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ABSTRACT. In this thesis, we investigated categories and functors related to
Brauer groups.

In 1986, E.T.Jacobson defined the Brauer ring B(E, D) for a finite Galois
field extension E/D, whose unit group canonically contains the Brauer group
of D. In Part 1, we investigate the structure of B(E,D). More generally,
we determine the structure of the F-Burnside ring for any additive functor
F. This reslut enables us to calculate Brauer rings for some extensions. We
illustrate how this isomorphism provides Green-functor theoretic meanings for
the properties of the Brauer ring shown by Jacobson, and compute the Brauer
ring of the extension C/R.

For any finite étale covering of schemes, we can associate two homomor-
phisms of Brauer groups, namely the pull-back and the norm map. For any
connected scheme X, if we take the Galois category C of finite étale coverings
over X, we see these homomorphisms make Brauer groups into a bivariant
functor (= Mackey functor) on C. As a corollary, restricting to a finite Galois
covering of schemes, we obtain a cohomological Mackey functor on its Galois
group. This is a generalization of the result for rings by Ford [12].

The Tambara functor was defined by Tambara in the name of TNR-functor,
to treat certain ring-valued Mackey functors on a finite group. Recently Brun
revealed the importance of Tambara functors in the Witt-Burnside construc-
tion. In Part 3, we define the Tambara functor on the Mackey system of Bley
and Boltje. Yoshida’s generalized Burnside ring functor is the first example.
Consequently, we can consider -a Tambara functor on any profinite group. In
relation with the Witt-Burnside construction, we can give a Tambara-functor
structure on Elliott’s functor Vs, which generalizes the completed Burnside
ring functor of Dress and Siebeneicher. )

Recently, symmetric categorical groups are used for the study of the Brauer
groups of symmetric monoidal categories. As a part of these efforts, some
algebraic structures of the 2-category of symmetric categorical groups SCG
are investigated. In Part 4, we consider a 2-categorical analogue of an abelian
category, in such a way that it contains SCG as an example. As the main
theorem in this part, we construct a long cohomology 2-exact sequence from
any extension of complexes in such a 2-category. Our axiomatic and self-dual
definition will enable us to simplify various kind of arguments related to the
2-dimensional homological algebra, by analogy with abelian categories.

This thesis was written under the supervision of Professor Toshiyuki Katsura.
The author wishes to thank Professor Toshiyuki Katsura for his encouragement.
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Part 1. Structure of the Brauer ring of a field extension
1. INTRODUCTION FOR PART 1

For the general theory of Mackey and Green functors, see [4]. Throughout this
part, we fix a finite group G, and use the following notation:
e H < G means that H is a subgroup of G.
e Forany K < H < G and any g € G, 9H := gHg™!, H? := g"'Hg, and
by : G/9H — G/H is the G-map defined by £y,u(g - 9H) = ¢'¢g - H,
p : G/K — G/H is the canonical projection.
e Mack(G) and Green(G) denote the category of Mackey functors and Green
functors respectively.
e For any group M, Z[M] denotes its group ring over Z, and similarly for Q.
Most of the following arguments will work well even if the codomain of Green (and
several other) functors is the category of R-modules R-Mod instead of Ab = Z-Mod,
for any commutative ring R with 1. But we restrict ourselves to the case of R = Z,
for the sake of simplicity. Monoids, rings, and Green functors are equipped with 1,
but not assumed to be commutative, unless otherwise specified.

For a commutative diagram
X—7
Lo |
Y—W

we use a small square O to indicate that it is a pull-back diagram:
X—2Z '

) e |

‘ Y —W
The Brauer ring B(E, D) of a finite Galois field extension E/D was defined by
Jacobson in [16]. B(E, D) can be regarded as an example of the F-Burnside ring,
where F is an additive functor F : G — Ab. By using Chen’s result (Corollary 3.4)

‘in [7], for any trivial field extension E/E, we can see that the Brauer ring B(E, E)
is naturally isomorphic to the group ring of the Brauer group Br(E):

B(E, E) = Z[Br(E)]

(see also Proposition 2.8 and Remark 2.9 in this paper).

In the following, we will define several types of additive functors, and by the
adjoint properties concerning these functors, we will see the structure of the F-
Burnside ring as follows:

Theorem 3.13 . For any F € Ob(Madd(G)), there is a natural isomorphism of
Green functors ‘

)

(ZIRF))+ — Ap.
As a corollary, the structure of the Brauer ring B(E, D) can be seen as follows:

Corollary 4.1 . For any finite Galois extension E/D of fields with Galois group
G, we have a ring isomorphism :

B(E,D) = ( @ ZBr(EM))/(IZIG) - @ ZB:(E™).
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This is a generalization of the above isomorphism B(E, E) = Z[Br(E)].

2. DEFINITION OF THE ADDITIVE FUNCTOR AND THE BRAUER RING

In this section, we recall the construction of the F—Burn31de ring, defined by
Jacobson [16], and introduce the Brauer ring.

We fix a finite group G, and let G be the category of finite G-sets and G-maps.
Set denotes the category of small sets. A contravariant functor E : G — Set is said
to be additive if the canonical map (E(ix), E(iy)) : E(X[1Y) = E(X) x E(Y)
induced by the inclusions i x, iy is bijective for any X,Y € Ob(G). Let jxy denote
the inverse bijection. E((}) consists of one element. Sadd(G) denotes the category
~ of additive functors from G to Set, whose morphisms are natural transformations.

Definition 2.1. Let E be in Ob(Sadd(G)). For any S € Ob(G), category (G, S, E)
is defined as follows:
Ob(G,S,E) = {(Y,¢,u) | Y € Ob(G),¢ € (¥, S),u € E(Y)},
Mwwm@mﬂxﬁwdlwwﬂ={a€ﬁﬁzﬂ¢=¢°%E®KM=U}

): E(Z) ———— E(Y)
w w
vl u

For any (Y, ¢,u), (Z,1,Z), v) € Ob(G, S, E), we define their sum as follows:

Sum: (Y, ¢,u) + (Z,9,v) = (Y[ Z,¢U¢:Y[1Z — S,u]]v), where u[[v :=
jy.z((u,v)). With this sum, we define a group Mg(S) as the Grothendieck group
of the category (G, S, E). For any object (Y, ¢, u), we write its image in Mg(S) as
Y, ¢, u).

Remark 2.2. Mg becomes a Mackey functor by the following definition:
Covariant part: For any f € G(S,T), Mg.(f) : Mg(S) = Mg(T), [Y,¢,u] =
[Y,fod,u]. ' ,
Contravariant part: For any f € Q(S T), My(f) : Mg(T) = Mg(S), [Z,4,v] =
[S X Z, 7r5,E(7rz)(v)]

Sxgp 72>z
TS O ¥

§———T

We abbreviate Mg(G/H) to Mg(H) for any H < G. The correspondence E —
M is a functor from Sadd(G) to Mack(G). Indeed, for any morphism 7 : E; — E»
in Sadd(@), we obtain a sum-preserving functor (G, S, E1) = (G, S, Es) for any S €
Ob(G), and thus obtain a set of homomorphisms M, (H) : Mg, (H) = Mg, (H)
(H < G), which form a morphism of Mackey functors M, : Mg, = ME,. '

Let & denote the forgetful functor from Mack(G) to Sadd( ); so if M is a Mackey
functor for G and if X is a finite G-set, then £(M)(X) is the set M(X), and if
f:X =Y isamapin G, then E(M)(f): M(Y) - M(X) is the map M*(f).



Proposition 2.3. The functor E — Mg is left adjoint to €.

Proof. Let E € Ob(Sadd(G)) and M € Ob(Mack(G)). A morphism of Mackey
functors & : Mg — M is a collection of group homomorphisms ®s : Mg(S) =
M(S) for all finite G-sets S, which are compatible with the Mackey structure. This
implies

B5([Y, ¢, u]) = Mu(9) 0 @y ([Y;id, u])
for any Y € Ob(G), u € E(Y) and ¢ € GV, S).

Mp(V) =2 M(Y)
M‘E*(¢)l O lM*(d’)
Mp(S) —— M(S)

It follows that if we define fy : E(Y) — M(Y) by 6y (u) = ®y([Y,idy, u]), then ®
is determined by 6 as ,

(2.1) 25([Y, ¢,u]) = M.(9)(Oy (u))-

Conversely, for a given set of maps 8 = (fy)yecob(g), define & = (®s)scon(g) by
(2.1). Then, & is a morphism of Mackey functors if and only if 6 is a morphism
in Sadd(G). To see this, since ® defined by (2.1) is always natural with respect to
the covariant part of the Mackey functors, it suffices to show that the following (A)
and (B) are equivalent. o

(A) sME(F)(Z,¢,v]) = M*(f)2r([Z,4,v])
\ (Vf € g(S’T)7 V[Zﬂ/)ﬂf] € ME(T))
(B) 0s(E(f)(v)) = M*(f)(0r(v)) (Vf€ G(S,T),%v € E(T))
Since .
dsME(f)([Z,%,v]) = @s([S xr Z, 75, E(n7)(v)])
= Mu(m5)(0sxrz(E(rz)(v)))
and
M*(f)er([Z,9,v]) = M*(f)M.(¥)02(v)
= M. (ms)M*(n2)(02(v)),

SXTZL—%Z

“st O ‘w
§S—FT

f
-we have

(A) & M(15)(Osxr2(E(r2)(v))) = Mu(ms)(M"(72)02(v)).

- Obviously this follows from (B), and conversely (B) follows from this equality if we
put Z =T and ¢ =idr. . O

Let Madd(G) denote the category of additive contravariant functors from G to
the category Mon of monoids. ' .
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Remark 2.4. Let F' € Ob(Sadd(G)). The fozlowing are equivalent.
(1) F € Ob(Madd(G)).
(2) F is equipped with cross product maps

CFX)xF(Y)3 (u,v)muxv€EF(XXY)

which are functorial in an obvious way in both X and Y, and associative. Moreover
there ezists a unit element ep € F'(e) (o denotes the one-elemenit set).

Proof. (1)= (2)
For any X, Y € Ob(G), by using the product in the monoid F(X xY), we define

ux v :=F(px)(u) - Fpy)(v),
where px : X XY — X and py : X x Y — Y are the projections.
2)= (1)
For any X € Ob(G), we define the monoid structure on F(X) by
4 u-v:i=F(Ax)(u X v),

where Ax : X = X x X is the diagonal map.
Zero element is given by F'(X — e)(eF). ) O

Now if F' is in Ob(Madd(G)), then Mp has an additional Green functor struc-
ture: In the category (G, S, F), we can define the product of two objects (Y, ¢,u)
and (Za '(/)7 'U) by (Ya ¢7 U) (Z’ "1[}) U) = (Y XSZ7 ¢)°7rY = '(/}071-27 F(WY)(U) 'F‘(ﬂ-Z)(U)),
where 7y and 7z are the projections of the fiber product Y x5 Z of Y, Z over S,
and F(ry)(u) - F(rz)(v) is the product of F(ny)(u) and F(mz)(v) in the monoid
F(Y Xs Z).

YxsZ —2 sz

Y ——'———> S
Thus Mp(S) has a natural ring structure, defined by
[Y,¢,u] - [Z,4,v] := [(Y, ¢, u) - (Z,%,0)].

Equivalently, in the view of Remark 2.4, we can describe the Green functor -
structure on Mg by the maps

M (S) x Mp(T) Mp(S % T)
w - w
(Y, ¢,u), [Z,¢,v])) ———[Y X Z,¢ X Y, u X v]

(VS,T € Ob(G)) (cf. section 2.2 in [4]), where uXxv is the cross product of u € F(Y),
v € F(Z). From now on, if F' is an object of Madd(G), the Green functor Mp
will be denoted by Ar. Ap is called the F-Burnside ring functor [16]. If F' is
commutative, i.e. F(X) is a commutative monoid for each X € Ob(G), then Ag
becomes a commutative Green functor.

Let F : Green(G) — Madd(G) be the forgetful functor, i.e. for any A € .
Ob(Green(G)), F(A)(X) = A(X) (VX € Ob(Q)), F(A)(f) = A*(f) ¥Vf: X = Y
in G), and the cross product on F(A) is the cross product on A.

k ‘Proposition 2.5. (c¢f. Theorem 5.11 in [16]) The functor F — Ap from Madd(Q)
to Green(Q) is left adjoint to F. : '
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Proof. Let F € Ob(Madd(G)) and A € Ob(Green(G)). By Proposition 2.3,
there is a one-to-one correspondence between ® € Mack(G)(AFp,A) and 6 €
Sadd(G)(F,FA). So it suffices to show that under this correspondence, ® is a
morphism of Green functors if and only if § is a morphism in Madd(G).

Since '

o5([Y, ¢,ul) x 1([Z,,v]) = A(6)(Oy (u)) x Au(¥)(82(v))
QSXT([Y X Z,¢ X1, ux ’U]) = A*(¢ X d))(GY’xZ(U X ’U)),

for.any S, T € Ob(G), [Y,¢,u] € Ar(9), [Z,¢,v] € Ap(T), ® is a morphism of
Green functors if and only if

Au(9)(By (v) x Ac(9)(02(v)) = Ax(d X ¥)(0y xz(u X v))
for any [Y, ¢,u] € Ap(S), [Z,v,v] € Ap(T). This is equivalent to

Hsz('u, X ’U) = 0y(u) X ez(’l}) v
(VY, Z € Ob(G),Vu € F(Y),Yv € F(2)),

which is equal to the fact that 6 is a morphism in Madd(G). : a

Let Gadd(G) be the category of additive contravariant functors from G to the cat-
egory Grp of groups. If F' is an object of Madd(G), then F belongs to Ob(Gadd(G))
if and only if

F(X) € Ob(Grp) (VX € Ob(G)).

For any F' € Ob(Madd(@)), if we define

UF(X) :={u € F(X) | uis invertible}

for any X, then UF = (UF (X)) x cob(g) naturally forms an element 2/ F in Gadd(G).
Moreover for any F; € Ob(Gadd(G)) and F; € Ob(Madd(G)), we have a natural
isomorphism ,
Gadd(G)(F1,UF) = Madd(G)(Fy, F).

Thus, if we abbreviate R* := U o F(R) for any R € Ob(Green(G)), we obtain the
next corollary of Proposition 2.5. :

Corollary 2.6. For any F € Ob(Gadd(G)) and any R € Ob(Green(G)), there is
a natural isomorphism

Gadd(G)(F, R*) = Green(G)(Ar, R)

Let Add(G) denocte the category of additive contravariant functor from G to the
category Ab ) of abelian groups. Morphisms are natural transformations.
For F' = Brg,p cpnstructed below, its F-Burnside ring is called the Brauer ring.

Example 2.7. Let E/D be a finite Galois extension of fields with Galois group
G. For any S € Ob(G), put EI‘E/D(S) := Br(G(S,E)) where G(S, E) is re-
garded as a commutative ring by the pointwise operations, and Br(G(S, E)) is
its Brauer group. Recall that by taking the Brauer group of commutative rings,
we obtain a covariant functor Br : (CommRng) — Ab from the category of com-
mutative rings (CommRng) to Ab. For any f € G(S,T), we have a ring ho-
momorphism f* : G(T,E) — G(S,E) defined by the pullback, and if we put
Brgp(f : S = T) := (Br(f*) : Brg/p(T) = Brg/p(S)), we obtain an additive
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functor Brg/p € Madd(G) (in fact, Brg/p € Add(G)). As in [16], we abbrevi-
ate the i’:fE ,p-Burnside ring functor .A]; /o to Ag;, and we call this functor the
Brauer ring functor. In particular, we write its value at G as B(E, D) := Ap; (G)

When the extension is trivial (i.e. G is trivial, E = D), we have the followmg
structure theorem by Chen [7].

Proposition 2.8. (Corollary 3.4 in [7)) There is a natural isomorphism
Z[Br(E)] = B(E, E) |
( B(E,E) is denoted by B(E) in [7] ), compatible with the inclusions of Br(E) into

the multiplicative unit groups.

Z[Br(E —>B(E E)

Remark 2.9. Indeed, Chen defined the Brauer ring B(R) for any commutative ring
R, and showed Z[Br(R)] = B(R) for any connected ring R (the word ‘connected’
means that Spec(R) is connected).

Remark 2.10. For any H < G, G(G/H, E) is naturally isomorphic to the fized
field EH . With this identification, we can easzly show that (€, pr)* : EH — ECH) —
g- (E®) is equal to the multiplication by g (we write this as (g ;r)* = g : EH —

g(EH)) for any g € G. So, we have Brg/p(€y, i) = Br(g) : Br(EX) — Br(g-(EH)).

3. STRUCTURE OF THE F-BURNSIDE RING
We recall the definition of a restriction functor from [2].

Definition 3.1. A restriction functor is a triple (R,¢,res) where R, c,res are

R : a family of abelian groups (R(H))x<a,

c : a family of conjugation homomorphisms ¢, g : R(H) - R(‘H) (g € G,
H<@),

res : a family of restriction homomorphlsms resZ : R(H) = R(K) (K < H<G),
which satisfy the following conditions:

(R1) ChH = resg = idR(H) (VH < G,VYh € H)

(R2) Cg'g,H = Cg' 9H © Cg . H (Vg,¢9' € G,VH < G)

(R3) cgxorest =resloc,r (Vg€ GVK <H<Q)

We sometimes abbreviate (R, ¢,res) to R. A morphism & : R — S of restriction
functors is a family (@5 : R(H) — S(H))m<g of abelian group homomorphisms,
compatible with conjugations and restrictions. We write the category of restriction
functors Res(G).

Definition 3.2. Let R be a restriction functor. A stable basis of R is a family of
subsets B'= (B(H))w<g such that B(H) C R(H) is a basis for each H < G, and
cg,m(B(H)) = B(°H) for any g € G and any H < G.

There is a correspondence between additive functors and restriction functors.
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Proposition 3.3. Let F' be an object in Add(G). If we put Rp(H) := F(G/H),
co.i = F(ly ), resl .= F(pk) for each g € G and K < H < G, then (Rp,c,res)
is a restriction functor. ~

Proof. (R1) is trivial. (R2) and (R3) follows from the compatibility of correspond-
ing £, r’s and pfs. O

- For any Fy, F5 € Ob(Add(G)) and any ¢ € Add(G)(F1,F>), define R, €
Res(G)(Rr,, Rr,) by (Ry)m = wg/a. Thus we obtain a functor Add(G) —
Res(G). We claim this functor gives an equivalence of the categories. A similar
argument seems to be well-known in the case of Mackey functors, but we include
this proof for the reader’s convenience. ‘

Proposition 3.4. The above functor F — Rp, ¢ — R, gives an equivalence of
categories Add(G) S Res(G).

Proof. We construct a quasi-inverse functor from Res(G) to Add(G) as follows.
Suppose that R is a restriction functor. If X is a finite G-set, then G acts on the
abelian group V = Vg (X) = @,exR(G.), where G, denotes the stabilizer group
ofzin X: If z € X and u € R(G,), denote by u, the image of u in'V, and set

g - U = (¢g,G, (u))gz. This makes sense since Gy, = I9G,. Then define

Fr(X) = (Vr(X))as

as the group of co-invariants, i.e. the quotient of V' by the subgroup generated by
the elements (cy,q, (4))gz — Uz, for g € G and z € X. Denote by [u,] the image of
ug in this quotient.

If f: X =Y is a morphism in G, then define Fr(f) : Fr(Y) — Fr(X) by

FrH(u) = > [(resg (w))al,

z€[Gy\f~1(v)]

where [Gy\f7*(y)] is a set of representatives of Gy-orbits of f~(y). This makes
sense since G, < Gy if f(z) = y. The right hand side does not depend on the
choice of a set of representatives [G,\f~1(y)], since for any z € f~!(y) and any
g € Gy, we have : '

[(resgs, (w)ga] = [(resig? © 5,6, (w))ge] |
| = [(eg.6. oTesg? (u))gs] = [(resG? (u))s].

Fr(f)([uy]) is well-defined, i.e. Fr( f)([u;]) does not depend on the choice of a
representative of [u,]. Indeed, for any g € G we have

Fr(f)((coa,)g)) = Y [(resg? ocya,(u))ea

z€[Gy\f 1 (y)]

= Y s, oresg ())ga]

z€[Gy\f~1(v)] . , ;
= 3 [(resg’ (w)e] = Fr(F)([uy])-
z€[Gy\f~H(y)] .

Here we used the fact that { gz | z € [G,\f~*(y)]} is a set of representatives of
Gyy\f1(gy) for any fixed g € G.
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Fr is a contravariant functor, since for any X EN Y L) Z in G, we have -

(Fr(f) o Fr(MN(u) = Y > [(resg: (w)e]

y€e[G\f'~1(2)] 2E[G\f~1(¥)]

= > [(resg: (u))a]
2€[G:\(f'0f)~1(2)]

= (Fr(f' o /))([u:]) (Vz € Z,Yu € R(G.)).

Fr is additive, since for any sum diagram X 3} Xy ZL Y in G, we have
Fr(XTY) = (Vr(X1TY))e = (Vr(X) & Vr(Y))e = Vr(X)e ® Vr(Y)c
and
Fr(ix) : Fr(X 1Y) — Fr(X) :
[ug] — [uz] (Vz € X,Vu € R(G))
[vy] — 0 (Yy € Y,Vv € R(Gy)).

This assignment R +— Fy gives in fact a functor Res(G) — Add(G). Indeed, for
any morphism ® = (®y : R(H) = S(H))u<c € Res(G)(R,S), we have a natural
set of morphisms '

Vo,x 1 VR(X) = Vs(X)

deﬁned simply by the direct sum, and since Vg x is compatible with G-actlon on
Vr(X) and Vs(X), we obtain a natural transformation

Fp = (Fox: FR(X) — Fs(X))xeon(g)

induced by Vq> x.
This functor R — Fz is a quasi-inverse of the functor F — RF Indeed, since

Ree (H) = Fr(G/H) = ( @ R
z€G/H
for any H < G, the natural morphism

uotient
R(H) = R(Gio.n) = @ R(G) 57 (D R(Ga)e
z€G/H z€G/H -

gives a natural isomorphism R 3R Fr- Here, the first isomorphism is the identifi-
cation of R(H) with the component of ®w€G/H R(G;)atz =1g-H € G/H. And
conversely, since

Fro(X) = (@ Re(Ga))e = (D F(G/G)a

zeX zeX
any set of representatives {z1, - -, z;} of G-orbits of X defines a morphism
X) 5 P F(G/Ga,) = P F(G/G.) - (P F(G/G.))a,
1<i<t z€X zEX

which gives a natural isomorphism F = Fr,. Note that this morphism does not
depend on the choice of {z1, -+, z;}, since

[uge,] = [(cg,Gz,» (w))ga:] = [Uwz]
for any g € G, and u € F(G/G.;) = F(G/Gga,). - o
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Finally let Radd(G) be the category of additive contravariant functors from G
to the category of rings: The word additive for such a functor R means that for
any object X and Y -of G, the map

(R(ix), B(iy)) : R(X 1Y) = R(X) x R(Y)

is a ring isomorphism. Equivalently, R is an object in Add(G), together with cross
product maps

R(X) x R(Y) = R(X x Y)

for any X,Y € Ob(G), which are natural in X and Y, bilinear, and associative.
There is a unit element £ € R(e).

Definition 3.5. A restriction functor (R, ¢, res) is an algebra restriction functor if
R(H) is a ring for each H < G, and conjugation and restriction homomorphisms
are ring homomorphisms. '

In the definition of a morphism ® : R — S of restriction functors, if more-
over R,S are algebra restriction functors and ®z are ring homomorphisms for
all H < G, ® is said to be a morphism of algebra restriction functors. Thus we
have the category of algebra restriction functors Resae(G). From each restriction
functor (R, c,res), we can construct an algebra restriction functor (Z[R], c,res) by
putting (Z[R])(H) := Z[R(H)] for each H < G. Conjugation and restriction ho-
momorphisms of Z[R] are canonically induced by those of R. In the same way as
Res(G) = Add(G), Radd(G) is shown to be equivalent to Resag(G).  ~

Here we recall the definition of the functor —; : Res(G) — Mack(G). For
a restriction functor (R,c,res), put Sg(H) := @x<gR(K). Then, H acts on
Sr(H) by "z := ch k(z) (Vz € R(K) C Sg(H),Yh € H) and we put Ry (H) :=
Sr(H)nx := Sr(H)/(I(Z[H])-Sr(H)) for any H < G, where I(Z[H]) C Z[H] is the
augmentation ideal defined by I(Z[H]) = {3 ,cgmrh | X pcyg mn = 0,my, € Z}.
We write (K, z]g := « + I(Z[H]) - Sz (H) for any z € R(K) C Sg(H). ’

Remark 3.6. The submodule I(Z[H)) - Sg(H) C Sg(H) is generated by {z — "z |
z € R(K),h € H).

Definition 3.7. For any restriction functor (R,c,res), R+ € Mack(G) is defined
as follows:

R4 (H) = Sr(H)/(I(Z[H]) - Sr(H)) as above.

CigH: R+(H) — R.|_(gH), [K,.’E]H — [gK, gﬁl?]gH.

resy  : Ry (H) = R (K), [L,alm = Chepo\ oK N res ko (f)] k.

ind.,.% : R+(K) - R.l.(H), [L, l']K [ d [L, ZU]H

With an appropriate definition for morphisms (see [2]), we obtain a functor
—+ : Res(G) — Mack(G); which restricts to a functor —. : Res,js(G) — Green(G),
and makes the following diagram commutative : '

Resag(G) ——> Green(G)
" forgetfull ‘O lforgetful

Res(G) — Mack(G)
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Here, for R € Ob(Res,ig(G)), the ring structure on R (H) is defined by
] h
(3.1) [K7 x]H : [L’ Z/]H = Z [K n hL’ resgﬁhL(x) : reslgﬂhL(hy)]H
heK\H/L
for each H < @G.

Remark 3.8. Let S be a restriction functor. Assume S has a stable basis B =
(B(H))m<g- If we choose a set of representatives Ry for the H-orbits of the H-
sets {(K,z) | K < H,z € B(K)}, then, for each H < G, S1.(H) is a free Z-module
with a basis {[K,z]g | (K,z) € Rg}.

Now, when S = Z[R], if we take B(H) := R(H), then B is a stable basis for S.
As a corollary we obtain a Z-basis of Z[R]+(H) as follows: '

Corollary 3.9. For each H < G, Z[R|y(H) is a free Z-module over the basis \
{[K,z]g | (K,z) € Ry}, where Ry is a set of representatives for the H-orbits of
{(K,z) | K < H,z € R(K)}.

For the functor —, the following adjoint property is known.
Remark 3.10. (Proposition 1.4.1 in [2]) The:functor
—4+ : Res(G) — Mack(G)
(resp. :Resag(G) — Green(G))
is left adjoz’ht to the forgetful functor
'O : Mack(G) — Res(@)
(resp. : Green(G) — Resa(G)).
There is a forgetful functor gr : Green(G) — Radd(G), obtained by forgetting

the covariant part of the structure of Green functors. In the same way, we obtain
a commutative diagram of categories and forgetful functors

Green(G) —X— Radd(G) —™> Madd(G)

(3.2)‘ o lgm O [m o} ' [ms

Mack(G) —™%—> Add(G) —= > Sadd(G).

Remark 3.11. Let R be a restriction functor for G, and set F := Fr. Then for
any X € Ob(G), the module R, (X) is isomorphic to the quotient of Ap(X) by the
elements of the form

(Z’¢’u+v) - (Za¢7u) - (Z,¢,U)

- where ¢ : Z — X is a morphism in G, and where u,v € R(Z). Moreover, the family
of projection maps

wx : Ap(X) = Ro(X)

is a morphism of Mackey functors Ap — R..
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Proof. By letting Ry(X) be the quotient of Ap(X) as above, we obtain a quotient
Mackey functor Ry of Ar. Remark that there is a commutative diagram

£
O
Mack(G) —2— Add(G) —=— Sadd(G).

N /HFR

Res(G

By Proposition 2.3, there is a functorial isomorphism

Mack(G)(Apy , M) ——— Sadd(G)(Fr, EM)

w w
ol 0
in the notation in the proof of Proposition 2.3. Since
(I)([Z ¢a ’U/] ¢)OZ ('U,),

we have

@ factors Ry
& ®5((Z,0,u+v]—[Z,¢,u] - [Z,6,0]) =0
(V¢ € G(Z,8),Yu,v € Fr(Z))
& Mo($)02(u+v) — Mu($)02(u) — M.($)02(v) = 0
~ (V¢ € G(Z,8),Yu,v € Fr(Z))
& 0z(u+v) —0z(w) — 0z(v) =0 (VZ € Ob(G),Vu,v € Fr(Z))
& 0 € Add(G)(Fr, ma(M)).

Thus, we obtain a functorial isomorphism

Mack(G)(Ry, M) =5 Add(G)(Fr, ﬁm(M))
= Add(G)(FRr, Fo(ar))
= Res(G)(R, O(M)).

So, the functor —y : Res(G) — Mack(G) is left adjoint to @, and must agree

In diagram (3.2), the composition as o ma is the forgetful functor £. So the
left adjoint of £ is the composition of the left adjoint of as, followed by the left
adjoint of ma. The left adjoint of as is the “free abelian group functor”, sending an
object E of Sadd(G) to the additive functor Z[E], defined in the obvious way by
(Z[E])(X) = Z[E(X)], for any G-set X. The left adjoint of ma is the composition

 Add(G) —=» Res(G) —5 Mack(G).

By the uniqueness of the left adjoint of &, it follows that for any additive con-
travariant functor E € Ob(Sadd( )), there is a natural isomorphism of Mackey
functors

- (Ram)+ = Mp.
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Similarly, the composition rm o gr is equal to the forgetful functor F. A similar
argument shows that for any F' € Ob(Madd(G)), there is a natural isomorphism
of Green functors N ‘

(Rzir)+ — Ar.
Thus we obtained the following adjoint isomorphisms.

Proposition 3.12. (1) For any E € Ob(Sadd(G)), there is a natural isomorphism
of Mackey functors
(Rzig1)+ — M.
(2) For any F € Ob(Madd(G)), there is a natural isomorphism of Green func-
tors
(RZ[F])-{- — Ap.

Since obviously Rzr) = Z[Rp] for any F € Ob(Add(G)), we have the following
structure theorem for F-Burnside rings.

Theorem 3.13. For any F € Ob(Add(G)), there is a natural isomorphism of
Green functors

(ZIRF))4 — Ap.
4. APPLICATIONS

We state some results obtained from Theorem 3.13.
First, we see the structure of the Brauer ring. By Theorem 3.13, especially we

have Z[RFr]+(G) 5 Ap (G). By putting F = ]§;E/D, we obtain the following;:

Corollary 4.1. For any finite Galois extension E/D of fields with Galois group
G, we have a ring isomorphism

BUED) = 5 ZBHE™)/(I(E(G) @ ZBr(EM)),

where the ring structure of the right hand side is defined by (3.1) in Definition 3.7.
When G is trivial, this is nothing other than Proposition 2.8. ‘

As mentioned in [16], if F'is the trivial functor, then A is canonically isomorphic
to the (ordinary) Burnside ring functor 2. We can also induce this isomorphism
from Theorem 3.13, since there is a canonical isomorphism § 22 Z,, where Z is the
constant algebra restriction functor with value Z (see Example 1.2.3 in [2]).

Theorem 3.13 gives us the structure of the F-Burnside ring functors, and allows
us to deduce some properties of them. We also remark here that, conversely, this
isomorphism gives an explicit categorical meaning (Definition 2.1) to the functor
S, in the case where S = Z[R] for a certain R. »

For any algebra restriction functor A (in fact, being an algebra conjugation
functor is enough (cf. [2])), we have a Green functor A* defined by A*(H) =
(Ix<m AK))H. Here H acts on [y A(K) by conjugation, similarly as in
the definition of .A,. And A*(H) has a canonical ring structure, induced by the
componentwise multiplication of [ .z A(K). This construction gives us a functor
—* : Resag(G) — Green(G). There is a natural Green functor morphism p4
Ay — AT, called the mark morphlsm As in Proposition I. 3 2 in [2] for any
H < G there exists a map o7} : AT (H) — Ay (H) such that ot o pft = |H| - id,
P ooty = |H|-id. Since Z[RF].,_(H) is free for any H < G (and so, it has no
| H|-torsion), we obtain the following proposition.
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Proposition 4.2. For each H < G, the component of the mark morphism at H
pr : L[RFl+(H) = Z[RF|" (H)
1s injective.
As the (componentwise) scalar extension of Z[Rr] by Q, the functor QR ] has
a simpler structure as in [16]. We can realize this with the mark morphism. Since

|H| is invertible in Q for any H < G, we obtain the following isomorphism of Green
functors.

Proposition 4.3. The mark morphism p : QRr]y — Q[Rr|* is an isomorphism.
From this, we obtain the following:
Corollary 4.4. (Theorem 8.13 in [16]) For any additive functor F, there is an

isomorphism _
' Ar(G)2Q= [ QIF(G/G.)N#E),
- a€P(G) )
where Ng(K) denotes the normalizer of K in G for each K < G.

- Proof. In Proposition 4.3, the domain Q[Rr]4. is naturally isomorphic to Z[Rr]+ ®
Q (see Lemma I.5.1 in [2]). As for the codomain Q[RFr|*, we have an isomorphism

CQRE(H) = ([ QRFIK)H

K<H

={(zx)k<n € [ QRFI(K) | Nak) = Ty (VK < H,\Yhe H)}
K<H

2 {(a)acr(m) € || QIRFI(H) | M(za) =2a (Yh € Nu(Ha))}
a€P(H)

II (@ReI(HL)NH
a€P(H)
for each H < G. Thus, we obtain

Ar(G) @ Q= (Z[RF]4(G) ® Q
= I @RAGH*C) = [[ QFEG/Ga)V#C).

a€P(G) a€EP(G) ,

O

Theorem 3.13 also enables us to calculate the Brauer ring for some (non-trivial)
finite Galois extensions. Here we consider the case of C/R.

Corollary 4.5. We have
B(C,R) = Z[X,Y]/(X?> -1,Y? - 2Y, XY - Y).
Proof. We abbreviate E;«:/R to Br. Since G = Gal(C/R) = Z/2Z and Br(R) =

Z/27Z, we can write them Gal(C/R) = {1,0} and Br(R) = {1,h}. By Corollary
4.1, we have

B(C,R) = (Z[Br(R)] @ Z[Br(C)])/1(Z[G]) - (Z[Br(R)] & Z[Br(C)]).
We have ’
IZG) ={k-1+L-0 |kt eZk+£=0}={k-(1-0) | ke Z}.
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By the definition of the conjugation of Ry, for any H < G we have c, g =
]’ir(&,,H) = Br(o) : Br(CH) 3 Br(o - (CH)). So both the maps
Br(4, ) : Br(R) — Br(R) (= Z/2Z)

Br((,,(13) : Br(C) = Br(C) (=0)

are identities, and we obtain I(Z[G]) - (Z[Br(R)] & Z[Br(C)]) = 0. Thus B(C,R) is
equal to Z[Br(R)] & Z[Br(C)] as a module. /

Finally we compute its ring structure. To distinguish, let e and f denote the
unit element of Br(R) and Br(C) respectively. Then in the notation after Definition
3.2, we have B(C,R) = Z - [G,elc ®Z - [G,hlc ® Z - [{1}, f]lg- And for this basis
{[G,€], [G,h], [{1}, f]} of B(C,R) (we omit the subscript G), their multiplications
are calculated by the formula (3.1) in Definition 3.7 as follows:

[G,e]* = [G,€],[G,h]? = [G,e,[G,e] - [G, h] = [G, h],
[G’ h] : [{1}’f] = [{I}EfL [Ga 6] : [{l}af] = [{l}af]’ [{1}7f]2 = 2[{1}7f]‘

So, if we put X = [G,h] and Y = [{1}, f], then B(C,R) becomes isomorphic to
Z[X,Y]/(X? -1,Y2 -2V, XY - V). , O
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Part 2. Mackey-functor structure on the Brauer groups of a finite
Galois covering of schemes

5. INTRODUCTION FOR PART 2

In this part, any scheme X is assumed to be Noetherian. 7(X) denotes its
étale fundamental group. Any morphism is locally of finite type, unless otherwise
specified. Asin [21], X denotes the small étale site, consisting of étale morphisms

of finite type over X. If U = (U; iy x )ier is a covering in this site, we write
U € Covey(X). Besides, U < V means U is a refinement of V.

As for a finite étale covering, an étale fundamental group and a Galois category,
we follow the terminology in [22]. For example a finite étale covering is just a finite
étale morphism of schemes.

Our aim is to show the following:

Theorem (Theorem 10.6). Let S be a connected scheme. Let (FEt/S) denote
the category of finite étale coverings over S. Then, the Brauer group functor Br
forms a cohomological Mackey functor on (FEt/S).

Once we construct the norm map of the Brauer groups compatlbly with that of
cohomology groups (Theorem 9.1)

Br(Y) ——— > Br(X)
[
et(Y Gm,y) 7o horm Zt(Xa Gm,x),

we can obtain Theorem 10.6 as an easy corollary of the fact that H2(—,G,,) is
a cohomological Mackey functor. In this part, we construct the norm map by an
elementary way using fpqc descent. Note that in general the Brauer group does
not agree with the cohomological Brauer group, and one must show the existence
of N, anyway.

As a corollary, we obtain the following generalization of the result by Ford [12],
which was shown for rings.

Corollary (Corollary 11.2). Let 7 : Y — X be a finite Galois covering of schemes
with Galois group G. Then the correspondence

H < G~ Br(Y/H)

forms a cohomological Mackey functor on G. Here7 H < G means H is a subgroup
of G.

\ - 6. PRELIMINARIES

To fix the notation, we recall several facts in this section. If C is a category and
X is an object in C, we abbreviately write X € C. If f : X — Y is a morphism in
C, we write f € C(X,Y) or f € Mor¢(X,Y).

Monoidal categories, monoidal functors and monoidal transformatlons are always
assumed to be symmetric.

For a scheme X, q-Coh(X) denotes the category of quasi-coherent modules over
Ox. ‘
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Fpqc descent

Definition 6.1. Let X’ — X be an fpqc morphism of schemes. Put X® .=
X' xx X', X® = X' xx X' xx X' and let ' :
pi: XP X' (=12
pii : X® 5 X® (5,5 €{1,2,3})
be the projections. Define a category q-Coh(X’ — X) as follows :
- an object in q—Coh(X' — X) is a pair (F, ) of a sheaf F € q—Coh(X’) and an

isomorphism ¢ : p;iF = p3F in q—Coh(X (2)) satlsfymg the cocycle condition.
- a morphism from (F,¢) to (G,%) is a morphism a € q-Coh(X")(F,G), such
that

P30 p =1 opia. _
For any (.7-' ¢) and (g 1/1) € q—Coh(X . )» let o ® 1b be the abbreviation of
Oy Ox@
Then, q—Coh(X " — X) has a canonical symmetric monoidal structure deﬁned by
(F:9) @ (G,9):=(F ® G,90Y).
XI
Remark 6.2. Let f : X' — X be an fpgc morphism of schemes. The pull-back
functor by f
f* :q-Coh(X) — q-Coh(X")
factors through q-Coh(X' — X) :
-Coh(X' - X
e
O
q-Coh(X) g¢-Coh(X")
f*
where U is the forgetful functor. By the fpqc descent, f* is an equivalence.

" In fact, U is a monoidal functor, and f* is a monoidal equivalence.

Contravariant nature of the Brauer group

Remark 6.3. Let 7 :Y — X be a finite étale covering. For any abelian sheaf G on
Yet and any positive integer q, the following composition of the canonical morphisms
is an isomorphism :

HY(X,m.G) = HL(Y, 7" m.G) —» HE(Y, Q)
Remark 6.4. For any scheme X, there exists a natural monomorphism
xx : Br(X) < Br'(X) := H3(X,Gm x)tor »
such that for any morphism 7 :Y — X, '

Br(X) — = > Br(Y)

Xx Xy

Hgt(Xa Gm,X) —— He2t (Y7 Gm,Y)
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s a commutative diagram.

Here m* : Br(X) — Br(Y) is the pull-back of Azumaya algebras, while 7* :
H%(X,Gm,x) = H%(Y,G,,y) is defined as the composition of the canonical
morphism ¢ : HZ(X,7.Gmy) — HZ(Y,Gpy) and HE(my) : HA(X,Gpx) —
H%(X,mGpy), where T : Gr,x — TG,y is the canonical (structural) homo-
" morphism of étale sheaves on X.

7. NORM FUNCTOR

In this section, we construct a monoidal functor
Ny : ¢-Coh(Y') = q-Coh(X)
which we call the norm functor, for any finite étale covering 7 : ¥ — X.

Trivial case

Definition 7.1. Let X be a scheme, and let

V=Vxa: [[ Xk =X (Xp=X (1<VE<d)
1<k<d :

be the folding map. We define the norm functor
Ny : ¢-Coh( [ Xi) — q-Coh(X)
1<k<d

by :
Nv(G) :=0 |x, Qox " ®0ox G |x,

for any G € g-Coh( ][ X&), and similarly for morphisms.
1<k<d

Remark 7.2. Ny is a monoidal functor.

Remark 7.3. For any automorphism 7 : [ X = I Xk compatible with
1<k<d 1<k<d

V, there is a natural monoidal isomorphism ’

| Ny o7 =2 Ny.
Proof. Left to the reader. ) (]
Definition 7.4. Let 7: Y — X be a finite étale covering. Assume there exists an
isomorphism

n: ]I in)Y
1<k<d

compatible with 7 and V Xﬁ. We define the norm functor AV ‘by
Ny = Ny on*.

Remark 7.5. By Remark 7.8, N does not depend on the choice of trivialization
n- '
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Remark 7 6. Letm:YV — X be a finite étale covering with a trivialization n:

I X =Y, asin Deﬁmtwn 7.4. Let f: X' = X be any morphism and take
1<k<d

the pull-back :

Y’—g>Y

(7.1) l . l

X’—>f X

Then by pulling n back by f, we obtain an isomorphism

n': I1 Xp 5 Y, (X, =X (1<Vk<d)
1<k<d '

compatible with ©' and Vx4

Y! Y
77/ 1 7/
-]EIX ! IEIX "
v\ l"’ AN
X' X

b
( all faces are commutative )

Propbsition 7.7. Let m:Y — X be a finite étale covering with a trivialization.
(i) For any morphism f : X' — X, if we take the pull-back as in (7.1), then
there exists a natural monoidal isomorphism

0l : f* o Ny =5 Ny o g*.

Moreover, 6 is natural in f :
(ii) For any other morphism f': X" — X', if we take the pull-back

!
n_9 ]
v ——Y

7'|'“ l D lﬂl

X”—>XI’

fl
then we have
(7.2) ‘ 61°1" = (61,0 g*) - (f 0 61).
pfef!
(f °fl)*N1r Non(gog')
% */_ O E\ I% %
f f N, Nﬂ'“g g

s
m

f/
fl*Nw’g* 01"09*
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Proof.‘ (i) This follows from Remark 7.6, since we have

FN-G) = f{(079) Ix: ®ox+ ®ox (1°6) Ix,)
= A9 Ix1) ®oy, -+ oy f((179) |x.)
= ((IaIf)*n*g) lx; ®0y @0y, ((IEIf)*n*Q) |x;,

1R

("™ (9°9)) |x; ®oy, -+ ®o,, ™ (979)) |xy
Nai(9°G)

for any G € q-Coh(Y), in the notation of Remark 7.6.
(if) This follows from the trivial case

b X X
gHg k 1<]EI§d k 1<k<d £
Vxn dl O VX/,dl O l
Y/
r X - X
(g=11f, ¢ =111,
d d ‘
where, (7.2) is obviously satisfied. / O

Constant degree case

Remark 7.8. Letw:Y — X be a finite étale covering of constant degree d. There
exists an fpgc morphism f : X' — X such that the pull-back of m by f becomes
trivial :

y —2 >y

e TN

VXI)d Xl_f___>X

f can be also taken as a surjective étale morphism.
Proposition 7.9. In the notation of Remark 7.8,
Nnog*:q- COh(Y) — q-Coh(X")
factors through q- Coh(X’ EN X) N q-Coh(X') in Remark 6.2.

Proof. For the convenlence, we abbreviate two functors
9" : q-Coh(Y) = g-Coh(Y")
Ny 0 g* : g-Coh(Y) — q-Coh(X")
respectively to ‘
k ~ :g-Coh(Y) = q-Coh(Y")
= :q-Coh(Y) = g-Coh(X").
These are monoidal. Put
X® =X'"xx X', Y® =Y xy Y,
X =X'"xx X'xx X', Y® =Y xy V' xy YV,
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and denotefthe projections by
pi: XP 5 X', ¢:Y® 5y (i=1,2),
pij 1 X® 5 X® g, v® 5 y® (1<i<j<3),
Pi:X® 5 X, ¢ v® S5y (i=1,2,3).

Pulling 7 back by these projections, we obtain finite étale coverings 7(2) : Y2 —
X® and 7® . y® 5 x® .

6) 2ij V20, e v gv y ‘
ﬂml O l,rmm ﬂ'l m lw (1<i<j<3,£=12)
XO 7> X0 5> X' —— X

Remark that each of 7 and 7® has a trivialization. It suffices to show the
following:

Claim 7.10. For each F € q-Coh(Y), there is a canonical isomorphism
o7 piF = p3F
satisfying the cocycle condition, such that for any morphism o € q-Coh(Y)(F,9)
(w3 ps@o ¢ = ¢ o pia
s satisfied.

Proof. (Proof of Claim 7.10) Since F = g*F, there is a canonical isomorphism
YrE: qi‘f = q’ﬁf such that
(7.4) AUsYF = Qa3¥F © Gl F
Define ¢z : p}F — piF by
bF = (023)"" o Ny (9h7) 0 67
@) (¥F) (77)"
(pler’]: “>Nn(2)f11 ""_> Nw(2)(I2f =% Pszr’]:)

By (7.2) and the naturality of , we have a commutative diagram

J— P:,‘ oF

i F PF
o7 l ¢} lo”g,'
N Nowr @ F
Naw "7 N (@) 9

for each 1 < i < j < 3. Thus p};3¢r = p23¢]: o pio¢F follows from (7.4). (7.3) can
be shown easily. a

O
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Remark 7.11. For any F,Ge qa- Coh( ), we have a commutative diagram

- dFrec _—

Pi(FeG) ———pi(F

®
NS

IR

{(Fo0)

. =,
S
PIECINN
C
‘Q’U

piF ®piG Ty P F @ P3G .

From this, we can see easily that the factorization of Ny o g*
Ny 0g* : q-Coh(Y') = q-Coh(X' — X)
becomes a monoidal functor.

Corollary 7.12. Let 7w :Y — X be a finite étale covering of constant degree d and
f: X" = X be an fpqc morphism trivializing w. Then we have a monoidal functor

N7 : q-Coh(Y') = q-Coh(X)

uniquely up to a natural monozdal isomorphism, such that (in the notatwn of Re-
mark 7.8 ) there is a natural monoidal isomorphism

(7.5) : [PoNI=Npog®,
and thus f* o NI = N o g*.
Proof. This follows from Remark 6.2 and Remark 7.11. O

Proposition 7.13. Let 7 : Y — X be a finite étale covering of constant degree d.
If fi: X1 = X and fo : Xo — X are fpgc morphisms trwzalzzmg m, then there
erists a natuml monoidal isomorphism

’ J\/fl =~ N{z‘
Proof. We may assume f»> factors through fi:
. X,
3fs f1
X, / o \ e
\/
f2

Pulling 7 back by f; for each ¢ = 1,2, we obtain diagrams

11 X r Y Y Y,

1<k<d O lm 0 lﬂ- 7|-2l/ 0 lﬂ-l
‘ VXN .

Xi—‘—>X X2 —f—>X1
3.

fi ’
where X; , = X; (1 <Vk <d). Let

g3

x® 2 x, X p—2>_X2
ml 0 lfl p;l O lfz
Xi—X Xo—X

f1 f2
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be pull-backs, and let f(2) X, (2) 'sz) be the induced morphism:

x® 25y
p:-l o lp' (i=1,2)
XQ——'_>X1

f3

Using (7.2), we can show that the natural monoidal isomorphism
613 093 * _xr = *
Eri= (f 191 1 ' Nﬂzg?,gl]: — N7T292‘7:) (]: € Q'COh(Y))
is compatible with descent data
7 : PiNm i F — p5Nmgi F
O : DY Ny g3 F — Py Ny g5 F
defined in Claim 7.10:

* 'p'
(2) *Nn191f<_p1 f3 71'191; ! Nﬂzgz
f(z)*¢fl : ' O ltﬁf- (1=1,2)
(2)* D3N Gt F <=— 13 f3 w191-7:p—‘;—>17 295 F
2

Thus Proposition 7.13 follows from Remark 6.2. ‘ O

Definition 7.14. Let 7 : Y — X be a finite étale covering of constant degree d. By
Proposition 7.13, NV is uniquely determined as a monoidal functor up to a natural
monoidal isomorphism, independently of the fpqc morphism f trivializing 7. We
denote this functor simply by N, and call it the norm functor for =. '

Proposition 7.15. Let 7 : Y — X be a finite étale covering of constant degree d.
Let f : X' = X be a morphism, and take the pull-back as in diagram (7.1). Then
there exists a natural monoidal isomorphism

0L : F*Nx =5 N g*.
Proof. Let u: U — X be an fpqc morphism trivializing 7, and take the pull-backs

v—>y vy yvZsy sy
L R T IR NI
U—7= X, X'—f>X, Y ——Y, U —=X'.

Remark
\ v v
| o |
U—U
fu

is also a pull-back dlagram
By Proposition 7.7, there isa natural monoidal isomorphism

010 : [N — N g
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As in Proposition 7.13, the natura,l monoidal isomorphism

oL : fENLv* ’” "o N, gt 5 f\/'w:v g
is compatible with descent data, and we obtain a natural monoidal isomorphism
0L - F Ny =5 Nyg® |
such that u'*6% gives ©7. O
As in Proposition 7.7,  is natural in f : |

' Corollary 7.16. Let m Y —> X be a finite étale covering of constant degree. For
any morphisms X" — X' N X, if we take the pull-back

YIILI)YI_g>Y

Ao o |
X" T> X' —f> X,
then we have 65°7" = (67, 0 g*) - (f'* 0 6f).
Proof. Let u: U — X be an fpqc morphism trivializing 7, and take the pull-backs

’
9y gv

v V' 14
V_>v Y w“l’ O l lw
wl o | U —— U U
¥ BT
' ' "
. X 7 .

Applying Proposition 7.7, we obtain the following commutative diagram:
fof! )

(fu o fir)* Nev* ——— Ngnv'™(gog')*

fUNwU : O N nv”*g’*g*

\

f{j*loe{r

1%

NUI**G

From this, we obtain
| u'™ 007{0]" — (ull* 007{: og*) X (ull* Ofl* 007{)‘ |
Since u' is fpgc, Corollary 7.16 follows. O

General case

Remark 7.17. Let X be a scheme. For any open subscheme ¢ : U — X and
H € q-Coh(U), we often abbreviate v, H € q-Coh(X) simply to H.
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Let X = ][] X, be the decomposition into the connected open components. For
: 1<i<n , } '
any F € q-Coh(X), we have a canonical decomposition

F= P Flx=Flx, ® & F|x, .
1<i<n

Regarding this decomposition, for any F,G € q-Coh(X), we have
FI=FIx gdlx)o oz 90x.)-

Definition 7.18. Let 7 : Y — X be a finite étale covering, and let X = I X
‘ 1<i<n

be the decomposition into the connected open components. Put Y; := n71(X;),
and let 7; : Y; — X; be the restriction of 7 onto Y;.
We define the norm functor

Nz : g-Coh(Y) — g-Coh(X)
by .
| Na(G) = Ny (G |v2) @ -+ ® N, (G Iv,)
for each G € q-Coh(Y).
By the afguments so far, we obtain the following;:

Proposition ‘7.19. Let m:Y — X be a finite étale covering.
(i) For any morphism f : X' — X, if we take the pull-back

vy
(7.6) ,,/l o lﬂ
’ Xl—j,)X:

then there exists a natural monoidal isomorphism 85 : f* o Ny = N o g*.
(ii) For any other morphism f': X" — X', if we take the pull-back

’
Vel 9 Y!

ﬂ,ril D lﬂ,/

XI/ ?XI’

then we have 65°F = (67, 0 g*) - (f'* o 69).
Proof. This immediately follows from Proposition 7.15 and Corollary 7.16. O

Remark 7.20. N, is uniquely determined up to a natural monoidal isomorphism,
by Definition 7.1 and Proposition 7.19.

Proposition 7.21. Let 7 : Y — X be a finite étale covering of constant degree d.
For any positive integer m, we have :

No(09™) = 0™
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Proof. Take an fpqc morphism f: X' —+ X trivializing m:
[[X'= V' —>Y
V=7r'l O lﬂ
X=X

Then we have an isomorphism

B: Nuwg™(OF™) = N (OP) = (OF )‘h:;g---@(o?f“nx;
~ 08" @ - 05';7": 08’ = (08,

XI
This  satisfies the commutativity of

m p1ﬂ i
PiNw " (0F™) ————— p; F*(OT™)

d

p;./\/;r'g* (O;‘;m)

O Eican.
_— * Lx md
P;ﬁ . p2 f (0;.2’ )
where ¢ := ¢O;¢;m is the isomorphism defined in Claim 7.10. O

Corollary 7.22. Let 7 : Y — X be a finite étale covering. If £ € q-Coh(Y) is
locally free of finite rank, then so is Nz () € q-Coh(X).

Prooﬁ By Proposition 7.19, we may assume X is affine and connected. Then Y is
also affine, and = is of constant degree. Remark £ is locally free of finite rank if
and only if there is an integer m and an epimorphism s : (’);‘ﬁm — &. Take an fpqc
morphism f: X' — X trivializing 7 : '

) HX/: Y'—g>Y

| o |-

. !
,, X g X
By the definition of Ny, it can be easily seen that Nyg*(s) becomes epimorphic.
Thus f*Nx(s) is epimorphic. Since f is fully faithful, Ny (s) : Ni:(O8™) = N, (€)
also becomes epimorphic. ]

8. NORM MAPS

. 'Norm map of the Brauer group

Definition 8.1. Let 7 : ¥ — X be a ﬁnlte etale coverlng For any F,G €
g-Coh(Y'), we define a morphism

On = 0n (F,g) : NeHomo, (F,G) = Homoy (NaF,N:G)

as follows :
Let e=evrg: ’Homoy (F,9) ® F — G be the evaluation morphism, i.e., the

morphism corresponding to 1dHomo (F.0) under the adjoint isomorphism. Define
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&, as the composition
& 1= (WeHomoy (F,G) 8 NoF = No(Homo, (F,0) ® F) N9 wr(g)).

By the adjoint isomorphism

Homoy (NxHomo, (F,0) ® NoF, NiG)

=5 Homoy, (NyHomoy, (F,G), Homo, (NzF,N=zG)),
we obtain §, corresponding fo &r- '

Remark 8.2. To define 6., we only used the monoidality of N. In fact, for any
monoidal functor F' : C — D between closed symmetric monoidal categories, we can
define a natural transformation

op : F[—,=]c = [F(-), F(-)]p,
where [—, —]c and [—, =]p are the right adjoint of ®c ‘and ®p, respectively.

The following proposition also follows from general arguments on monoidal func-
tors. We omit its proof.

Proposition 8.3. In Definition 8.1, if F = G, then
Or : NeEndoy, (F) = Endoy (N F)
is a monoid morphism.

Remark 8.4. Let 7 : Y — X be a finite étale covering, and take the pull-back by
a morphism f : X' = X as in diagram (7.6). Let F,G € q-Coh(Y). From 61, we
obtain an isomorphism

Ip : Homo,., (Nug* F, N g*G) — Homo, (f*NuF, f*NxG)

such that for any & € q-Coh(X"), the following diagram is commutative :

Hom(E, Hom( Ny g* F, Nt g*G)) —==> Hom(E, Hom(f* Ny F, f*NxG))
adj. /_ ' \adi
/- . =\
Hom (€ ® N g* F, N g*G) Hom(€ ® f*N:F, f*NzG)

m\%

Hom(E ® f*N,F, N g*G)

Proposition 8.5. In the notation of Remark 8.4, assume f. is flat and F is locally
free of finite rank. Remark there exist canonical natural isomorphisms

e : g*Homo, (F,G) — Homo,, (9" F,9"9),
cs : f*Homo, (NaF,NxG) — Homo,, (F*NaF, fN=G).
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Then, the following diagram is commutative :

f*67r

frNzHomo, (F,G) f*Homo, (N F,N;G)
of |= | ale
- Napg*Homo, (F,G) o Homo,, (f*N:F, f*NzG)
N,,/(cl)lg zTIe
NeHomo,,, (¢*F, 9*G) Homo,, (N g*F, Nz g*G)

6.0
Proof. Put
e:=evrg: Homo, (F,G) ®oy, F = G,
¢ = evgergg s Homo,, (9" F,g%G) ®o,, ¢"F = g°G.
Remark that '

Homoy’ (g*fhg*g) ®OYI g*j: ;g*(ﬁomOy (f, g) ®0y *7:)
. -
e g¥e

is commutative. Put ‘

u:=1Ip08 o Npi(c)obl,

v:i=cy0 f*0r,
and let p and v be their images under the adjoint isomorphism

Homo,, (f*NxHomo, (F,G), Homo,, (f*N=F, f*NzG))
= Homo,, (f*NxHomo, (F,G) ®o,, [*NoF, f*NxG),

respectively. It suffices to show u = v.
Put up := 6 o Ny (c1) 0 81, and let g be its image under

Homo,, (f*NxHomo, (F,G), Homo ., (N g* F, Ny g*9))
i) Homox, (f*NﬂHOmOY («7:7 g) ®OX; Nﬂ'g*f7'/\[ﬂ"g*g)'
Since p = Iy o g, by Remark 8.4 we have 2

(8.1) , oo (id ®6%) = 6% o .
f*N,,HomoY (F,G) ®0y, FNF L s NG
id®0,f,l o le,’r

f*Nﬂ‘HomOy (fy g) ®OX' Nﬂ"g*]:?-/\/ﬂ"g*g

By the definition of &, and the naturality of the adjoint isomorphism, we can
show easily

(82) po =& o (N (c1) ®id) o (6] ®id).
F*NyHom(F,G) ® Ny g* F a N g*G
of ®idl o} Tﬁ,,,

NwHom(g*F, g*G) ® Nu g*F

Nﬂ./g Hom(}—vg) ®Nﬂ'/g F N, (c1)®id
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On the other hand, we have a commutative diagram

FNHom(F,G) ® f*NaF — F*N=G

(8:3) O

F*NzHom(F,G) @ N F) .

Moreover, since 8 is a natural monoidal transformation, the following diagram
is commutative:

07 @01

FNaHom(F,G) ® f*NaF N g"Hom(F,G) @ Nuw g™ F

= o =

(8.4) F*Na(Hom(F, §) © §) —— Nrg*(Hom(F,G) ® G)
f*N«(e)l 5 lNﬂ,me)
f*Nrrg 7 Nﬂ"g*g
oﬂ'
From (8.1), (8.2), (8.3), (8.4), we obtain u = v. ‘ O

Corollary 8.6. Letm:Y — X be a finite étale covering, and let F,G € q-Coh(Y).
If F is locally free of finite rank, then

8r : NaHomoy, (F,G) = Homoy (N,T}',N,rg)
is an isomorphism.

Proof. Let U C X be any open subscheme. Put V := 77 !(U) and let w : V — U
be the restriction of m onto V. : .
By Proposition 8.5, we have a commutative diagram

WyHomoy (F,6)) lv — 1 o Homey, (NoF, NaG)) v

S
NoHomo, (F |v,G |v) Homo{](Nw(}'\lv),./\/’w(g [v)).

0w

Thus by taking an affine open cover of X ; we may assume X is affine and connected.
Moreover, again by Proposition 8.5, replacing X by its finite étale covering X' — X,
we may assume Y is trivial over X, i.e., 7w =;VX,d Y= J] Xx—X.
1<k<d

Since Y is affine, any F € q-Coh(Y) can be identified with I'(Y, F), which is a
['(Y, Oy)-module. Similarly for the sheaves on X. For any F,G € q-Coh(Y’), under
this identification Homo, (F,G) is regarded as Homoe, (F,G), and e = evrg :

Homo, (F,G) ®oy F = § is given by

elp® ) = p(x) (V¢ € Homo, (F,9),Vx € T(Y, F)).
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- Similarly, it can be easily seen that &,

(Hom(F,9) |x, & "'giHOm(}"g) Ix,) & (F |x, %"’g{flxd)
‘ o
(Hom(F |x,,G IXl)gz “'(%Hom(}' x4, G |Xd)gi (F |x, & "'(%flxd)
‘ 4
Glx, ® - ® G |x,
O Ox

X
is given by
G((p1® - Qpa) @ (21 @+ ®x4)) = ¢1(21) ® -+ ® pa(za)
for any ¢, € Homoy, (¥ |x,,9 |x,) and zy € T(Xk, F |x,) (1 <VE<d).
Correspondingly, d, is given by

HomOx(lel,ngl)(f()@ 6@ Homox(.7-'|Xd,g|Xd)9901@..‘@%[
x

p.q
H F = ,
omo, (F|x, (5@ (% lxd,g |x, (% (59;{ Glx,) 201 ® - ®pq

X

which is isomorphic. O

Corollary 8.7. In particular, for any locally free £ € q-Coh(Y') of finite rank,
8r 2 Nn(Endo, (€)) — Endo,, (N (E))
is an isomorphism of Ox —algebms

Remark 8.8. Let7:Y — X be a finite étale covering. For any surjective étale
morphism g : V =Y, there ezists a surjective étale morphism f : U — X such that

pry:UxxY —»Y
factors through g.

Proposition 8.9. Let 7 : Y — X be a finite étale covering. If A € q-Coh(Y) is
an Azumaya algebra on'Y, then N (A) becomes,an Azumaya algebra on X.

Proof. Since Ny is monoidal, A (A) becomes an Ox-algebra. By Proposition 7.22,
Nz (A) is locally free of finite rank. Let g : V — Y be a surjective étale morphism-
such that there exists a locally free sheaf € € q-Coh(Y) of finite rank, with an
isomorphism of Oy -algebras

- (8.5) 9" A= g* Endo, (£).

By Remark 8.8, replacing g if necessary, we may assume there exists a surjective
étale morphism f : U — X such that g is the pull-back of f by =:

Vv—svy

wlglw

U—f>X
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By (8.5) and Corollary 8.7, we obtain an isomorphism of Oy-algebras

FrN2(A) S Nog* A S Nag*(Endo, (€))
S fNe(Endoy (£) S £*(Endox (Nx(£))),
which shows N (A) is an Azumaya algebra on X. O

Corollary 8.10. Let m : Y — X be a finite étale covering. Norm functor N :
q-Coh(Y) — q-Coh(X) induces a group homomorphism

\ N, : Br(Y) — Br(X),
which we call the norm map.

Proof. This follows from Corollary 8.7 and Proposition 8.9. O

Norm map of the cohomology group

" Remark 8.11. Remark there is a natural isomorphism
vx 1 T(X, G x) — Autoy (Ox)

for each scheme X. If 7 : Y — X is a finite étale covering, from the norm functor
Ny : q-Coh(Y) — q-Coh(X), we obtain a group homomorphism ‘

Ny : Autoy (Oy) 5 Autoy (Nx(Oy)) = Autoy (Ox).
Thus we can define a group homomorphism
N (X) := 7}1 o Nz oy : T(Y, Gm,y) 2 I'(X,Gnm x)-

Proposition 8.12. Letm:Y = X be a finite étale covering, and f : U — X be
any étale morphism of finite type. Take the pull-back diagram

V—>Y
wl' O lﬂ'
U—>f X.
We define N (U) : Tt (U, W*Gf;l,y) = Let(U, Gy, x) by
Nz(U) := Nx(U) : T(V,0y) = T(U, 0F).
Then the set of group homomorphisms {N.(U) | (U SN X) € Xet} gives a homo-
- morphism of abelian sheaves Ny : m,Gpmy — Gm x on Xe. ‘ ‘

Proof. Let f' : U' — X be another étale morphism of finite type, and w : U’ = U
be an étale morphism over X. It suffices to show the commutativity of

N (U
Tt (V; Gmy) —=s T (U, Gon x)

Al e e

1. . !
I‘et(V ,Gm,y) —;l:w/(—U')) Fet (U 7Gm,X) 3
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for the pull-back diagram

This immediately follows from the fact that 6 is a natural monoidal isomorphism.
O

Definition .8.13. Let 7 : Y — X be afinite étale covering. By Proposition 8.12, we
obtain a homomorphism HZ (N, ) : H% (X, G,y ) = H% (X, Gm, x). We define the
norm map of cohomology groups as the composition of this map with the canonical

isomorphism ¢~ HZt(Y Gm,y) = H%(X,7,G .v), and abbrev1ately denote it
by N Het(Y Gm,y) = H3 (X, Gm,x).

9. COMPATIBILITY OF THE NORM MAPS
In this section, we show the following:

~ Theorem 9.1. For any finite étale covering m : Y — X, we have a commutative
diagram ~

Br(Y) — o Be(X)

oo

HZ(Y, Gm,y) N H (X, G, X)-
Remark 9.2. By definition of N, this is nothing other than the commutativity of

the following diagram:

Br(Y) —= > Br(X)

Xy Xx
HZ(Y, Giy) , o] H,;(\X, Gm,x)
| N %)
H2(X,7.Gp y)
Remark also that we may assume X is connected.
Remark 9.3. For any ﬁnite étale coveringm:Y — X,
« 1 S(Yer) = S(Xet)

is exact. Here, S(X.;) denotes the category of abelian sheaves on Xet Thus we
have natural homomorphzsms :

Tt Hy(Y,Gm,y) = He (X, mGm,y) (Vg > 0).
It can be easily seen that this gives.the inverse of
¢: Hy(X, mGrm,y) = H(Y, G,y ).
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Proposition 9.4. Let 7 : Y — X be a finite étale covering of a c.o'hnected scheme
X. For any G, y-gerbe F on Y, if we define a fibered category m.F' over X by

!

(rF)U) = F(U xxY) (W € Xa),

in a natural way, then m, F becomes a m, G y-gerbe on Xey. This defines a group
homomorphism . : H2(Y,Gpmy) = HZ(X,7.Gpm,y), where HZ denotes the non-
abelian cohomology of Giraud.

Proof. Since F' is a stack fibered in groupoid, it can be easily seen that so is m, F'.
Thus, to show 7, F is a gerbe, it suffices to show the following:
(a) m F is locally connected
(b) m.F is locally non-empty ‘
(a) For any U € X,y and any a1,a2 € mF(U) = F(V) (V := U xx Y), there
exists a surjective étale morphism V' = V of finite type such that v*a; = v*ay in
F(V'). By Remark 8.8, there exists a surjective étale morphism U’ 5 U of finite

type such that U' xx Y = U' xy VX V factors through v:

Vl
(9.1) Fw —~ v
UI x U V O \

v

Thus we have w*v*a; = w*v*as in F(U' xy V), namely, u*a; = u*ay in 7, F(U’).
(b) For any U € X, let V! 5 V = U xx Y be a surjective étale morphism of -

finite type, such that F(V') # §. Take U’ - U satisfying (9.1) as above. If we put

W1 == w(U' xy V) and W := V' \ W1, then each W; is an open subscheme of V"

=1 2) satlsfymg
=W [[We.

Thus we have F(V') ~ F(W;) x F(W2). In particular, F(W;) # (. Since w :
U xyV - W is surJectlve étale, m F(U') = F(U' xy V) # 0 follows from
F(Wy) #0.

Thus 7, F is a gerbe, which is obviously bound by 7.Gny. O

Remark 9.5. ([21]) Let X be a scheme. For any Azumaya algebra A on X, let
F 4 denote a fibered category over X, whose fiber F4(U) over U € X is defined
as follows :
- An object is a pair (€,a), where £ € q-Coh(U) is locally free of finite rank,
a: Endoy (E) = Ay is an isomorphism of Oy-algebras.
- A morphism (£,a) — (€',a') is an isomorphism & 5S¢ compatible with a and
o o

Then F 4 becomes a gerbe, bound by G, x . (Indeed, mdltiplication by elements of
(U, 0p) gives an isomorphism T'(U, OF) 3 Autp L (€,a).) This gives the natural
monomorphism xx : Br(X) < H2(X,Gm,x).

Lemma 9.6. Letm:Y - X be a finite étale covermg, and let A be an Azumaya
algebm onY. -
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(i) For any U € X, let -

g

V ——
w O
—_—

U

s

< l~<

>

f
be a pull-back diagram. We define a functor
Nw/w : FA(V) — FNW.A(U)
by Ne/n(E,0) = (NW(S),[?), where 3 is the composition

Endoy, (Na(&)) 3 Nu(Endoy, (€) =5 No(g"A) 3 1N, A.

For any morphism u:U' = U in X, if we take the pull-back

V' ——=V

-l 8
Ul —u> U 9
then we have a natural isomorphism u*Ng /r = ./\/;r/,,v* :FA(V) = Fy, 4(U").
(i) No /= makes the following diagram commutative :

I(V,0%) N=(0) (U, 0%)

le o la

AutFA(V) (8’ a) —./\f/> AutFNﬂAA(U) (Nw/fr (ga a))

Proof. (i) This is induced from the natural monoidal isomorphism

0% utNg S Ngiv* : g-Coh(V) = q-Coh(U").
(ii) This follows from the commutativity of

No (U Ne/n
r(v,05) — L 1@, 08)  Autr,)(€,0) =5 Autpy, @) Neya(E,0))

l o l and f , o)

Autp,, (€) — Auto, (N (€)) Auto, (€) — Auto, Nz (£)) .

0.

Remark 9.7. ([14] Proposition 3.1.5) Let X be a scheme. For any morphism u :
F = G in S(Xet), we have a group homomorphism Hy (u) : H (X, F) = H}(X,G),
compatible with H% (u). If F is an F-gerbe and G is a G-gerbe, then H2(u)(F) =G
n HgQ(X, G) if and only if there exists a morphism of gerbes F — G bound by u.

By the above arguments, Theorem 9.1 is reduced to the following;:
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Proposition 9.8. Let 7 : Y — X be a finite étale covering of a connected scheme
X. The following diagram is commutative :

Br(Y) ——= > Br(X)

Ve

\XX
H2(Y, Gy o  HXX,Gmx)

ng(X, W*Gm,y)

Proof. By (i) in Lemma 9.6, if we associate a functor N (U) := Ny : m F4(U) —
Fpn 4(U) to each U € X, then these functors form a morphism of fibered cate-
gories Ny : m, F.4 = Fy;, 4. By (ii) in Lemma 9.6, this is bound by Ny : .Gy —
Gm,x- Thus we have HZ(Ny)(m.F4) = Fu, 4. O

10. BRAUER-MACKEY FUNCTOR ON THE GALOIS CATEGORY

Let Ab be the category of abelian groups. For any profinite group G, let G-Sp
denote the category of finite discrete G-spaces and continuous equivariant G-maps.

Definition 10.1. Let C be a Galois category, with fundamental functor F. In
other words, there exists a profinite group 7(C) such that F' gives an equivalence
from C to 7(C)-Sp. (For the precise definition of Galois category, see [22]).

A cohomological Mackey functor on C is a pair of functors M = (M*, M,) from
C to Ab, where M* is contravariant and M, is covariant, satisfying the following
conditions : ) :
(0) M*(X) = M. (X)(=: M(X)) (VX € Ob(C)).
(1) (Additivity) For each coproduct X <& X [I[Y &Y in C, canonical morphism

(M (ix), M*(iv)) : M(XTTY)=M(X) & M(Y)

i

-is an isomorphism.
(2) (Mackey condition) For any pull-back diagram

y —Z >y
NI ¢
X —X,
the following diagrém is commutative :

M) 2=

M*(W)l lM* (="

)
M(X M(X'
()M—*(w—)> (X"

(3) (Cohomological condition) For any morphism 7 : X — Y'in C with X and YV
connected ( i.e. not decomposable into non-trivial coproducts ), we have

M, (7) o M* () = multiplication by degw
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where degm := $F(Y)/§F(X).

M*(w) M(Y) M, (m)
Mx) % TMX)
deg 7

Definition 10.2. Let M and N be Mackey functors on C. A morphism f: M — N
is a collection {f(X) | X € C} of homomorphisms in Ab, which is natural with
respect to each of the covariant and the contravariant part of M and N. With the

objectwise composition, we define the category of cohomological Mackey functors
Mack.(C). ‘

A standard example is the cohomological Mackey functor on a profinite group
(see [1]):

Definition 10.3. Let G be a profinite group, and let ¢ = G-Sp, F = id¢c. A
cohomological Mackey functor on C is simply called a cohomological Mackey functor
on G, and their category is denoted by Mack.(G).

Remark 10.4. Any object X in G-Sp is a direct sum of transitive G-sets of the
form G/H, where H is a open subgroup of G. So a Mackey functor on G is equal
to the following datum : '
- an abelian group M (H) for each open H < G, with structure maps:

- a homomorphism resf : M(H) — M(K) for each open K < H < G,

- a homomorphism corf : M(K) — M(H) for each open K < H < G,

- a homomorphism cg g : M(H) — M (SH) for each open H < G and g € G,
where 9H := gHg™!, satisfying certain compatibilities (cf. [1]). Here, M(G/H) is
abbreviated to M (H) for any open subgroup H < G.

Definition 10.5. Let G be a finite group, and let G°P be its opposite group. For
any Mackey functor M = (M, res, cor,c) € Mack.(G) (in the notation of Remark
10.4), we define its opposite Mackey functor MP°P by :

MP°P(H®P) := M(H) (H<LG@G)
» resie, i=res (K <H<Q)
corfley = corl (K<H<G)
. Cg,Hop 1= Cg-1 (9e€G,HLQG).
This gives an isomorphisni of categories
op : Mack.(G) — Mack.(G°P).

For any finite étale covering 7 : ¥ — X, put Br*(n) := 7* and Br,(n) :=
N;. Then we obtain a cohomological Mackey functor Br (and Br', H%(—,G,,)) as
follows. Remark that for any connected scheme S, the category (FEt/S) of finite
étale coverings over S becomes a Galois category [22].

Theorem 10.6. For any connected scheme S, we have a sequence of cohomological
Mackey functors Br — Br' < H2(—,G,,) on (FEt/S).

Proof. We only show Mackey and cohomological conditions. Since 7* and N, are
compatible with inclusions Br(X) < Br'(X) < H%(X, Gy, x), it suffices to show
for H2 (-, Gpm).
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Mackey condition

Let

YL’YI

(10.1) wl O lﬂf |

' X=X
be a pull-back diagram in (FEt/S). For any étale ﬁlorphism of finite type f: U —
X, take the pull-back of (10.1) by f: '

v <=ty

ﬂ'Ul 0. lﬂ'u

U?U'

Then we have a commutative diagram

T (wy) ,
T Gm,Y T x w*Gm,Y’ a
~
. w*WiGm,Y’
N / O )
@y (Nyr)
Gm,X = W*Gm,X’ y

which implies the Mackey condition.

Cohomological condition

For any finite étale covering w : V' — U of constant degree d, the composition
Auto, (Oy) S Auto, (@*Op) 5 Auto, (Ov)
Y% Auto, NeOv) 3 Auto, (Op)
is equal to the multiplication by d. This follows from the trivial case V : [[U = U
via fpqc descent. From this, we can see ’
, N,,om:Gm,X—)Gm,X
is equal to the multiplication by d = deg(m)
™ TGy _ N
Grx 0 Gmx
) d -
Thus we obtain N, on* =d. ,
HE(Y,Gm,y)

T ETc ~ N
O O

H2,(X, .G .
H2(X, G )~y o0 CmY) — s 12, (X, G )
O

d
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O

Remark 10.7. We gave the structure of a cohomological Mackey functor to Br,
by using the Mackey-functor structure on H%(—,G,,). In fact, it does not seem
difficult at all to show that H (—,G,,) becomes a Mackey functor for any mon-
negative integer q, which we do not need here.

11. RESTRICTION TO A FINITE GALOIS COVERING

In the previous section, we obtained a cohomological Mackey functor Br on
FEt/S. Pulling back by a quasi-inverse S of the fundamental functor

F : FEt/S - (S)-Sp,
we obtain a Mackey functor on 7(S) :
Corollary 11.1. There is a sequence of col;omological Mackey functors
BroS < Br'oS < H%(—,Gp)o0S
on m(S), where Bro S := (Br* o §,Br. 0 S) (and similarly for Bf', H2(-,Gp)).

Corollary 11.2. Let X be a connected scheme. For any finite Galois covering
m:Y — X with Gal(Y/X) = G, there ezists a cohomological Mackey functor Br
on G which satisfies

Br(H) = Br(Y/H) (VH <G),

with structure maps @w* and N for each intermediate covering w. (We abbreviate
Br(G/H) to Br(H), as in Remark 10.4.) ’

Proof. By the projection pr : n(X) - G°P, we can regard any finite G°P-set
naturally as a finite 7 (X)-space, to obtain a functor

G°P-Sp — ©(X)-Sp.
Pulling back by this functor, and takiﬁg the opposite Mackey functor, we obtain
Mack, ((X)) — Mack.(G°P) —2— Mack. (G)

w w
M ’ Mg.

In terms of subgroups of G, this satisfies Mg(H) = M (pr—!(H°P)) for each sub-
group H < G.

Applying this to Br o S, we obtain Br := (Bro S)g¢ € Mack.(G). Since the
equivalence S : (7(X)-Sp) —» (FEt/X) satisfies S(m(X)/pr~'(HP)) = Y/H, we
have Br(H) = Br(Y/H). , O

Corollary 11.3. Let 7 : ¥ — X be a finite Galois covering of a connected
scheme X, with Galois group G. By a similar way, we can define Br' (and also
(HZ%(=,Gp) 0 8)g). Since Mack.(G) is an abelian category with objectwise (co-
)kernels (see for exzample [4]), we can take the quotient Mackey functor Br' / Br €
Mack.(G), which satisfies (Br' / Br)(H) = (Br'(Y/H))/(Br(Y/H)).
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12. APPENDIX 1

In this section, we briefly introduce some easy applications of Bley and Boltje’s
theorem to Br.

Let £ be a prime number. For any abelian group A let Af):={me A|3Jee€
N>¢,£°m = 0} be the {-primary part. This is a Z,-module. )

Definition 12.1 ([1]). For any finite group H,
H is {-hypoelementary @ H has a normal £-subgroup w1th a cychc quotient.

H is hypoelementary (i) H is £-hypoelementary for some prime £.

Fact 12.2 ([1]). Let M be a cohomological Mackey functor on a finite group G.
(i) Let £ be a prime number. If H < G is not £-hypoelementary, then there is a
natural isomorphism of Z,-modules

& vy H  MO)EWY

U=Ho<:--<H,=H . U=Ho<--<H,=H
n:odd

nieven

(ii) If H < G is not hypoelementary and M (U) is torsion for any subgroup U < H,
then there is a natural isomorphism of abelian groups

@ Mo¥= P MOV

U=Ho<-<H,=H U=Ho<--<H,=H
n:odd R

n:even

Here, |U| denotes the order of U.

Applying this theorem to Br, we obtain the following relations for the Brauer
groups of intermediate coverings:

Corollary 12.3. Let X be a connected scheme and w: Y — X be a finite Galois
covering with Gal(Y/X) =

(i) Let £ be a prime number. If H < G is not £-hypoelementary, then there is a
natural isomorphism of Zg-modules

P Br(Y/U) ()Y = ) Br(Y/U) (€)Yl

U=H0<~~d<dH"=H U=Ho<--<H,=H

n:even

(i) If H < G is not hypoelementary, then there is a natural isomorphism of abelian

groups
& Br(Y/ U)WVl = ) Br(Y/U)!Yl.

U=Hp<- <Hn—H U=Ho<--<H,=H

n:od n:even

Definition 12.4. Let G be a finite group. For any subgroups U < H < G, put
w(U, H) := Z "~ (-1)", Mobbius function.
U=Ho<--<H,=H

If m (resp. my) is an additive invariant of abelian groups (resp. Z,-modules)
which is finite on Brauer groups, we obtain the following equations:

Cofollary 12.5. Let 7 : Y — X as before, G = Gal(Y/X).
(1) If H < G is not £-hypoelementary,

> Ul u(U, H) - me(Br(Y/U)(8) = 0.

U<H
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(i) If H < G is not hypoelementary, |

S U] (U, H) - m(Br(Y/U)) = 0.

U<H

Example 1

For a prime £ and an abelian group A, its corank is defined as rankg, (7;(4)),
where Ty(A) = l(l_r_n Ker({™: A — A). Here we denote this by rky(A):

I‘k[ (A) = ra,nkze (T[ (A))

Br(X)(¢) is known to be of finite corank, for example in the following cases
([15):
- (C1) k: a separably closed or finite field, X: of finite type /k, and proper or
smooth /k, or char(k) =0ordimX < 2. .
- (C2) X: of finite type /Spec(Z), and smooth /Spec(Z) or proper over Jopen
C Spec(Z). ‘ ,

Remark that if Y/X is a finite étale covering and if X satisfies (C1) or (C2),
then so does Y.

Example 12.6. Assume X satisfies (C1) or (C2). If a subgroup H < G is not
{-hypoelementary, we have an equation

> Ulu(U, H) - tke(Bx(Y/H)(8)) = 0.
U<H

‘ Example 2

By Gabber’s lemma (Lemma 4 in [13]), for any finite étale covering 7 : Y — X
of a connected scheme X, 7* : Br'(X)/Br(X) — Br'(Y)/Br(Y) is monomorphic.
In particular, if Br(Y) C Br(Y")’ is of finite index, then so is Br(X) C Br(X)'.

Example 12.7. Assume Y satisfies [Br'(Y) : Br(Y)] < co. Then for any non-
hypoelementary subgroup H < G, we have an equation

> [UIn(U, H) - [Br'(Y/U) : Br(Y/U)] = 0.
U<H
13. APPENDIX 2

Theorem 9.1 can be shown by using Cech cohomolbgy, if we assume the following;:

’ Assumption 13.1. For any finite subset F of X , there exists an affine open sub-
scheme U C X containing F'.

Remark that if X satisfies Assumption 13.1, then so does any finite étale covering
Y over X.

Proof. (Another proof of Theorem 9.1) First, we briefly recall the construction of

Xy 1 Br(Y) < HZ(Y,Gm,y)
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using Cech cohomology (cf. [21]). For any Azumaya algebra A on Y, there exists
a surjective étale morphism g : V' — Y, a locally free £ € q-Coh(Y) of finite rank,
and an isomorphism of Oy -algebras

¢:g*A = g*Endo, (€).
Take the pull-back

VxyVe= V@ ———V
1ot
and put
¢? :=goq =goq,
¢ = (Sndov(z) (¢?*€) =4 d@P*Endo,, (€) q?i_; ¢P*A
%8 (D endo, (€) 3 Endo, 4, (¢27E)).

Then, since ¢®*Endp, (£) is an Azumaya algebra on V(| there exists a surjective
étale morphism W — V() and an element ¢ € T(W,Endo_ ,, (¢P*E) |3,) such

that ¢ is the inner aufomorphism defined by ¢ :
o |w= Inn(c)

v(2)

By Assumption 13.1, there ex1sts a surjective étale morphism V' —) Y which
factors through V

’}70 Y
\_/7

1

Q

such that the induced morphism

(2

VI =V xy v 2y @)

factors through W.
So, by replacing V -+ Y by V' il) Y, we may assume the existence of a quaitet
V,€,6,0)

which satisfies \
V = (V- Y), surjective étale morphism of finite type,
€ € q-Coh(Y), locally free of finite rank,
¢:g*A =, g*Endo, (£), Oy-algebra isomorphism,
cE€ F(V(z),gndov(z) (@P*£)%), ¢? = Inn(c).
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We call (V, &, ¢,c) a compatible trivialization of A. Remark that for any refinement
of V

}7‘5\9*1/
~_ 7 ’

!

V=v'5v) oy

Q

we obtain an induced compatible trivialization of A on V'
V', E, v ¢, v@*c).

Let qi; : VO =V xy V xy V = V® (1< i< j<3) be the projections to the
(i, 7)-th components, and put ¢ := ¢® o gi;- If we put

X = gic gisc™t - gz3¢ € D(VE), ¢P*Endo, (£)),

then in Auto_, (¢®*Endo, (£)), we have

Inn(x) = Inn(gfyc) - Inn(gjsc™ ") Inn(g35c)

= q;2¢(2) ° ‘JT3¢(2)_1 ° q§3¢(2)
=id.

So x is in the center of T(V®), ¢®*Endp, (£)%), ie.,
X € Z(L(V®,¢P"endo, (£)) =T(V®, 05).

Thus we obtain a 2-cocycle x} (A) in the Cech complex C*(V/Y,G,,y), which
defines xy (A) € H3 (Y, G y). '
For any Azumaya algebra A on Y, take a compatible trivialization (V,€&, @, c).

By Lemma 8.8, there exists & = (U EEN X) € Covet(X) such that 7*U < V. Here,
m*U € Covet(Y) denotes the covering induced by pull-back by 7. -

So, replacing (V,&, ¢,c) by the induced compatible trivialization on 7*U, we
may assume V = w*U. :

Take the pull-back

qij q g

Ve v -y Y
(t=1,2)
@ O o® 0 @ 0O n
3 (1<i<j<3)
ge 2 g P L L x
O
O p®
p(3)

Then we obtain a compatible trivialization (U, N;E, Nw¢, Ng,2) (c)) of Ny (A), de-
fined as follows: ‘

\ 6! e Ne®
N (@) :=(f*NaA == Nog* A= Npg*Endoy, (€)
COL o N ndoy (€) %5 £*Endo,, (NLE)
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' N
LV, Endo,, (¢7€)) e

F(U(2)a gndvou(é) (p(2)*Nﬂ-6)x)

/ \

Autov(2) (q(2)*5) AutoU(2) (p(z)*Nﬂg)

=3
-
N2 . o(62®)

AUtOU(z) (Nw(2) q(2)*5)

Here c(Gf,(z)) is the conjugation by 0,1‘;(2).
By Remark 8.4, there is an induced group isomorphism

I; . 5’ndou(2) (Nw(z>q(2)*5)x i) Endou(2) .(p(z)*f\/ﬂg)x.
Claim 13.2. (U,N;E,Nu¢, Np2)(c)) is a compatible trivialization of Ny (A).
Proof. (Proof of Claim 13.2) It suffices to show

(13.1) (N(¢))®) = Inn(Ngea (o))
Using Proposition 7.19 (ii) and Proposition 8.5, we can show easily
(13.2) (N (9))®) = Iy 0 65 0 Nogiar (63)) 0.6ty 0 I3

By Remark 8.4, we have a commutative diagram

e(0z™)~

Auto, ), W g®E) > Auto,, i, (P N7 )

‘ | o
@) @)« eyxy LWL (2) (2) x
F(U ’ gndou(z) (Nw(z) q g) ) F(U I’ gndov(z) (p Nﬂg) ) '

J{Inr; O llnn

AUtOU(z) (Sndou(z) (No 4(2)*8) *) —‘c_(}ex)—> AﬁtOU(z) (‘SndOU(z) (P(2)*N7rg) ).

Thus we obtain the following commutative diagram:

F(V(Q),Sndov(z) (¢@*&)*) T Auto (5Tidov(2, (@@*€)%)

” ‘ : No@
AUtoV(z) (q(2)*g) | 2
Nw(2)l, AUtOU(z) (Nw(2)gnd(9v(2) (q( )*g)x)
AutOU(Z) (Nw(z)q(z)*g) O (6, 2)
RON :
C(er ) 1\1/ AutoU(z) (Endov(z) (Nw(2) q(Z)*g) x)
AUto, o) (PP *N=E) :
I (1)

r(U®, gndouw) (PN E)X) — — Auto_ (Endov(z) (PD*NE)%)

By (13.2), this means (13.1).



We have
FIzt(V/Ya Gm,y) = HZt(ﬂ*u/Y7 Gm,Y) = FIZt(Z/{/X’ T:Gm,y),

and the canonical natural isomorphism

¢ HE (Y, Gyy) — HA(X, 1Gmy)

fits into the following commutative diagram:

id

CHZ(V]Y,Gmy) — > B2,(U/X, 7Gy)
can.l O . lcan.
HZ(Y,Gp,y) —————> HZ(X, 7Gm x)

. 4

So, it suffices to show
HE,(U/X, Na) (xy (A) = X5 (Vx(A)).
Similarly as N, we can construct a homomorphism
Now : T(V®, ¢®*Endo, ()%) — T(U®, p®*Endo, (N-E)%),
compatible with N and N : T(V®, 0% ) - T(U®, 0% ).

N_ @)

F(v(2) , gndov(z) (q(z)*g) x) ]_"(U(Z), gndov@) (p(Z)*N”g) x) :
L(V®,q®*Endo, (£)%) o TU®,p®*Ende, (NxE)X)
l‘I:j ) \Lpzj

anN
L(V®),¢®*Endo, (€)*) ——=——T(U®), p®*Endoy (N+€))

Z(L(V®, ¢ Endo, (€)¥)) o ZILU®,p¥*Endoy (N=E)X))

- |

r(V®,0%,) LU®,0%s)

No@
From this, we have
HZ U/ X, Ne) (X3 (A)) = N (g€ - gz - g350)
= N (¢12¢) - Npo (gi3¢71) - Ny (g330)
= (P12N=@(0) - (PisNw@ (€)71) - (P33 N ()
= x% Nz (A)). ' |

45
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Part 3. Tambara functors on profinite groups and generalized Burnside
functors :

14. INTRODUCTION FOR PART 3

The Tambara functor was defined by Tambara in [30] for any finite group G,
in the name of TNR-functors. Roughly speaking, a Tambara functor on G is a
ring-valued Mackey functor with multiplicative transfers, satisfying certain compat-
ibility conditions for exponential diagrams. Recently, Brun revealed that Tambara,

- functors play an important role in the Witt-Burnside construction [6].

As Mackey functors admit a Lindner-type description (see [19]), the category
of Tambara functors is equivalent to the category of product-preserving functors
[U, (Set)]o from a certain category U to the category of sets [30]. This enables us
a more functorial treatment of fixed point functors, cohomology ring functors, and
Burnside ring functors, as examples of Tambara functors.

On the other hand, to consider Mackey functors on a possibly infinite group
G, Bley and Boltje defined in [1] general Mackey systems for arbitrary groups, on -
which Mackey functors are defined. This general class of functors include ordinary
Mackey functors on finite groups, Mackey functors on profinite groups (so-called
G-modulations), and has several applications in number theory as shown in [1]. A
Mackey system (C,O) for an arbitrary group G is a pair of family of subgroups
in G with certain conditions, each of them is closed under conjugation and finite
intersections. '

Independently, for any finite group G and any conjugation-closed family X of
subgroups in G, Yoshida has defined in [33] the generalized Burnside ring Q(G, X),
which has several properties similar to the ordinary Burnside ring Q(G). It is shown
in [33] that if X is moreover closed under (necessarily finite) intersections, Q(G, ¥)
is equal to the Grothendieck ring of a category associated to (G, %), and becomes
a subring of Q(G). We only consider the case where X := C is also closed under
(finite) intersections, and in this part we generalize Q(G,C) to a Mackey functor
Q(c,0) on any Mackey system (C, O) for an arbitrary group G.

In this part, we consider a generalization of Tambara functors, namely, we de-
fine a Tambara functor on any Mackey system with certain conditions. As a conse-
quence, we can consider a Tambara functor on a profinite group. Our main theorem
(Theorem 18.16) enables us to construct Tambara functors, for example, we make
the above Burnside functor Q¢ ¢ into a Tambara functor Qc,0¢,0.)- In relation
with the Witt-Burnside construction, on any profinite group G, we give a Tambara-
functor structure to Elliott’s functor Vs, where M is an arbitrary multiplicative
monoid. This functor is closely related to the Witt-Burnside construction as shown
in [10], which generalizes the completed Burnside ring functor considered by Dress
and Siebeneicher in [8].

- In section 15, after fixing our notation, we introduce some known results and
preparative properties concerning Mackey functors on Mackey systems. In section
16, we show any Mackey functor on a Mackey system admits a Lindner-type defini- -
tion. In this context, the above Burnside functor Q¢ ¢y can be easily regarded as
a Mackey functor. In section 17, we define Tambara systems and (semi-)Tambara
functors on them, generalizing the case of finite groups. In section 18, we show how
a semi-Tambara functor gives rise to a Tambara functor in Theorem 18.16. The
theorem is as follows, and proven in a similar way as the finite-group case:
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Theorem 18.16 . Let S be a semi-Tambara functor on (C,0¢, O,).

With (v8)(X) = KoS(X) and &, i, C* appropriately defined, S becomes a
Tambara functor.

By virtue of this theorem, we can show that the Burnside functor Qc,0) be-
comes a Tambara functor. As a further example concerning the Witt-Burnside
construction, we make Vs into a Tambara functor on a profinite group G.

15. PRELIMINARIES

First we fix a notation. For any group G, H < G means that H is a subgroup
of G. For any subgroup H < G and any g € G, define 9H := gHg~! and HY :=
g 'Hg. ¢Set denotes the category of G-sets and equivariant maps, and gset denotes
- the category of finite G-sets, which is a full subcategory of gSet. If X is a G-set
and z € X, let G, denote the stabilizer group of z in X. In this part, monoids
are assumed to be commutative and have an additive unit 0. A homomorphism
of monoids preserves 0. Semi-rings are assumed t6 be commutative both for the
addition and the multiplication, and have an additive unit 0 and a multiplicative
unit 1. A homomorphism of semi-rings preserves 0 and 1. For any category K and
any objects X, Y € Ob(K), the set of morphisms from X to Y in K is denoted by
K(X,Y). ‘

The following definitions are based on [1]. When we consider a Mackey functor,
we will only treat the case of a Z-Mackey functor and call it s1mply a Mackey
functor. :

Definition 15.1. (Definition 2.1 in [1])

Let G be an arbitrary group. A Mackey system for G is a pa1r (C,0) with the
following property.

- C is a set of subgroups of G, closed under conJugatlon and finite intersections,

- O ={0O(H)}nec is a family of subsets O(H) CC(H):={U €C|U < H},
which satisfies ’

(i) [H:U] < o0

(ii) O(U) € O(H)

(iii) O(gHg™") = gO(H)g™* : ‘

ivyUNV e OW)
forall He C,U € O(H),V € C(H), and g € G.

Example 15.2. Let C be a set of subgroups of G, closed under conjugation and
finite intersections. :
(1) If we define O¢ by

Oc(H):={U €C(H) | [H:U] < oo} (\7’H €0),

then (C,O¢) becomes a Mackey system for G.
(2) If we define O4 by

Oa(H) = {H} (VH € (),
then (C,04) becomes a Mackey system for G.

Remark 15.3. Both O¢ and Oq4 satisfy H € Oc(H) and H € O4(H) for any
H € C. In the following, we often impose the condition

(15.1) H e O(H) (VH €()
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to a Mackey system (C,O). If we fix C, then (C,Oc) (resp. (C,04) ) is the largest
(resp. smallest) Mackey system, among all the Mackey systems (C,0) satisfying
(15.1).

Definition 15.4. In (1) in Example 15.2, if in particular G is a topological group
and C is the set of all closed (resp. open) subgroups of G, we call (C,0Oc) the
natural (resp. open-natural) Mackey system for G. If G is a profinite group, then
this definition of the (resp. open-)natural Mackey system agrees with the definition
of the (resp. finite) natural Mackey system in [1].

Definition 15.5 (cf. Definition 2.3. in [1]). Let (C,O) be a Mackey system for an
arbitrary group G. A semi-Mackey functor M on (C, Q) is a function which assigns

- a monoid M(H) to each H € C,

- a homomorphism of monoids ¢}; : M(H) — M(9H) to each H € C and each
ge G7 '

- a homomorphism of monoids r¥ : M(H) — M(I) to each pair I < H in C,
- a homomorphism of monoids t§ : M(I) - M(H) to each H € C and each
IeO(H), :
in a compatible way as in [1] If all the M (H) are abelian groups, then M is called
a Mackey functor. The maps ¢4, rH, t# are called conjugations, restrictions, and
transfers, respectively.

A morphism of (semi-)Mackey functors f : M — N is a set of monoid homo-
~ morphisms f = {fy : M(H) - N(H)}nec, which are compatible with the conju-
gations, restrictions, and transfers in the obvious sense. We write the category of
semi-Mackey functors (resp. Mackey functors) as SMack(c,0y (resp. Mack(c,0)).
Note that Mackc,o) is a full subcategory of SMack ¢, o).

Remark 15.6. For a finite group G, if we regard G as a discrete topological group,
both the natural and open-natural Mackey systems are

: C = {Vsubgroup of G}
O(H) = C(H)={Vsubgroup of H} (VH < G).
A (resp. semi-) Mackey functor on this Mackey system is nothmg other than a (resp.

semi-) Mackey functor on G. Thus the Mackey functor theory on finite groups is
contained in that on Mackey systems. .

Definition 15.7 (Definition 2.6. in [1]). Let (C, O) be a Mackey system for G.
(1) ¢Setc is defined to be a full subcategory of gSet, whose objects are those
X € Ob(gSet) which satisfy

G, € C for any z € X.

(2) GSetc,o is defined to be a category with the same objects as gSetc, whose
morphisms from X to Y are those f € Setc(X,Y) satisfying the followmg prop-
erties:

(i) f has finite fibers (i.e. f~1(y) is a finite set for any y € V),

(ii) Gz € O(Gy(y)) for any z € X.

Remark 15.8. Let C be a set of subgroups of G closed under conjugation and
finite intersections, and consider the Mackey system (C,Oc¢). Then for any f €
Sete(X,Y), we have .

fe G‘Sétc,oc (X,Y) < f has finite fibers.
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Proof. The necessity is trivial. Conversely, assume f has finite fibers. For any
z € X, let X, denote the orbit through z in X. Since G(;)/G. = X. C f71(f())
and f~!(f(z)) is finite by the assumption, we have [G(,) : G.] = §X, < oo, ie.
G, EkOC(Gf(w)). . ) ]
Remark 15.9. If the Mackey system (C, O) satisfies (15.1), then for any two objects
X,Y in Setc, any injective map ¢ from X to Y in cSet
t: X =Y

belongs to Setc,0.

In particular, isomorphisms, inclusions are morphisms in Setc 0.

Moreover, the folding maps

V:XIIX =X
are morphisms in gSetc.o.
‘Remark 15.10. Let (C,0) be an arbitrary Mackey system. For any pull-back .

diagram in gSete

XI#X

Y’—f>Y )

if g belongs to cSetc o, then g' also belongs to Sete 0.

Definition 15.11 (cf. Definition 2.6. in [1]). Category SBif(¢ o) (resp. Bif(c o))
is defined as follows:

An object M in SBif(¢,p) (resp. Bif(¢,p)) is a function which assigns

- amonoid (resp. abelian group) M(X) to each X € Ob(gSetc),

- a monoid morphism f* : M(Y) - M(X) to each f € Setc(X,Y),

- a monoid morphism g. : M(X) — M(Y) to each g € Setc 0(X,Y),
in such a way that the following conditions are satisfied:

(i) We have
(g og) =009k (flof) =f o f™
for all composable pairs in gSetc o and gSetc respectively, and

id* =id, = id.
(if) (Mackey condition) If

X—Y
is a pull-back diagram in gSet¢ whére g € Sete,0(X,Y), then
‘ froge=glof"
(iil) For any direct sum decomposition X =[] xeaXn in GSete, the natural map

(i%)aea : M(X) = [[M(Xy)
AEA
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is an isomorphism of sets, where i) : Xy < X (XA € A) are the inclusions.

M(0) consists of a single element.

For any M, N € Ob(SBif¢,0)) (or Bif(¢,0)), a morphism ¢ from M to N is a col-
lection of monoid homomorphisms ¢x + M(X) — N(X) (X € gSetc), compatible
with all g, and f*. Remark that Bif¢ ¢ is a full subcategory of SBif (¢ 0)-

Remark 15.12. An object in SBif(c,0) (resp. Bif(c,0) ) is nothing other than
a pair of functors M = (M*, M,) which satisfies M*(X) = M,(X) (= M(X))
(VX € Ob(sSetc)), where ‘ :

- M* : Setc = (Mon) (resp. Setc — (Ab) ) is a contravariant functor with
M*(f) = f, '

- M, : Setc,o — (Mon) (resp. Setc,0 — (Ab) ) is a covariant functor with
M.(g) = gx,
which satisfies the above condition (ii) and (iii). "

In this view, a collection (px : M(X) = N(X))xcob(csete) 0f monoid homo-
morphisms is a morphism in SBif ¢ oy if and only if it is a natural transformation
with respect to each of the covariant and the contravariant part.

Remark 15.13. Let (C,0) be a Mackey system satisfying (15.1), and M be an
object in SBif ¢ ). Let X = H X; be a finite direct sum of objects in Setc,

1<i<n
and let v; : X; < X be the inclusion (1 < i < n). The inverse of the isomorphism
= (hgign s MX) = [ M) = P M)

18

1<i<n 1<i<n
Proof. Since
X; - X, Xy=—0
y 0 tid and O \ (i #7)
XX X <X,

are pull-back diagrams, we have

tioL, = id
Gou. = 0 (i#1).
So we have ‘
no Z Lix = id.
1<i<n
~Since 7 is an isomorphism, this‘means n~! = Z Lis- a
1<i<n

Coi'ollary 15.14. Let (C,0) be a Mackey system satisfying (15.1), and M be an
object in SBif(c 0). If the pull-back of f € Sete(X,Z) and g € Sete,0(Y, Z) is
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written as
ks
x 1<i<n H w;
1<in
7 0 U n
) 1<in
Z Y

g
where k; € Sete,o(W;, X) and h; € Set¢(W;,Y), then we have

~f*°g*= Z ki*oh:-

1<i<n

Proof. Put

ho= U s

and let ¢; : W; < W be the inclusion (1 < i < n). If we put n := (1])1<i<n :
MW) S ] M(W:), Then by Remark 15.13, we have
1<i<n .

f*og.

k.oh* =k, 017_1 ono‘hfk
= ki«o Z tix © ((¢])1<i<n) o A" = Z kix o hy.
1<i<n 1<i<n
O
Remark 15.15. Let Ky : (Mon) — (Ab) be the group completion functor. For
any M = (M*,M,) € Ob(SBif(c,0)), we define YM € Ob(Bif(¢ 0)) by M :=
(Ko o M*,Kq o M,). For any morphism ¢ = (px : M(X) = N(X)) xcob(cSete) €
SBif(¢,0)(M, N), we define yp € Bif ¢ 0)(yM,yN) by
vp = (Ko(px) : KoM(X) = KoN(X))xeob(sSetc)-
Thus, we obtain a functor v : SBif ¢,0) — Bif(¢,0)-
Proposition 15.16. Let M =.(M*, M) be an object in SBif (¢ o). For any iso-
morphism v : V. = V' in GSetc 0, we have
M*(’U)M*(U) = ldM(V’)

Proof. From the pull;back diagram

| v
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we obtain

M*(v)M,(v) = M,(id)M*(id) = id
by the Mackey condition. Since M, (v) is an isomorphism, this means M*(v) =
M, (v)~L. :

As Theorem 2.7. in [1], the following can be shown:

Theorem 15.17. Let (C,O) be a Mackey system for G. Then
(1) SMack(c,0) is equivalent to SBif ¢ o),
(ii) Mackc,0) is equivalent to Bif ¢ o).

By this equivalence, we often identify (semi-)Mackey functors with objects in
(S8)Bif(¢,0)-

16. A LINDNER-TYPE DEFINITION OF MACKEY FUNCTORS

First, we introduce a well known fact (Fact 16.1), essentially due to Lindner [19].
For any group G, let gset denote the category of finite G-sets and G-maps, and
let Sp(gset) denote the span category of gset (i.e. the classifying category of the
bicategory of spans in gset (cf. [20])). By definition, Ob(gset) = Ob(Sp(gset))
and '

Sp(gset)(X,Y) = {span from X to Y in gset}/  ~

equivalence

={(X £V %Y)]|f,g are morphisms in gset}/ .~
equiv.
for any X,Y € Ob(Sp(gset)), where (f,V,g) := (X Lva Y) and (f',V',¢)
are equivalent if and only if there exists an isomorphism v € gset(V, V') such that
f=Ffov,g=gou. | |

If we want to indicate v, we write

(f,V.9) — (£,V',9")

instead of (f, V,g) ~ (f',V',g"). We write the equivalence class of (f,V,g) = (X L

V5 Y)as[f,V,g] = [X £V 5 V] Forany X,Y € Ob(Sp(gset)), the set of
~morphisms Sp(gset)(X,Y) has a natural monoid structure. (This is an example of
Proposition 16.5 (ii).) ‘ / ,
For any category K, let [IC, (Set)]o denote the category of covariant functors from
K to the category (Set) of sets, preserving an arbitrary product (whenever the prod-
uct exists in K). Here by the word ‘arbitrary product’, we mean a product ], ea X
of any objects X, € Ob(K), indexed by an arbitrary set A. If K = Sp(gset), we
can view [K, (Set)]o also as the category of certain contravariant functors by the
self-dual nature of Sp(gset). But we use this covariant way, in view of analogy with
Tambara functors in the later sections.
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Fact 16.1 (cf. Theorem 4 in [19]). Let G be a finite group.

(1) SMack(QG) is equivalent to [Sp(gset), (Set)]o- :

(2) There exists a unique category B(gset) with arbitrary finite products and a
functor & : Sp(gset) — B(gset) with the following properties:

(a) Ob(B(gset)) = Ob(Sp(gset)).

(b) & preserves arbitrary products. ,

(c) B(gset)(X,Y) = Ko(Sp(gset)(X,Y)) for any X,Y in Ob(B(gset)), where
K denotes the group completion, and the maps of &

kx,y : Sp(gset)(X,Y) — B(gset)(X,Y)

are the completion inaps. '
(3) Mack(G) is equivalent to [B(gset), (Set)]o-

Remark 16.2. For any set of objects (Xx)rea in Sp(gset) (or B(gset) ), their

product is of the form H X ( ¢f. Proposition 16.5 (1) ). Since Ob(Sp(gset)) =
AEA ‘

Ob(B(gset)) = Ob(gset) consists of finite G-sets, when we consider the product

of (Xa)xea, then Xy must be equal to O except finite A\ € A. So, a functor F :

Sp(gset) — (Set) (or B(gset) — (Set) ) preserves arbitrary products if and only if

F preserves finite products.

Definition 16.3. Let (C,O) be a Mackey system for an arbitrary group G which
satisfies (15.1). We define a category S = Sp(C, O) as follows:

- Ob(S) = Ob(Setce),

-S(X,Y)

= {(f,V g) | Ve Ob(GSetc) f € Sete(V, X),g€ GSetc o(V,Y) }/ ~

equiv.

for any X,Y € Ob(S), where (f,V,g) = (X Lvs Y) and (f',V',g') are equlva—
lent if and only if there exists an 1somorph1sm v such that f = f'ov, g =g'ow.
Let [f,V,g9] = [X Lvs Y] denote the equivalence class of (f,V,g). Composi-
tion in S is defined by
Vv Xy w
\
mWHoAVi = | s v O

/ \Y/ \

[foh,V x Wkog]

I

for any [f,V,g] € S(X,Y) and [h, W, k] € S(Y, Z), where
VxWw_9 |
5 w
h’l O lh ,
V—/Fp—Y
is the pull-back diagram.

To distinguish, we write the morphism in S by an arrow X — Y.
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For any f € GSetc(X ,Y) and g € cSete o (X,Y), Wé use the notation
Ry :=[f,X,idx]:Y = X
Ty :=[idx,X,g]: X =Y.
Any morphism [f,V, g] in S(X,Y) has a decomposition [f,V,g] = T, o R;.
Remark 16.4. (i) We have
| Tiyroq) = Ty © Ty, Risiop) = Ry o Ry
for all composable pairs in cSetc,o and cSetc respectively, and
| Tia =id, Riq = id.
(i) If

X—/——Y

‘ Lisa pull—back diagram in Setc where g € Setc,0(X,Y), then we have
Rf OTg = Tg/ ORfl.
Proof. These can be easily checked directly from the definition of the composition

law. i U

In the rest of this section, let G' be an arbitrary group and let (C,0) denote a
Mackey system satisfying (15.1), unless otherwise specified.

Proposition 16.5. (i) For any X5 € Ob(S) (A € A), if we put X := H X, then
, YN

(Ri,\ (X = X/\)/\EA
is their product in S, where iy : Xn — X is the inclusion (YA € A). 0 is the

terminal object in S. ,
(ii) For any A, X € Ob(S), S(A,X) has a monoid structure defined by

[f1,Vi,1] + [f2, V2, 92) = [f1 U fo, Vi L1 Va2, g1 U go]

for any [f1,V1,91], [f2, V2, 92] € S(A4,X). [A + 0 — X] is the zero in this monoid,
and we abbreviate this morphism to 0. Moreover, with this monoid structure, the
functor

S(=,X) : S — (Set)
factors through the subcategory (Mon) of (Set).
Proof. (i) It suffices to show that for any Y € Ob(S) and any set of morphisms

FuVaga] 0 Y — X (A € A), there exists a unique morphism [f,V,g] : ¥ = X
such that ‘

Ry o[f,V,g] = [fnVasa] (VA€ A).
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] J)\)L/\agX
[ O

X X

R;,

As for the existence, we can see easily that the morphism
[f;‘/:g] = [U f)xa H V)\- H gA] .
XEA  XEA XEA

satisfies the above commutativity condition. To prove the uniqueness, let [f’, V', ¢']
be a morphism satisfying ‘

(16'1) Ri, o [f” V,vgl] = [fka VA,g}\] (V)‘ € A)

Put
Vi o= g mH(X),
9 = g
iy = V{< V' inclusion.

Then since R;, o [f',V',¢'] = [f' o i}, VY, gi], condition (16.1) is equal to the fact
that there exists an isomorphism vy : V) = Vy for each A € A, such that g\ =
gy ovx, fa=foi\ou.

Vi

fk 4
VI

A
By taking the direct sum, we obtain an isomorphism
HUA: HV)\;) HV;,
AEA A€A AEA
which makes the following diagram commutative:

HAeA Va

y l %jx
O

Y Ieavr © H)\EAX)\
U,\:m 1 419&

[Dhea i

But since we have

[Mw=v.Uei)=F 1] =1,

AEA AEA A€A
this means (f,V,g) — (f,V',g").

AeA Ux
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(ii) To show that S(X,Y) is in fact a monoid is easy. The latter half follows
from the fact that for any morphism [k, W,h]: B = A in S, we have
([fl)‘/lagl] + [f2>V2,92]) ° [k7W7 h]
= [AUfN OVa, g1 U go] o [k, W, h]

W xa (V1 1IV3)
fly Pr(viuvy)

ViV,

‘%Ufz g1m

WXAvl WXA Vz) .
J/ \pr}\,lUprV2

VIV,
A glm

= [fl,Vl,gl]O[k,W,h]+[f2,‘/2,92]0[k,w,h],
where (f1 U f2)', fi, f» and pry, 1y, PIy,, Pry, are the appropriate pull-backs. O

T
T

Generally, let C be a category with finite products (hence has a terminal object
@). C is regarded as a symmetric monoidal category via the cartesian product.
An object X € Ob(C) is called a monoid object if it is equipped with a pair of
morphisms '

mx XxX—->X
ex 0 — X

which satisfies associativity, commutativity, and the unit law. Namely, it makes
the following diagrams commutative:

XXX x XM xwx XxX——X
o
idxmxl . O lmx &\ /X
XxX——>X X xX
XxX——%X sx

o .

X—Xx X
(id,ex)

Here, tw : X x X — X X X is the twisting map. (Recall that monoids are assumed
to be commutative in our notation.)
Proposition 16.6. Any object X in S is a monoid object with the structure

myx = TVX

T,

Ly

€x
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Proof. This follows from Proposition 16.5 (i), Remark 16.4 (i) and the commuta-
tivity of the following diagrams: '

. v
XHXHX%XHX XX ———X

O .
IV x ' o JVX &\ /;

XX ———>X XX
P

.VX ‘
XIX —X

O
v
. ~id ¢ x

X——XIX
Here, tw : X IT X — X IT X is the twisting map and satisfies
T =tw: X x X & X x X, ‘
and ¢; : X — X II X is the inclusion into the i-th component (i = 1,2). O

Remark 16.7. By Yoneda’s lemma, an object X € Ob(C) is a monoid object if
and only if the functor

C(—,X) :C — (Set)
factors through the subcategory (Mon) of (Set).

By Proposition 16.6, every object X € ODb(S) is a monoid object in S. The
corresponding monoid structure on S(4, X) (VA € Ob(S)) is nothing other than
(ii) in Proposition 16.5.

An arrow f € C(X,Y") between monoid objects is called a morphism of monoid
objects if it makes the following diagrams commutative:

XxX——sX / X
Fxf l O lf 0 O \f
Y xY T Y Y
Again by Yoneda’s lemma, this is equivalent to that
fo—:C(—X)—=C(-Y)
is a natural transformation of functors C — (Mon).
Proposition 16.8. (i) For any f € gSete(X, Y),
Ry:Y = X

is @ morphism of monoid objects.
(ii) For any g € cSetc,0(X,Y),

T,: X =Y

is @ morphism of monoid objects.
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Proof. Since [f,V,g] = T, o Ry, to show (i) and (ii) is equivalent to show that any
morphism in § is a morphlsm of monoid objects. But this can. be shown in the
same way as in the proof of (ii) in Proposition 16.5. O

Definition 16.9. Let F' : C — (Set) be a functor. We say F' preserves finite
products if, for any finite product (pi : X = Xy )1<k<n, the induced map

(F(pr))i<k<n : F(X) = H F(X%)
: 1<k<n

is an isomorphiém.
We can see easily the following:

Proposition 16.10. Let F' : C — (Set) be a functor which preserves finite products.

(i) If X € Ob(C) is a monoid object, then F(X) becomes a monoid.

(ii) If f € C(X,Y) is a morphism of monoid objects, then F(f): F(X) — F(Y)
becomes a monoid homomorphism.

(ili) If Y is a monoid object in C, then for any X € Ob(C),

Fxy :C(X,Y) — (Set)(F(X),F(Y))

is a monoid homomorphism, where the monoid structure of the right hand side is
the one induced from that of F(Y).
Remark 16.11. For any category C with finite products, we can define commutative
group objects, semi-ring objects, and ring objects in C, in the same way. They
satisfy the analogous statement of Remark 16.7, and Proposition 16.10 for any
finite-product-preserving functor F'.
Theorem 16.12. SMack(c,0) is equivalent to [Sp(C, O), (Set)]o-

Proof. In view of Theorem 15.17, we show that there exists an isomorphism of
categories _
- SBlf(C’o) i) [S, (Set)]o. )
In one direction, for any M = (M*, M,) € Ob(SBif ¢,0)), we associate a covariant
functor E : § — (Set) by

E(X) = M(X) (VX € 0b(S))
E([f,V,9]) M.(g)M*(f) (VIf,V,g] € S(X,Y)).
This definition of E([f,V, g]) is well-defined. Indeed, for any ‘

¢

(f,V7g) "_:—) (f',V',g') X O v O

. V,
we have

M. (g)M*(f) = M. (g' ov)M*(f' 0 v) ,
M.(g') M (v)M* (v) M*(f')
M. (g')M*(f").

Prop.'_'15.16
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In other words, F is defined by

E(Ry)
E(Ty)
on morphisms. The associativity and unit law for morphisms can be checked easily.

For any set of objects (X))aeca in gSete, since M preserves arbitrary products,
we have an isomorphism

M*(f) (Vf € cSete(X,Y))
M.(g) (Vg € Setc,0(X,Y))

(M*(ia)ren : M(X) = [ M(X)
AEA

where X : H X, and 4y : X\ — X is the inclusion. But this is nothing other

€A
than the isomorphism

(E(Riy)ea : B(X) = [] B(Xy),
AEA

which means that E preserves arbitrary products. Thus E becomes an object of
[S, (Set)]o. If E,F € Ob([S,(Set)]o) are the objects corresponding to M, N €
Ob(SBif ¢,0)) as above, then for any morphism ¢ : M — N in SBif ¢ ¢y, naturally
the same ¢

(px 1 B(X) = F(X))xecon(s)

gives a morphism ¢ : E — Fin [S, (Set)]o.-
In the other dlrectlon, if we are given an object E € Ob([S (Set)]o), then we
define M = (M*, M..) by

M(X) = E(X) (VX € Ob(cSetc)),
M*(f) = E(R;) (Vf € Setc(X,Y)),
M*(g) = E(Tg) (Vg € GsetC,O(X’ Y))

By Remark 16.4 (i) and Proposition 16.10, we can see easily that M* is a con-
travariant functor from gSetc to (Mon), and M, is a covariant functor from ¢Sete,o
o (Mon). Conditions (ii) in Definition 15.11 follows from (ii) in Remark 16.4.
By the same argument as before, we can see that M preserves arbitrary prod-
ucts since E does. If M,N € Ob(SBif(c,p)) are the objects corresponding to
E,F € Ob([S,(Set)]p) and ¢ : E — F is a morphism in [S, (Set)]o, then ¢x is
a monoid homomorphism for each X € Ob(S). In fact, for each X € Ob(S), the
. diagram g :

(B(R.,),E(R.,))

E(X1IX) - E(X) x E(X)

FxXuX e lsz Xpx
F(R.,,),F(R, '

F(XUX) Sl IL (Re2)) F(X) x F(X)
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is commutative where t;j + X = X II X is the inclusion into j-th comp‘onent
( = 1,2). From this, we can show that the diagram

E(X) x B(X) 222X, F(X) x F(X)

product [ O ’ lproduct

E(X) F(X)

Y x
is commutative, which means that ¢ x is a monoid homomorphism. Thus, for any
morphism ¢ : E — F in [S, (Set)]o, naturally the same ¢

(ox : M(X) = N(X))x eob(aSete)

gives a morphism in SBifc o. It can be seen easily that these correspondences
M & E gives an isomorphism of categories '

SBif(c,0) — [Sp(C, 0), (Set)]o.

Definition 16.13. We define a category B = B(C, O) as follows:

- Ob(B) = Ob(S),

-B(X,Y) = Ko(S(X,Y)) for any X,Y € Ob(B).

So, any morphism in B(X,Y") can be written as the difference of the images (1),
(o) of two morphisms a; and agin S(X,Y). B actually becomes a category with
the composition law defined by

~ ((Br) = (B2)) © ({a1) — (az))
= (froar +Broaz) —(Broay + B2 0a1),

where a; € S(X,Y), 8; € S(Y,Z) (i =1,2). The well-definedness of this composi-
tion can be shown easily, via the fact that the composition in S

0:S(X,Y)xSY,2) = S(X,2)
is biadditive. By this deﬁnition, the composition in B

0:B(X,Y)x B(Y,Z) = B(X,Z2)
also becomes biadditive. ' .

There is a functor £ : S — B defined by x(F : X = Y) := ((F) : X = Y). For
any X, € Ob(S) (A € A), since (R;, : X — X )aea is their product in S, we have
an isomorphism of sets

(=0 Ri)xea : S(¥, X) = [[ 8O, X»)
AEA

for each object ¥ € Ob(S). By taking Ky of this isomorphism, we obtain an
isomorphism for each ¥ € Ob(B) = Ob(S)

(=0 (Ri)hen : BV, X) = Ko([] SV, X))
: . AEA

H B(Y’ X)\) )

AEA
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which means that
((Rin) : X = Xy)rea
is the product of (Xx)xea. Thus k preserves arbitrary products.
Theorem 16.14. Mackc,0) is equivalent to [B, (Set)]o.

Proof. As before, we show the equivalence of Bif(c 0 with [B, (Set)]p- Let 7 :

[S, (Set)]o = SBif(¢,0) denote the isomorphism constructed in Theorem 16.12.
Let ' : [B, (Set)]o — [S, (Set)]o be the composition by .

B,(Set)o  Bif(c,0)
,gﬂ l fully faithful

[S, (Set)]o —= SBif ¢,0)
Let E be any object in Ob([B, (Set')]o). Since X € B'is a commutative group object
by Remark 16.11, (k*E)(X) = E o k(X) becomes an abelian group. So we have
7(x*(Ob([B, (Set)]o))) C Ob(Bif(c,0y). Thus we obtain a functor

T: [B, (Set)]O — Bif(C,O)

which makes the following diagram commutative:
[B, (Set)lo —— Bif (¢ 0)
‘Kul &) fully faithful
[S, (Set)]o — SBif ¢,0)

Let E be any element in [S, (Set)]o. Then 7(E) belongs to Bif ¢ ) if and only
if E(X) is an abelian group for any X € Ob(S). In this case, if we define E €
Ob([B, (Set)]o) by

E(X) := E(X) (VX € 0b(B))
CB({en) —{a2)) = E((a1)) - E((a2)) (Yo, 3 € S(X,Y))),
then we have E = x#(E). Thus 7 is essentially surjective.

To show 7 is fully faithful, it suffices to show that ! is fully faithful. Let
T1,T> € Ob([B, (Set)]o) be any elements, and consider the map

(B, (Set)]o(T1, T2)
w

(¢x)xeobB) ! (Pr(x)) x cOb(S)

[S, (Set)]o (liuTl , I‘.‘,ﬁTz)
w

We show this map is bijective. Injectivity is trivial, since k is identity on objects.
To show surjectivity, let ¢ = (px : KTy (X) = &k#TH(X)) Xeob(s) be any element
in [S, (Set)]o(k*Ty, k*T3). By the naturality of ¢, we have

KTy (a) o px = py o K*Ti ()
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for any a € S(X,Y). Remark that «*T;(a) = T;({(a)) (j = 1,2).
Ty (X) —2X > Ty(X)
T1((°f>)l‘ o} , [Tz(@‘))
I(Y) —— ()

It suffices to show ¢ is also natural with respect to any element (1) — (ag) €
B(X,Y) (Vay,09 € S(X,Y)). By (the proof of) Theorem 16.12, px is a mon01d
homomorphism (VX € Ob(S) = Ob(B)). Moreover,
(Ti)x,y : B(X,Y) — (Ab)(T;(X), T;(Y))
is a group homomorphism (cf. Proposition 16.10 (ii)) (Vj = 1,2). From these, we
can show easily
Tr({a1) — (@2)) o px = py o T1({a1) — (a2)).
]
Example 16.15. Let (C,O) be a Mackey system for G which satisfies (15.1) and
G € C. In this case, one-point set {*} = G/G is the terminal object in cSetc.

By Theorem 16.14, we obtain a Mackey functor Q¢ ) corresponding to the Hom-
functor B({*},—) € [B, (Set)]o. For each X € Ob(S), since the monoid

S({*}, X)
= {({*} «~V3 X) | Ve Ob((;Setc) g € gSete o(V X)}/ ~

equiv.

={(V % X) | V € Ob(cSetc,0),9 € cSetc,o(V,X)}/ ~

equiv.

is the set of isomorphism classes of the comma category cSetc,0/X, we have
B({*}, X) = Ko(cSetc,0/X),

where Ko denotes the Grothendieck group of ¢Set¢,0/X. Thus Q(c,0) satisfies
Qc,0)(X) = Ko(cSetc,0/X)

for each X € Ob(gSetc).

Definition 16.16. We call Q(c o) the Burnside functor on the Mackey system
C,0).

Remark 16.17. Qc,0)(X) is in fact a ring, with a multiplication induced from
the fiber product over X in oSetc,o. In particular if G is finite and O = O,
then Q¢ 0)({*}),= Qc,0)(G/G) agrees with the generalized Burnside ring Q(G,C)
defined in [33].

17. TAMBARA FUNCTORS ON MACKEY SYSTEMS

Let G be an arbitrary group. We consider a triplet (C,O04,0,), where (C,04)
and (C, O.) are Mackey systems for G. For X € Ob(sSetc), we define a category
Sc,0,1x as follows:

- Ob(Sc,0, 1x) =Ob(cSete,0, /X) ={(A 5 X) | A € Ob(Sete,0, ) = Ob(cSetc),
§ € &Sete,0, (4, X)}, . ‘
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-5 o+,'x((A 5 X), o £ X)) = {¢ € eSetc(A, A') = cSet(A, A') | € o = £}

for any (A —) X) (Al ——) X) n Ob(Sc O+|X)
Remark that for any X € Ob(sSetc), S¢,0,|x is a full subcategory of gSet/X.

Definition 17.1. We call (C, 04, O,) a Tambara system if it satisfies the following
condition: ‘
For any n € GSetc,o, (X,Y), the pull-back functor defined by n

X X= Sc,04)y = Sc,04|x
has a right adjoint
@y Se o+|x = Sc,04|y-
If w, exists, we write the object @, ((A 5x )) € Sc,0, |y abbreviately as (w, (A _§)
Y).
As in the case where G is finite [30], it can be easily seen for any (possibly
infinite) group G that the pull-back functor defined by f € gSet(X,Y)
X X = Set/Y — Set/X
always has a right adjoint. The construction is as follows: .
-Forany (A5 X) ¢ Ob(cSet/X), we define
I4(4) :={(y,0) lyeY,0: f'(y) > A map, poo=ids1(y},
\ q: 1 (A) =Y, q(y,0):=y.
II;(A) is a G-set by g - (y,0) = (gy, %), where % is defined by (%)(z) = go(g~'2)

for any z € f~'(gy). We sometimes write this ¢ as 7(p) or m;(p). We define
abbreviately

(A3 X)) = (I;(A) S V) (€ Ob(cSet/Y)).
- For any morphism a : (4 5 X) — (4 7 x ) in gSet/ X, we define a morphism
I (a) : (A B X)) = T, ((4' D X))

in Set/Y by I1;(a)((y,0)) = (y,ac ).
Then, this functor
I0; : Set/X — Set/Y
is right adjoint to X ; -
- Lemma 17.2. Let (C,04,0,) be a triplet where (C,04) and (C,0,) are Mackey

systems. This triplet (C,O4,O,) becomes a Tambara system if it satisfies the fol-
lowing condition for any X,Y € Ob(gSetc) and any n € cSetc,0,(X,Y):

For any (A 5 X) in Ob(Sc,0,x),
(17.1) I, (A) € Ob(cSetc), (£) € cSete,o0, (I, (A4),Y).

Proof. Since S¢ 0, |x (resp. S¢,0,|y) is a full subcategory of ¢Set/X (resp. Set/Y),
the triplet (C, O, ,) becomes a Tambara system if for any n € ¢Setc o, (X,Y)

and any (A 5 X) € Ob(Sc.0,x), the object (I,(4) S Y) (€ Ob(cSet/Y))
belongs to Ob(S¢,0, |y). This is equivalent to condition (17.1). _ O

Thus if condition (17.1) is satiéﬁed, then w, can be taken as IL,.
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Definition 17.3. Let C be a set of subsets of G , which is closed under left and right
translation, finite intersections and finite unions (hence € C). To C, we associate
a set C of subgroups of G by

c~4He81H<G}

Then C is closed under conjugatlon and finite intersections. In this case, we say
‘C arises from C ’. Whenever we say ‘C arises from C’ , we always assume that C
satisfies the above condition.

For a given C, we often consider a Mackey system (C,Oc), where C arises from
C as above.

Example 17.4. Let G be a topological group. If C = {Vclosed subset of G} (resp.
{Vopen subset of G}), then the above (C,O¢) is the natural (resp open-natural)
Mackey system for G.

‘From a Mackey system satisfying (15.1), we can construct a Tambara system.

Proposition 17.5. Let (C,0,) be a Mackey system satisfying (15.1), and assume
C arises from some C, then (C,O¢,O,) becomes a Tambara system.

Proof. By Lemma 17.2, it suffices to show

(1) T, (A) € Ob(cSetc)
(2) 7(€) € Sete, 0. (I,(A),Y)
for any n € ¢Setc,0,(X,Y) and any (A 5 X) in Ob(S¢,0.)x)-
proof of (1)
This is equivalent to 7
Glyo) EC (Y(y,0) € I, (A)).
We have

G(y,ff)

= {g € G] g- (y70) =, (yva')}‘

= () {9€Gylgo(@) =0o(9z)}
z€n~1(y)

N U (€6, lgw@=an{ges,|olge) =a})

zen~1(y) a€€~1(n"1(y))

N U (LeanRea)),

z€n~1(y) a€€&~1(n=1(y))

where

Lyo:={9€Gy|go(z)=a},
R,o.:={9€Gy|o(9z) =a}.

So, it suffices to show

Lo, Rag €C (Yo € n71(y), Ya € £ (1 (y))).
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If L, . =0, then Lw e« € C. Otherwise we can take an element gy € L, ,, and
Lea = {9€G,|go(z) = goo(x)}
= Gy M go ~GU($) € C.

Ifo~*(a)=0,then R, , =0 € C. Otherwise, since o is injective, there exists a
unique element zo € ™! (y) such that o(z¢) = a. So we have

Reo={9€Gy| gz =m0}
By a similar argument for L, ,, we obtain Rz a € C.
proof of (2)
By Remark 15.8, it suffices to show that 7(£) has finite fibers. But since
(&) My) ={c|o:n" (y) = A map, Eoo =id-1(y}
for any y € Y, this follows from the fact that £ has finite fibers.

Tambara systems we mainly consider are of this type.

Example 17.6. If G is a topological group and (C, O,) is the natural (resp. open-
natural) Mackey system, then (C,Oc¢,O,) is a Tambara system. We call this
(C,0c¢,0,) the natural (resp. open-natural) Tambara system.

Let (C,04,0,) be a Tambara system and let £ € gSetc,o,(A4,X) and 7 €
Sete,0,(X,Y) be any elements. We construct a certain commutative diagram

from £ and 7, called an exponential diagram. Take w,, of the object (A 5 X ) in
Sc,0,|x, and take the fiber product of n and v(§).

A
E/
X v () X;;w(A)
"I O ln'
-~ w,(4
Y o @

= Sc o+’y w,, U—E}) (WW(A v(ﬁ) Y ’
there exists a morphism ¢ : X >< wn(A) - A correspondlng to idy, (4): Thus we
obtain a commutative diagram i m Sete
3 ¢

X A X xy wn(4)
(17.2) " o ln'
A
Y w(© — )

where 7' is the pull-back of n by v(&).
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Definition 17.7. A commutative diagram

¢ ' ¢

(17.3) nj o \n'

Y Y’

™

in aSete where 7, £ are morphisms in GSetc,0, and 1,7’ are in &Setc e is called an
exponential diagram if it is isomorphic to one of the diagrams (17.2) constructed
above. We write ‘

X Z X'
Y —Y!

to indicate that it is an exponential diagram.

Example 17.8. Let (C,04,0,) be a Tambara system where (C, 04 ) and (C, O,)
satisfy (15.1). The following commutative diagrams are exponential diagrams.

(i)

X 13 A id A
idt erp \id
X : , A
(i)
' idIIV (VIIidIIid)o(idIItwllid) :
XIX-—XIOIXIX XIOIXIOXIOX
V‘ €xp k lvuv
X = Xux

(iii) Let (C, O¢, O,) be a Tambara system as in Prdposition 17.5. The exponential
diagram constructed from V € gSetc,0. (X I X, X) and n € gSetc,0, (X,Y) is

’

v - Iy

X XIIX<=—Uuluuv
77‘. : erp ‘TUT’
Y 1% )

where

V = {0 |yeY, Ccn @y}
U = {(&0C)|zeX, Ccn'(n(x), zcC},
U = {(=0C)|zeX, Ccn'(n(z), z¢C}
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vy U=X, (z,0)w =z,

¥y o U =X, (2C)—a,

T U=V, (z,0)— (n(z),0),

™ 2 U=V, (20~ 0k),0),

c : V=Y, (uC) w—y.
These are in ¢Setc. Moreover, it can be easily checked that 7, 7' are morphisms in
&Sete,0,, and o is a morphism in gSetc o, -

Definition 17.9. In the notation of (iii) in Remark 17 .8, the commutative diagrams

’

x<1—vu x <2
V<77V V=77V

are called T-diagram and F-diagram of 7, respectively.

Now we define a (semi-)Tambara functor on a Mackey system. For the original
definition of a Tambara functor on a finite group, see [30].

Definition 17.10. Let (C, 04, O,) be a Tambara system. A semi-Tambara functor
S on (C,04,0,) is a function which assigns

- a semi-ring S(X) to each X € Ob(gSetc),

- a homomorphism of additive monoids &, : S(X) — S(Y) to each £ €
cSetc,0, (X,Y),

- a homomorphism of multiplicative monoids 7e : S(X) — S(Y) to each n €
GsetC,O. (Xv Y); -

- a semi-ring homomorphism ¢* : S(Y) — S(X) to each ¢ € Sete(X,Y),
in such a way that the following conditions are satisfied:

(i) For any direct sum decomposition X =[] aeaXx in GSetc, the natural map

ren : SCX) —» [[S(0)
‘ _AeA
is an isomorphism of sets, where i) : Xy — X (X € A) are the inclusions. S(0)
consists of a single element. ‘
(if)
, (€ o0)r =& o, (M one=my0mne, (¢"0¢)* =("o("™
for all composable pairs in gSetc,0, , Setc,0,, cSetc respectively, and
idy =id, = id* =id.
(iit) If
gl

XI%YI

X——Y

3
is a pull-back diagram in gSetc where & € Setc o, (X,Y), then (* o & = &, o (™.
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(iv) If

XY |

isa pull-back diagram in gSetc where n € Setc o, (X,Y), then (* one =7} o ¢'*.
(v) For any exponential diagram (17.3), ne 0 é&1 = 4 o7, o (*.
If all S(X) are rings, S is called a Tambara functor.

Remark 17.11. The conditions from (i) to (iv) can be written in terms of Mackey
functors as follows:

"(I) The morphisms &, 1, ¢* yield functors

- a covariant functor S, : Sete, o, — (Set),

- a covariant functor S, : cSet¢,0, — (Set), -

- a contravariant_functor S* : ;Sete — (Set).

(II) The pairs (S*,S+) and (S*,Se) are Mackey functors on (C,04) and (C,O,),
with respect to the additive and multiplicative structures of S(X) (X € Ob(gSetc)),
respectively. , :

Proposition 17.12. Let (C,O¢, O,) be a Tambara system as in Proposition 17.5,
and let S be a semi-Tambara functor on (C,Oc,0,). For any n € Setc,0,(X,Y),
consider the T- and F-diagrams as in Definition 17.9:

!

X<~ [y X~
Y<—77V Y<~—77V

Then we ﬁave
Ne(z +y) =04 ((Te 07" (2)) - (13 07" (y)))  (Yz,y € S(X)).

Proof. Let v; : X — XII X and ¢} : V < VIV be the inclusions into the i-th
components (i = 1,2). Since :

HI
X<~—Y XX~ —pyuuv

n exrp TUr’

Y Vo

is an exponential diagram, we have
NeoVyi=o010(TUT)eo(YII¥)* =01 0Veo (17 )e0 (yIv)"
By Remark 15.13, for any z,y € S(VX) we have
(15,3) 7 (@,9) = 14(2) + 124 () = 110(@) - 120 (y)-
So we have

Mo 0 Vi ((15,63) (2, 9)) =10 0 Vo (111 () + 124 (1) = na (& +),
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and

Veo (rII7)e o (YIY)*((:5,43) " (z,y))

= Veo (TII7)e 0 (vII7)*(t16(2) - t24(y))
Ve(t1e(Te 07 () - the (T4 0 7™ (1))
(Te 0™ (2)) * (T4 27" ()))-

Thus we obtain

Ne(@ +y) = 04 ((Te 07" (2)) - (14 07 (1))

Definition 17.13. Let (C,O4, O,) be a Tambara system, and S, T be two Tambara
functors (resp. semi-Tambara functors). A morphism ¢ from S to T is a collection
of semi-ring morphisms px : S(X) = T(X) (X € Ob(gSetc)), which commute
with all &, s, C*.

Tam 0, 0,) (resp. STamc o, 0,)) denotes the category of Tambara (resp.
semi-Tambara) functors and their morphisms. Tamc 0, 0,) is a full subcategory
of STaln(c,o_'_,o.).‘ :

Definition 17.14. Let (C,04,0,) be a Tambara system, where (C,0,) and
(C,0,) are Mackey systems satisfying (15.1). We define a category U = Uc 0, 0.)
as follows:

- Ob(U4) = Ob(sSetc)

- For any X,Y € Ob(lf), the set of morphisms U(X,Y) is

A, B € Ob(gSete), € €g Setc,o+ (B,Y) » N

< n 3
{(X <A — B = Y) I n (= GSetC,O. (A,B), C S GsetC(A,X) }/ equiv. ’

where (X falBS Y) and (X Satpt Y) are equivalent if and only if
there exists a pair of isomorphisms a: A —+ A’ and b : B — B’ such that £ = ¢ ob,
bon=n'0a,(=("oa.

Let [X £43BS Y] denote the equivalence class of (X £ABBSY Y).
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Composition law is defined by [Y +~ C = D — Z]o[X «+~ A—+ B = Y] =[X «+
A" 5 D - Z], with the morphisms appearing in the following diagram:

/\/
/\\/\D

Then U becomes in fact a category. This can be shown in the same way as in the
case of finite groups [30] We write X — Y to'indicate the morphism in /.

Z

For any X, Y € Ob(u ) we use the notation

- T = [X dx4d x4 Y] for any ¢ € gSete,0, (X,Y),

-N, =X X3y 8 V] for any 5 € cSetc.o, (X,Y),

“Re=[X £V 3y 4 ¥] for any ¢ € Sete(Y, X).

As follows, U has analogous properties as in the case of a finite group [30].
Remark 17.15. (c¢f. Proposition 7.2. in [30]) :

(i) Any morphism (X £43%BS Y] in U(X,Y) admits a decomposition
[X(—A—)B—-)Y] TeoNyoRe.

(ii) &+ T¢ defines a covariant functor T : Setc,o + — U. Similarly, we have a
covariant functor N : Setc, 0, = U and a contravariant functor R : Sete — U.
(iii) If
XI —_— YI

C’J o ‘c ;
X —Y
isa pull-back diagram in Setc where € 1s a morphism in cSetc o, , then ReoT, =

TEI o] RCI
If

X —>Y /

zs a pull-back dzagmm in Sete where n zs a morphism in GSetc ,0., then R¢ o N,
/ o) RCI
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(iv) If ’
X ¢ Z ; X'
7 O n
Y — Y’

is an exponential diagram, then N, o Té =T, 0Ny oR..

Proof. These can be easily checked directly from the definition of the composition
law. ' v ' ' O

Proposition 17.16. (cf. Ph)posz'tion 7.5. in [30])
(i) For any set of objects (Xx)rea inl,

(RiA X = XA))\EA

is their product in U, where X := H Xy and iy : Xy — X is the inclusion. 0 is

AEA
the terminal object in U. Thus, arbitrary products exist in .

(ii) Any X € Ob(U) has a structure of a semi-ring object of U with addition Ty,
additive unit T,,, multiplication Nv, multiplicative unit N,,.

(iii) For any & € cSetc,0, (X,Y), Ty preserves the additive structure on X and
Y.

For any n € cSetc,0, (X,Y), N, preserves the multiplicative structure on X and
Y. K .
For any ¢ € Setc(X,Y), R preserves the semi-ring structure on X and Y.

Proof. proof of (i) »
This is proved essentially in the same way as in the proof of Proposition 16.5 (i).
For any Y € Ob(Y/) and any set of morphisms

| A= A4ABB3X]: Y =Xy (\eA),
wedeﬁnef:Y—\be '

f=y EJ[AASIIB S X1,
A€A A€A :

where ( = U ¢, 7= I, € = [] €. Then, by virtue of Example 17.8 (i), we
AEA AEA AEA :

have

Riyof=fn (VA€A),
For any morphism f' = [V £ a i) B & X ] which satisfies

(17.4) | Riof =f (YA€A),
put
Ay = (€ on)THX)
B;\' — gl_l(XA)
G = (lag A=Y
n = 1'lay s A\ = By

& = By By = Xi
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Then we have R;, o f' = [V i AL B By 2 X’], and by (17.4), there exists a pair
of isomorphisms (ay, bx) such that o

BN
o Ay —— B,

N
Y O |ax O | O X,
/

I3}

>/

A ! ‘nt
AA 7, B)\
A

By taking the direct sum, we obtain isomorphisms
a = H ay: A= A
A€A
b = J[or:B— B,
A€A

which makes the following diagram commutative:

This means f = f'.
proof of (ii) ,

By Proposition 16.6, it suffices to show the distributive law. But this follows
from Remark 17.15 (iv), applied to the exponential diagram (ii) in Example 17.8.
proof of (iii) '

This immediately follows from Proposition 16.8. O

Theorem 17.17. (cf. Proposition 7.7. in [30])
There is an isomorphism of categories

STam(c,o%@.) é) [U, (Set)]o.

Proof. Objects S € Ob(STam(c 0, 0,)) and £ € Ob([U, (Set)]o) correspond to
each other by :

S(X
&+

E(X) (VX € Ob(sSete) = Ob(W))
E(Te) (V€€ GSete,o, (X,Y))
E(Ny)  (Vn € Sete,0,(X,Y))
¢ =S(R) (V€ Sete(X,Y)).
For any semi-Tambara functors Sq, Sz and corresponding ¥, ¥ in [U, (Set)]o,
their morphisms ¢ = (px : S1(X) = S2(X))xecob(ssete) it STamc 0, 0,) and

¢ = (px : T1(X) = Ba(X)) xecobw) in [U, (Set)]o correspond in the obvious way.
Details can be checked by using (the proof of) Theorem 16.12. O

Il

By this theorem, we identify semi-Tambara functors and their morphisms with
the objects and morphisms in [/, (Set)]o.
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18. FrROM SEMI-TAMBARA FUNCTORS TO TAMBARA FUNCTORS

Throughout this section, let (C, O¢,O,) be a Tambara system as in Proposition
17.5. As in the case of a finite group [30], we construct a Tambara functor vS from
a semi-Tambara functor S.

We first recall the definition and some properties of algebraic maps from 18]

Definition 18.1. (section 5.6. in [8]) Let A be an additive monoid, M be an
~abelian group, and ¢ : A = M be a map. For any n elements aj,as, - ,a, € 4, a
map D(a; ay,.. ,an)P : A = M is defined by

Diayyan®@ =3 D0 (D" Fpla+a, +-o +ai,)).

k=0 1<i1 << <n

When n = 1, we abbreviate D(,)¢ to Dyp. Remark that D,p(z) = ¢(z+a) —¢(z).
The map ¢ is said to be algebraic if elther ¢ = 0 or there exists a positive integer
n such that

Doy, yam)p =0 (Val, e, an € A).
For any algebraic map ¢ : A — M, its degree is defined by
degp := max{n € Nx¢ | 3a1,-- ,an € A such that D, ... o) % 0}
if p#0,anddegp:=-1if=0.

By this definition, ¢ is algebraic of degree < n if and only if D,y is algebraic, of
degree < n — 1 for all a € A. .

Remark 18.2. (i) Dy, ... q,)¢ does not depend on the order of ay,- - ,an.

(it) o is algebraic of degree < 0 if and only if ¢ is constant.

(iii)  is algebraic of degree < 1 if and only if ¢ is a sum of a constant map and
an additive homomorphism. '

Especially, an additive homomorphism is an algebraic map of degree < 1.

Proposition 18.3. (Lemma 5.6.15 in [8]) Let ¢ : A — M be an algebraic map
from an additive monoid A to an abelian group M. Let k4 : A — KoA be the group
completion of A. Then there ezists a unique extension @ : KA — M of ¢ as an
algebraic map, i.e. a unique algebraic map @ such that o ks = .

A—2 > m

\° /4
ICA <P
KyA

Moreover this ¢ satisfies deg @ = deg .
From this proposition and Lemma 5.6.13 in [8], we have the following:

"Remark 18.4. Let A be an additive monoid, and M, N be abelian groups. If
p:A—= Mandp : M — N are algebraic maps of degree m and n respectwely,
then oy : A — N becomes algebraic of degree < mn.

For the later use, we want to use the word ‘algebraic map’ also in the case where
the codomain is an additive monoid. So, we make the following definition.
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Definition 18.5. Let ¢ : A — B be a map between additive monoids A and B.
We say ¢ is algebraic of degree n if kg o ¢ : A — KB is algebraic of degree n,
where kg : B — KB is the group completion map.

Remark 18.6. Let A be a semi-ring. For any_element a € A, the multiplication
map by a

A A
w w
A ’ ax

is algebraic of degree < 1, with respect to the additive structure of A.
Proof. This follows from Remark 18.2 (iii). O

Proposition 18.7. Let ¢ : A — B be an algebraic map between additive monoids A
and B. Then there exists a umque extension (,0 KoA — K¢B of ¢ as an algebraic
map, i.e. a unique algebraic map @ such that @ o KA = KB O .

A—* B

NA[ " o JNB
K()A —¢> KoB
Moreover this ¢ satisfies deg @ = deg .

—

Proof. By Proposition 18.3, there exists a unique algebraic map (kg o ) : KoA —
KoB such that (kg o @) ok = kB o (.

_mmo
\ /ﬂsw)
If we abbreviate (kp o ¢) to, @, then this & satisfies the desired conditions. [

Remark 18.8. Let S be a semi-Tambara functor on (C,O¢, O,).
(i) For any £ € Sete,0, (X,Y), &4 : S(X) — S(Y) has an extension

£r : KoS(X) = KoS(Y)

as an algebraic map, whicﬁ is also an additive homomorphism.
(ii) For any ¢ € GSetc(X,Y), ¢*: S(Y) = S(X) has an estension

C*: KoS(Y) — KoS(X)
as an algebraic map, which is also a semi-ring homomorphism.

Proof. Indeed, the natural extensions &, = K, (&4+) and E_; = Ko(C*) give the
desired maps, where K, denotes the functor from the category of semi-rings to the
category of commutative rings, defined by the completion of semi-rings. O

We want to extend the maps 1, (7 € cSetc,0, (X,Y)).
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Remark 18.9. Let A,B,C be additive monoids. Ifp:A— Bandy: B —>C
are algebraic maps of degree m and n respectively, then ¢ o ¢ : A — C becomes
algebraic of degree < mn.

Proof. Consider the diagram

A B c
RB‘l O jlw
K()B —$> K()C ’

where 7,7; : KgB — KoC is the unique extension of ¢ as an algebraic map, and
satisfies deg ¢ = deg®) = n. Since by definition xp o ¢ is algebraic of degree < m,
the composition ¥ o (/<a B © ) becomes algebraic of degree < mn by Remark 18.4.

Thus kg o (Yo ) = ’(/JOFLBOQOIS algebralc of degree < mn, ie. Ypop: A— Cis
algebraic of degree < mn. d

Proposition 18.10. Let A, B be semi-rings, let ¢ : A — B be an algebraic map
with respect to the additive structures of A and B, and let § : KgA — KB denote
the unique extension of ¢ as an algebraic map. If © is moreover a multiplicative
homomorphism, then @ also becomes multiplicative. -

Proof. For any a € KyA, consider the maps

Po: K)A——— > KoB
w w
& ————> (o)

7 Ko)A——— > KoB
W W
& G()3(a).

These are algebraic by Remark 18.6 and Remark 18.9. If @ = a € A, then each of
»q and @° is an extension as an algebraic map of

A———— > KB
w w .
& ——— ¢(az) = p(a)p(2) ,

which is also algebraic. By the uniqueness of the extension, we obtain @, = @%, i.e.
(18.1) Plaz) = P(a)g(z) (Va € A,z € KoA)
Then for any a € KyA, each of the maps4
Pa,9* : KgA — KoB
is an extension as an algebraic map of
A KoB
w

e Blae) = EEEE)
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which is also algebraic. Thus by the uniqueness, we obtain §* = @,, i.e.
¢laz) = p(a)p(z) (Va,z € KoA).
This means @ is multiplicative. O

Let f € gSet¢(X,Y) be a morphism with finite fibers and assume Y consists of
one orbit. We define the degree of f by deg f = #f~1(y). Here y is a point of ¥,
and deg f does not depend on the choice of y € Y.

Proposition 18.11. Let S be a Tambara functor on (C,0Oc,O,), and let XY €
Ob(sSetc), n €gSete,0.(X,Y). IfY consists of one orbit, then o : S(X)—= S(Y)
is algebraic, and satisfies deg(n.) < deg(n).

U

Proof. Let
X

Y<~—7"V

%

be the T-diagram of 7 as in Definition 17.9. Put Vj, := {(y,C) eV |#C =k} (ke
N>o). If we put degn = n, we have V;, =0 (k > n), and

v= ][] %
0<k<n

Thus if ¢ : Vi — V denotes the inclusion, we have an isomorphism

(18.2) C (Doskzn 1S S D STA).
0<k<n ‘
Similarly, put Uy := {(z,C) | jiC’ = k} and let ¢} : Uy < U be the inclusion
(0<k<n).
00ty :V, =Y is an isomorphism, and the inverse is
pn : Y - Vn
w w

Yy——(y,n () .

Put p:=tpo0pp:Y = Vand x :=7e07* : S(X) = S(V). Let xx denote the k-fh
component of x: ‘ :

Xk :=tpox:S(X)—=>S(Vk) (0<Ek<n).
Lemma 18.12. 5, = p* o x = p}, 0 Xn.
Proof. (Proof of Lemma 18.12) Put 7, := 7|y, : Up = V,. Since

U X
| Tn aIld J
v Y

-<—

-

<—Un

o

<—
OOLy n

<<

3
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are the pull-back diagrams, we have
Mo = (000n) " Tne(y06)" = plne(y017,)"
= pninTeY” = prinX
= PnXn =PX-
O
By this lemma, to show that 7, is algebraic of degreé < n, it suffices to show X,

is algebraic of degree < n. (Remark that p}, is algebraic of degree < 1.) In fact, w
show the following by induction: '

Lemma 18.13. x; is algebraic of degree < k (0 < Vk < n).

Since
U<——90
1ol
is a pull-back diagram, we have
(18.3) xo(z) = 767" () =1 (Vz € S(X)).

Assume ¥ is algebraic of degree < s (Vs < k—1). The T- and F-diagrams of T are
naturally isomorphic to :

U<L U1(2) U<L U2(2)
T\ o) ll’l and T\ O l'fz
respectively, where
VP = {(y,01,0) |y €Y, 01,0, C(y), CL1NC = 0}
U = {(z,C1,Cy) | (n(x),C1,Cs) € VD, z e Oy}
UP = {(z,C1,C) | (n(x),C1,Co) €V, z e Cy}
vi(z,C1,C2) = (n(z),C1,C2)  (i=1,2)
Z,‘(.’E, Cl,Cz) = (SL’, 01 HCQ) (Z = 1,2)
wy,C1,Cs) = (y,C1I1Cy).

By Proposition 17.12, we have
To(u1 + u2) = py (V11 (u1) - v2el3(u2))  (Vur,us € S(U)).
If we put
‘ o VO o, Wi(y,cl,@) =(y,C) (i=12)
@ UP 5 U, wi(e,01,0) = (2,C)  (i=1,2),
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then
U< v®

rl o lw
V<7rVv®
is a pull-back diagram for each ¢ = 1,2. So for any z € S(X), we have
Viel; (v'(2)) = view; (v*(2)) = mi7e7*(z) = mix(x)  (i=1,2).
So, we obtain '

x(z +a) =7 (v*(z) +7"(a)) = pi(nix(z) - m3x(a))  (Vz,a0 € S(X)).
For any integers 0 < s,t <k with s + ¢t = k, put

VR = {5,01,6) eV |10y =5, 10, = 1}
Hsit  : Vs(,%) =W, (y,C1,C2) — (y,C1 11 C,)
Lft) : Vs(i) — V@ inclusion.
Then since
- U st
H Vs(i) s+t=k Vi
s+t=k
U Lgt) a Lk-
s+t=k
V@ m %4

is a pull-back diagram, we have

37 (ws)+ () (nix(2) - w3 x(a))

s+t=k

3 (o) (1,00) X6 (@) - (m2,0.0)"x0(@)).

s+t=k

tebt (mix () - ﬂé‘x(a))

Here 7y s and 75 5 ; are defined by
Tl,s,t - Vs(i) — Vts, (ya Cla 02) — (y, Cl)
- 2,5t - Vs(i) -V, (ya C1,C3) = (ya02)'

Vs(’%) T1,s,t I/s Vs(’%) T2,s,t V,t
Lfg l O lts and Lg?t) l] O lbt
VO ——=V Ve ——V

Thus we obtain

k@4 0) = 3 (o) (71,00) X6(2) - (12,00)" X (a).
. s+t=~k :
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Since 7y k,0 = pr,0 is an isomorphism, we have

(1,0)+ ((71,1,0) Xk () - (T2,8,0)* X0 (a))

(1;—.3) (“k70)+((ﬂk,o)*xk(.’n) . 1)

| = (pr,0)+(pr0)* Xk( ) brorisag Xk (@):
So for any a € S(X) we have
Daxr(z) = xw(z+a) - xx(z)
k—1
= Z(ﬂs,k—s)+((WI,S,k,—S)*Xs(l') “Ak,s),
s=0

where

Apys 1= (2,0 0-5)"Xk—s(a) € S(VE_,)
is a constant independent of = for each 0 < s < k. By assumptlon Xs is algebraic
of degree < s (0 <Vs <k —1). So D,xr becomes algebraic of degree < k — 1, i.e.
Xk is algebraic of degree < k. O

Corollary 18.14. For any X,Y € Ob(Setc) and any n € Sete,0,(X,Y), there
exists a unique ertension M, : KOS(X) — KoS(Y) of ne such that

(i) for any orbit Y inY, j% on is the extenswn of j% ome as an algebraic map,
where jy : Yy ‘—) Y is the inclusion.

Ko(S(X)) B Ko(S(Y)) 3 Ko(S(13))
(ii) e is @ homomorphism of multiplicative monoids.

Proof. Let Y = [],cp Y be the orbit decomposition and jy : Yy = Y (A € A)
be the inclusions. For any A € A, since 7,5 := j} o7, is algebra.lc by Proposition
18.11 (via the Mackey condition), there exists a unique extension 7s  : KoS(X) —
KyS(Y)) of ne,x as an algebralc map. Moreover, since 7, is a homomorphism of
multiplicative monoids, so is 7s x

By the isomorphism

(Eren : KoS(Y) S [] KoS(Va) = Ko( [T 5(¥2))
AEA AEA

we define 7, := (j});elA © (e x)A€A-

KyS(X) .
e W/\GA
O
KoS(Y) _ H KoS(Ya)
(4%)ren AEA

This satisfies (i) and (ii), and 7, is unique by the uniqueness of 7. » (A€ A). O

Remark that for any finite subset A" C A, if we put Y’ := [[,c,, Ya C Y, then
the homomorphism of multiplicative monoids j™* one : S(X) — S (Y’ ) is algebralc,
“where j':Y' Y is the inclusion. This follows from the fact

(1) (5% )xen = S(Y") 3 H,\eA' S(Yy), (here, i Yy = Y')
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(2) j5 0 j"™ ome = j} o ns is algebraic for any A € A, and

(3) finite product of algebraic maps is algebraic. ,

By the same reason, j'* o7, : KoS(X) — KpS(Y') is also algebraic, and thus we
have the following:

Lemma 18.15. Let e be the map constructed in Corollary 18.14. For anyY' — Y
as above, j'* ony : KoS(X) — KoS(Y') is the unique eztension of j'* on, as an
algebraic map. o

Theorem 18.16. Let S be a semi-Tqmbam functor on (C;Oc, O,).

With (vS)(X) = KoS(X) and a, Ne, (* constructed above, vS becomes a Tam-
bara functor. : ‘

Proof. Condition (i), (ii), (iil) in Definition 17.10 concerning EJ: , (* are satisfied by
Remark 15.15. So it suffices to show the following:
(A) For any n € &Sete,o, (X,Y) and w € Setc,0, (Y, Z), we have
(wom)e =weors and (idx)e = idg,(s(x))-
(B) If

X —T ey

] o |

XY

is a pull-back diagram in gSet¢ where 7 is a morphism in Setc o, , then 5‘ 01 =

Mo © ¢"*.
(©) It
| Xzt x'
Y . Y

™

is an exponential diagram, then 7, o E.; =70 ﬁ;, o (*.
proof of (A) . :
By the direct product decomposition of S(Z), it suffices to show for any orbit
L:2'— Z, ; '
Fo(womn)e={Fo(@s o).
Remark that £* o (won)e = £* 0 (we 07, is algebraic by Proposition 18.11 (via the
Mackey condition). If we take the pull-back of w and £

Y"L)Z'

Y—7>2,
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then (since w € Sete,0, (Y, Z), ) Y' = w™1(Z') consists of finite number of orbits.
By the definition of &,, we have

2
/

(18.4) 0 0l = uwl o £,
KS(X) —
KoS(Y) — KoS(2)
M
KoS(Y") —> KoS(Z')

By Lemma 18.15, f*o ((;_0\_’!]/). is the extension of £* o (won).js an algebraic map.
On the other hand, by Lemma 18.15 (and Proposition 18.11), £* o7, and w), are the

extensions of £'*on, and w), as algebraic maps, and thus w/, 0(1?;; o7s) (1s:4) 0% 0y ome

is the extension of £* o w, o 7ms as an algebraic map. So, by the uniqueness of the
extension, we obtain - '

e~

0o (womn)e = £ 0(53:.0770)‘-

—~—

(id X). = idg,(s(x)) can be shown in the same way, or dlrectly from the deﬁmtlon

of (1dX)
proof of (B) ‘
It suffices to show for any orbit jg : Yg < Y7,

o ((* o) = jir o (7 o (%)

‘Remark that jg" o (C*ome) = jo* o (1 0(") is algebraic by Proposition 18.11. There is
an orbit jo : Yo < Y containing the image of Yy by (. We put {p := ¢ |y0: Yy - Y
and take the fiber product of ' and j§:

!
ul
Xy —" yy

7, 0/ D /]0

X —Y" |0
" O
¢l O ¢ Y

S

X—H—>Y

Then ]0 ol = 770. o zo by (18. 4) Since Yy consists of one orbit, the map 7;('; is
algebraic. Thus j *onlo g'* =1jq © i{)* o ¢'* is algebraic. On the other hand, since
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.70 o1, is algebraic by Lemma 18.15, the map j *o C * 01y = §0 ° ]0 o1, is algebraic.

S(X%) ————>K0

/ ° o
s |G

KoS(X") —>KOS v

”’.
B KOS(YO)
& ¢ /
- ie

Thus, each of] OC*on. and jO omlo C’* is the extension of j§* o(*on. = joronlo(™*

as an algebraic map, and we obtain j§* (g *one) = jot (77. o g’*) by the uniqueness
of the extension.
proof of (C)

This can be shown in the same way as (A) and (B). For any orbit j : Yy = Y,
if we pull it back by 7

Y<1T—Y'
J O 7'
7
0= o Y'O’

then Yy consists of finite number of orbits, and j* o Ty o o C* = 7ro+ 0j™o n, ° C*
becomes algebralc since ]'* ° n, is algebraic by Lemma, 18.15. Thus j* o7, o §+ and
7* oy onlo C* are extensions of j* one 0 &4 = j* oy onl o (* as algebraic maps,
and must agree by the uniqueness of the extension. o

Thus we obtained a Tambara functor yS. By the construction of 7S, the set
of completion maps k = (kx : S(X) = KoS(X))xe0b(ssetc) gives a morphism of
semi-Tambara functors k : S — vS.

Proposition 18.17. Let S be a semi- Tambara functor and T be a Tambara functor.
For any morphism ¢ : S — T of semi-Tambara functors, there ezists a unique
morphism of Tambara functors @ : vS — T such that o k = .

Ny

Proof. @ is obviously unique, since the morphism of rings @x : KoS(X) — T(X)
satisfying @x o kx = @x is unique for each X € Ob(gSetc), i.e. Px = Ko(gox)
So it suffices to show that (Px)xcob(cSete) 18 compatlble with all §+,n.,c* Since

(SOX)XGOb(GSetc) is indeed compatible with §+ = Ko(£+) and C* Ko(¢™), it
remains to show the compatibility with 7,. But this immediately follows from the
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fact that for each orbit j : V' < Y, the following diagram is commutative:

-k

S(X) — = S(Y) —L—= S(Y")

RXJ( O vlny/

KoS(X) —=> KoS(Y) —— K,S(Y")
\\\\\*-~__fi__,—/”//)r

J*one

d

By virtue of Theorem 18.16 and Proposition 18.17, with the same proof as in the
case of a finite group [30], we can show the following theorem. By Theorem 17.17, we
identify STamc o, o,) with [, (Set)]o. For example, for any X € Ob(U/), U(X, -)
is regarded as a semi-Tambara functor Remark also that 1f X € Ob([U, (Set)]o) is
ring-valued, ¥ can be regarded as a Tambara functor.

Theorem 18.18. There exists a unique pair (V, k) of a category V with arbitrary
products and a functor k : U — V such that the following conditions are satisfied.

(i) ObU) = Ob(V).

(it) V(X,Y) = Kol(X,Y), where Ky denotes the Grothendieck ring of the
semi-ring U(X,Y"), and any object in V is a ring object.

(i) & s identity on objects, and for any X,Y € Ob(U), the component of x

KX,y :Zl()(,)}) — 1}()(,1f)

is the completion map.
(iv) & preserves arbitrary products.

Proof. Put Ob(V) := Ob(U). For any X € Ob(V), define a Tambara functor 7%
by

TX = y(U(X, ).

(Remark that the Hom-functor & (X, —) is a semi-Tambara functor.) As already
shown, there exists a morphism of semi-Tambara functors

UX,-) -1

which satlsﬁes the umversahty of Propos1t10n 18.17. We define the morphism of V
by

V(X,Y) =T*(Y) = KoU(X,Y)
for any X,Y € Ob(V). For each a € V(X,Y), by Yoneda’s lemma
TX(Y) = STam(U(Y, -),TY),

there exists a corresponding morphism o € STam(U(Y,—),T%). This of is the
unique morphism satisfying

(18.5)  dl(dy) = a
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By Proposition 18.17, there exists a unique morphism of Tambara functors R
TY — TX such that aff o kY = of.

— ___—> TX
(18.6) \ /

We define the composition law

V(X,Y)xV(Y,Z2) —=V(X,2Z)
w ' w
(@, ) ——>foa
by foa:= &Ez(ﬂ). The identity morphism in V(X, X) is ¥ (idx).

;. Associativity of the composition
For any a € V(X,Y) and 8 € V(Y, Z), there exists a commutative diagram

Oéhz

TY(Z) TX(2)

gl O =

STém( Uz,-), 1Y) —————— STam(U(Z, -), TX)

alio—

where the vertical arrows are Yoneda isomorphisms. So we have

af o B = (a}(B)) : U(Z, ) - TX.
Thus, for any v € V(Z, W),

o (Boa)=(Boa)y(y) = (ah2(8))iy (1) = (aF o )y (7)
while

(yoB)oa=alw(yoB) = alw(By ()

Since af o ﬁh makes the following diagram commutativej

ah
_ o oﬁ TX

\ ahoﬁh

it must agree with (vah o 3%) by the uniqueness. Thus we obtain

——~——

o(Boa)=(akof)y(7) = abw (B (1) = (Yo B)oa.
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Unit law

For any a € V(X,Y), we have

Y/ = AE Yi = h i =
ky (idy) o a = alfy (ky (idy)) (15.6) oy (idy) (18.5) a

On the other hand, by the uniqueness of the morphism satisfying (18.5), we have
(k¥ (idx))" = kX, Since kX = idpx, it follows that

ao k¥ (idx) = k¥ (idx)f(a) = a.
Thus V becomes in fact a category.
Functor x : «{ — V is defined by
K(X) = X ’
kxy = Ky :UX,Y)=VX,Y)=TX(Y) (VX,Y € Obl)).

Remark that kx y is the completion map of the semi-ring &/(X,Y). We show that
k is in fact a functor. Obviously k preserves identities. So, it remains to show

"k(Boa)=k(B)ok(a) (VaelU(X,Y),VBelU(Y,Z)).

Since % : U(X,—) — TX is a natural transformation, we have

UX,Y) fo- ~U(X, Z)
n{fJ ‘O ln‘g
TX(Y) — TX(2).

By the naturality of the Yoneda isomorphisms, we have

(v¥ (@)}

UY,Y) TX(Y)

ﬁo—l O lTx(,ﬁ‘)

Uy, z)- . TX(7).
¥.2) (5¥ (@)} 2)

—~——

By the definition of (k3 ()), we have

(% (@)}

U\, 2) —22 1X(z)
.
wy YaCION

T¥(2)
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So, we have

KB on(a) = RE(B)onE(a) = (KF (@), (k% (8)
(15 ()% (8) = (k5 (« »%(ﬁoldy)
= T ()i dy) = TXO) 0 @)

= kx(Boa)=k(Boa). _
Thus & : i/ — V is in fact a functor. Remark that this (V, k) satisfies conditions
(i),(ii),(iii) in the statement of the Theorem. To show (iv), let

; (px : X = Xa)xea
be a product in ¢. This is equivalent to the fact that
(px© —aea U4, X) = T U4 X))
AEA
is an isomorphism for each A € Ob(i). Since we have a commutative diagram

U(A, X) ik U(A, X))
K/A,)\{l O lNA,XA
V(4,X) ——V(4, X))

. N(pA)O—

for each A € A, thus we have

UA, X) — PR T U4, X))

7 . . | completion v
RA,xl O HAeA(fA,XAN

V(A’X) H)\GA V(A’ X)\) —=>K0(HAEAU(A7X))

(re(pr)o—)rea ,

Thus .
| (k(pr) o —)aea : V(4,X) = [ V(4, X))

) A€EA

is an isomorphism, which means that

(£(px) : X = Xd)aen
is a product in V. Thus (V, k) satisfies all of the conditions in the statement of the
theorem. If any other (V', k') satisfies these conditions, then by Propos1t10n 18.17,
for each X € Ob(V) there exists a - unique isomorphism /X TX 25y X, &' (=)
which satisfies

X 1 X

KX o kX =k

UK, -) —> V' (X, K(-))

O
X
. P
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By using (the uniqueness of) the universality, we can show that the following
diagram is commutative for any o € V(X’, X) and Y € Ob(V):

VEX,Y) —2 (XY
VI(X,Y) —— VI(X'Y)
—onfx,’x(a)

(See also the proof of Claim 18.21.) From this, we can see that ;’;; (X,Y € Ob(V))

constitute an isomorphism KV SV , compatible with x and &'. ‘ O

In the proof of Theorem 18.18, the following was shown:

‘Remark 18.19. For any set of objects (X»)aea in V, their productr in'V can be
written in the form

(5(px) : X = Xi)xens
where
(px: X = Xa)rea
is the product of (Xy)xea inU.
Theorem 18.20. Let (C,0¢,0,) be a Tambara system as in Proposition 17.5.
There is an equivalence of categories

Tamc,0.,0.) — [V (Set)]o,

compatible with the isomorphism of Theorem 17.17, i.e. the following diagram is
- commutative;

[V, (Set)]o ~——— Tamc,0,0.)
» L l : O fully faithful
[U, (Set)]o STamc,0.,0.)

where k! denotes the pull-back by k.

Proof. Let 7 : [U, (Set)]o = ST&HI(c‘oc o.) be the isomorphism in Theorem 17.17.
As in Theorem 16.14, there exists a functor 7 : [V, (Set)]o — Tamc, 0c,0.); which
makes the following diagram commutative:

[V, (Set)]o T Tam 0,,0.)

]

[U, (Set)]o

C

fully faithful

K]

STam(c’oc’o.)

In the following, we show T is an equivalence. We use the notation in the proof of
Theorem 18.18.
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To show 7 is fully faithful, it suffices to show & is fully faithful. So for each
Y1,Ys € Ob([V, (Set)]o), we show the map

[V, (Set)]g(Zl, 22) —_> [L{, (Set)]o(n”EI, K/ﬁEQ)
(18.7) w w
= (px)xeobw) —> ¢ = (Pr(x)) xcObW)

is bijective. Injectivity is trivial. To ’show the surjectivity, take an element ¢ €
[U, (Set)]o(k*31, £¥53). Remark that
EiX’y : V(X, Y) — (Set)(E,(X), E,(Y)) (Z = 1,2)

is a ring homomorphism (cf. Proposition 16.10).
~ Forany a € V(X,Y), since V(X,Y) = Ko (X,Y), there are a,b € U(X,Y) such
that a = k¥ (a) — k3 (b). Thus we have
So(@)ovpx = (Z2(k§(a)) — Da(wF () 0 ¥x
= K'Ty(a) ohx — KTy (b) 0 Yhx
= Yy ok'E1(a) — Yy o k*T1(b)
~ = ¢y o (Z1(a)),
which means ¢ € [V, (Set)]o(21, Z2). Thus (18.7) is bijective, and x* becomes fully
faithful.

To show that T is essentially surjective, for any T' € Ob(Tam(c,0,,0,)), take the
corresponding object ¥ € Ob([U/, (Set)]o) such that T = 7(X). It suffices to show
the existence of ¥ € Ob([V, (Set)]o) such that k*X = X. For each X € Ob(l), we
have a morphism of semi-Tambara functors

| % U, =) = (Set) (B(X), (=)

induced from X. Remark that (Set)(X(X),¥(—)) is a Tambara functor (under the
identification by 7). So by Proposition 18.17, we obtain a unique morphism of
Tambara functors o

X TX — (Set)(2(X), B(-))
such that

) (Set)(2(X), 2(-))
(18.8) \ /
K »X .

Claim 18.21. For any a € V(X,Y) = TX(Y),

UK, =) —— o (Set)(S(X
O
X
| x

TY = T
(18.9) gvl o) lg?
| (Set)(2(Y), Z(-)) o (Set)(2(X), 2(-))

is commutative.



89

Proof. Since
‘ o —
U(Y, =) 5 T 5 (Set) (B(X), B(-))
are morphisms in [, (Set)]o, for any a € U(Y, Z) we have a commutative diagram
b —

Xy

UY,Y) —— s TX(Y) —— > (Set) (S(X), (V)
ao— o - T¥ (a)l O lz(a)o_

Uy, z) ———=1%(2) — = (Set)(2(X), %(2)) .

In particular, we have
B(a)o¥¥y(a) = (a) o T¥y (o (idy))
X4 (a))

= $X,(afiz(xY(a)).

Thus the following diagram in [U/, (Set)]o is commutative:

—oZX y ()

UY, =) —Z> (Set) (S(Y), B(=)) (Set) (Z(X), =(-))

7Y —————TX
ol

Since £Y o k¥ = Y, we obtain the commutativity of (18.9) by the universality of
kY. : O

By Claim 18.21, we can show easily
SV 4(8) 0 XXy (a) = 52X z(Boa) (Va € V(X,Y),V8 € V(Y,Z2))
(and ©X y (kX (idx)) =id by definition).
Thus if we define & by

2(X) = ¥$(X) (VX € Ob(V))
S(a) = XXy(@) (aeV(X,Y)),
then 3 becomes a functor from V to (Set). By (18.8), ¥ satisfies
» Yok=2X.

In particular, by Remjmrk 18.19 (and the fact that ¥ preserves arbitrary prod-
ucts), it follows that ¥ also preserves arbitrary products. Thus we obtain ¥ €
Ob([V, (Set)]o) satisfying k*% = ¥. This is what we wanted to show. O

As a corollary of Theorem 18.20, there exists a Tambara functor Q¢ o, 0,) on
any Tambara system (C, O¢, O,) as in Proposition 17.5, corresponding to the Hom-
functor ’ '

V(0,-) € [V, (Set)]o-
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For any X € Ob(V) = Ob(Set¢), we have
Qe,00,00)(X) = V(0,X) = Kold (0, X).

Since
U@, x)
= {003 B X)|BeOb(Sete), £ € Set,0, (B, X)}/ ~ -
= cZ(GSetc,oc/X),

we obtain Q(aoc’o.)(X) = KO((;SetC,Oc /X)

Definition 18.22. We call Q¢ o,,0,) the Burnside Tambara functor on the Tam-
bara system (C, Oc¢, O,).

Remark 18.23. Definition 18.22 gives a Tambara functor structure on Burnside
functor Q¢ 0.) defined in Definition 16.16.

For the rest of this section, we show that Elliott’s functor Vs becomes a Tam-
bara functor on a profinite group G. According to Elliott, an almost finite G-set is
a discrete G-space which satisfies

pu(X) < oo

for any open subgroup U < G, where ¢y (X) is defined by ¢y (X) = #(XY) = t{a €
X |u-a=a (Yu € U)}. For any multiplicative monoid M, an M-valued G-set is
an almost finite G-set with a map xx : X — M. M-valued G-sets form a category
M-Almg with finite products and finite sums as defined in [10], whose Grothendieck
category is denoted by V(G). If M = 0, then V(G) agrees with the completed
Burnside ring defined in [8]. Since these rings have Mackey-functorial properties,
we can expect them to be Tambara functors. Indeed, we g1ve a Tambara functor
structure to Vs in the following.

Let (C,Oc,O,) be the open-natural Tambara system on G (see Example 17.6).
Remark that in this case, each of C(H), Oc(H), O,(H) is simply the set of all open
subgroups of H, for each H € C. For any p € cSetc(A, X), we say p has almost
finite fibers when p satisfies

eu(p~'(z)) < oo (Vz € X,VU € C(G,)).

Morphisms A £ X with almost finite fibers form a full subcategory Alm/X of
cSetc/X. It can be easily seen that, for each X, Alm/X has finite products (i.e.
fiber products over X) and finite sums. '

For any multiplicative monoid M, a category M-Alm/X is defined as follows:

- An object of M-Alm/X is a pair (A 2 X,x4), where (4 & X) is an object in
Ob(Alm/X) and x4 : A — M is a map of sets. ,
- A morphism from (4 % X,x4) to (B 3 X, xp) is a morphism f: (4 5 X) —
(B X) in Alm/X which satisfies x5 o f = x4.
Then M-Alm/X also has finite products and finite sums, defined by
(A3 X,xa) x (B3 X,xB) = (AxxB—X,xa"x8),
(A5 X, x)IIBS X,xg) = (AlIB = X,xaUxa),
where (x4 - xB)(a,b) := x(a) - x(b) for any (a,b) € A xx B.
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Remark that when X is a transitive G-set X = G /H (H € C), then M-Alm/X is A
equivalent to the category M-Almy of M-valued H-sets. Thus we have V M(H ) =
Ko(M-Alm/(G/H)). So, we define abbreviately

Vu(X) := Ko(M-Alm/X)
for any X € Ob(gSetc).
Theorem 18.24. V) is a Tambara functor on (C,O¢, O,).

Proof. By Theorem 18.16, it suffices to show that the correspondence X = S(X):=
cf(M-Alm/X) is a semi-Tambara functor.

First, we describe the structure maps of S. Let (4 & X,x4) be an object in
M-Alm/X, and (B 3 Y, xp) be an object in M-Alm/Y .
- For any ¢ € gSete,0.(X,Y), deﬁne & M-Alm/X — M-Alm/Y by &, (4 =
X XA) (A _;) Y» XA)
- For any n € gSetco,(X,Y), define n, : M-Alm/X — M-Alm/Y by n.(4A 5
X, x4) = (II,(A) ":ﬁgp) Y, X(A,n))a where x4,y is defined by

Xam@0) = [[ xalo@)
- eeni(y)

- For any ( € Setc(X,Y), define ¢* : M-Alm/Y — M-Alm/X by ¢*(B 3
Y)XB) = (B/ i)‘){’XB ° CI): where '

g —

1
is a pull-back diagram.
These are well-defined, i.e., we have
, (AFY,xa) € Ob(M-Alm/Y),
(II,(A) 3 Y, x,n) € Ob(M-Alm/Y),
(B'% X,xgo(') € Ob(M-Alm/X),

for each &,7,( as above. :
We only show (II,(4) 5 Y ) € Ob(Alm/Y). The rest can be shown easily. For
any y €Y, put 1( = {z1, -+ ,7n}. Then, 7~1(y) is bijective to [] p~'(z;)

N=—70W

é

1<i<n
by the map
~1
7~ (y) 1<1;[<np (z:)
w “Tw
. o (o(z1),---0(zn)).
By this bijection, we can give a Gy-actionon [[ p~'(z;). When g € G, (< Gy), -

1<i<n
this action satisfies ‘
(9‘(01,"' ,%))i =g-a;
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for any (a1, --,a,) € [] p~'(x;), where the left hand side denotes the i-th
1<i<n
component of g - (a1, - ,a,). Thus, under this bijection, we have
T )Y Cp7Han) x o x pTH(@im1) X p7H @)Y X p (@ig) X 0 X pTH (@)

for any U € C(Gy,).
Thus for any V' € C(Gy), we have

W—l(y)v g ﬂ p—l(ml) X oo X 1)_1(z.z)‘/vﬁ(;'z1 X oo X p—l(xn)
. - 1<ikn

H p 1 x VﬁGwz
1<i<n

Il

since VNG, € C(G,). So we obtain |

ev(rTl(@) = $='®)Y)
< I #07@)""%)

1<i<n

H ovna., (P (i)

1<i<n
< 00,

since pvng,, (07! (2:)) < oo for each i.

We confirm the conditions in Definition 17.10. By definition S(X) is a semi-
ring. Since £ preserves finite sums, the induced map &; : S(X) — S(Y) becomes
an additive homomorphism. Similarly ¢* becomes a semi-ring homomorphism.

We demonstrate how n, becomes a multiplicative homomorphism. Let (A 5

X,x4),(B 5 X,xB) be two elements in M-Alm/X. We show that (I, (A) xy
IL,(B) = Y,X(am) * X(B,n)) is isomorphic to (I, (A xx B) = Y,X(axxB,n)- Re-
mark that xax,B = x4 - xB. Since there is an isomorphism

f:I,(A) xy I,(B) ———— > TI,(A xx B)
w ’ ) w
((y,0),(y,7))! (¥, (o,7))
in Alm/Y’, it suffices to show x(ax,Bm °f = X(4,n) “X(B,n)- This is satisfied, since
X(Ax x B,n) Of((ya U)a(yaT)) = H (XA ~XB)((O',T)(.’L’))
zen=1(y) '
= JI xal@)xs(r@)
z€n~1(y)
= H xa(o H xB(T
z€n~1(y) wEn‘l(y)

= X(4m) (y70) * X(B,n) (y’T)
= X(Am  XB,m) ((Y,0),(y,7)).

Since conditions from (i) to (iv) in Definition 17.10 are shown in almost the same
way, we only show condition (v).
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Let ’
X~—2" 7 CX'= X xy IL,(2)
n O n'
/ Y'=1,(Z

Y mn (€) "(2)

be an exponential diagram. For any object (A Z,x4) in M-Alm/Z, we have
7y (€op)
Mol (AD Zxa) = (I,(4) ™Y, X(A m)
(€)1 om0 (A D Z,x4)) = my(€)4 o n((A' B X', x4 = xa 0 ("))
: 1r,,(£)o7r (p")
= (I (4) Y, X(ar,)s

where

AI—,>A

X —2Z

. ¢
is a pull-back diagram. - ,
So it suffices to construct an isomorphism between (II,,(A4) m&cp) Y, X(4,n) and
n(£)°7r ()
(IL (A") Y, X(ar,m))- .
Let (y' ,a') be an element of II; (A'), where ' € Y’ and ¢’ is a map from

7' (y') to A’ If we put y := m,(€)(y") then 7'~ (y') = n7(y) x {y'}, and we
define 0 € Map(n~1(y), A) by

o) =o' ((z,y) (Vo en ().
In this notation, we define f : I, (A") — II,,(A4) by f((v',0")) := (y,0). It is easily
“seen that this becomes an isomorphism in Alm/Y". It remains to show
(18.10) ‘ X(am © f=xam)
For any (y',0') € I, (A"), the left hand side can be calculated as

Xam o fW, o) = xunl,o)

= JI xale@)

wen—l(y)

= ]I xa@ed' @),
2€n=1(y)
while the right hand side is
Xam@,o) = I xa('@)
mlenl—l(yl) / .

I xate'@y)

z€N~1(y)

I xaed@'(@y)).

z€n~1(y)
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Thus (18.10) is satisfied, and Vs becomes a Tambara functor on (C,O¢,0,). O
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Part 4. Cohomology theory in 2-categories
19. INTRODUCTION FOR PART 4°

In 1970s, B. Pareigis started his study on the Brauer groups of symmetric
monoidal categories in [28]. Around 2000, the notion of symmetric categorical
groups are introduced to this study by E. M. Vitale in [32] (see also [31]). By defi-
nition, a symmetric categorical group is a categorification of an abelian group, and
in this sense the 2-category of symmetric categorical groups SCG can be regarded
as a 2-dimensional analogue of the category Ab of abelian groups. As such, SCG
and its variants (e.g. 2-category G-SMod of symmetric categorical groups with G-
action where G is a fixed categorical group) admit a 2-dimensional analogue of the
homological algebra in Ab.

For example, E. M. Vitale constructed for any monoidal functor F : C — D
between symmetric monoidal categories C and D, a 2-exact. sequence of Picard

and Brauer categorical groups

P(C) = P(D) = F = B(C) = B(C).

By taking mp and 71, we can induce the well-known Picard-Brauer and Unit-Picard
exact sequences of abelian groups respectively. In [29], A. del Rio, J. Martinez-
Moreno and E. M. Vitale defined a more subtle notion of the relative 2-exactness,
and succeeded in constructing a cohomology long 2-exact sequence from any short
relatively 2-exact sequence of complexes in SCG. In this part, we consider a 2-
categorical analogue of an abelian category, in such a way that it contains SCG as
an example, so as to treat SCG and their variants in a more abstract, unified way.

In section 20, we review general definitions in a 2-category and properties of
SCG, with simple comments. In section 21, we define the notion of a relatively
exact 2-category as a generalization of SCG, also as a 2-dimensional analogue of
an abelian category. We try to make the homological algebra in SCG ([29]) work
well in this general 2-category. It will be worthy to note that our definition of a
relatively exact 2-category is self-dual. -

category 2-category
general theory | abelian category | relatively exact 2-category
example Ab SCG

In section 22, we show the existence of proper factorization systems in any rela-
tively exact 2-category, which will make several diagram lemmas more easy to han-
dle. In any abelian category, any morphism f can be written in the form f =eom
(uniquely up to an isomorphism), where e is epimorphic and m is monomorphic. As
a 2-dimensional analogue, we show that any 1-cell f in a relatively exact 2-category
S admits the following two ways of factorization:

(1) i om = f where ¢ is fully cofaithful and m is faithful.

(2) eo j = f where e is cofaithful and j is fully faithful.

(In the case of SCG, see [17].) In section 23, complexes in S and the relative 2-
exactness are defined, generalizing those in SCG ([29]). Since we start from the
self-dual definition, we can make good use of duality in the proofs. In section 24,
as a main theorem, we construct a long cohomology 2-exact sequence from any
short relatively 2-exact sequence (i.e. an extension) of complexes. Our proof is
purely diagrammatic, and is an analogy of that for an abelian category. In section
23 and 24, several 2-dimensional diagram lemmas are shown. Most of them have
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1-dimensional analogues in an abelian category, so we only have to be careful about
the compatibility of 2-cells.

Since SCG is an example of a relatively exact 2-category, we expect some other
2-categories constructed from SCG will be a relatively exact 2-category. For ex-
ample, G-SMod, SCG x SCG and the 2-category of categories fibered in SCG are
candidates.

20. PRELIMINARIES

Definitions in a 2-category

Notation 20.1. Throughout this part, S denotes a 2-category (in the strict sense).
We use the following notation.

S%, 81, 82 : class of O-cells, 1-cells, and 2-cells in S, respectively.

S!(A, B) : 1-cells from A to B, where A, B € S°.

S2(f,g) : 2-cells from f to g, where f,g € S'(A, B) for certain A, B € S°.

S(A, B) : Hom-category between A and B (i.e. Ob(S(4,B)) = S!(4,B) and
S(4,B)(f,9) = S$*(f,9))-

In diagrams, — represents a 1-cell, = represents a 2-cell, o represents a hori-
zontal composition, and - represents a vertical composition. We use capital letters
A, B, ... for O-cells, small letters f,g, ... for 1-cells, and Greek symbols a, 3,... for
2-cells. ’ :

For example, one of the conditions in the definition of a 2-category can be written
as follows (see for example [20]):

Remark 20.2. For any diagram in S

/fl\ /9_1\
A o B 8 C,
\f_/ \g_z/f
we have
(20.1) (f1 °ﬂ)’(04°92) = (04091)'(f2 o ).

(Note: composition is always written diagrammatically.)

This equality is frequently used in later arguments. ’
Products, pullbacks difference kernels and their duals are defined by the univer-
sality.

Definition 20.3. For any A; and A4, € S0 their product (A1 X As, p1,po) is defined
as follows: ‘
(a) A1 x Ay € 8%, pi € S1(A1 x Az, A)) (i=1,2).
(b1) (existence of a factorization) .

For any X € S° and ¢; € S}(X, 4;) (i = 1,2), there exist ¢ € S}(X, 4; x A»)
and & € S%(qopi,q) (i =1,2).

X

SR

A1<~HA1XA2;;-—>A2
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(b2) (uniqueness of the factorization)
For any factorizations (g, & ,&2) and (¢', &1, £5) which satisfy (bl), there exists a
unique 2-cell n € S%(q,q') such that (n Opz') =& (1=1,2).

qopi—=gq op;
ai

The coproduct of Ajand As is defined dually.

Definition 20.4. For any A;,A43,B € S° and f; € S'(4;,B) (i = 1,2), the
pullback (41 xp As, f{, f4,§) of f1 and f> is defined as follows:

(a) Ay xp Az € 8%, f] € S'(A1 xp Az, As), f} € S' (A1 xp Az, A;), £ € S(f] o
fas f3 0 f1).

ha N
A1 XB A2 Uﬁ B
é\ A f1

(b1) (existence of a factorization)

For any X € S°, g1 € S'(X, 43), g» € S'(X, A1) and n € S*(g1 © f2, 92 °f1)
there exist g € S! (X A1 x A), & € S*(g o f],9:) (i =1,2) such that (¢ 0 fa) -
(go8)- (&0 fr)

g1 '
I 42 f2 §10f2
Xl / \ gofiofo=—=g10fs

x—5 A XB A, B g°€ﬁ O ﬂn

\“_f} nogefieh=gm=ach
20f1

(b2) (uniqueness of the factorization)
For any factorizations (g, &1, &2) and (¢', &1, &) which satisfy (b1), there exists a
unique 2-cell ¢ € S?(g,¢') such that ((o f!)- & =& (i =1,2).

The pushout of f; € S*(4, B;) (i = 1,2) is defined dually.
Definition 20.5. For any 4,B € S° and f,g € S!(A, B), the difference kernel

(DK(£,9),d(£.9), % (£.9))
of f and g is defined as follows:
(a’) DK(fag) € Soa d(f,g) € Sl(DK(fa g)aA)a P(f.9) € SZ(d(f,g) ° f7 d(f,g) og)

; dis,g)0f

K(f,9) 40— AZ___>B, DK(f,9) ¢ual
g g

d($,9)°9

(b1) (existence of a factorization)
Forany X € S° d € S'(X, A), p € S*(dof,dog), there exist d € S'(X,DK(f,g))
and € S*(do ds),d) such that (do g(r.e) - (90 9) = (20 f) - .



98 HIROYUKI NAKAOKA

(b2) (uniqueneés of the factorization) :
. For any factorizations (d, ) and (d', ¢') which satisfy (b1), there exists a unique
2-cell ) € S?(d, d') such that (nod(ysq) - ¢' = ¢.

The difference cokernel of f and g is defined dually.
The following definition is from [9].

Definition 20.6. Let f € S'(4, B).

(1) f is said to be faithful if f* := —o f : S(C,A) = S(C, B) is faithful for any
C e s°. :

(2) f is said to be fully faithful if f* is fully faithful for any C' € S°.

(3) f is said to be cofaithful if f# := fo—:S(B,C) — S(4,C) is faithful for any
C e s

(4) f is said to be fully cofaithful if f* is fully faithful for any C € S°.

Properties of SCG

By definition, a symmetric categorical group is a symmetric monoidal category
(G, ®,0), in which each arrow is an isomorphism and each object has an inverse up
to an equivalence with respect to the tensor ®. More precisely;

Definition 20.7. A symmetric categorical group (G,®,0) consists of
(al) a category G
(a2) a tensor functor ® : G x G - G
(a3) a unit object 0 € Ob(G)
(a4) natural isomorphisms
aspc:A®(B®C) = (A®B)®C,

AMm:0®A— A psa:AR0— A, yvap:ARB—>B®A
which satisfy certain compatibility conditions (cf. [27]), and the following two
conditions are satisfied: ’
(b1) For any A,B € Ob(G) and f € G(A4, B), there exists g € G(B, A) such that
fog=1ida, go f=idp. ~
(b2) For any A € Ob(G), there exist A* € Ob(G) and n4 € G(0, A ® A*).

In particular, there is a ‘zero categorical group 0, which consists of only one
object 0 and one morphism idg.

Definition 20.8. For symmetric categorical groubs G and ]HI, a monoidal functor
F from G to H consists of
(al) a functor F: G - H
(a2) natural isomorphisms
Fap:F(A®B) - F(A)® F(B) and F; : F(0) 0
which satisfy certain compatibilities with , X, p, v. (cf. [27])
Remark 20.9. For any monoidal functors F : G — H and G : H — K, their
composition F oG : G — K is defined by
(20.2) (FOG)AJ; = G(FA’B) OGF(A),F(B)
(20.3) (FOG)I = G(FI) OG[.
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In particular, there is a ‘zero monoidal functor’ Ogu : G — H for each G and
H, which sends every object in G to Og, every arrow in G to ido, and (Ogu)a,B =
)\_ = p0 , (Ogu)r = ido. It is easy to see that Og o Ogx = Ogx (VG, H, K).

Remark 20.10. Our notion of a monoidal functor is equal to that of a “y-monoidal
" functor’ in [29].

Definition 20.11. For monoidal functors F,G : G — H, a natural transformation
@ from F to G is said to be a monoidal transformation if it satisfies

pagB°Gap = Fapo(pa®epp)
(20.4) Fr = ¢ooGr.
The following remark is from [32].

Remark 20.12. By condition (b2), it is shown that there ewists a 2-cell €4 €
G(A* ® A,0) for each object A, such that the following compositions are identities:

A—00A4A s (ARA)®A— AR (A*®A) — AR0— A
_1 ®1 a~1 1®ea PA
A*—>A*®O—>A* RQUAR®A) — (A" A4)® A* ~+10®A*T>A*
Pax o L€ *

For each monoidal functor F : G — H, there exists a natural morphzsm LFA
F(A*) - F(A)*.

Definition 20.13. SCG is defined to be the 2-category whose O-cells are sym-
metric categorical groups 1-cells are monoidal functors and 2-cells are monoidal
transformations.

The following two propositions are satisfied in SCG (see for example [5]).

Proposition 20.14. For any symmetric categorical groups G and H, if we define
a monoidal functor F @ u G : G — H by

F ®cuG(A) = F(A) o G(A)

(F ®cuG)a,B = (F(A,@B)@G(A@B)

Fas8Gar  p4) 9 F(B)® G(A) ® G(B)
F(A) ® G(A) ® F(B) ® G(B))

(F ®¢u Q)1 = (FOeGD) ™S 1011,
then (SCG(G,H), ®c,u,0c,u) becomes again a symmetric categorical group with
appropriately defined o, A, p,~y, and
Hom = SCG(—,—) : SCG x SCG — SCG

becomes a 2-functor (cf. section 6 in [5]).

In SCG, by definition of the zero categorical group we have S}(G,0) = {0g,0},
while S1(0, G) may have more than one objects. In this point SCG might be said
to have ‘non self-dual’ structure, but $*(G, 0) and S$*(0,G) have the followmg ‘self-
dual’ property.

Ty

—
=

Remark 20.15. (1) For any symmetric categorical group G and any monoidal
functor F : G — 0, there exists a unique 2-cell ¢ : F = 0go.

(2) For any symmetric categorical group G and any monoidal functor F : 0 — G,
there exists a unique 2-cell o : F =0 G.
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Proof. (1) follows from the fact that the zero categorical group has only one mor-

phism idg. (2) follows from condition (20.4) in Definition 20.11. o
The usual compatibility arguments show the following Lemma.

Lemma 20.16. Let F : G — H be a monoidal functor. For any A, B € Ob(G),

®a5: G(A,B) —— > G(A® B*,0)
w ’ w
fr———(f®1p)onz"

and

Tup: G(A® B*,0) G(4, B)
. w W
g|—>pAT °(1A®EL_?)°O‘AB*B (g®13)0)‘3

are mutually inverse, and the following diagram is commutative;
‘ o
G(4,B) —22- G(A ® B*,0)
. s

F(A® B*),F(0)),

H(F(A), F
‘I’m /
H(F(A

where ©F 5 is defined by
 eE,: H(F(A® BY),F(0) — > H(F(A) ® F(B)*,0)
;I:i—? (1ra) ® (t5)™) oUZFA,B*)—l oho Fy.
21. DEFINITION OF A RELATIVELY EXACT 2—CA’I‘EGORYV

Locally SCG 2-category

We define a locally SCG 2-category not only as a category enriched by SCG, but
with some more conditions, in order to let it be a 2-dimensional analogue of that
of an additive category.

Definition 21.1. A locally small 2-category S is said to be locally SCG if the

following conditions are satisfied:

(A1) For every A,B € S°, there is a given functor ®4 5 : S(4,B) x S(4,B) —
S(A, B), and an object 04,5 € Ob(S(4, B)). such that (S(4,B),®4,5,04,5) be-

comes a symmetric categorical group, and the following naturality conditions are

satisfied:

04,B00B,c=04,c (VA,B,C € SO)
(A2) Hom = S(—,—) : SxS — SCG is a 2-functor which satisfies for any 4, B,C €
. Sov ) A
‘ (21.1) ‘ (OA,B)ﬂI = idOA,C € S2(0A,C,OA,C’)
(21.2) (OA’B)I} = idOc,B S SZ(OC,B,OC,B).
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(A3) There is a 0-cell 0 € S° called a zero object, which satisfy the following
conditions:

(a3-1) S(0,0) is the zero categorical group.

(a3-2) For any A € 8% and f € S'(0, A), there exists a unique 2-cell §; € S2(f, 0o,4)-
(a3-3) For any A € 8% and f € S'(4,0), there exists a unique 2-cell 77 € S2(f,04.0).
(A4) For any A,B € SO, thelr product and coproduct exist.

Let us explain about these conditions.

Remark 21.2. By condition (A1) of Definition 21.1; every 2-cell in a locally SCG
2-category becomes invertible, as in the case of SCG (cf. [32]). This helps us to
avoid being fussy about the directions of 2-cells in many propositions and lemmas
and we use the word ‘dual’ simply to reverse 1-cells.

Remark 21.3. By condition (A2) in Definition 21.1,
) f! == fo-:S8(B,C)—S(4,0)
f* = —of:S(C,A) - S(C,B)

are monoidal functors (VC € S°) for any f € S'(A, B), and the following naturality
conditions are satisfied: '
(a2-1) For any f € S'(A,B),g € S}(B,C) and D € S°, we have (f o g)t = gt o f!
as monoidal functors.

s(¢, D) —~ > S(B, D)

Fo g ‘
(fog)t

S(A4,D)

S
sy
Q

(a2-2) The dual of (a2-1) for —".
(a2-3) For any f € S'(A4,B),g € S}(C, D), we have ft o g® = ¢’ o f! as monoidal
functors.

]
| S(B,C) ——s(4,0)
A—L-p c——=p | o |
S(B,D) —>S(4,D)

Since already (f o g)* = g* o f¥ as functors, (a2-1) means (f o 9t = (g o M1,
and by (20. 3) in Remark 20.9, this is equivalent to

, (fog)I = fn(QI) ‘fI =(f Ogg) f}
Similarly, ‘we obtain

(21.3) (fo9)i =(fio9) gk
(214) (fiog) 9 =(fogh) Jf
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Remark 21.4. By condition (A2), for any f,9 € SY(A, B) and any a € S%(f,g),
ao—: ft = g* becomes a monoidal transformation. So, the diagrams

ao(k®h)

fo(k®h) >g0(k®h) 0030@90030

I hu , O Jlg,’i,h and \ /

(fok) @ (foh) === (gok)® (g0 h) Oac

are commutative for any C € S° and k,h € S}(B,C). Similar statement also holds .
for —-ooz:fb = g

Corollary 21.5. In a locally SCG 2-category S, the following are satisfied:
(1) For any diagram in S

ClLAUa

00 A
we have
(21.5). | hoa=(cof)-f1-g;" (e og).
(2) For any diagram in S
) ! h
TN N\
A_ = _B_ | _cC,
~~—_"_7 N——_7
g 0B,c
we have
(21.6) aoh=(foe) f-gi " (goe™)
(3) For any diagram in S
f g
7 X\ T
A |« _B_ |8 _C,
N~ S~
Oa,B OB,c

we have
(21.7) (FoB) fi=(aog) g
Proof. (1) (hoa) = (€0 f)-(0c,a00) (e og) = (co f)- f5- g (L og). (2)
is the dual of (1). And (3) follows from (21.1), (21.2), (21.5), (21.6). O

Remark 21.6. We don’t require a locally SCG 2-category to satisfy S'(A4,0) =
{04,0}, for the sake of duality (see the comments before Remark 20.15 ).

Relatively exact 2-category

Definition 21.7. Let S be a locally SCG 2-category. S is said to be relatively
exact if the following conditions are satisfied:

(B1) For any 1-cell f € S'(A4, B), its kernel and cokernel exist.

(B2) For any 1-cell f € SY(A, B), f is faithful if and only if f = ker(cok(f)).

(B3) For any 1-cell f € S'(A, B), f is cofaithful if and only if f = cok(ker(g)).
It is shown in [32] that SCG- satisfies these conditions.
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Let us explain about these conditions.

Definition 21.8. Let S be a locally SCG 2-category. For any f € S!(4, B), its
kernel (Ker(f), ker(f), ) is defined by universality as follows (we abbreviate ker(f)
to k(f)) : :
(2) Ker(f) € S°, k(f) € S' (Kex(f), 4), 5 € S(k(f) o 1,0).
(bl) (existence of a factorization) ,

For any K € S8°, k € S!(K, A) and € € S?(ko f,0), there exist k € S' (K, Ker(f))
and ¢ € S(k o k(f), k) such that (g0 f) -& = (koey) - (k). o

/KQJ;\*

m

B

]

£f
Ker(f) HD O\X

(b2) (uniqueness of the factorization) ,
For any factorizations (k, &) and (k', ') which satisfy (bl), there exists a unique
2-cell £ € S?(k, k') such that (o k(f)) € =&

\\M

Remark 21.9. (1) By its universality, the kernel of f is unique up to an equiva-
lence. We write this equivalence class again Ker(f) = [Ker(f),k(f),ey].
(2) It is also easy to see that if f and f' are equivalent, then

[Ker(f), k(f)7 €f] = [Ker(fl)a k(fl)asf']' .
For any f, its cokernel Cok(f) = [Cok(f),c(f),7¢] is defined dually, and the
dual statements also hold for the cokernel.

‘Remark 21.10. Let S be a locally SCG 2-category, and let f be in Si(A4,B).
For any pair (k,e) with k € S1(0,4),e € S%(k o £,0)

m
05— A——B
and for any pair (k',€') with k' € S'(0,A),e' € S%(k o f,0), there exists a unique
2-cell € € S%(k, k') such that (Eo f) €' =e. ,

Proof. By condition (a3-2) of Definition 21.1, € € S?(k o f,0) must be equal to the
unique 2-cell (6, o f) - f2. Similarly we have &/ = (64 o f) - f?, and, € should be the
unique 2-cell 0y, - ;" € Sz(k, k"), which satisfies (£o f) -’ = &. O

From this, it makes no ambiguity if we abbreviate Ker(f) = [0,004, f}] to
Ker(f) = 0, because [0,k,e] = [0,k',¢'] for any (k,e) and (k',¢’). Dually, we
abbreviate Cok(f) = [O,OA,O,f}t] to Cok(f) = 0.

By using condition (A3) of Definition 21.1, we can show the following easily:

Example 21.11. (1) For any A € S° Ker(04,0: A = 0) = [4,id 4, ido].
(2) For any A € S° Cok(0p, 4 : 0 — A) = [A4,id4, id].

Caution 21.12. (1) Ker(0p, 4 : 0 — A) need not be equivalent to 0. Indeed, in
the case of SCG, for any symmetric categorical group G, Ker(Ogg : 0 — G) is
equivalent to an important invariant 71 (G)[0].
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(2) Cok(040: A — 0) need not be equ1valent to 0 either. In the case of SCG,
Cok(0g,0 : G — 0) is equivalent to mo(G)[1].

Remark 21.13. The precise meaning of condition (B2) in Definition 21.7 is that,
for any 1-cell f € S*(A, B) and its cokernel [Cok(f),cok(f),m], f is faithful if and
only if Ker(cok(f)) = [4, f,m¢]. Similarly for condition (B3).

Relative (co-)kernel and first properties of a relatively exact 2-category

In the rest of this section, S is a relatively exact 2-category.

Definition 21.14. For any diagram in S

. 0
, m
(21.8) - A——B——C,

its relative kernel (Ker(f, ), ker(f,¢),&(¢,,)) is defined as follows (we abbreviate

ker(f, ) to k(f,¢)) :
(a') Ker(f, <P) € SO, k(f: (P) € Sl(Ker(f, ()D)a A)v E(f,p) € S2(k(f7 QD) o fv 0)
(b0) (compatibility of the 2-cells)

E(f,¢) is compatible with ¢ i.e. (k(f,¢) o) k(f, )I = (e(t,0) og)
(b1) (existence of a factorization)
For any K € S k € S1 (K,A) and € € S%(ko f,0) which are compatlble with ¢,

Le. (kow)-ki = (e0g)-g}, there exist k € S* (K, Ker(f,¢)) and & € S2(kok(f, ), k)
such that (g0 f) & = (kog(sy)) - (k).

/% ]

(b2) (uniqueness of the factonzatlon)
For any factorizations (k,g) and (k',¢’) which satisfy (b1), there exists a unique
2-cell € € S?(k, k') such that (€0 k(f, ) -€' = €.

Remark 21.15. By its universality, the relative kernel of (f, ) is unique up to an
equivalence. We write this equivalence class [Ker(f,¢),k(f,¢),e(t,4)]-

Definition 21.16. Let S be a relatively exact 2-category. For any diagram (21.8) in
S, its relative cokernel (Cok(g, ¢), cok(g, ), 7(4,,)) is defined dually by universality.
We abbreviate cok(g, ¢) to c(g, ), and write the equivalence class of the relative
cokernel [Cok(g, ©),¢(9,90), T(g,0)]- '

Caution 21.17. In the rest of this part, S denotes a relatively exact 2-category,
unless otherwise specified. In the following propositions and lemmas, we often omit
the statement and the proof of their duals. Each term should be replaced by its
dual. For example, kernel and cokernel, faithfulness and cofaithfulness are mutually
dual. :

Remark 21.18. By using condition (A3) of Definition 21.1, we can show the
following easily. (These are also corollaries of Proposition 21.20.)
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(1) Ker(f, f}i) = Ker(f) (and thus the ordinary kernel can be regarded as a relative

kernel). '
0
/m
A- B 0

7 0
(2) ker(f,¢) is faithful. '

Lemma 21.19. Let f € S'(A, B) and take its kernel [Ker(f), k(f),es]. If K € S°,
k € SY(K,Ker(f)) and o € S%(k o k(f),0) '

0
(i
K—— Ker(f) k(}) A F B
|}
0

is compatible with €y, i.e. if o satisfies

(219 (00 f) fi = (koes) -k,
then there exists a unique 2-cell ¢ € S*(k,0) such that o = (C o k(f)) - k(f)}-

Proof. By (21.9), 0 : ko k(f) = 0 is a factorization compatible with 5} and f5.
- On the other hand, by Remark 21.4, k(f)} : 00 k(f) = 0 is also a factorization
compatible with e, f’}. So, by the universality of the kernel, there exists a unique
2-cell ¢ € S2(k, 0) such that o = (¢ o k(f)) - k(f)5. O

It is easy to see that the same statement also holds for relative (co-)kernels. In
any relatively exact 2-category, the relative (co-)kernel always exist. More precisely,
the following proposition holds.

Proposition 21.20. Consider diagram (21.8). By the universality of Ker(g) =
[Ker(g),£,¢€], f factors through £ uniquely up to an equivalence as ¢ : f ol => f,
where f € S1(A,Ker(g)) and ¢ € S*(fo ¥, f): :

Ker(g)

f 0

. VAN /;U\i/\<

(foe) (Dr=(pog) ¢ L A——B——=C
k(i)W

Ker(i)

Then we have Ker(f, ) = [Ker(f), k(f),n], where n:= (k(f) o o™?) - (s 0 ) - £} €
S%(k(f) o f,0). We abbreviate this to Ker(f,p) = Ker(f). '

Proof. For any K € S° k € S(K,A) and o € S%(k o f,0) which are compatible
with ¢, ie. (cog)-g) = (ko)- kg, if we put
p:=(koyp)-o€S*(kofol,0),

then p is compatible with e. By Lemma 21.19, there exists a 2-cell ¢ : ko f = 0 such
that p = (¢o£)-£5. So, by the universality of Ker(f), there exist k € S'(K, Ker(f))
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and g € S*(k o k(f), k) such that (go f)-( = (koey)- (E)g.l Then, g is compatible
with ¢ and 7,

' 0
K . '
it
%7 %
Ker(f) = - »

.and the existence of a factorization is shown. To show the uniqueness of the fac-
torization, let (k',o') be another factorization which is compatible with o, 7, i.e..
(@ of)-o=(kon) - (k)j. Then, by using n = (k(f) o)+ (¢ 0£) £} and
Col=p-£5 = (kog)-o-£47, we can show ((¢’ of)-Q)ol=((Eoey)- (E)g) of.
Since £ is faithful, we obtain ((¢' o f) - ¢) = (k' oey) - (K')%. Thus, ¢’ is compatible
with ¢ and e;. By the universality of Ker(f), there exists a 2-cell £ € S?(k, k')
such that (£ o k(f)) - ¢’ = o. Uniqueness of such & € S%(k, k') follows from the

faithfulness of k(f). : o

Proposition 21.21. Let f € S'(A, B), g € S(B,C) and suppose g is fully faithful.
Then, Ker(f o g) = [Ker(f),k(f), (€5 0 g) - g}]. We abbreviate this to Ker(f o g) =
Ker(f). ‘ '

Proof. Since g is fully faithful, for any K € S° k € S}(K, A) and o € S?(ko fog,0),
there exists p € S%(k o f,0) such that ¢ = (pog) - g5. And by the universality of
Ker(f), there are k € S'(K,Ker(f)) and ¢ € S%(k o k(f), k) such that (go f)-p =

(koey)- (E)g. Then, it can be easily seen that ¢ is compatible with ¢ and (e;0g)-g3:

0

K
(cofog)-o=(ko((esog) g})- () &/ile\———;c
g v | vy s //«rx\y

fog
k(f)
Ker(f) " "

(ef 029)'95
Thus we obtain a desired factorization. To show the uniqueness of the factorization,
let (k',o') be another factorization of k which satisfies

(¢'ofog)-o=(ko(ero9) 9p) &)
Then, we can show ¢’ is compatible with p and ;. By the universality of Ker(f),

there exists a-2-cell £ € S%(k, k') such that (£ o k(f)) - ¢/ = g. Uniqueness of such
¢ follows from the faithfulness of k(f). O

By definition, f € S*(A, B) is faithful (resp. fully faithful) if and only if —o f:
S%(g,h) = S*(g o f,h o f) is injective (resp. bijective) for any K € S° and any
g,h € S1(K, A). Concerning this, we have the following lemma.

Lemma 21.22. Let f e SY(4,B).
(1) f is faithful if and only if for any K € S® and k € S'(K, A),

" — o f:8%(k,0) = S%(ko f,00 f) is injective.
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(2) f is fully faithful if and only if for any K € S° and k € S}(K, A),
—o f:8%k,0) = S%(ko f,00 f) is bijective.
Proof. By Lemma, 20.16, we have the following commutatlve diagram for any g,h €

S'(K, 4)

Bgn
$%(9,h) ——> S2(g @ h*,0)

_df/ | ' \-:f

S*(go f,ho f) | S*((g®h*) o f,00 f)

S2((go f)® (ho f)*,0)

So we have
' —o f:8%(g,h) = S%*(go f,ho f) is injective (resp. bijective) .
& —of:S%(g®h*,0)— S2((g®h*) o f,00 f) is injective (resp. bijective).
' O

Corollary 21.23. For any f € S'(A, B), f is faithful if and only if the following
_condition is satisfied:

(21.10) ao f=ides = a=ido (VK € S°,Va € S*(0k,4,0k,4))

Proof. If f is faithful, (21.10) is trivially satisfied, since we have idgoy = idg o f.
To show the other implication, by Lemma 21:22, it suffices to show that — o f :

S?(k,0) — S%(ko f,00 f) is 1nJect1ve For any o1, a2 € S%(k,0) which satisfy ay
of = azo f, we have (a7 ' -az) o f = (a1 0 )71 - (a2 0 f) = idgos. From the
assumption we obtain aj o, = idg, i.e. a1 = as. O

The next corollary immédiately follows from Lemma 21.22.

Corollary 21.24. For any f € SY(A, B), f is fully faithful if and only if for any
K € 8% k e SY(K,A), and any o € S*(k o f,0), there exists unique T € S%(k,0)
such that o = (T o f) - f?.

Corollary 21.25. For dny f € SY(A,B), the followz'ng‘are equivalent:

(1) f is fully faithful.
(2) Ker(f) = 0.

Proof. (1)=(2)

Since f is fully faithful, for any k € S*(K, A) and € € S?(ko f, 0), there exists a 2-
cell ¢ € S?(0 4, k) such that (eof) = (0of2)-0%-e~1 = (0o f?)-e~2, and the existence
of a factorization is shown. To show the uniqueness of the factorlzatxon it suffices
to show that for any other factorization (k',¢') with (¢ o f) -& = (k' o f2) - (K')¥,
the unique 2-cell 7 € S%(k’,0) (see condition (a3-2) in Definition 21.1) satisfies
(100)-g = £ Since f is faithful, this is equivalent to (7000 f)-(go f)-e = (g'of)-€, and
this follows easily from 700 = (7‘00)-05 = (E)ﬂl and (1000 f)-(0o f2) = (K'of2)-(00).

/
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(see Corollary 21.5.) -
(2)=(1) Since Ker(f) = [0,0, 7], for any K € S°, k € S'(K, A) and any o € S?(ko
f,0), there ex1st k € S'(K,0) and g € S?(ko0, k) such that (cof)-o = (kofI) (k).
Thus 7:= g~ kij satisfies ¢ = (7 o f) - f2. If there exists another 7/ € S2(k,0)
satisfying o= (r"of)- f2, then by the universality of the kernel, there exists
v € S?(k,0) such that (vo0)-7'"! = 1. Since vo0 = k} by (21.7), we obtain
7 = 7'. Thus 7 is uniquely determined.

0

Proposition 21.26. For any f € S'(A, B), the following are equivalent.
(1) f is an equivalence.

(2) f is cofaithful and fully faithful.

(3) f is faithful and fully cofaithful.

Proof. Since (1)<>(3) is the dual of (1)<(2), we show only (1)<(2).

(1)=(2) : trivial.

(2)=(1) : Since f is cofaithful, we have f = cok(ker(f)), Cok(k(f)) = [B, f,&s]-
On the other hand, since f is fully faithful, we have Ker(f) = [0,0, f?], and so we
have Cok(k(f)) = [A,id4,ido). And by the uniqueness (up to an equivalence) of
the cokernel, there is an equivalence from A to B, which is equivalent to f. Thus,
f becomes an equivalence.

]

Lemma 21.27. Let f A — B be a faithful 1-cell in S. Then, for any K € s
and k € S1(K,0), we have S?(k o 00,Ker(#)) Ok Ker(£)) = {k 1.

Ok, Ker(f)
e}
Ker
K k 0 00,Ker(f) (f)

Proof. For any o € S?(k o 0g er(s) OK,Ker(f>), we can show ((aok(f))k(f)g) of =
((kok(f))-k})of. By the faithfulness of f, we have (cok(f))-k(f)} = (kok(f)})-k.
Thus, we have gok(f) = k%k(f). By the faithfulness of k(f), we obtain o = kg. a

Corollary 21.28. f: A — B is faithful if and only if Ker(0o, 4, f'}) =0.



109

Proof. Since there is a factorization diagram with (0g Ker(f) © €5) + (0o,Ker( f))ﬂl— =

(k(f)yo f)- f2
Ker(f) 0

X\A

00,Ker(f) E(F)"

0 / 0

(see (a3-2) in Definition 21.1) we have Ker(0g 4, f2) = Ker(0o,ker(#)) by Proposition
21.20. So, it suffices to show Ker(0p xer(y)) = 0. For any K € S° and k € S}(K,0),
we have S2(k0007Ker(f) s 0K Ker(£)) = {kg} by the Lemma 21.27. So O ker(r) becomes
fully faithful, and thus Ker(0p xer(s)) = 0.

Conversely, assume Ker(0p 4, f7) = 0. For any K € S° and a € S?(0k,4,0k,4)
satisfying a o f = idgos, we show a =idy (Corollary 21.23).

By ao f =idgos, a is compatible with f? :

Ker(0g.4,f2) =0 0
ido idoﬁ\ ﬂf}
0 A B

So there exist k € S'(K,0) and e € S?(k o idg, 0 o) satisfying
, (5000,A)-a=(koido)~k§.
Since € 0 0g 4 = k'§ by (21.1) and (21.6), we obtain o = idj. O

In any relatively exact 2-category S, the difference kernel of any pair of 1-cells
9,h : A — B always exists. More precisely, we have the following proposition:

Proposition 21.29. For any g, h € S'(A, B), if we take the kernel Ker(g ® h*) =
[Ker(g ® h*), k,e] of g® h* and put & := Uy, koh(@g h( Icli 1) e S%(kog,koh),
then (Ker(g ® h*),k E) is the difference kernel of g and h.

Proof. For any K € S° and ¢ € S'(K, A), there exists a natural 1somorphlsm
(Lemma 20.16)

S%(Lo (g ® h*),0) S*(Log,Loh)
W v # '
ol 5 = \Illog,loh(ef;,h(a : KﬁI))

So, to give a 2-cell o € S?(Lo(g®h*),0) is equivalent to give a 2-cell & € S2(£og, Loh).
And, by using Remark 21.4 and Corollary 21.5, the usual compatibility argument
shows the proposition. O

In any relatively exact 2-category S, the pullback of any pair of morphisms f; :
A; = B (i = 1,2) always exists. More precisely, we have the following proposition:
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Proposition 21.30. For any f; € S*(4;,B) (1 =1,2), if we take the product of
Ay and Ay (A1 X Az, p1,p2), and take the difference kernel (D,d, ) of p1 o fi and
p2o fo o '

p1of1 dops Ay £
d / \
D————> Al«X A2 B B,
. ~__ 7 o,.\24 /
p20f2
then, (D,dopy,dopa,p) is the pullback of fi and fs.

| Proof.
proof of condition (bl) (in Definition 20.4)

For any X € S% g; € SY(X,4;) (i = 1,2) and n € S%(g1 © f1,92 © f2), by the
universality of A; x As, there exist g € Sl(X A1 x As) and &; € S%(d o p;, gz) (t=
1,2). Applying the universality of the difference kernel to the 2-cell

(21.11) Ci=(&10f1) 0 (& 0 f) €S*(goprofi,gopao fa),
we see there exist g € S'(X, D) and (' S*(god, g)

va \ piofy

(21.12) D————Ax4___ 3B
p20f2

such that

(21.13) ‘ (gow)-(Copaofo)=(Coprofi)-¢

By (21.11) and (21.13), we have (go@)- ((((op2)-&) o f2) = (Comr)-&1) 1) m,
and thus condition (bl) is satisfied. .

(< °P1)~_E‘1
g1
/\7
X——D

N
\/>ﬂ/

<gop2>-'f‘2

-proof of condition (b2) : ,
If we take h € SY(X,D) and n; € S?2(hodo p;,g;) (i = 1,2) which satisfy
(ho@)-(n20 fo) =(n1 0 f1) - n, then by the umversahty of A; X As, there exists a
unique 2-cell k € S2(h o d, g) such that

(21.14) (kops)-&=mi (i=1,2).

Then, k becomes compatible with ¢ and ¢, i.e. (hoy)-(kopao fa) = (kopio fi1)-C.
So, comparing this with factorization (21.12), by the universality of the difference
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‘kernel, we see there exists a uflique 2-cell x € S%(h, g) which satisfies
(21.15) (xod)- (=& '

Then we have (x odop;) - (Copi) & = (kopy)-&=m (i =1,2). Thus X is the -
desired 2-cell in condition (b2), and the uniqueness of such a x follows from the
uniqueness of k and x which satisfy (21.14) and (21.15). O

By the universality of the pullback, we have the following remark:
Remark 21.31. Let ‘

f/
=

(21.16) Ay Xp Ay ﬂe B
2

be a pull-back diagram. Then, for any K € S°, g,h € SY(K,A; xp As) and
a, B € S%(g,h), we have

aofi=PBof; (i=12)= a=4.
Proof. To the diagrain

‘the following diagram gives a factorization which satisfies condition (b1) in Defini-
tion 20.4. -

gofi : A
2

o £
!

K—g>A1 xpg Az
/

* Since each of id; : ¢ => g and a0 7! : g = g gives a 2-cell which satisfies
condition (b2), we have a o 37! = id by the uniqueness. Thus a = j. |

Proposition 21.32. (See also Proposition 23.12.) Let (21.16) be a pull-back dia-
gram. We have ' : ‘ : '

(1) f1: faithful = f: faithful.

(2) f1: fully faithful = fi: fully faithful.

(3) f1: cofaithful = fi: cofaithful.

Proof. proof of (1) By Corollary 21.23, it suffices to show a0 fi =idgos; = a =ido
for any K € S° and o € S%(0k, 4, x5 45,0K,41x54,)- Since (00 &) - (ao fio fi) =
(aofiof)-(008) = idgofgor, (00€) = 00§, we have ao fyo fi = idoosyor, = idoosyofi-
‘Since f; is faithful, we obtain a o f; = idgos;. Thus, we have a o f; = idgos =
idg o f{ (i = 1,2). By Remark 21.31, this implies a = idp. ,

proof of (2) By (1), fi is already faithful. By Corollary 21.23, it suffices to show
that for any K € S°, k € S1(K, A; xp A2) and any o € S?(k o f],0), there exists

B

1
gofy
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a unique 2-cell x € S?(k,0) such that o = (ko f}) - (f{)5. Since f; is fully faithful,
for any K € S° k € S'(K,A; xp A3) and any o € S%*(k o f],0), there exists
7 € 82(ko f3,0) such that (T f1) - (f1); = (ko€™") - (00 fo) - (f2)}. Then, for the
diagram ;

each of the factorizations

\ . (fl)"\ \
K—>A1><BA2 ﬂf B K——A; xg A ﬂ
/ /

5
3

Q
(f2)"

°C

satisfies condition (b1l) in De,ﬁnition' 20.4. So there exists a 2-cell x € S?(k, 0) such
that o = (ko f{) - (f{)}. Uniqueness of such  follows from the faithfulness of fi.

proof of (3) Let (A1 x Ag,p1,p2) be the product of A; and Ay. For ida, €
S'(A1,4;) and 0 € S'(A4;, Ay), by the universality of A; x A,, there exist i; €
S'(A1, A1 x As), & € S%(i10py,ida,) and & € S2(ig0py,0). Similarly, there is a 1-
cell i € ST (A2, A; X Ay) such that there are equivalences i 0 p, ~ id Ay, t20p; ~ 0.
If we put ¢ := (p1 o f1) ® (p2 o f2)*, then by Proposition 21.29 and 21.30, we have
A1 xp Az = Ker(t). So we may assume Ker(t) = [A; xp As,d,&:] and f] = d o ps.

. /
€t

A1 XBAZ—?A]_ XAQT—»B

Since i1 ot and f; are equivalent;

i1ot=(i1oprofi)® (irop2o f3) ~ (ida, o 1) ® (0o f3) = fi,

by the cofaithfulness of f;, it follows that ¢ is cofaithful. Thus, we have B =
Cok(ker(t)), i. e. Cok(d) = [B,t,&]. By (the dual of) Corollary 21.23, it suffices
to show f{oa = Idf/oo = a = idy for any C € S° and any o € S%(04,,c,04,.0)-

For the 2-cell (d o pz) € S%*(d o ps 0 04,,c,0) (see the following diagram), by the
universality of Cok(d), there eXlSt u € S'(B,C) and v € S%(t o u,ps 0 0) such that
(dowy) - (dOpz)uI = (g o u) - u}. Thus, if we put 7' := - (py 0 @), we have
(dov')-(dopa)f = (doy)- (dops 0a)- (dopa)f
=(do7)-(fioa) - (dop)i = (er0u) - u}.
So, v and 'y € S?(t o u,ps 0 0) give two factorization of p; o 0 compatible with &,

and (do pg) By the universality of Cok(d) = [B,t,&;], there exists a unique 2-cell
B € S%(u, u) such that '

(21.17) (tof)-v=4+"
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Al equivalence

Al XBAZLAIXAZT“‘*B

EES)

A Ve C
0
Then we have (iy otof)-(i10y) =i10y = (i107)  (l1oproa) = (i107) - (&o
0):(0oa)-(&* 00) = (i1 07), and thus, (i1 o t) o f = ids,etou. Since i; ot ~ f;
is cofaithful, we obtain 8 = id,. So, by (21.17), we have v = v/ = - (p; o @),
and consequently ps o a = id,,00. Since p; is cofaithful (because i3 o ps ~ id 4, is
cofaithful), we obtain o = id,. , ' O

Proposition 21.33. Consider diagram (21.8) in S. If we take the relative kernel
Ker(f,p) = [Ker(f, p),£,¢€], then by the universality of Ker(f) = [Ker(f), k(f), 5],
£ factors uniquely up to an equivalence as

where (eo f)-e = (Loey)- (ﬁ)ul Then, £ becomes fully faithful.

Proof. Since £ o k(f) is equivalent to a faithful 1-cell £, so £ becomes faithful. For
~any K € 8%, k € S}(K,Ker(f,p)) and o € S?(k 0 £,0), if we put o’ := (kog™?)-
(o 0k(f)) - k(f); € S?(k 0 £,0), then ¢’ becomes compatible with . So, by Lemma
21.19, there exists 7 € S%(k,0) such that o' = (10 £) - £, i.e.

(21.18) (koe™) - (0 o k() - (k(£)s = (ro0) - &5,

Now, since (kog) - (T0f)-£5 = (roLok(f))- (Lo k(f))ib,lby Corollary 21.5, (21.18)
is equivalent to (0 0 k(f)) - (k(f))7 = (T o Lo k(f)) - (& o k(f)) - (k(£))}-
Thus, we obtain o o k(f) = ((r 0 £) - £5) o k(f). Since k(f) is faithful, it follows

that 0 = (70 £) -ﬁl}. Uniqueness of such 7 follows from the faithfulness of £. Thus
£ becomes fully faithful by Corollary 21.24. ]

22. EXISTENCE OF PROPER FACTORIZATION SYSTEMS

Definition 22.1. For any A,B € S° and f € .SI(A,B), we define its image as
Ker(cok(f)).

Remark 22.2. By the universality of the kernel, there ezist i(f) € S'(4,Im(f))

and v € S2(i(f) o k(c(f)), f) such that (toc(f)) -7 = (i(f) °Ec(s)) z(f)”l Coimage
of f is defined dually, and we obtain a factorization through Coim(f).
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Proposition 22.3 (1st factorization). For any f € S'(A, B), the factorization
t:i(f) o k(c(f)) = f through Im(f)

A-————>B

z(f\\ ﬂ /‘{(C(f))

Im(f)

satisfies the following properties:

(A) i(f) is fully cofaithful and k(c(f)) is faithful.

(B) For any factorization n : i o m => f where m is faithful, following (bl) and
(b2) hold: ‘

(b1) There ezist t € SY(Im(f),C), (m € S2(tom, k(c(f))), ¢ € S2(i(f) ot,4)

I\
2(@ x/4(0(1‘))

such that (i(f) o (m) -t = (G o m) 7. :
(b2) If both (t,(m,¢) and (t',Ch,, f) satisfy (bl), then there is a unique 2-cell
k € S%(t,t') such that (i(f)ok) - = ¢ and (kom) -, = Cm-

Dually, we obtain the following proposition for the coimage factorization.

Proposition 22.4 (2nd factorization). For any f € S'(A4, B), the factorization
p:c(k(f)) 0 j(f) = f through Coim(f) :

Coim(f

C(k(f)/4 u \ff)

A—>B

satisfies the following properties:

(A) 5(f) is fully faithful and c(k(f)) s cofaithful.
) For any factorization v : e o j => f where e is cofaithful, followmg (bl) and

(B
(b2) (the dual of the conditions in Proposition 22.8) hold:
(b1) There ezists s € S*(C, Coim(f)), e € S%(eos, c(k(f))), and ¢; € S*(s0j(f),J)

Coim(f)

C(k(fy xif)
A cexs XJ‘ B
C

such that (eo ;) -v = (Cc 0 j(f)) - p
(b2) If both (s,Ce, ;) and (s',(;, C}) satisfy (b1), then there is a unique 2-cell X €
S2(t,t') such that (Ao j(f))-Cl = ¢; and (€0 N) - (. = C..
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In the rest of this section, we show Proposition 22.3.
Lemma 22.5. For any f € S*(A, B), i(f) is cofaithful.

Proof. It suffices to show that for any C' € S° and a € S?(Opm ()¢, Otm(s),c)

0
i(f <7 TN
A—Lm(f) § e,
0
we have i(f) o a =id;(s)o0 => a = idy. Take the pushout of k(c(f)) and Om($),c
B_ .
k(c(f)%/ A
() e €12
N'C’ i

and put

& = & (Gof) n=(908) (&0 fi)lic); = (k(c(f) oip =5 0oic ol )
& = & (@vio) (o) = (Kc(f) oip <> 00ic 2 00ic i g),

Then, since ic is faithful by (the dual of) Lemma 21.32, we have ‘

a = idy = a0ig = idooic <= £+ (a0 ic) - (ic)h = € -idoeic - (i)} <= &1 = &.
So, it suffices to show & ‘:vfz. For éach i = 1,2, since we have Cok(k(c(f)) =
[Cok(f), c(f),ec(s)], there exist e; € S'(Cok(f),C ] B) and ; € S*(c(f) oe;,ip)

Im(f)
such that

(22.1) ’ (k(c(f)) 0 Si) &= (€c(f) oe;)- (ei)ibr

Cok(f)

-
Ec(f) c(f)

B
e i
/k(C(f) “/51- \iB' ‘

Im(f) - cIl -

Im(¥)

Since by assumption i(f) o a = ivdi( )00, We have \
if)o&a = (if) o) (i(f) caoic)-(i(f)  (ic)7)
= (i(£) 0 &) - (idi()o00ic) - (i(f) © (ic)p) = i(f) o &u.

So, if we put @ := (1 1 oig) - (i(f) 0 &)- (z(f))g € S%(foip,0), this doesn’t depend
on i =1,2. We can show easily (foe;) @ = (7 0€;)- (e:)% (i =1,2). Thus (e1,e1)
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and (e, £2) are two factorizations of ig compatible with w and Tf.

Cok(f
C(f)
7rf

A—>B

By the universality of Cok(f), there exists a 2-cell B € S%(ey, e3) such that (c(f) o
B) - €2 = €1, and thus we have e]! = &5 51 (e(f) o B7Y). So, by (22.1), we have
& = (ke(f)oer?) - (eep) 0 €1) - (e1)} ;
(k(c(f)) oe3) - (k(c(f)) o c(f) 0 B71) - (ecs) o €1) - (1)}
(k(e(£)) 0 €57) - (ec(p) 0 €2) - (€2)} = &

=l

21.5

O

Lemma 22.6. Let f € S'(A, B). Let ¢ : i(f) o k(c(f)) = f be the factorization of
f through Im(f) as before. If we are given a factorization n : iom = f of f where
i € S1(A4,C), m € SY(C,B) and m is faithful, then there exist t € S'(Im(f), ),
(i € S2(i(f) ot,4) and Cm € S*(tom, k(c(f))) such that (G om) n = (i(f)o(m) -t

Proof. By the universality of Cok(f), for m := (= o e(m)) - (i omm) zﬁl € S2(fo
¢(m),0), there exist m € S*(Cok(f), Cok(m)) and 77 € S?(c(f) o™, c(m)) such that

(22.2) (fom) -7 = (xs om) - (M)}

Cok(f
c(f
ﬂfw y
\(:ﬂ "
\’ Cok(m
Since m is faithful by assumption, it follows Ker(c(m)) = [C,m, 7). By the
universality of Ker(c(m)), for the 2-cell

(22.3) = (k(e(f)) o) - (ec(s) o) - (M)} € S?(k(e(f)) o e(m), 0),
there existﬂt € S'(Im(f),C) and (€ S%(tom, k(c(f))) such that (¢ oc(m))-¢ =
(tomm) -]

If we put ¢ := (i(f) o (m) - ¢, then the following claim holds:
Claim 22.7. Each of the two factorizations of f through Ker(c(m))

n:iom=f and C:i(f)otom=>f



117

18 compatible with 7, and 7.

B ——— Cok(m)

If the above claim is proven, then by the universality of Ker(c(m)) = [C,m, 7],
there exists a unique 2-cell (; € S2(i(f) ot z) such that (¢; om)-n = C. Thus we
obtain (¢, Cm,Cz) which satisfies (; om) - n = (i(f) o {m) - ¢, and the lemma is
proven. So, we show Claim 22.7.

(a) compatibility of n with mp,, 7

This follows immediately from the definition of .

(b) compatibility of ¢ with m,,, 7

We have
i()o¢ = (ocm)-(for ™) (T oc(f)om)
(i(f) o ecgy om)) - (i(f) © (M)7)
=, (octm) m-i(f)i.

From this, we ébtain (t(f)otomy) - (i(f) otI) (C oc(m)) - - i(f)ﬂI_l. So we have
(Coctm)) 7= (i(f) etomm)  (i(f) ot]) -i(NF = ((f) o t o mm) - (i(f) 0 )]
O

Lemma 22.8. Let A,B,C € S°, f,m,i € S', n € S? be as in Lemma 22.6. If a
triplet (', ¢, ¢;) (where t' € S*(Im(f),C), ¢/, € S*(' o m, k(c(f))), ¢} € S2(i(f) o
t',i) satisfies

(224) (6(f) o ) 0= (¢ om) -, |
then ¢, becomes compatible with { and 7, (in the notation of the proof of Lemma
22.6), i.e. we have (¢, oc(m))-¢ = (' ompy) - (#).

Remark 22.9. Since m is faithful, (], which satisfies (22.4) is uniquely determined
by t' and ¢} if it exists.

Proof. (Proof of Lemma 22.8) Since we have
i(f) o (G 0 c(m) - )
=,, (Gomocm))-(moc(m))-(fo7") (7" oc(f) om)
- (i(F) o () oM) - (i(f) © (M)})
| = () ot omu) - (i(f) o (¢)D),
we obtain (¢}, oc(m))- ¢ = (¥ omp) - (t')”I by the cofaithfulness of i(f). 0O

Corollary 22.10. Let A, B, C, f, m, i, n as in Proposition 22.3. If both (t,(m, &)
and (t',¢],,C}) satisfy (b1), then there exists a unique 2-cell k € S%(t,t') such that

(i(f) o k) - G =G and (kom) - G, = (.
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Proof. By Lemma 22.8, there exists a 2-cell £ € S%(t,t') such that (kom)-¢., = ¢
by the universality of Ker(c(m)) = [C,m, 7). This « also satisfies ¢; = (i(f)ok)-(l,
and unique by the cofaithfulness of 4( f)- O

Considering the case of C' = Im(f), we obtain the following corollary.

Corollary 22.11. For any t € S'(Im(f),Im(f)), ¢m € S%(tok(c(f)), k(c(f))) and
G € S2(i(f) ot,i(f)) satisfying (G ok(c(f))) -1 = (i(f) o Cm) -1, there exists a unique
2-cell k € S?(t,idpm(s)) such that i(f) o k = ¢ and ko k(c(f)) = Cm.

Now, we can prove Proposition 22.3.

Proof. (Proof of Proposition 22.3)
Since all the other is already shown, it suffices to show the followmg

Claim 22.12. For any C € S° and any g, h € S'(Im(f),C),
i(f) o — : 8%(g,h) — S?(i(f) 0 9,i(f) o h)
1S surjective. i
So, we show Claim 22.12. If we take the differenpe kernel of g and h;
dg,ny : DK(g,h) — Im(f), @gn) : d(gny © g => degp) © h,

then by the universality of the difference kernel, for any 8 € S2(i(f) o g,i(f) o h)
there exist i € S'(4,DK(g, h)) and X € S%(i o d(y 1),i(f))

e

h
such that (i o @) - (Aoh)=(Aog)- .

If we put m := d(g 1) o k(c(f)), then m becomes falthful since d(y,1) and k(c(f))
are faithful. Applying Lemma 22.6 to the factorization n := (Aok(c(f))) ¢ : iom =
f, we obtain t € S*(Im(f), DK(g, h)), ¢m € S%(tom, k(c(f))) and ¢; € S2(i(f) ot, 1)
such that ({; om) -1 = (i(f) o {m) - ¢t. Thus we have -

(G o digny o k(e(f))) - (Ao k(e(£))) ¢ = (i(f) 0 Gm) 0
So, if we put ¢, := ((; o dig,n)) - A € S2(i(f) ot o d(g ), i(f)), then we have

(Ci o k(c(£)) v = (i(f) 0 m) -0
By Corollary 22.11, there exists a 2-cell K € S(t o d(y ), idm(s)) such that & o
k(c(f)) = (m and i(f)or = (;. I we put & := (k7 0g)-(top(yn))-(roh) € S*(g, h),
we can show that a satisfies i(f) o @ = 8. Thus i(f) o — : S2(g,h) — S2(i(f)
g,%(f) o h) 1is surjective. O

Remark 22.13. In condition (B) of Proposition 22.3, if moreover i is fully cofaith-
ful, then t becomes fully cofaithful since i and i(f) are fully cofaithful. On the other
hand, t is faithful since k(c(f)) is faithful. So, in this case t becomes an equivalence
by Proposition 21.26. :

Together With‘Corollary 22.11, we can show easily the following corollary:
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Corollary 22.14. For any f € S'(4, B), the following (bl) and (b2) hold:
(bl) If in the factorizations

C '
SN N
—T>B A—f>B,

m,m’ are fazthful and 1,%" are fully cofaithful, then there ezist t € Sl(C C"), (m €
S2(tom m), and (; € Sz(zot i') such that (i 0 (p) -n = ({om!) 0.

(b2) If both (t,(m,C) and (¢,¢,,CL) satisfy (bl), then there is a unique 2-cell
Kk € S2(t,t') such that (iok)-( = ¢ and (kom') - ¢, = Cm.

Remark 22.15. Proposition 22.3 and Proposition 22.4 implies respectively the
ezistence of (2,1)-proper factorization system and (1,2)-proper factorization system
- in any relatively ezact 2-category, in the sense of [9].

In the notation of this section, condition (B2) and (B3) in Definition 21.7 can
be written as follows: :

Corollary 22.16. For any f € S(4, B), we have;
(1) f is faithful iff i(f) : A — Im(f) is an equivalence.
(2) f is cofaithful iff j(f) : Coim(f) — B is an equivalence.

Proof. Since (1) is the dual of (2), we show only (2).
In the coimage factorization diagram

Coim(f)

C(k(f)/4 ﬂ \jf)

A"‘—>B,

since ¢(k(f)) is cofaithful and j(f) is fully faithful, we have

f is cofaithful<=> j(f) is cofa,ithfulP <=2>1 ”6 4(f) is an equivalence. O
rop. 21. )

23. DEFINITION OF RELATIVE 2-EXACTNESS

Diagram lemmas (1)

Definition 23.1. A complex 4, = (4,,d4,54) is a diagram

0

/_\ /_TP‘"H\*
An_s T’An— Ant1 n+2

where A, € S°, d‘,‘L1 € SY(A4,, Ant1), 5;;‘ € 8%(d4_; o dﬁ,O), and satisfies the
following compatibility condition for each n € Z : ‘ :

(dA 1° 5n+1) ( 1)[ = (5A ° dn+1) (dn+1)
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Remark 23.2. We consider a bounded complec&‘ as a particular case of a complez,
by adding zeroes.

-0 0 A ) P
* ) ° \W G u?’
0 0

Definition 23.3. For any complexes A, = (A,,d?,64) and B, = (B,,dE,B),
a complex morphism fo = (fn,An) : Ae — B, consists of f, € S'(4,,B,) and
An € S%(d4 0 frt1, fn 0 dB) for each n, satisfying

(5;3 o fn+1) : (fn—}-l)g = (d;?_l ° An) ’ ()‘n—l ° df) “(fncr0 55) ’ (fn—l)g

i, dy_y s iy
cAp_o—> A, 1—>A _>An+1—>A|n+2
N T R fJ [
fn An fn >\n A f >\n fn 2
i 2 A 7 1 vl i ¥ n‘?q ‘;.1 ¢+
.. Bn_z B—> Bn—l dB Bn dB Bn+1 5
n—2 n—1 n n+1

Bpis -

Propdsition 23.4. Consider the following diagram in S.

4, s B

(23.1) | al | A lb’

Ay — B,
f2

If we take the cokernels of fi and fa, then there exist b € S'(Cok(f1), Cok(f,)) and
X € S%(c(f1) o b,boc(f2)) such that

(5, 0B)- () = (f10N) - (Ao e(fa)) - (aop,) - a

0

N
A, f1 B, (fl)COk(fl)

al )\U ‘II; UX l?
Ay — By ——> COk(fZ) .

W
If (E’,T) also satisfies this condition, there exists a unique 2-cell ¢ € S%(b, EI) such
that (c(f1) 0 &) - X =X

Proof. This follows immediately if we apply the umversahty of Cok( f1) to (Ao
c(f2)) - (aomy,) - af € 82(fioboc(f),0). ' O
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Proposvition 23.5. Consider the following diagrams in S,

fr

A, ——B;
all M) lbl Ay Ny B
a %A2—fz—>B2~—B> b al A l’b :
azl A2 lbz As —f;>Bg

Az —— B3
f3

which satisfy (fioB) - A= (A oby)- (a1 0A2) - (ao f3). Applying Proposition 23.4,
we obtain diagrams

B —Dook(f) B —Look(f,) By —Lcok(f,)

bl Jx lg bll Ix lzl bzl R[5y lz,,
B3 —c—(f:)Cok(fg) . By ——c—(}z)Cok(h) B3 —C(;:)Cok(fg)

with
(232)  (rg,08)- (B

(FroX) - (oelfs) - (aomys,)-af
(ms, 0B1) - (B)} (froXr) - (\oc(fa) - (a1 0mp,) - (a1)f
(m,002) - (027 = (f20R) - (M2oc(f)) - (ar0p,) - (@)
Then, there exists a unique 2-cell B € S2(by o by, b) such that
(e(f1) 0 B) - X = (A1 0ba) - (b1 o X2) - (B oc(f3)).
Proof. By (23.2), X is compatible with 7z, and (Ao c(f3)) - (a o 7y,) - ag.

1l

0 Cok(f1)

\”n e )/

l 7
I

\ N
/ boc(f3)
RN
0 .: COk(f3)

| ‘ (Aoc(fg))~(ao7rf;)‘~a“1
On the other hand, X := (A1 0by) - (by o) - (Boc(f3)) is also compatible with 7,
and (Aoc(fs))-(aomy)- aﬁI. So, by the universality of the Cok(f1), there exists a
unique 2-cell B € S2(b; o by, b) such that (¢(fi) o B) A = . a
Corollary 23.6. Let (fn,\n) : (An,d2,62) — (By,dB,68) be a complex mor-
phism. Then, by taking the cokernels, we obtain a complex morphism (c(fn), An) :
(Bn,dB,68) — (Cok(f),d-,87) which satisfies

(233) (@2 oms,)  ([@)E = (noc(far1)) (faoXn) - (ns, 0drn) - (dn)5

for each n.

Sl
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Proof. By Proposition 23.4, we obtain Ef‘ and X, which satisfy (23.3). And by

Proposition 23.5, for each n, there exists a unique 2-cell gf € S2(—Jf_1 oc_[S, 0) such
- ~ - —B

that (62 0 e(fas1)) - lfupr)s = (@51 0 %) - (Racy 0@ - (clf1) 032) - fo1)".

By the uniqueness of 5 in Proposition 23.5, it is easy to see that

B -B —-B —-B —B —-B
(6, ° dn+1) : (dn-l-l)l; = (dp—1 © 5n+1) : (dn—1)§~

These are saying that (Cok( fn),ﬁf,gf) is a complex and (c(f,), A\n) is a complex
morphism. , ‘ a
Pfoposition 23.7. Consider the following diagram in S.

A4, —I B,

l NI lb

Ag —_— B3
f3

By taking the cokernels of f1 and fs, we obtain

A - f1 By c(f1) Cok(f1)
al /\U, b »U)\' lg

A2 A Bz () Cok(fz) 5

and from this diagram, by taking the cokernels of a,b,b, we obtain

0

’Il'f2
Ay - Blz s Cok(f2)
‘ c<a>J (O N by Jc@

c(f2)

\
Cok(a) — Cok(b) — Cok(b) .

0

Then we have Cok(f,) = [Cok(b),c(f2),Ts,]. We abbreviate this to Cok(f,) =
Cok(b).

Proof. Left to the reader. ‘ k O

 Proposition 23.8. In the following diagram, assume fo : Ay — B, is a complex
morphism.

0
o MR
IS S Sy
1
(234) . . fll M) 2 A} lfs
B B2 B B3

0
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If we take the cokernels of df* and dZ,

di! c(dt')

Ay Ay —"Cok(dft)
, |
fll )\1\U¢ fv2 X]»Ue l?2
B
Bl d{B B2 c(d?)CO}{(dl )

then by the universality of cokernel, we obtain d2 € Sl(Cok(dA) As) and 62
S2(c(dft) o dA ds) such that (d‘l‘1 o 52) & = (7TdA o d;) (d2 )% Szmzlarly, we
obtain dB € S'(Cok(df), By), 3, € SXc(dP) o d,,db) with (df o 52) 68 =
(g5 © d2 )E (d2 )%. Then, there exists a umque 2-cell Xy € Sr"(d2 o f3, fy0 d2 ) such
that (c(df) o Xe) - (M 0dy ) - (f20 85 ) = (B o f3) - A '

Proof. If we put & := (dff o \;1) - (651 0 f3) - ( fg)'}, then both the factorizations
A A —A B
(63 0 f3) A2 = c(dy)o(dy o fs) = faods
— —B —B — =
(Rrody) - (f208,) ¢ cdi)o(Foody) = fro0df
are compatible with Tga and §. So the proposition follows from the universality of
Cok(d4}). ' o |
Proposition 23.9. In diagram (23.1), if we take the coimage factorizations

ha: c(k(@) 0 j(a) = a
s c(k(®) 0 j(b) = b,

then there ezist f € S'(Coim(a), Coim(b)), A1 € S2(f1 o c(k(b)),c(k(a)) o f) and
Az € 8%(f03j(b),j(a)o fo) such that (fiom) A= (A10j(1))- (c(k(a)) o X2) - (koo fo).

1

Al —>B1

| |
o(k(a) A k(b))
\ Y

- (23.5) o £Coim(a) — 1 > Coim(b) 2 )b
| |
i(a) Jra i
] \d
A — B,
i 2

Moreover, for any other (f', X}, ;) with this property, there exists a unique 2-cell
& € S3(f, f') such that A1 - (c(k(a))o&) = A, and (E03(b)) - Ny = Asa.

Proof. Since the coimage factorization is unique up to an equivalence and is ob-
tained by the factorization which fills in the following diagram, we may assume
Ker(a) = [Ker(a), k(a),e,], Cok(k(a)) = [Cmm(a) ( a)), Tr(a)], and (k(a) o pg) -
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€a = (Th(a) © 4(a)) - j(a)}.
0 Coim(a)
-
) (k(a))

Ker(a) '—W Al ) %#a 3j(a)

\
0

[Ker(b), k(b), ],

[Coim(b), c(k(D)), Tk (r))]

and (k(b) o ) - €5 = (m(s) © j(b)) - 5(b)5. By (the dual of) Proposition 23.4, there
are f, € S!(Ker(a),Ker(b)) and A € Sz(i1 o k(b),k(a) o f1) such that (Aob) -

(k(a)o A) - (eq 0 f2) - (]‘2)5’r = (il ogp) - (il)g Applying Proposition 23.8, we can
show the existence of (f, A1, A2). To show the uniqueness (up to an equivalence),
let (f', A], \}) satisfy

(from) - A= (A1 0j(1)) - (c(k(a)) 0 A3) - (ka © fa).
From this, we can obtain
(£, o) - (£)F = o k) - (K(@) 0 X)) - (muga) © 1) £

And the uniqueness follows from the uniqueness of 2-cells in Proposition 23.4 and
Proposition 23.8. L a

Z

NN

Ay

Similarly, we may assume

Ker(b)
Cok(k(b))

Proposition 23.10. Let f, : Ae — B, be a complex morphism as in diagram
(23.4). If we take the cokernels of fi, f2, fs and relative cokernels of the complex

A, and B, as in the following diagram, then we have Cok(f;) = Cok(EQB,EQB).

0 ' N
A
z ez (a2, 3)
4y

As Cok(d4, 62)

4 °
| |
fll ) Alu fa )‘2U f3 a»ﬂ ' l?:;'
) : ] ]
Bl Bz B3 Cok(d2B,623)

af 3 e(df,63)
c(fl)l ;1“ c<£z) 32“ lcus)
Cok(f1) —z Cok(f2) = Cok(f3)
=B

0

Proof. Immediately follows from Proposition 23.7, Proposition 23.8 and (the dual
of) Proposition 21.20. O
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'Propos1t10n 23.11. In diagram (23.1), if a is fully cofaithful, then the followmg .
diagram obtained in Proposition 23.4 is a pushout diagram.

c(f1)

By — Cok(f1) -
bl UX l?
B, 5 Cok(f2)
Proof. Left to the reader. O

Concerning Proposition 21.32, we have the following proposition.

Proposition 23.12. Let

I

A xp Ay s 4y
fél' ¢l lfz
Ay———B
f1

be a pullback diagram in S. If f1 is fully cofaithful, then fi is fully cofaithful.
Proof. Since f; is cofaithful, in the notation of the proof of Proposition 21.32,
Cok(i1) = [A2,p2,&] and Cok(d) = [B,t,e]. Applying Proposition 23.7 to the
diagram

0—0>A1

ol b e

Ay ><31‘12?141 x Ag,

we obtain

Cok(fy) = 0 <= Cok(f!) = 0.

0—0>A1$A1
ol Vool lfl

A1 XBA2~d—>A1 XAz—t—>B
} O Plz l} lo

Y
Ay xB A A 0

0

id

fi

O

Proposition 23.13. In diagram (23.1), assume a is cofaithful. By Proposition
23.9, we obtain. a coimage factorization diagram as (23.5). If we take the cokernel
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of this diagmm as
By —1 Cok(fy)
C(kl(b)) u/\—l ﬁ
b gCoiL(b) — ) —>ColZ( HE
| |

3®) = ®
v v
By ————— Cok(f2),
c(f2)
then the factorization
Cok(f

c(k(z/ \\b)

Cok (f1) — Cok(f2)

becomes again a coimage factorzzatzon.

Proof. Tt suffices to show that c(k(b)) is cofaithful and j(b) is fully faithful. Since
c(k(b)) and c(f) are cofaithful, it follows that c(k(b)) is cofaithful. Since j(a) is an
equivalence, : ‘

Coim(8) > Cok(f)

j(b)l = |®

Bz T COk(fz)

is a pushout diagram by Proposition 23.11. By (the dual of) Proposition 23.12,
j(b) becomes fully faithful. ]

Definition of the relative 2-exactness

Lemma 23.14. Consider the following diagram in S.

(23.6) - e

If we factor it as

~ Ker(g) Cok(f)

f AN

/Z, k(g) c(f) uv\
(23.7) A4 ' C

0
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with
©og)e = (foeg)- (B
(fo@) 9 = (mr09)- (@7,
then Cok(f) =0 if and only if Ker(g) = 0.

Proof. We show only Cok(f) =0 = Ker(g) = 0, since the other implication can be
shown dually. If Cok(f) =0, i.e. if fis fully cofaithful, then we have

Cok(f) = Cok(f o k(g)) = Cok(k(g)) = Coim(g).

Thus the following diagram is a coimage factorlzatmn, and g becomes fully faithful.
Cok(f

4 uv\

Definition 23.15. Diagram (23.6) is said to be 2-exact in B, if Cok(f) =0 (or
equivalently Ker(g) =0 ).

Remark 23.16. In the notation of Lemma 23.14, the followmg are equivalent :
(i) (23.6) is 2-ezact in B.
(i) f is fully cofaithful.
(iii) g is fully faithful.
(iv) c(f) = cok(k(g)) (i.e. Cok(f) = Coim(g)).
(v) k(g) =ker(c(f)) (i-e. Ker(g) =Im(f)).
Proof. By the duality, we only show (i) & (iii) & (v).
(i) < (iii) follows from Corollary 21.25.
(iii) = (v) follows from Proposition 21.21. .
(v) = (iii) follows from Proposition 22.3. O

Let us fix the notation for relative (co-)kernels of a complex.
Definition 23.17. For any complex A, = (An,dn,d,) in S, we put
( ) [Zn(A )a naCA] Ker(dn75n+l)
( ) [Qn( ) qn>p£] _COk(dn 17 n— 1)'
Remark 23.18. By the universality of Ker(d,,,0n+1) and Lemma 21.19, there exist
kn € SY(An—1,2"(As)), Vn1 € S%(kn 0 2n,dn—1) and vn 2 € S*(dn_s 0 kn,0) such
that ‘ :

“(Wnpodn) 0n = (kno(n) (kn)g

(dn——2 o Vn,l) : 611—1 = (Vn,2 o Zn) : (Zn)z

Z"(A,) ,
kn Zn ’ g

Apg—dno>Ap 1 —dn1—> A, dp — An+1 — Apys
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On the other hand, by the universality of Ker(d,,), we obtain a factorization diagram

0

Snrf} ﬂs

‘An._z-—d 2—>An_1—d 1—>A

N2 ﬂ_,,

Ker

dn —> Apq1 —-—> An+2

which satisfy

@nodn) bn = (doyoea,) (dn 1)}
(dn—208,) On1 = (8p_y0k(dn))- (k(dn))}

By Proposition 21.20, there exists a factorization of z, through Ker(d,,)

Z™(Ad) 0 '
%

Ap ———Ann1

Ker(d y

(¢, 0dn) - Cn=(2,0¢4,) (2,)}
Moreover z,, is fully faithful by Proposition 21.33.

which satisfies

By the universality of Ker(d,), we can show easily the following claim.

" Claim 23.19. There exists a unique 2-cell (, € S(kn o zn,d,_1)

such that

(Gnok(dn)) -8 = (knoC ) V1.

This En also satisfies

(dn—2°<n)' Op— 1—(Vn2°z )(in)l}
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Remark 23.20. Dually, by the unwersality of the cokernels, we obtain the follow-
ing two factorization diagrams, where q,, is fully cofaithful.

Q" (4.)
| 0 / \: 0
: ‘ n HKn,1 n,2
dn_z' p ll M / ]

n2”—>An l_d" 1%14- —da _>An+1% n+2
dn— 1 ﬂ N&n-}q
C(d" 1)
Cok(d
Q"(4.)

0 0
dn £n
n /"”n,2/
— _ R dnt1
P\ Tn n An+1 —An

Cok(dp_,)

We define relative 2-cohomology in the following two ways, which will be shown -
to be equivalent later.

Definition 23.21.
H'(As) = Cok(kn,vnz2)
H3(As) = Ker(ln, tin2)

Lemma >23 22. In the factorization diagmm (23.7) in Lemma 23.14, if we take
the cokernel of f and the kernel of g, then there exist w € S'(Cok(f),Ker(g)) and
w € 8%(c(f) ow o k(g),k(g) o c(f)) such that

(23.8) (fow)-(poc(f)) -7 = (mpowo k(g)) - (wo k()7
(23.9) (wog) - (k(9)oP)eg = (c(f)owoeg) - (c(f) ow)f.
Cok(f) —= Ker(g)
\
k(9)

€g

\
Cok(f)”

4




130 HIROYUKI NAKAOKA

Moreover, for any other factorization (w',w') with these properties, there exists a
unique 2-cell k € S?(w,w') such that (c(f) ok o k(7)) ' =w.

Proof. Applying Proposition 23.4 to

idg

A A
(23.10) . Ll 74 lf
Ker(g9) —— B

o) D

we obtain w; € S'(Cok(f), Cok(f)) and wy € S%(c(f)ows, k(g)oc(f)) which satisfy

(23.11) (fow)-(goclf) - = (mgown) - (wr)y.
Then (w1 09) - (k(g) 0 @) - &4 € S?*(c(f) o w1 07, 0) becomes compatible with Ty,

0
T

A —-——> Ker(g) —> Cok(f)

w10g

—C

0" (w109)-(k(9)0) €4

By Lemma 21.19, there exists a 2-cell § € S(wy ©7,0) such that

(e(f) 08) - c(f)s = (w1 07) - (k(g) oP) - &,

So, if we take the cokernels of k(g) and w;, then by Proposition 23.8, we obtain the
following diagram: S

g9

oo, M i@

Ker(g) o) B Coim(g) ——C
| N

C(i)l = o =¢>1 EEJ ="9>2 ido
v

Cok(f) —>= Cok(f) —— Cok(w) —C
|

c(w1)

g
Applying Proposition 23.7 to (23.10), we obtain
[Cok(w: ), 7, (2)}] = Cok(0 — Coim(g)).

Thus ¢ is an equivalence. Since j(g) is fully faithful, g' becomes fully falthful Thus
the following diagram is 2-exact in Cok(f).

(23.12) Cok(f) —> Cok( f)' 2 sc

W
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"So if we factor (23.12) by w € Sl(Cok( 1), Ker(g)) and wy € S?(w o k(g), w:) as in
the diagram .

Ker (g) 0

| /NP N

(23.13) Cok(f) —= Cok(f) ——=C
N 7
0
which satisfies
| (woeg) - wi = (wr09) -9, ~
then w becomes fully cofaithful by Lemma 23.14. If we put w = (c(f) o ws) - wi,

then (w,w) satisfies conditions (23.8) and (23.9).
If (w',w") satisfies

(23.14)  (fouw)-(poc(f) 1 = (mpow ok(g)) (' ok(g);
W) k@)oo e = ((f)ou oeg) - (e(f) ow),

then, since both the factorization of k(g) o c(f) through Cok(f)

W 1 elf) o' ok(g) = k(g) o c(f)

wi 1 e(f) owr = k(g)oc(f)
are compatible with 7y and (p o ¢(f)) - 7y by (23.11) and ‘(23.14), there exists
wh € S?(w' o k(g),w) such that

(c(f) ows) w1 =w'.

Then we can see wy is compatible with e5 and 4. So, comparing this with the
factorization (23.13), by the universality of Ker(g), we see there exists a unique 2-
cell & € S?(w,w') such that (kok(g))-wh = wy. Then k satisfies (e(f)okok(g))-w'

w. Uniqueness of such & follows from the fact that c(f) is cofaithful and k(g) is
faithful. O

Proposition 23.23. In Lehma 23.22, w is an equivalence.

Proof. We showed Lemma 23.22 by taking the cokernel first and the kernel second,
but we obtain the same (w,w) if we take the kernel first and the cokernel second,
because of the symmetricity of the statement (and the uniqueness of (w,w) up to
an equivalence) of Lemma 23.22. As shown in the proof, since (23.12) is 2-exact
in Cok(f), w becomes fully cofaithful in the factorization (23.13). By the above
remark, similarly w can be obtained also by the factorization

Cok(f)

Ke/“\

Ker(g

0

where the bottom row is 2-exact in Ker(g). So w becomes fully faithful. Thus, w
is fully cofaithful and fully faithful, i.e. an equivalence. O



132 HIROYUKI NAKAOKA

Corollary 23.24. For any complez Ay = (An,dn,6,), if we factor it as

Hi(A)  HP(A)

(in the notation of Definition 23.17, Remark 23.18 and Remark 23.20), then there
exist w € ST (HT(As), HF(A.)) and w € S2(c(kn,Vn,2) 0w o k(€n, tin,2), 2n 0 qn) such
that '

(know) - (11 0qn) Pn = (T(kynz) © WO k(ln, Hn,2)) - (w0 k(ln, in,2))7

(woly) (zno .un,l) “Cn (c(kn,vn2)owo €(eny/1/n,2)) *(c(kn, Vn,2) ° w)g

For any other factorization (w',w") with these conditions, there exists a unique 2-
cell k € S?(w,w') such that (c(kn,Vn2) © ko k(ln,fins2)) - w' = w. Moreover, this w
becomes an equivalence.
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Proof. For the factorization diagrams

0 0

R e T

A, 2"’—dn 2—>An_1-dn 11— A, ———>An+1

- / N 2)%//\5/
. Cok(d

Apq — dn- 1~—>A ——dn > App1 —dng1 > Apo

_m/ \ 5dn+1
\ //(dn+1)

Ker(dn.H)
which satisfy
(dn—2 Ogn—l)'(sn—l = (7q,_ -1)- (n 1)1
On-10dn)-0n = (c(dn ) 3) c(dn-2)}
(dn © ) - (dn)}
(85 © k(dn41)) - k(dns1)],
d,,0) such that
(6], © k(dn+1)) - k(dnt1)7 = (dn-108,11) - 0n
(eldn—z) 0 88) - cldn-g)t = (Furod,)- 8o

By Proposition 21.20, applying Lemma 23.22 and Proposition 23.23 to the following
. diagram, we can obtain Corollary 23.24.

Z"™(A) Q"(4.)

» /_u\ /ll\

Ker(dn+1)
5*4}

(én-l-l odny1) Onp1 =
(dn—l ° én+1) : 6” =

there exists a unique 2-cell §}, € S?(d,,_; o

Thus H{(A.) and H}(A,) are equivalent. We abbreviate this to H™(A,).

Definition 23.25. A complex A4, is said to be relatively 2-exact in A, if H"(A4,)
. is equivalent to zero.

Remark 23.26." If the complex is bounded, we consider the relatz’ve 2-exactness
after adding zeroes as in Remark 23.2. For example, a bounded complex
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is relatively 2-exact in B if and only if

A C -
a) L N 2
0 0

" is relatively 2-ezact in B, and this is equivalent to the 2-exactness in B by Remark
21.18.

24. LONG COHOMOLOGY SEQUENCE IN A RELATIVELY EXACT 2-CATEGORY

Diagram lemmas (2)

Lemma 24.1. Let A, be a comple;v in S, in which A5 =0anddy =0:

(24.1) Ay Ay As 0

Then, (24.1) is relatively 2-ezact in As and A4 if and only if Cok(ds,ds) = Ay, i.e.
[QB(AO)v q3, P3] = [A4a d37 63]

Proof. As in Remark 23.20, we have two factorization diagrams

. /mu\

A2—d2—>A3 ds —> Ay

Cok(dy)
Whefe T is fully cofaithful. We have
(24.1) is relatively 2-exact in Ay & Cok(ds,d3) =0
Cok(d3) = 0 & Cok(gs 0 £3) = 0

Prop. 21.21 COk(£3) =0+ e3 18 flllly cofaithful

=
Prop. 21.20

and
- (24.1) is relatively 2-exact in A & Ker(ls, (Z3)ﬁ1) =0

& Ker(43) = 0 & {5 is fully faithful.
Rem. 21.18 v
Thus, (24.1) is relatively 2-exact in A3 and Ay if and only if £ is fully cofaithful and
fully faithful, i.e. £ is an equivalence. , a

By Remark 21.18, we have the following corollary:
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Corollary 24.2. Let (A,,dn,d,) be a bounded complex in S, as follows:
0
/ﬂ;{\ .
A As - 0
a2 W
0

Then, (24.2) is relatively 2-ezact in Ay and As if and only if Cok(df') = [As, d4, 64].

Lemma 24.3. Let A, be a complex. As in Definition 25.17, Remark 23.18 and
Remark 23.20, take a factorization dwgmm

(242) A

Zn+l
n+1 “ zn+ C
Vn41, 2 V"+1 ! n+l/
dn +1
n 1—dn 1%_{4 —d —>An+1—-~—-—>-
pn
Q" (4.)

which satisfies

(Vnt1,1 © dnt1) - Ont1 (knt1 0 Cny1) - (kng)}
(dn-10Vnt1,1) 6 = (Vnt1,202n41) - (2n41)]
(dn—10 Mn,l) O = (pnoln) Ly )
(Bn1 0 dns1) Onsr = (an © pny2) - (gn)}-

Then, there ezist z,, € SY(Q"(4s), 2" (As)), & € S%(Tp © 2n41,4n) and n, €
S%(qn © Tn, kni1) such that

(énodny1) - Hn2 = (Tn 0 Cny1) - («'En)g
(Qn o gn) ‘Hnil = (nn o Zn—i—l) . Vn;',-l,l
(24.3) ~ (dn—1 °\"7n) "Vnt12 = (Pnozy) - (zn)z’

Moreover, for any other (z.,&.,n.) with these properties, there exists a unique
2-cell k € S?(xp, z),) such that (ko znt1) - &L =& and (gn o K) - Nl = N

Proof. By the cofaithfulness of g,,, we can show p,, » is compatible with 6,42. By the
universality of the relative kernel Z™1(4,), there exist z,, € S1(Q™(4.), Z"t1(A,))
and &, € S%(zn 0 2ny1,4n) such that ’
(£n © dn+1) CHn2 = (xn ° Cn+1) : (mn)ﬁl
'Then, both the factorizations
‘ Unt1,1 ° Kny102n11 = d,
(@no&n)  Bn1 ' GnoTn 0 2Zny1 =>dy
are compatible with (,4; and &,41. Thus by the universality of relative kernel

Z"t1(A,), there exists a unique 2-cell ,, € S?(gn, © Tn, knt1) such that (g, 0 &) -
Bni = (Mn © Zn41) - Vnt1,1- It can be easily seen that 7, also satisfies (24.3).
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Uniqueness (up to an equivalence) of (zn,&,,7,) follows from the universality of
the relative kernel Z"*1(4,) and the uniqueness of 7,,. O

Lemma 24.4. Consider the following complex diagram in S.

0
| i
(24.4) A=——F—>B—F—C

If (24.4) is 2-ezxact in B andé is cofaithful, then we have Cok(f) = [C, g, ¢].
Proof. If we factor (24.4) as

' /—‘Cok(f)
T 7
; A\ )

A
0 \C,

then, since (24.4) is 2-exact in B, g becomes fully faithful. On the other hand, since '
g is cofaithful, g is also cofaithful. Thus § becomes an equivalence. a

Lemma 24.5. Consider the following complez morphism in S.

0
m
A A
Iy . Syl

1
,\lj fV2 "“U' lfa

B, ——> B 0

0

id

A

B

0

If the complezes are relatively 2-exact in Ay, As and Bs, Bs respectively, i.e. they
satisfy Cok(dft) = [As,d4',04] and Cok(dP) = [Bs,dZ,6%] (see Corollary 24.2),
then the following diagram obtained by taking the kernel of fo becomes 2-exact in
As.

0

f3
(k(£2)0K)-(c £, 0dB)-(dB)}

Proof. By taking the kernels of id4, and f in the diagram

0
m

k(f2)ods

dit
Ay —— Ay

AU lfz

Al —_—> B2
a7

|
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and taking the cokernels of Og 4, and k( fz), we obtain the following diagram by
Proposition 23.8, where 6 = k( f2)h (dA)

id id

0 - Ay Ay A
(24.6) ol = ldf = Efl = ld?
Ker(f2) k(72) Az C(k(fz)) im(f2) S5 B2
‘U
fa

By taking the cokernels of Og ker(s,), di* and df in (24.6), we obtain the left of the
following diagrams, while by Proposition 23.13 we obtain the right as a coimage

factorization if we take the cokernels of dft, d; and d® in (24.6):

0 fa
m /_\
Ker(f2) Ee) A f2 B, Ay —>C(k(f2)) (fz)](fz) B,
id{ o dg*l s ldf dg‘l = 3 l = ldf
k o :
Ker(f2) (f2) % A3 Bg o A —>C 1m(f3) B3
, f3 c(k(f3)) - i(f3)
RERRRN Ut ss

: 0 ‘ fs
) (k(f2)or)-(e g5 0dF)-(dF)} P

On the other hand by Proposition 23.7, if we take the compatible 2-cell v = (k(f2)o
K1) (Th(fs) ody)- (@) € S2(k(f) o dft o c(k(f3)), 0),

0
- 2
: l = F?

- Ker(f2) A Co m(fg)
id o} dg
Keﬂszmm(fs)

0
then we have Cok(k(f2) od4) = [Coim(f3), c(k( f3)), v]. It can be easily shown that
v is compatible with us, and (k(f2) o &) - (e, 0 d¥) - (dB)5.

0

C‘0'1m(f3)

vr\\ c(k(£3))
/Zf i)

Ker(fy) ———— A3

(k(f2)°’€)'(5f2°_dzB)'(dzB)b\_/

Since Cok(k(f2) od4') = [Coim(f3), c(k(f3)),v] and j(f3) is fully faithful by Propo-
sition 22.4, this means (24.5) is 2-exact in As. , O
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Lemma 24.6. Consider the following complex morphism in S.

0
IS EY P )
|
(24.7) fli M) %Azl} lfa
> > B ——> By —> Bj

0

If the complezes are relatively 2-ezact in Ay and By, By respectively, then the fol-
lowing diagram obtained by taking the kernels

. 0
(24.8) Ker(f1) T Ker(f2) A Ker(f3)

=2

is 2-exact in Ker(fs).

Proof. If we decompose (24.7) into

At k(dA a4 .
Ay — 5 Ker(dd) Ker(dd) "2 > 4, % 5 4,
|
fll A l_{z and izl A fa A2y} lf3
0 B B .
0 B, = Ker(ds) Ker(d; )k(d,f) B " Bs,

then by (the dual of) Proposition 23.7, we have Ker(ds) = Ker(f,). Since dPt s
an equivalence by (the dual of) Corollary 24.2, the d1agram obtamed by taking the
kernels of f; and f

At

Ker(fl) & Ker(f,)

|t ke

Ay 7 Ker(d4")

becomes a pullback dlagram by (the dual of) Proposition 23.11. Since d1 is fully
cofaithful, d; A1 becomes also fully cofaithful by Proposition 23.12. This means (24.8)
is 2-exact in Ker(fs). O
Lemma 24.7. Consider the following complex morphism in S.

0

m

Ay As As
(24.9) - idl M id H 22} lfs
Ay — Ay —= By
0

If f3 is faithful and the bottom row is 2-exact in Az, then the top row is also 2-exact
n Ag. .
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Proof. By taking the cokernels of df! and d? in (24.9), we obtain (by Propos1t10n
23.8)

—A

Cok(d4) 2> 4,

id“ pw lfs
Cok(dP) ——> B.

2

SinceEzB is fully faithful, by taking the kernels in this diagram, we obtain the
following diagram.

- % Ker(f3)

0
ol Ell} lk(fs)

Ker(d, ) — Cok(d{') -4 — A3
ol 3 ’ x| lfs
0 _"‘—0> COk(df) ?—) B3
In this diagram, we have
Ker(d2 )= Ker(Ker(d2 ) —0) prorT 38,7 Ker(O — Ker(f3)) o 5128 0.
This means that the top row in (24.9) is 2-exact in A,. O

Corollary 24.8. Let

0 0
m 'm
Al A2 " A3 and B1 5 A2 B3

af 4 | dl iz

be two complexes, and assume that there exist 1-cells f1, f3 and 2-cells Al,Xg,a as

in the following;diagmm
\ /:
/ \

B37

\—/

0
where f; is cofaithful and fs is faithful. Assume they satisfy
() (\medf) 67 = (fio0)- (A1)}
(d2)  (dff o X)) o = (84 o f3) - (fa)h-
Then, if the diagram
. 0
m

By A B3
d? a2
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is 2-exact in As, then the diagram

is also 2-exact in A,.

Proof. This follows if we apply Lemma 24.7 and its dual to the following diagrams: -

By Bs Ay
fll iy i li 1d“ id Azﬂ, lfs
Al Az pr Bg, it A2 B B3

O

By Corollary 24.8, it can be shown that the 2-exactness plus compat1b1hty implies
the relative 2-exactness (see [29] in the case of SCG):

Corollary 24.9. Let A, = (An,dn,0,) be a complex in S. If
0
P IR
An_q N A, —i Ant1

n—1 n
is 2-exact in A,, then A, is relatively 2-exact in A, .

Proof. This follows immediately if we apply Corollary 24.8 to the following diagram
(see the proof of Corollary 23.24):

Ker(dn“)

\/

c(dn—2) k(dni1)

\

Cok(d,, ) nl

Construction of the long cohomology sequence

Definition 24.10. A complex in S

0
: m
(24.10) A 7 B—/F—>C
is called an extension if it is relatively 2-exact in every O-cell.

Remark 24.11. By ,Corollary 24.2 (and its dual), (24.10) is an extension if and
only if Ker(g) = [A, f,¢] and Cok(f) =[C, g,¢].




141
Definition 24.12. Let (fosXe) : Ae —> B, and (ge, ke) : Bs — C, be complex
morphisms and e = {¢n, : fn © g = 0} be 2-cells. Then,
0 )
P TR
B,

fo - Je Ce

(24.11) A

is said to be an extension of complexes if it satisfies the following properties:
(el) For every n, the following complex is an extension:

. 0
T fen N
B, —

fn gn

A, Cn

(e2) o satisfies

V ’ ()\n ° gn+1) ' (fn ° K/n) ' (Qon o dg) : (dg)l} = (dﬁ ° (Pn-f-l) ' (dﬁ)ﬁl

0
m
A, B, 0,

n,

An, i K
df — dg _ dS

Y
fnt1 gn41
An+1 > B'n+1 ? Cn+1

Nl 7

0
‘Our main theorem is the following:
Theorem 24.13. For any extension of complezes in S ‘
0
m
B,

feo e

A, C.,

we can construct a long 2-exact sequence:

0 0

/_ﬂ\

T HM(BL) —> H"(C4) — H™1(A,) —> H™1(B,) —> -+

0
Caution 24.14. This sequence is not necessarily a complex. (See Remark 24.19.)
We prove this theorem in the rest of this section.

Lemma 24.15. In the notation of Lemma 24.3, we have

(1) Ker(z,) = H™(A,),

(2) Cok(z,) = H™1(A,).

Proof. We only show (1), since (2) can be shown in the same way. In the notation
of Lemma 24.3 and Remark 23.18, we can show that the factorization

(zn °_€_n+1) “&n 1 (Tn 0 2ny1) 0 k(dnt1) = Ln
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is compatible with €4, ., and g, o.

n+41

(
Ker( n+1)

(zn O£n+1)'€n

So by Proposition 21.20, Proposition 21.21 and the fact that Zp 1 is fully faithful,
we have H"(A,) = Ker(€n, pin,2) = Ker(zn 0 2,,,1) = Ker(z,). a

Lemma 24.16. For any extension (24.11) of complezes in S, we can construct a
complex morphism

0
m 0
n(A "(B, n(C,
Q"(Ae) —r—> BT Q™ ( )WQ (Co) ——0
l x4 l s l
n+1 . Zn+1 .
0_O>Zn+1(A )Z_(f>Zn+1(B )—(g>)Z"+1(C.)
W
0 N
where the top line is a complex which is reldtively 2-ezact in Q™(B,), Q™(C,), and

the bottom line is a complex which is relatively 2-ezact in Z™"1(A,), Z"T1(B,).

Proof. If we take the relative cokernels @™ (A4, ), @™(B.) and Q™(C,) of the complex
diagram :

0
A
da_s 'ﬂ‘an_l dn_y a4
An—2 - An—l An - - An+1
fn—2l )\n—2U lfn—l \U)\n—l lfn U.z\n \Lfn+1
Bn—2 d‘f_g Bn—l df_l Bn df Bn—l—l
gn—2l K:n_g\U, lgn—l » ‘U,I{n_l lgn \U,K:n lgn-{-l
Cn—2 -1 C C
n i, o n i<, n 4C n+1
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then by (the dual of) Proposition 21.20, Proposition 23.4 and Proposition 23.5, we
obtain a factorization diagram
A i A 24
Qn(A.) —_— An+1
o

;,fn-—ll An—l»Uz fnl _)\_n_.1,1U Q™ (f.) U,X"..Lg lfn+1

\

Bn_1 1B B, B Qn(B0) s B'”‘H
n—1 9n [ n
gn—ll Rn—l\U, 9n En‘—l,l\u Q" (ge) »U/—'sn—lﬁ ig""'l
¥ /
Gt ———> Cp ———— Q*(Ca) ———> Cos
dn-—l In ln

and a 2-cell Q™ (s) € S%(Q™(f+)oQ™(gs),0), which satisfy compatibility conditions
in Proposition 23.4 and Proposition 23.5. It is also easy to see by the universality
of the relative cokernels that

(64 0 Ans1) - (at2 0 @210) - (QV(Fa) 0 1) - (@7 () = (o © Frsa) - (fsa)'

Now, since

0
e N
An f'n, Bn gn Cn 0 0

is relatively 2-exact in B, and C,, we have Cok(f,) = [Cn, Gn, pn]- So, from
Cok(frn) = [Chn, gn, ¢n] and Cok(fr—1) = [Crn—1,9n—1,%n—1], by Proposition 23.10
we obtain :

Cok(Q™(fe)) = [Q7(Cs), Q" (g4), Q" (we)],
i.e. the complex

0

ffem e
n n n 0
Q"(44) 57z Q(Ba) g @'(C) ——0
is relatively 2-exact in Q™ (B, ), Q™(C,). Dually, we obtain a factorization diagram

A
dn+1

kf+1 ' 1 z:+1
A, —35 Zn+1(4,) Ania Anto

. |
\fnl An+1,2U Zn+1(f.) \Uo?ln+1,1 lfn+1 U)‘n+1 lfn+2
Y

Bn —B>- Zn+l (B.) B—> Bn—l—l T> Bn+2

n41 | Zn+1 n41
In £n+1,2’\u, Znt1(ge) U,ﬁn+1,1 lyn+1 U,ﬂn+1 lgn+2
Y

C’n éc- Zn‘i'l(C.) —C—>- Cn+1 —C-——-—-> Cn+2
n41 Zn41 Aot

such that |
(zm41 © Ant1) - Qngag 0 digy) - (271 (fo) 0 ¢B1y) - ZMH ()b
= (Gr1 0 frv2) - (far2)]-
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Then, it can be shown that each of the factorizations
QM (f) ol QM fo) oy ozt => Q" (fo) o b7,
(@ o Anin) - (& o far1) Anc1p ¢ &0 ZMTN(fu) 0 2By = QM (fa) 0 €8
are compatible with ¢Z; and (Q™(f,) o uZ,) - (Q™(f.))%.
n(F )0 (Qn(F))! n(f o (On f
Qn(A.) (Q@™(fe) I‘l’n.,-2) (@™ (f ))1 Qn(A.) ; (@ (fo) I"E}z) (@ (fO))I
N\ 0 - N\

Q"(f.)olB/ Q"(f.)ozB/
n+1
Q"(f°)°“’§/ B z;on"'H(f.% Bn+1 — Bn12
\ - ....

Zn+l (B.)

Zntl (B.)

Q(fa)oE2

(“’ﬁ05;11,1)'(.51’14°fn+1)'3‘-n—1,2

So, by the universality of the relative kernel, there exists a unique 2-cell X, €
S%2(Q"(f.) o xB, x4 o Z"F1(f,)) such that

(Xn o Zf+1) : (37;:1 02\_;41-1,1) (5 °fn+1) n—1,2 = =Q"(fs)o

This A, also satisfies (g4 oxn)-(nfl‘oZ"*'l(f.))oA,H_l,2 = (Ap—1,1028)- (fnonn) (see
Remark 24.17). Similarly, we obtain a 2-cell &, € S2(Q"(gs) © 2, 2B 0 Z"+1(g,))
such that ,

(R 02801) - (@8 0 5211 1) - (€8 0 gns1) Fnorz = Q"(g0) o EC.

In the rest, we show the following:
(24.12)

(Q"(fo) 0 Fn) - a0 2" (g) - (s © 2™ (100)) - (7)) = (Q"(00) 0 25) - ()]
We have the following equalities: ‘
(Q"(fo) 0Fn 0 2841) - (n 0 27 (g0) 0 2341)
= (Q"(f)°Q(92) 0€9) - (Q(fa) 0 Tk 1) - (Rl12 © G
: ((fﬁ)_l 0 fn+1 0 gnt1) - (xf °Aﬁ+1,1 0 gn+1) * (ﬂf'ﬁ o Zn+l(f-) O-’?-n+1,1)’

' b A A
‘ (Q"(go.) ° a:g ° ZS+1) ) (wg ° ZS-H) (zn o Zn+1) (w ° zn+1 ° <Pn+1)

= (@Q"(f)0Q™(gs) 0 £9) - (Q"(fa) 0Tty ) - (K l1 5 0 Gns1)
: ((g'rle)_l ° fn+1 o gn+1),

( g+1)b o= (5"' °Z;:1+ )ii - (9” °Zn+1 °Son+1) (x °/\n+11 °gn+1)
: (mn o Zn+1 (fe) °£§n+1,1) : (mn ozt (pe) © Zn+1) : ((mf)r ° z7€+1)-
From these equalities and the faithfulness of 2¢,;, we obtain (24.12). O

Remark 24.17. It can be also shown that X, in the proof of Lemma 24.16 saﬁsﬁes
(g 0 M) - (0 © 2" (£0)) - Angrp = Rnm 0 27) - (fn 0 7).
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By Lemma 24.15 and Lemma 24.16, Theorem 24.13 is reduced to the following
Proposition:

Proposition 24.18. Consider the following diagram in S, where (A,,d2,62) is
a complex which is relatively 2-ezact in Ay and As, and (B,.,dZ,68) is a complex
which is relatively 2-exact in By and By. Assume f, : Aq — B, is a complex
morphism.

0

i \
| ,
fll M) ¢ ez lfa
T

0
0

Then there exist d € S'(Ker(f3),Cok(f1)), a € S2(d4 0 d,0) and 8 € SZ(doa‘f,O)
such that the sequence ' _
(24.13)
0 _ 0
T N e 2 =
Ker(fi) — Ker(f2) — Ker(f3) —> Cok(f1) —> Cok(fy) —> Cok(fs)
ey 43 o 5

0o - 0
is 2-ezact in Ker(f>), Ker(f3), Cok(f1), Cok(f2).

Remark 24.19. This sequence does not necessarily become a complez. Indeed, for
a relatively ezact 2-category S, the following are shown to be equivalent by an easy
diagrammatic argument: :

(i) Any (24.13) obtained in Proposition 24.18 becomes a complez.

(i) For any f € S*(4, B),

0
(24.14) Ker(f) A B Cok(f)

Tk (f) w

0

is a complezx. ,

(Indeed, if (24.14) is a complex for each of f1, fo and f3, then (24.13) becomes a
complez.) :

Thus if S satisfies (ii), then the long cohomology sequence in Theorem 24.13
becomes a complex. But this assumption is a bit too strong, since it is not satisfied
by SCG.

Proof. (Proof of Proposition 24.18)
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Put Ker(d4 o f3) = [K,k,(]. If we take the kernel of the diagram

0
gt ﬂ&;‘ - dg
1 A 2
2

0

A Aj 0
|
(24.15) Oi tol) dfofs © lfs
¥
0 Bs B; —0

0 id 0

where & := (04 o f3) - (f3), then by Proposition 93.5 we obtain a diagram

0
m
K

Ay ( —% Ker(fs)
(24.16) id|| & kl &) lk(m ,
0
which satisfies .
(kroes) - (k) = (&20f3)-C

(k10¢) - (ka)t
(a2 0 k(f3)) - k(f3)}.

(ér0ds o f3)- &
; (k10 &) - (&1 0dg) -85
By Lemma 24.6,

0

Al T> K _k>2 Ker(f3)
is 2-exact in K. On the other hand, by (the dual of) Proposition 23.11,

K —22 Ker(fs)

kl 52\U, lfs
Ar s

2

is a pullback diagram, and ks vbecomes cofaithful since d4 is cofa,ithful. Thus, we
have Cok(k1) = [Ker(f3), k2, a2] by Lemma 24.4. Dually, if we put Cok(f; o df) =
(@, g, p], then we obtain the following diagram

0—0>A1 id A1L>
. |
fll O fiodf U:’Io lo
A
0———= B, —df > B, —df - B
|
c(fl)l m} qvnzll,
Cok(f1) Q—
B2
0

id

B;

g1 ~q2
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which satisﬁes

o = (A)f - (frodf™)

(fiom) - (nf, 0 q1) o (q1)}

ido = mo-(frodf om)-(poge)- ()}

& (df om) - (m o @) - (c(f1) 0 B2) - e(f1)},

and we have Ker(g2) = [Cok(f1),q1,82]. (The “un-duality” in appearance is simply
because of the direction of the 2-cells.) Thus, we obtain complex morphisms:

©
1

Al id A1 L Bl —(ilbok(fl) ‘

4 A A
Ker(f?’;a(ftr Az TB3 = Bs
If we put
¢ = kofroq
ag = (&1ofr20q)-(Aogq)-p
Ba = (kofoonyt)-(koAy!)-,

then, it can be shown that the following diagram is a complex.

0
K
o ﬂ
. K - Q q2
\lL_ﬁQ/
0

Since Cok(k1) = [Ker(f3), k2, 2] as already shown, we have a factorization diagram

Ay B3

which satisfies

(kroak) ax = (az00)- (@}

Il

(@K 0 q2) - Bq (k20 Bg) - (ka)k.
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Similarly, since Ker(gs) = [Cok(f1), q1,B2], ‘we have a factorization diagram

which satisfies

(Bpom)-bo = (cofs): ()}

(k1of,)-ax = (axoq)- (@)}

Then, there exist d € S*(Ker(fs), Cok(f1)), af € S?(kyod,¢) and Bt € S2(doq1,70)
such that

(kioa®)-ax = (azod)-d}
Blow) By = (dof)- dt
(kyoBY)-ax = (atoq) 'ﬁQ\

(note that Cok(k;) = [Ker(f3), k2, 2] and Ker(g2) = [Cok(f1),q1,B2] (cf. Lemma
24.3)):

Applying (the dual of) Proposition 23.8 to the diagram

af dg'
Ker(f1) — Ker(fz) —> Ker(f3)
) |
k(f1)l M k() 2 lk(fs)
]

Ay —df — Ay —df — A3

|
ol gl dfofs © lfa

\
0-——>B3=33

0 id
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we see that there exist k' € S(Ker(fs), K) g e S2(df o K k(f1) o ky), €} €
S2(d2 k' o ky) and £ € S2?(k' o k, k(f2)) such that

8 = (df o&) - (& oka)- (k(f1) 0 a2) - k(f1)}
Ay (& o k(f3)) - (K 0 &) - (€0 di)
o) Ay = (& ok) (k(fi)o&).

Slmllarly, there exist ¢’ € S*(Q, Cok(f2)), n} € S%(g10¢', d1 ), 5 € S%(ga0c(f3),q'0
d2 ) and n € S2(go ¢, c(f2)) such that '

Il

(Baoc(fs)) - el fa)} (a1 075) - 0dy) 5y
(mod)-(c(fi)em) = (dPon)-X
(oc(fs) - (gomy) - (nody) = X

If we put
= (d5' 0 B1) - (& 00) - (K oTK) - (€0 fo0q) (61, 00) - ¢},
then it can be shown that oy : gg‘ odogq; = 0is compatible with B,. -

0
o 92
Ker(fg) A COk(fl) o Q Bs
gy od \Uﬂz
0

So by Lemma 21.19, there exists a € S2(d§1 o d,0) such that

(aoq)-(0)7 = a0
Dually, if we put

(a’fodB) (com™) - (Byod)- (ko fyom)-(komp) -k},

then By : ks odo d1 = 0is compatlble with as, and there exists 8 € S?(d o dB 0)
such that

(k20 p)- (kz)g = Bo.

0 0

R TN P N
Ker(f1) — Keﬁh) —> Ker(fs) — COlIT(fl) 2 COk(fz) = COk(fs)
Ly W W
, o 0
In the rest, we show that this is 2-exact in Ker(f2), Ker(f3), Cok(f1); Cok(f2). We
show only the 2-exactness in Ker(fs) and Ker(f3), since the rest can be shown
dually. The 2-exactness in Ker(f;) follows immediately from Lemma 24.6. So,
we show the 2-exactness in Ker(f3). Since we have Cok(d{') = [A3,d4,d34'] and
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Cok(f1 o d®) = [Q, g, p], there exists a factorization (£, z)

0
A
a4 ﬂéz a4
1 2
Az

Aq As 0
(24.17) id| Al le @1, lz
A P By ——@Q 70
W
0
such that

(dfom) - (Moq)-p= (6 00) 0.

Applying Lemma 24.5 to diagram (24.17), we see that the following diagram be-
comes 2-exact in As:

(k(f2)ow1)-( 5 09)-a

Q

24.18 K
(24.18) ex(f2) s

Then it can be shown that (w1 0g2)- (faom; ") : dff 0Logs => food¥ is compafible
with 64 and (A;0d%)-(f10dP)-(f1)4. So, comparing the following two factorizations

(w1oqz)_~(fzon;1)

0 As
dA
A \
dft
i —— A2 2 f3
N
é/ foo0d®
N\
s 0 _.' Bg, .
(A10dE)-(f1085)-(f1)} C (Ar0dB)(f106F)-(f1)!

we see there exists a unique 2-cell ws € S2(£ o g2, f3) such that
(d8 ow2) - A = (w1 0ga) - (faomsh).
Then it can be shown that each of the two factorizations

1) (a)’oql)-ﬁQ:kzodoqlﬁc
» (2) .(5202)-(k0w1):k20k(f3)o€$kofzoq:c
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is compatible with as and ag.

(O‘T°‘I1)'ﬁ (Egol) (kowy)
> Ker(fs) Ker( f3
xaz/ \ /
Ay L> K dogqy Ag —> K k(fs)OL’

NAVINAY

So there exists a unique 2-cell w3 € S?(d o gy, k(f3) o £) such that

(kzows) - (§00) (kow) = (al ogqr) B,
(recall that Cok(k1) = [Ker(f3), k2, @2]). Then we have (wsogs) - (k(f3)ows) f, =
(doBs) - df. :

Ker(f;) —% Cok(f1)
|

|
k(fs) sl o
¥ ¥
(24.19) , o Ly, —————[———>Q?> 0
| | 72
f3 Wzl} q2
¥ ¥
B3 ===—=—==B;

By taking kernels of d,£ and idp, in (24.19), we obtain the following diagram.

Ker(d) — 2> Ker(fo) —4 > Cok(f1)

k(f3)i %U k(fs) s lm
]
Ker(ﬁ) 2 As £ Q

k(2) |
ol _W_z\U, f3 WZU . lqz

o

Since Ker(0 : Ker(¢) — 0) = Ker(d) by (the dual of) Proposition 23.7, so k( f3)
becomes an equivalence. On the other hand, the following is a complex morphism,
where s := k(f2) o d3.

0

7 e N

Ker(fo) —2> Ker(fs) —% Cok(f1)
(24.20) id‘ Ao lk(fg) {J=s lQI
Ker(fs) Aj - Q

L

0

(k(f2)om1)-(e£500) 0}
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Thus byy taking kernels of d and £ in diagram (24.20), we obtain the following
factorization by (the dual of) Proposition 23.8.

dA
@y = s
Ker(f)——>K (d)————>Ker(f3)
O e

Ker(fg) 3—§> Kaeﬁ(g) T A3

s

id

Since (24.18) is 2-exact in As, so s becomes fully cofaithful. Since k(f3) is an

equivalence, this means (d‘;)’f is fully cofaithful, and
0

T e T

Ker(fs) — Ker(fs) — > Cok(f1)

becomes 2-exact in Ker(fs). e O

25. APPENDIX

In this section, concerning the 2-categorical version of condition (AB3) in Abelian
category theory, we state how a pseudo-bicolimit is constructed from cokernels.
Throughout this section, S denotes a 2-category with invertible 2-cells.

Definition 25.1. Let C be a small category, S be a 2-category, and A: C — S be
a pseudo-functor. For any S € S, let cs : C — S denote the constant 2-functor
with value S. Let ay g : A(f) o A(g) = A(fog) denote the composition 2-cell of

A, foranyX—)Y—)ZmC
A pseudo-cocone on A with vertex S is a pseudo-natural transformation from
A to cs. We denote the category of pseudo-cocones by PsC(A4,S). Namely,
PsC(A4,S) = Ps-Nat(A4,cg), i.e
-an object is a pseudo-natural transformation f: A — cg,
-morphisms are modifications.
A pseudo-bicolimit of A is a pair (L, ) of
LeS% e Ob(PsC(4,L))
such that
Lo—:S(L,S) — PsC(A4,S5)

" gives an equivalence of categories.

Remark 25.2. The pseudo-bicolimit of A is determined up to an equivalence. We
denote it by (La,L4), or abbreviately L = L4 = llr_+nA

Remark 25.3. An object s = ({sx},{os}) in PsC(A4,S) consists of the following
data:
- sx € SY(A(X),S) for each X € Ob(C),
- o5 € S2(A(f) o sy,sx) for each f € C(X,Y) (VX,Y € Ob(C))
satisfying ;
(apg08z) 0509 = (A(f) 0 04) -0



153
foreach X L5V %5 Z inC.

A(X) X
20y,

Alfog)| L2 A(Y) 2 g

A(Z) e

In this notation, the pseudo-bicolimit of A is nothing other than the universal
one among those (S,{sx},{os}) of

S€S°% ({sx},{os}) € Ob(PsC(4,9)).
Namely, (L,£) = (L,{x},{vs})) is the pseudo-bicolimit of A if it satisfies the
Jollowing conditions for any such (S,{sx},{os}): '
(U1) There exist a pair (3,{Tx}) of

5 € SYL,9)

Gx € S?’(fxo03,sx) (VX € 0b(C))

such that
(yr©3)-ox = (A(f) o TY) - 0%

foranyXi>Y—g+Z in C.

A(X) X

ot sy

(U2) For each two pairs (3,{cx}) and (3',{c'x}) satisfying (U1), there exzists a
- unique 2-cell v € S(5,3') such that '

(ZX o ’U) . EIX =0Xx
holds for each X € Ob(C).

Proof. £o0 — : S(L,S) — PsC(A4,S) is essentially surjective if and only if (U1) is
satisfied, and is fully faithful if and only if (U2) is satisfied. O

Definition 25.4. Let A be the category of simplicial sets. Namely,
- an object is [n] = {1,...,n}, where n is a non-negative integer.
- a morphism s : [m] — [n] is a strictly increasing map.

Remark 25.5. Let X,Y € S° and f,g € S'(X,Y). By definition, the difference
cokernel of

f
(25.1) XY
g

is the universal one among those triplets (C,c,m) of C € S°, ¢ € SI(Y,C), and
m€8*(goc,foo).
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f ’ .
—ZYvVv—C goc==sfoc
g

Na%nely, (C,c,m) is the difference cokernel of (25.1) if it satisfies the following
factorization property for any such triplet (C',c','):
(Ul) There exists a pair (¢', ') such that

cesl(c,C), ne8%cod,d),
(mod)-(for')=(gon) =’

C' — qocl —
. : gococ! == fococ
;o A f g 9°7u o ﬂfoﬁ
—_—
X—=Y—>C goc === foc
(U2) For any two pairs (gl,Fl) and (c'9,7's) satisfying (U1), there exists an in-
vertible 2-cell n € S?(c'y,c's) such that ’

;1'71 = (CO'I]) 'Fz.
Definition 25.6. Consider a truncated cosimplicial diagram (X, d,4)
d§32) dgz)

—_—
(252) Xg —dgi)—>X2 :Xl .
aP

—_—

43

in S, namely, -
- O-cell X,, € S° for each n € {1,2,3},
- 1-cell

n) .
di(l)-ns(m) t Xm = Xn

or simply, dy(1)...s(m)) for each 1 <m < n < 3 and s € A([m],[n])),
> ol 5(1)-+5(m) _
- 2-ce

. 43) (2) (3)
0s(1),4(1)¢(2) "dt(l)t(2) ° d;(1) = dt(s(l)) '

for each s € A([1],[2]), and t € A([2],[3])-

Definition 25.7. Let (X,d,§) be a truncated cosimplicial diagram of type (25.2).

Consider a triplet (C,c,n) of C € 8%, c € S1(X1,C), 7 € s2(d§2) oc, d§2) oc). We

say (C,ec,7) is compatible with (X, d,d) (or “r is compatible with §”) if it satisfies
(dyzom)-(S1230¢) - (651500) - (drzom) - (f1120¢€)

(25.3) = (0323 0¢) - (62_&3 oc)-(digom)-(d1130¢).
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d23 om

dazodyoc ——=> d230d106
62% YOC
dzoc dooc
52’1306” . O ﬂézylgoc
d13 0d2 ocC d12 OdQOC
dlsox /duon
d13 0d1 ocC d120d1 ocC
81,130¢ dyoc 1,120¢

Among those triplets (C,c,m) compatible with (X,d,d), we call the universal
one “simplicial cokernel” of (X,d,§). (Namely, (C,c, ) satisfies (U1) and (U2) in
Remark 25.5 for any other triplet (C’,c’, ') compatible with (X, d,J).)

Remark 25.8. As in the case of the difference cokernel, the simplicial cokernel
defined above is unique up to an equivalence.
We denote this equivalence class abbreviately by Cok((X,d,d)).

Remark 25.9. Let (X,d, ) be a truncated cosimplicial diagram of type (25.2).

- s d?
XS —"""—>X2 —>X1
_— dg2)

Then the simplicial cokernel of (X,d,8) factors through the difference cokernel of
d? and d{?.

Definition 25.10. Let C be a small category, and let A : C — S be a pseudo-
functor. Assume S admits any coproduct. For any family of O-cells {Ax}rea, we
denote their coproduct by ]_[A » and the structure morphism by iy : Ay — L[A A

(i) For any object X € Ob(C) put Ax = A(X).
(ii) For any morphism f € C(X,Y), put Ay := A(X).
(iii) For any composable pair of morphlsms feC(X,Y)and g € C(Y,Z), put
Ay, = A(X).
In this notation, we have the followmg morphisms:

@)y = idax) : As = Ax,
@) = A(f):A; > Ay,
@)rg = idacx): Arg — As,
@)y = Alf):Apg — A,
(d (3))fg = idax) : Arg = Afog
@)y = idaw) Az, = Ax,
([d)gy = A(f): Agpg — Ay,

@), = A(fog):As, — Az
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Remark we have a natural monoidal isomorphism
(82,23) 1.9 = apg : (d53) 19 © (@7)g = (A7) 1,
For any other s € A([1],[2]) and t € A([2],[3]), put

- (0s2).)e(2)) £, == id.

If we put
Al = H AX?
X €e0b(C) ,
4, = [ 45
fec(x,y)
45 = ] Ase
X7Y—g>Z

then by the universality of coproducts, we obtain induced monoidal functors

di?l))~~~s(m) A, = An

correspondingly for any 1 < m < n < 3 and any s € A([m],[n]). By construction,
~ there are 2-cells

id A
A, A(X) Ax A () Ay
(2) (2)
142 141 142 /11

(2) (2)

for any morphism f€C(X,Y). Similarly, we have 2-cells

P)gg ¢ irgody = (d) 5,0 zf =iy,
(P53 rs ¢ irgodsy = (dR) 101y = A(f) 01y,
(Pls))f,g Doifg 0 dg? = (d g )f£.9 © ifog = ifog

(i ))f,g tipgod? = (dY),0ix =ix,
519 ¢ ipgods) = (d) g, 00y = A(f) i,

(ps ) fg ¢ Ufg0 d:(33) = (dg?’))f,g oiz=A(fog)o iz.

We often omit the subscripts f, g of p in the following.
Moreover, for each s € A([1],[2]) and t € A([2],[3]), there is a 2-cell

R ¢ 2 3)
ds(1),6(1)8(2) ~»d§(3)t(2) ° di(i) dzg(s(l))

induced from (J5(1),(1)¢(2)) 7.9
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By construction, d4(1),¢(1)¢(2) is compatible with p’s and (0s(1),¢(1)¢(2)) £,9 for each

x Ly %z C, i.e., we have

(irgooine) - pP = (oY odi)- (o)y,

(irg00123) 08 = (0§ o di) - (A(F) o (1)),
(ifg001,03) - p0) = (P§3)°d1) (0) fogs
(ig,g00212) P = (pf3 0 da)- (b)),

(it 00225) 00 = (p§3 oda) - (A(f) o (05)g) - (e 0i2),
(if,900213) 0§ = (p13 0 d2) - (p)foq

dl : d3
, m /ﬁm
Ay =225 4, B 4 A =22 4, — 25 4

@ 4 @ ® b oo
p (p3)) P (p3
ifygT =2 if lﬁf ix if,g = P:)g iz
| |

Afg —7> f‘éf A Ats Z57 J‘hy oAz
id A(fog)

Thus, for each pseudo-functor A, we obtain an associated truncated cosimplicial
diagram (A4, d, 6).

Proposition 25.11. Let (4, d, d) be the truncated cosimplicial diagram constructed
above. If we denote the simplicial cokernel of (A,d,d) by (C’ ¢, ), then we have
C~ hmA

Proof. This can be easily reduced to the following:

Lemina 25.12. Let (A,d,d) be the truncated cosimplicial diagram associated to
pseudo-functor A as in Definition 25.10. For any C € S°, we have the following:
(1) By the universality of the coproducts; a pair (¢, ) of

c € SY(4,0)
m € 82dP oc,d? oc)
and a pair ({cx},{ms}) of families
) cx € 8*(Ax,C) (VX € Ob(C))
w5 € S2(A(f) ocy,cx) (VfEC(X,Y)).

corresponds to each other. These are related by

1§ €S?(ix oc,ex) (X €0b(C)),
satisfying
@54 ()00 (A 0i§) -ms = (irom) - (b o0) &
for any f € C(X,Y).
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Cy

i ﬂb . ifOﬂ' .
Ay A1Y igodyoc=>1isod;oc
AV R\p(z/ \ pg)o/ Xgﬂoc
ﬂ C  A(f)oiyoc o) ifoc

/ A(f)°t§rx | /éi

A(f)ocy =>cx

Under this correspondence, (C,c,n) is compatible with {A,d,8) if and only if
({ex}, {ms}) belongs to Ob(PsC(A ).
(2) Assume (C,c,m) corresponds to (C,{cx},{ns}), and (S,s,o) corresponds to
(S, {sx},{os}) as in (1). For any 3 € S(C,S), a 2-cell G € S*(c03,s) and a
family of 2-cells {Tx}

ox € S%(cx 03, 8x)
corresponds to each other, satisfying
(25.5) (ix 07) 1% = (15 03)-ax (VX € Ob(C)).
Under this correspondence, & satisfies |
(25.6) (mo03):(di07) =(dyo7)-0
if and only if {ox} satisfies |
(25.7) (np %) -Tx = (A(f) oTy) -0 (Vf € C(X,Y)).
(3) Take the correspondings

(C,C,ﬂ‘) < (C,{CX}v{ﬂ-f})
(S,5,0) < (S, {sx},{os})

and 3,5 € S*(C,S) as above. Assume T corresponds to {Gx}, and & corresponds
to {o'x} as in (2). Then for any 6 € S%(3,5'), we have

(cof)-T=0% <= (cxob)-ox =0 (VX € Ob(C)).
Proof. (1) By the universality of the coproduct, (25.3) is satisfied if and only if

(25.8) (ifgodasom) - (ifg0081030¢) - (ifg005150c)
(iggodizom) - (ifg00d1120¢)

= (igg0082230¢) (ifg005150¢) (ifgodizom)- (ifg001130c)

is satisfied for any X Ly L zme.
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" By the construction in Definition 25.10 and (25.4), we have
(LHS of (25.8))

= (iggodaom) (o) odioc)- (Af) o (0D)g 0¢) - (BP)71 0 ¢)
((pﬁ?) odyoc)-(iggodizom) - (pfy odioc)
(Ao (K)o
(p55 0 dz 0 ¢) - (A(F) odg o) - (A(f) 0 ({)g 0 ) - (p)7" 0 )
Gigom) - (06P)p o) - (V) oo)
= (o odyoc) - (A(f) o (p5); 00) - (A(f) 0 Alg) 0§) - (A(f) o my)

" (25.4)

() ((0P) o o),

and

(RHS of (25.8))
(55 o dz 0 c) - (A(f) o (05)g 00) - (agg0iz o) - (0)7L, 0 )
((,,g33>) odyoc)- (i, 0dizom) - (pl3 odsoc)
(0 gog 0 0) (PP) Lo ) - |
(P53 0 dz o) - (A(f) 0 (15)g 0 ) - (agg 0 iz 00) - (077 o )
igog o) () og 0 €) - ((6) 71
(03 oda o) - (A(f) 0 (p§)g 0 0) - (ag,g 0 iz 0 )
Tpog - (19 (6L o).
Thus we obtain
(25.8) :
= (A(f)oAlg)o1§) - (A(f) omy) - ms = (apg0izoc) (A(fog)oif) Trog
= (A(f)omy) 7= (afg0cCz) Tfog-

Il

oc)

(2) By the universality of the coproduct, (25.6) is satisfied if and only if
(25.9) \ (ifomo3)-(ifod 0T) = (ifody07)- (if00)
is satisfied for any morphism f € C(X,Y). Thus (2) follows from

(25.7)

(m503) - ((1%) " 03) - (ix 07) - 1%
(A(f) o (1F) 7 03) - (A(f) 07) - (A(f) 015) - 05
((p57)5" o cos) - (iyomo3) - (p”)s 0co5)- (ix 07)
(A(F) D) ((057)5" 0 8) (i 0 0) - ((pi”)5 0 9)
< (25.9). '
(3) This immediately follows from (25.5).

25.5

51[ 0 &
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