o = 0 and p = 1. Were the conclusion
false, we could find € > 0 such that for every & € IN there exist coefficients

kaio‘jﬁ and functions g, € H™?2(B,R"), so that for all k¥ we have
@9 f prapa<t,

B

N 4 , 1
310 3 S | W piepegde] < Lsup D™

i,j=1|a|=m; |B|=m;

for all p € C°(B,(z0),RY); and
(3-11) ][ |d(vgy — gi)|*dx > ¢ for all vy, € Hy.
B

Here Hy, denotes the (nonempty) set of all h € H™?(B,RY) for which

][ |ID™h[?dz <1 and
B

N
Z Z Z ][ka%ﬂDthDagoidxzo for all p € C°(B,RY);
B

1,j=1 |a|=m; |B|=m;
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the second of these conditions expresses the fact that A is (ka%ﬁ
monic (in B). Clearly, we may assume {4, dgy, dz = 0 for all k (by simply re-
placing g with g — Qi where Q. is the unique polynomial of degree at most
m — 1 satisfying [ d(gx — Qx)dx = 0) and apply Poincaré’s inequality (see
[G1, Chapter III]) and Rellich’s theorem to obtain, after passing to a sub-
sequence, g — ¢ strongly in H™~12(B, RY) and weakly in H™?(B,RY)
and ka?f — a%’g. Then f3 |D™g|? dz < 1, and from

N
> ¥ X fapiipia
B

45=1 |al=m; |Bl=m;

N
- Y Y [ (0 - v Dt

hJ=1|al=m; |Bl=m;

N
+ Z Z Z é(a%ﬁ—ka%B)DﬁgiDagoidaz

i,j=1|a|=m; |B|=m;

N
DD DI Rl

Ly=1lal=m; |Bl=m;

,m)-har-

and (3-10) we infer that g is (a%ﬂ ,m)-harmonic in B.
We denote by Vj, the unique solution of the Dirichlet problem

N
Z Z Z ]{BkaiajﬂDﬁVjDaSOidx_O for allgoECfo(B7RN)a

4,j=1 |a|=m; |ﬁ‘:mj

dV =dg on 0B.

Then using the ellipticity condition (3-2), the (a%ﬁ , m)-harmonicity of g,
and f, [D™g|? dz < 1 we have

)\][ D™V — g)[2 da
B

N
<X Y Y A D -0 ) da

1,j=1 |a|=m; |B]=m;

N
:—Z Z Z ]{BkagﬂDﬁnga(Vlg—gi)dx

1,j=1 |a|=m; |B|=m;
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YY) -t nn v - g

i,j=1|a|=m; |8|=m;

< Jla—"al ]g D™g| D™ (Vi, — )| da

1/2

<llo~"all( f 10"V~ g)Pdz)
B

8

ka8 a
f a;; —

which in view o implies the convergence of Vj, to g strongly in
H™2(B,RN). This in turn implies ||Vx — grllgm-12 < [|[Vik — gllgm-12 +
lg — gkllgm-12 — 0 as k — oo. The same assertion is true for vy =
min(1, |[D™ V|| ;1) Vi, contradicting (3-11).

The general case follows immediately from a simple scaling argument. [

The last result of this section is a standard estimate for solutions of
elliptic systems with constant coefficients (see [Ca, Teorema 9.2]).

THEOREM 3.3. Consider coefficients {a%ﬂ} with ellipticity constant
A > 0 and upper bound L as in Lemma 8.2, and h € H™2(Q,RN) which is
(a‘?‘-ﬂ m)-harmonic. Then for a constant ¢y > 1 depending only onn, N, X,

1]
L, and m, there holds:

p~? sup |[D™h*+ sup |[D™TIhP?< C4p_2f |D™h|? d.
Bp/Z(a;O) Bp/Q(IO) By(zo

4. Proof of the Main Theorem

For this section we consider a fixed, but arbitrary solution uw €
H™2(Q,RN) to (1-1), where we assume that the structure-conditions (H1)—
(H3) are valid. As in Section 3., for B,(xzo) CC € and a function f €
H™2(B,(z0), RY) write ®(x0, p, f) for f Bp(m0)|Dm(“_f)|2 dx. For a given
B,(x0) CC 2 we have from Section 1. the existence of a unique polynomial
P of degree at most m satisfying:

(4-1) ]l D%u' — PYdx =0 foralli=1,...,N, |a] <m;.
BP(IO)
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From (1-4) we recall that P has the form
(4-2) = > > % (s, 0.oP (@ = 0)°
ol <ms Ja+B<m; '

with the coefficients depending only on m; and n. For this polynomial P,
we define pz, , by

N
Pzo,p = Z Z |D’YPJ $0 Zpgco,p
=1

J=1|v|<my

We further write ®(z, p) for ®(xo, p, P), where P is determined by (4-1).
We begin by proving two propositions which establish growth controls
on pg,,, and ®(xo, p) under suitable smallness-conditions.

PROPOSITION 4.1.  For p,§ € (0,1] and B,(xo) CC Q there exists a
constant cs depending only on n, N, and m such that there holds:

Doty < (14 507 ) pay » + 5072012 (2, p) .

PRrOOF. We begin by noting, for |y| < my and = € B,(x¢), that there
holds |D7P¥(x)| < pg, p, and hence:

(4-3) ‘(prk)wovp’ < Dag,p-

For such ~, we estimate, using the fact that (DD7u"),, ,(z — x¢) has mean
value 0 on balls centered at zp, and (repeatedly) using Poincaré’s inequality:

’ (D’yuk)l‘mp - (D’yuk)xoﬁﬂ‘

= ‘ 7[ (Dwuk — (Dvuk)m’p — (DD7uk)xO,p(9: — mo)) dm’
B, (o

Bp(xo)
efn/QCPp< ][
BP(wO)

2 1/2
DVuF — (DVUk)IO’p — (DDVuk)%’p(x — xo)’ da:)

2 1/2
DDk — (DD'yuk)xmp’ d:c) /

IN
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< e_n/2CPPK][ DDVu" — (DDu*)y,
BP(IO)
2 \1/2
— (DD (= o) )
+ p|(D2D7u )
2 1/2
< 97"/20pp [0pp<][ D?DVuk — (D2Dﬁyuk)z07p’ da:)
B

P(IU)

+ P’ (DQD’Yuk)rO,P

(I

Here cp denotes the constant from the Poincaré inequality; note that cp <
22" Tterating this and recalling the choice of P (i.e. (4-1)) yields

(D0 )z = (D7) 0]

< 072 (epp)m™ehl

[]{39(350)
my—l|v]

+072 N G (DIDTPR),
j=2

Dbl gk — (Dl pryky, pf dx] 1/2

with the summation obviously being set to 0 in the case that |y| = my — 1.
In the case |y| < mj — 1 we can further estimate (recalling also that p < 1)

(Dvuk)wo,p - (Dwuk)xoﬂp‘

< 6% mp[(]{gp(xo)

D™= pryk — (Dbl pryky p‘z dx) 1/2

my—|7|

+ Z (DD P),,

2 1/2
< o Dmku’“—wmkuk)m,p\ )
Bﬂ(ﬁo)
+ 3 DT )]
lo|<my
2 1/2

S 0§ AN L L W T RS

B

p(xO)
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Summing over 0 < |y| <my —1, k=1,...,N yields

(4-4) i Z ’(Dvuk):co,p_(Dvuk)xo,@p‘

k=1 |y|<my—1
< 9_”/2(n + 12 temp

s

k=1 p(z0)
< 97”/2060 [@1/2(900, p) + Pa:o,p] ;

2 1/2
Dmkuk o (Dmkuk)xo,p‘ dx) + pxo,p}

where cg = (n + 1)>"~1c/N. We further have:

(4-5) (D™ )10.0 = (D™ )ag,p| < 07/201 (20, p)

We denote by P the polynomial of degree at most m on By, (o) defined
by (4-1). Then

AN

N
Pao,0p DPzo,p + Z Z ’DW’Pk(xO) - DWPk(xO)’

k=1 |y|<my,
Pzo,p + VN (04 1)"[(D™U) g0 — (D)o, + 1
Pzo.p + VIN(n+ 1)m0_”/2@1/2(x0,p) +1,

ININ

where

N
=% |DYP*(z0) — DV P*(20)|;
k=1

<mp—1

Here we have used (4-5) in obtaining the last inequality.
Now, we recall that

DY Pk (zg) = Z bgplm (Dﬂ—'_’yuk)xo,p 7
[B+y|<my
DYPRao) = > b(0p)I(DPTu) g g,

|B+|<my
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Noting from (1-5) that bf = 1 and using (4-4), this yields:

N
=2 5 5 B0 - 01D b))

k=1 |y|<mp—1|8+~|<my

N
SOY S (D, — 0D

k=1 |y|<my,—1 |B+yI<my
|8]>0

IA

+ G_H/QCGP |:q)1/2 (*TO? p) + pxo,p] ’

Denoting max |bg\ by B (note that B depends on n and m only) we deduce
using (4-4), (4-5), (4-3), and the choice of P (see (4-1))

N
SO S |, — 09D )

k=1|y|<mp—1 |B+vI<my
|81>0

N
<Y [0 by, — (DFE)
k=1 |v|<mj—1 |B+yI<my
|B8]>0
4Bl — 9|ﬂ\)‘(Dﬁ+wuk)xo7pH
N
= SB'OZ Z Z H(Dﬁﬂ“k)wom - (Dﬂﬂuk)moﬁp‘
k=1 |y|<myj—1 [B+vI<my
[B8]>0
+[(DH PR,
N
< B+ )Y S [0 — (DT 0|+ [(DTPF )|

k=1 |y|<m;

< B0+ 1PN (14 (ep(n+ 1)) [#Y2(20, ) + pro]
This implies
128072 (n+ 17" N (1+ (cp(n+ 1)) p[01/%(z0, p) + pro.p|

from which the desired estimate easily follows with c5 = 3B(n+1)?*"N (1 +
(cp(n+1))™). O
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The second growth-estimate requires additional smallness assumptions.
We let

K (p) = [5(ep) (1 + £p)] 5.

PROPOSITION 4.2. To a given t € (s,1) there exist positive constants
6€(0,1], 0 € (0,1/4], c7, cg > 1 such that, on every ball B,(xg) CC 2 with
p < 1 for which the smallness-conditions

(4'6> (I)(IE(), p) + wz(pxo,pu q)(x07 P)) < 62/27
(4-7) T K2 (o )™ < 67

are satisfied, there holds:

(4-8) ®(x,0p) < 6% ®(z0,p) + [6‘2K2(pm07p) + 2" K(1+ cspx07p)} P,

PrROOF. Consider € > 0 to be determined later, and let 6 = 6(n, N, A,

L,m,¢) be the corresponding constant from Lemma 3.2. We define, for

cg = ZlcgJrl

1/2
(4-9) x = 209 (®(a0,p, P) + 6K (pag )p™) . and
w=x""(u—P).

Here the polynomial P of degree less than or equal to m is chosen to satisfy
(4-10) ][ DuF — PMYdz =0 forallk=1,...,N, |a| < my.
By (o)

With this choice we can use Poincaré’s inequality to deduce

N
Z Z p2(hl=mi) ][ DY (u' — PY)|? da

i=1 |y|<my By (o)

N
< Z(CP+C§D+.-.+C$)][ | D™ (u — PY)|? da
i=1 By (o)
c?—1
cp L (I)(l'o,p) < Cg—i_lq)(a:(]vp) :

Cp—l



Nonlinear Elliptic Systems of Higher Order 487

In view of Lemma 3.1 we obtain, writing p for ps, ,,

\zzzf

Lj=1lal=m; |Bl=m

dP(zy), D™P)D? () — P\Dy" dx

1’0) 87/
< [2¢><a:o,p>+w<p,<1><a:o,p>><1>”2<xo,p>

+ 4K (p)p® + 251 & (o, p)} sup |[D™¢|

By(zo

< | B(a0, ) + wip, Blao, )@ w0, p) + K(p)p?| sup (D™
p\T0

Dividing the above equation through by x yields
- (z x w x
(4-11) ‘Z Sy ][ 0,dP(x0), D™P)D%wi Dl d
ij=1|a|=m; |5|=m; ’ Be(20)

1 ,11/2
< [@(w)+w2<p,<1><xo,p>>+§62} sup | D™l
Bﬂ(xo)

for any o € C°(B,(z0), RY), as well as

(4-12) f |ID™w|*dr < 1.
By (o)
We now set oA
(4-13) a;f = 5 £ (w0, dP(x0), D™P).
Vi

In view of (H1) and (H2), the coefficients afjﬂ fulfill the conditions (3-2) and
(3-3). Now, if there holds

1
(4-14) D (20, p) + W (Do p» ®(20, p)) < 562

we can apply Lemma 3.2 to conclude the existence of h € H™?(B,(x), RY)
satisfying:

(4-15) ][ |ID™h?dx < 1;
Bp(zo)
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(4-16) z > z][ i D’ D' dz = 0
i,j=1 |a|=m; | 8|=m; * Br(z0)

for all ¢ € C2°(B,(w0), RY);

(4-17) 2 ][ D™ (0 — )2 da < c.
By(wo)

From Theorem 3.3 and (4-15) we have the estimate

(4-18) p~? sup |D™h|*+ sup |D™F1h)?
B, /2(0) B, /2(0)

< cqp? 7[ ]Dmh\2 dr < cqp?
By (o)

Now consider @ € (1,1/4]. From Taylor’s theorem applied to h on Bag,(z0)
we have

sup  |D™ L h(x) — D™ h(zg) — D™h(xo)(x — x0)|? < 16¢46%p2.
x€Bag, (o)

In view of (4-17) and (4-18) we thus see
(20p) 2 ][ | D™ Y (x) — D™ h(xg) — D™h(x0)(z — x0)|* dz
Bagp(z0)
< 2(20p)? [7[ D™ L (w — B) da
Bagp(zo)

+f D™ h(a) - D™ th(a0) — DPh(eo)(o - w0)f?da]
BQGp(xO)

< 2(20)7" % + 2(20p) *16c46" p?
2792 4 8eyf? .

Multiplying this through by x? yields
(19) o7 D" () - P)
Bag, (o)

m—1 m 2
- X(D h(zo) + D™h(zo)(x — x0)>‘ dx
< 32¢5e4(07" e + 07)[ (0, p) + 6K (P p) 0™ -
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We now define a second polynomial ) of degree at most m by requiring
(4-20) D™Q@Q = D™P + xD™h(zo), and
(4-21) f dlu—Q)dzr =0.
Bagp(z0)
Note that (4-20) and (4-21) uniquely determine (. In particular (4-21)

implies that D™~ (u — Q) has mean-value 0 on By, (7). In view of (4-19),
this allows us to deduce

@) o) Q)P

< (20p)7° ][ D™ty — D™LP(3) — x D™ (o)
B20p(x0)

- (DmP + XDmh(:ro)> (x — 1‘0)‘2 dx
< 32ckcy (9_”_25 + (92) (fb(xo, p) + 6_2K2(px0,p)p25> .

We now apply Theorem 2.1 on Bag,(x0), with P replaced by Q. For gy, 26,

defined by
N
qx0,20p = Z Z |D7Qj($0)|
J=1|y|<m;
we have
[ pmw-QPds
BGp(xO)
N m;—1 '
< o33 Copim
i=1 j=0

. / | DY (u' — QY)|* da + a, (20p)" T K (qxo,zop)} :
BQGp(xo)

As before the choice of @, i.e. the fact that fB%) (z0) DY’ — QY)dxr =0
P

fori =1,...,N, |a] < m; — 1, allows us to apply Poincaré’s inequality

iteratively to deduce

N mifl

> Yo [ pit - @) de

i=1 j=0 Bag,(z0)



490 Frank DuzaAR, Andreas GASTEL and Joseph F. GROTOWSKI

< (L4+cpte+cn 1) 200)2 / D™ (u - Q) da
Bsg,(x0)
< B(20p)? / D™ (0 — Q) de.
B20p($0)

Inserting this into Caccioppoli-type inequality we obtain

/ D™(u — Q) do
Boy(z0)

< alpeon? [ D Q)P ds+ an(209)" K 10y 20
Bag,(0)

Multiplying through by a,(6p)™ and using (4-22) we arrive at

(o, 0p) < ]1 D™(u— Q) da
Boy (o)

Cm
< 2% —P][ D™ Ly — Q)| dx
1[(29@2 Bzg,,(xo)‘ ( )

+ (29p)25K(qx0,29p)]
= 2" cBciey <9_"_25 + 92) (@(xo’ p) + 5_2K2(px07”)p28>
+ 2”61P2SK<(]ac0,26p) .

We now choose t € (s,1) and then 6 € (0,1/4] sufficiently small such
that

(4-23) 2”+7clc’1§030492 < 6%,

With this choice of 6, we set ¢ = "%, Note that this also fixes §. With
these choices, we have

(4-24) O(z0,0p) < 9%(@(9@0,;))+5—2K2(pxo,p)p28)
+ 2"e1 K (g 20p) 0™ -

The next step is to control gz, 26, in terms of py, ,, in order to refine the
estimate (4-24). For |y| < mj — 1 we have, using (4-21) and (4-11):

D) < |{  DPade
Bag, (o)
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tf, 0@ - DR

IN

pl’(),p +

(DY — DY PF) da:‘

BQGp(zO)

U@ -2

Paop + (20) 72 ( ][

1/2
1D (uF — P’“)\%l:v)
By (o)

IN

+][ |DYQF — DYQ" ()| dx
Bag, (o)

Summing over K = 1,..., N, |y| < myp — 1 we obtain, using Poincaré’s
inequality iteratively:

N
Y. D> IDQMa)

k=1 |y <my -1

< Nn+1)™ py,+VN(n+ 1)m=1(20)""/2

N mkfl

-[Z 3 7{9 |Dj(uk—Pk)|2dxr/2+R

k=1 j=1 7 Br(z0)
< N(n+ 1)m_1p1’07/}

+/N(n + 1)m=1(20)""/?
N

1/2
: [Z (cpp? + -+ (cpp*)™) ][ | D™ (u® — P*)2de| " 4R
k=1 By (zo)
< N(n+ 1)m_1pm07,}
+ VN 1) 1(20) 2P0 (a0, )2 + R,
where
N
R=Y Y f Q- Dk
k=1 |y <my —1" B20p(¥0)
To estimate R we observe that for x € Bag,(x0)
1 _
D7Q @) - DQ () = | 3 e @ o) — )
la|<myg '

a>y
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which yields
R < QQPN(n + 1)m71Qw0720p .

This implies

(4-25) Z > D@ (xo)

k=1 |y[<mg—1
< N(n + 1)m_1 [pwo,P + (29)—n/20gn+1)/2q)(x07 P)1/2
+ 290%0,2@} .

Finally, we estimate g, 20, using (4-20), (4-25), (4-18), and Cauchy-
Schwarz’s inequality to obtain

A

ro20p < Z > (Dvpk Zo !+X\D7h($o)|)

k=1 |y]=my,

N
> D [D7Q o)l

k=1 |y|<mp—1

VN +D)mesx + (1+ N(n+1)™ Ypyg

+ N(n+1)m1 [(29)*"/205;”“)/ P (0, p)'/% + 20%0,29,;] :

IN

Choosing 6 such that
(4-26) AN(n+1)" 19 <1

we see in view of (4-9) (i.e. the definition of y) that
Gao.20p < 210X +2(1+ N(n+ 1) )pag
where c190 = /N(n + 1)"cs + N(n + l)m_1(20)_”/20gn+1)/2. Now if

1
4-27 o 62K? 25 <
( ) (‘T07 P) + (pxo,P)p =~ 16036%0

we find
(4'28) qx0,20p <1+ C8Pzo,p »
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where cg = 2(1 + N(n + 1)™~1). Inserting this into (4-24) we finally arrive
at

® (w0, 0p) < 0*'® (w0, p) + [5_2K2(pxo,p) +2"c; K (1 + CBon,p):| p*s.

Now, if we assume the further smallness condition §? < which entails

1
16030?0 ’
no loss of generality, and choose p such that there holds

1
572K2 2s <
(pxo,p)p — 32036%0 9

we see that the smallness conditions (4-14) and (4-27) are fulfilled in view
of (4-6) and (4-7) by letting c7 = 32c3c?,,, completing the proof. [J

The next step is to be able to find conditions sufficient to enable us to
iterate Proposition 4.2. We define a function H : [0,00) — [0, 00) by

H(s) = 62K?(s) 4+ 2"c1 K (1 + cgs) .
To a given s > 0 we can find ®¢(s) > 0 sufficiently small such that
(4-29) w?(25,2®0(s)) + 2P (s) < %62, and
(4-30) 8cr®L/*(s) < (1 — 6°)6™%s.

Further we can find po(s) € (0, 1] sufficiently small that there holds:

(4-31) cr K (25)pg* (s) < 6%

(4-32) H(25)pe%(s) < (6% — 6?))®o(s) and
crpo(s)

(4-33) exp [m} <3/2.

LEMMA 4.3. For a given pg > 0 and B,(xo) CC 2, suppose that there
holds:

(’L) DPzxg,p < po;
(i) p < po(po); and
(i11) ®(xo,p) < Po(po)-



494 Frank DuzaAR, Andreas GASTEL and Joseph F. GROTOWSKI

Then for each k € INU {0} and 6 as in the proof of Proposition 4.2 the
estimates (4-6) and (4-7) are satisfied on Bk ,(x0). Moreover, the limit

Yz, = lim (D™u)

o0 x0,07 p

exists, and the inequality
2
]{B (o) |D™u — Tm0|2d:c < const[(%) Sq)(xo’p) + 7,,2s:|
p\Z0

is valid for all 0 < r < p, where const = const(py).

PrOOF. We write (4-6); (respectively (4-7); for (4-6) (respectively
(4-7)) with p replaced by #¥p. We will prove the following for k € INU {0}:

(Ir) ®(z0,6%p) < 2P0 (po);
(Ik) Pyyorp < 2p0-

We see that (Ij), (I) combined with (4-29) imply (4-6)g, and (Iy), (ii)
and (4-31) show (4-7);. We further note that (1)) follows from the weaker
condition

s H(on) s
(Ip) @(x0,0%p) < 67 (‘I)(ﬂfovp) t o _om P’ )
in view of (ii), (iii) and (4-32). Thus we need to show (I}) and (II;) for all
k€ INU{0}. We do so by induction.

For k = 0 we have that (1)) is trivial, and () follows immediately from
(1).

In order to show (/}) and (I;) for k € IN we assume (/) and (1) for
u=0,...,k—1. Then the hypotheses of Proposition 4.2 are satisfied on each
Bgup(x0), ¢ =0,...,k — 1. Thus we can apply Proposition 4.2 repeatedly
to conclude with the help of the (I,)’s

k—1
O(w0,05p) < 0°MB(20,p) + Y H(pyygrmn—r )02 217152
pn=0
k-1
02kt(13(130,p) + H(on) Z 02,ut+2(k7,u71)sp25
n=0

IN
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k—1
92kt‘p($o,p) + H(2p0)02(k71)sp25 Z 02p(t75)
=0

IN

s H 2])0 s
6% (‘I’(%,P) + ﬁ P’ )

establishing (I},).
To show (I[;) we begin by noting the elementary inequality (for ¢ > 0)

ﬁ(l + e p) = eXpilog(l +cbp) < eXPiCpgj = &P [(1 c—pe)] '
0 j=0 J=0

Given (ii) (recall that pg < 1), we can iterate Proposition 4.1. Using in turn
the (1),)’s, (i), (ii), (iii) and (4-33) this yields:

k—1 k—1

Pagorp < ] +07"c50"p) [pxo,p +es07 2N B2 (a, (9'U‘p)]

§=0 =0

< e | gt —g)
: [pmo,p + 672 29“5@1/2(%,@ +p° %)}

e

N
[pme g (0 o 25

S el 5:555’ o)

which proves (I).

We next want to show that (D™u),, gi, converges to some limit Y.
Denoting by P, i, the polynomial associated to u via (4-10) on the ball
By, 03 p(z0) we have (D™ )y 9ip = (D™P) g 0ip = D™ Py gi,(20). Hence,
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arguing as in the proof of (Z) above we deduce for k > j

k
(D™0) 409 = (D™ W)ag grgl < D (D™ Wag0p — (D) gy -1,

p=j+1
67s H (2pg)p*311/2
< 7 il e 00
> an/2(1 _ 98) [q)(l'o,p) + 925 _ g2t j| )

showing that ((D™u),, gi,)jeN is a Cauchy-sequence. Therefore the limit
Txo = hmj_,oo(Dmu
jeINU{0}

)ao,09p €Xists and from the above estimate we infer for

7s

H(2po)p**11/2
(4-34)  [(D™u)y0p — Taol < gn/2(1 — ¢s) ]

|:®(x07p) + 025 _ ezt

Now, for 0 < r < p we find j such that 67+p < r < 67p. Using (1;) and
(4-34) we finally arrive at

][ |D™u — Yy, |* dx
By (x0)

<2 [f DT (D) e (D)~ T
93 p\T0

4627 H (2po) p*
< -
= 62n(1 — 6%)2 [(I)(xO:P) + 925 — g2t }

= 02n+2sé )2 (%)25 [P0 )+ %}

m\2s 2s
< const[(—) O (zo,p) + 7 ] :
p

which proves the desired estimate. []

PrROOF OF THEOREM 1.1. Suppose xg € €) satisfies

(4-35) lim inf ][ |D™u — (D™u) 4, | dr =0 and
=0 Bp(xo>

(4-36) th(l)lpZ Z |(DYu*) 4o p] < 00
p—

k=1 |a|<my



Nonlinear Elliptic Systems of Higher Order 497

N
We first show that p,, , can be estimated in terms of > Y [(D%F)y, |-

k=1 |a|<my,

For k=1,...,N, |a| < my, we have
|DYP*(z0)] < ( f D P* dm‘ +][ |DYP* — DYP*(x0)| da
Bp(mO BP(IO)

= (D)4 +][ |DYP* — D*PF(2)| da .
By (o)

Arguing as in the proof of Lemma 4.3 we deduce for |a| < my — 1 and
x € By(xo)

|D“P¥(z) = D*P¥(xg)] < p Y [DPP¥(w)l
[B]<my,
B>a
< p Y ID"Pzo)| = pph,
|8|<my
so that
|DP*(0)| < [(DYuM)ag,pl + p Py p -
Summing over |a] <my — 1, k=1,..., N, yields
N N
Y. Y ID*PMa)l < Z |<D“u’“)xo,p| + N+ 1" ppagp
k=1 |a|<mj—1 k=1 |a|<m

Recalling that D¥P*(x0) = (D)4, , for k =1,..., N, |a| = my, we obtain

N

(437) (1= N+ 1)) pay,y < Z Z (D W) ]

k=1

which is the desired bound on py, , for p sufficiently small. It is now standard
to deduce Theorem 1.1 from (4-35), (4-36), (4-37) and Lemma 4.3; see for
example the start of Chapter IV in [G1], specifically Theorem 1.1 and Main
Lemma 1.1 in that chapter. [
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