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On a Certain Metric on the Space of Pairs of

a Random Variable and a Probability Measure

By Shigeo Kusuoka and Toshiyuki Nakayama

Abstract. The authors introduce new metrics on the space of
pairs of a random variable and a probability measure over a Polish
space, and study the properties of them. Finally, as an application,
they discuss how the integrand for the martingale representation con-
verges in the invariance principle.

1. Introduction

Let p ∈ [1,∞), and M be a Polish space. P(M) denotes the set of all

probability measures on a Polish space M. For a separable metric space N,

XM ;N denotes the set of all pairs (X,µ) for which X is a measurable map

from M into N and µ ∈ P(M). X p
M ;N denotes the set of (X,µ) ∈ XM ;N

such that
∫
M disN (X(x), y)pµ(dx) <∞ for all y ∈ N.

Let Dis
(p)
M ;N : X p

M ;N ×X p
M ;N → [0,∞) be given by

Dis
(p)
M ;N ((X1, µ1), (X2, µ2))

= inf{(
∫
M×M

((disM (x1, x2) ∧ 1)

+disN (X1(x1), X2(x2)))
pν(dx1, dx2))

1/p;

ν ∈ P(M ×M), ν ◦ π−1
1 = µ1, ν ◦ π−1

2 = µ2}.

Here disM , disN are distance functions on M,N respectively, and πi :M ×
M → M, i = 1, 2, are canonical projections given by π1(x1, x2) = x1,

π2(x1, x2) = x2, x1, x2 ∈M.

Definition. Let (Xn, µn), (X,µ) ∈ X p
M ;N , n ≥ 1. We say that

(Xn, µn) → (X,µ) in X p
M ;N if Dis

(p)
M ;N ((Xn, µn), (X,µ)) → 0.
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We will study some properties of this convergence. One of our main

results is the following Skorohod’s type theorem.

Theorem 1. Suppose that N is an arcwise connected separable metric

space. Let (Xn, µn), (X,µ) ∈ XM ;N , n ≥ 1, and suppose that there are a

probability space (Ω,F , P ) and M -valued random variables Zn, n ≥ 1, and

Z such that

(1) P ◦ Z−1
n = µn, n ≥ 1, and P ◦ Z−1 = µ,

and

(2) Zn → Z in probability.

Then (Xn, µn) → (X,µ) in X p
M ;N , if and only if disN (Xn ◦ Zn, X ◦ Z) → 0

in Lp(Ω,F , P ).

Also we discuss a special case that µn is the probability law of random

walk and µ is the Wiener measure and show a result Theorem 11 on Mar-

tingale representations. This result may be useful in mathematical finance

by the following reason. We sometimes use discrete space-time models to

approximate diffusion process models. There are many works which guar-

antee that such approximations are good concerning the option prices. But

concerning hedging strategies, it is not well studied whether such approxi-

mations make sense. The convergence notion given here will give a certain

base for this question. An application for the approximation of backward

SDE will be given in Nakayama [3].

2. Basic Results

Let M be a Polish space and N be a separable metric space.

Let Cb(M ;N) denotes the set of continuous maps f :M → N such that

sup
x∈M

disN (f(x), y) <∞, y ∈ N.

Let µ ∈ P(M). For p ∈ [1,∞), let L̃p(M ;N, dµ) denotes the set of

measurable maps f :M → N such that∫
M
disN (f(x), y)pµ(dx) <∞, for all y ∈ N .

Then we have the following.
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Theorem 2. Let p ∈ [1,∞), and N be an arcwise connected separable

metric space. Then for any f ∈ L̃p(M ;N, dµ) and ε > 0, there is a g ∈
Cb(M ;N) such that

(

∫
M
disN (f(x), g(x))pµ(dx))1/p ≤ ε.

To prove Theorem 2, we need some preparations.

For each n ≥ 1, let Ẽn = [0, 1] × {1, 2, . . . , n}. We define a quasi-metric

function d : Ẽn × Ẽn by

d((s, i), (t, j)) =

{
|t− s|, i = j,
t+ s, i �= j

We define an equivalence relation ∼ by (s, i) ∼ (t, j) if d((s, i), (t, j)) = 0,

that is (s, i) ∼ (t, j) if (s, i) = (t, j) or s = t = 0. Let En = Ẽn/ ∼ .

Then (En, d) is a Poilsh space. Moreover, the map Fn : [0, 1] × En → En

given by Fn(s, (t, i)) = (st, i), s, t ∈ [0, 1], i = 1, 2, . . . , n, is well-defined and

continuous.

Lemma 3. Let M be a Polish space and ν be a finite measure on

(M,B(M)), where B(M) is the Borel algebra over M. Let f : M → En

be a measurable map with f(M) ⊂ {(1, i); i = 1, 2, . . . , n}. Then for any

ε > 0, there is a continuous map g :M → En such that ν(f �= g) ≤ ε.

Proof. We prove the assertion by induction in n. If n = 1, the map

f itself is continuous. Let us assume that the assertion holds for n.

Let f : M → En+1 be a measurable space with f(M) ⊂ {(1, i); i =

1, 2, . . . , n+1}. Note that En can be regarded as a metric subspace of En+1.

Let A = f−1((1, n+1)). Then there are compact sets K0 and K1 inM such

that

K0 ⊂M \A, ν((M \A) \K0) < ε/3, K1 ⊂ A, ν(A \K1) < ε/3.

Then we have a continuous function ϕ : M → [−1, 1] such that ϕ(x) =

−1, x ∈ K0, and ϕ(x) = 1, x ∈ K1. LetM ′ = ϕ−1([−1, 0]) and f ′ :M ′ → En

be given by

f ′(x) =

{
f(x) if f(x) ∈ En,

(1, 1) otherwise .
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Then by the assumption of induction, there is a continuous function g′ :

M ′ → En such that ν({x ∈ M ′; f ′(x) �= g′(x)}) < ε/3. Now let g : M →
En+1 be given by

g(x) =

{
(ϕ(x), n+ 1) if ϕ(x) > 0,

Fn(−ϕ(x), g′(x)) if ϕ(x) ≤ 0.

Then one can easily check that g is continuous. Also, we see that

{f = g} ⊃ K1 ∪ (K0 ∩ {f ′ = g′}),
and so ν(f �= g) ≤ ε. Thus the assertion holds for n+1. This completes the

proof. �

Now let us prove Theorem 2. Since N is separable, there is a dense

countable subset {yk}∞k=1 in N. Let Bn = {y ∈ N ; disN (y, yn) < ε/4},
n = 1, 2, . . . . Then we see that

⋃∞
n=1Bn = N. Let A1 = f−1(B1) and

An = f−1(Bn) \ (∪n−1
k=1f

−1(Bk)), n ≥ 2. Then An, n = 1, 2, . . . are mutually

disjoint and
⋃∞

n=1An =M. So there is an n ≥ 1 such that

(

∫
M

(1 −
n∑

k=1

1Ak
(x))disN (f(x), y1)

pµ(dx))1/p < ε/4.

Since N is arcwise connected, there is a continuous map such that ϕ :

En → N such that ϕ((0, 1)) = y1 and ϕ((1, k)) = yk, k = 1, . . . , n. Let

a = maxz,z′∈En disN (ϕ(z), ϕ(z′)). Let h :M → En be given by

h(x) =

{
(1, k), x ∈ Ak, k = 2, . . . , n,

(1, 1), otherwise .

Then by Lemma 3, there is a continuous map h′ : M → En such that

µ(h �= h′) < (ε/(2a+ 1))p. Let g = ϕ ◦ h′. Then g ∈ Cb(M ;N) and

disN (f(x), (ϕ ◦ h)(x)) ≤ (1 −
n∑

k=1

1Ak
(x))disN (f(x), y1) + ε/4,

and

(

∫
M
disN ((ϕ ◦ h)(x), (ϕ ◦ h′)(x))pµ(dx))1/p ≤ aµ(h �= h′)1/p ≤ ε/2.

These imply that

(

∫
M
disN (f(x), g(x))pµ(dx))1/p ≤ ε.

This completes the proof. �
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3. Properties of Dis
(p)
M ;N

Now let M be a Polish space and N be a separable metric space. We

easily see the following.

Proposition 4. (1) Dis
(p)
M ;N ((X1, µ1), (X2, µ2)) = 0, if and only if

µ1 = µ2 and X1(x) = X2(x) µ1 − a.s.x, for (X1, µ1), (X2, µ2) ∈ X p
M ;N .

(2) Dis
(p)
M ;N ((X1, µ1), (X2, µ2)) = Dis

(p)
M ;N ((X2, µ2), (X1, µ1))

and

Dis
(p)
M ;N ((X1, µ1), (X3, µ3))

≤ Dis
(p)
M ;N ((X1, µ1), (X2, µ2)) +Dis

(p)
M ;N ((X2, µ2), (X3, µ3))

for any (Xi, µi) ∈ X p
M ;N , i = 1, 2, 3.

Remark. Let us define an equivalence relation ∼ in X p
M ;N for which

(X1, µ1) ∼ (X2, µ2) if µ1 = µ2 and X1(x) = X2(x) µ1 − a.s.x. Then

(XM ;N/ ∼, Dis(p)M ;N ) becomes a metric space, and our notion of convergence

is the same as the associated one to this metric.

Proposition 5. Let (Xn, µn), (X,µ) ∈ X p
M ;N , n ≥ 1, and suppose

that (Xn, µn) → (X,µ), n → ∞, in X p
M ;N . Then there are a probability

space (Ω,F , P ) and M -valued random variables Zn, n ≥ 1, and Z such that

(1) P ◦ Z−1
n = µn, n ≥ 1, and P ◦ Z−1 = µ,

(2) Zn → Z, n→ ∞ in probability,

and

(3) Xn ◦ Zn → X ◦ Z, n→ ∞, in Lp(Ω,F , P ).

Proof. By the assumption, there are νn ∈ P(M ×M), n ≥ 1, such

that νn ◦ π−1
1 = µ, νn ◦ π−1

2 = µn, n ≥ 1, and

∫
M×M

(disM (x1, x2) ∧ 1 + disN (X(x1), Xn(x2)))
pνn(dx1, dx2) → 0.

Since M is Polish, there exist measurable maps ρn : M → P(M), n ≥ 1,

such that νn(dx1, dx2) = µ(dx1)ρn(x1)(dx2). Let Ω =M{0}∪N, F be a Borel

algebra of Ω and P (dx) = µ(dx0) ⊗ (⊗∞
n=1ρn(x0)(dxn)). Let Z : Ω → M,
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Zn : Ω → M, n ≥ 1, be given by Z(x) = x0, Zn(x) = xn, n ≥ 1, x =

(x0, x1, . . .). Then we have P ◦ Z−1 = µ, P ◦ Z−1
n = µn, and

EP [((disM (Z,Zn) ∧ 1) + disN (X ◦ Z,Xn ◦ Zn))p]

=

∫
M×M

((disM (x1, x2) ∧ 1 + disN (X(x1), Xn(x2)))
p)νn(dx1, dx2) → 0.

So, we have our assertion. �

Proposition 6. Let (Xn, µn), (X,µ) ∈ X p
M ;N , n ≥ 1, and suppose that

there are a probability space (Ω,F , P ) and M -valued random variables Zn,

n ≥ 1, and Z such that

(1) P ◦ Z−1
n = µn, n ≥ 1, and P ◦ Z−1 = µ,

(2) Zn → Z, n→ ∞, in probability,

and

(3) disN (Xn ◦ Zn, X ◦ Z) → 0, n→ ∞, in Lp(Ω,F , P ).

Then (Xn, µn) → (X,µ) in X p
M ;N .

Proof. Let νn ∈ P(M ×M) given by νn = P ◦ (Z,Zn)−1. Then we

have

Dis
(p)
M ;N ((X,µ), (Xn, µn))p

≤
∫
M×M

(disM (x1, x2) ∧ 1 + disN (X(x1), Xn(x2)))
pνn(dx1, dx2)

= EP [(disM (Z,Zn) ∧ 1 + disN (X ◦ Z,Xn ◦ Zn))p] → 0.

Thus we see that (Xn, µn) → (X,µ) in X p
M ;N . �

Lemma 7. Suppose that N is an arcwise connected separable metric

space. Let (Xn, µn), (X,µ) ∈ X p
M ;N , n ≥ 1. Then (Xn, µn) → (X,µ) in

X p
M ;N , if and only if µn → µ weakly as n→ ∞, and

inf{lim sup
n→∞

Eµn [disN (Xn, G)p] + Eµ[disN (X,G)p]; G ∈ Cb(M ;N)} = 0.

Proof. (if part) Since µn → µ weakly, by Skorohod’s theorem there

are a probability space (Ω,F , P ) and M -valued random variables Z, Zn,
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n ≥ 1, such that P ◦ Z−1
n = µn, n ≥ 1, P ◦ Z−1 = µ, and Zn → Z in

probability. For any ε > 0, there is a G ∈ Cb(M ;N) such that

lim sup
n→∞

Eµn [disN (Xn, G)p]1/p + Eµ[disN (X,G)p]1/p < ε.

Then

lim sup
n→∞

EP [disN (Xn ◦ Zn, X ◦ Z)p]1/p

≤ EP [disN (X ◦ Z,G ◦ Z)p]1/p + lim sup
n→∞

EP [disN (Xn ◦ Zn, G ◦ Zn)p]1/p

< ε.

So we see that disN (Xn ◦Zn, X ◦Z) → 0 in Lp(Ω,F , P ). Thus we have our

assertion from Proposition 6.

(only if part) Let (Ω,F , P ), Zn, n ≥ 1, and Z be as in Proposition 5. Then

we see that µn → µ weakly. We see from Theorem 2 that for any ε > 0

there is a G ∈ Cb(M ;N) such that Eµ[disN (X,G)p]1/p < ε. Then we have

lim sup
n→∞

Eµn [disN (Xn, G)p]1/p

= lim sup
n→∞

EP [disN (Xn ◦ Zn, G ◦ Zn)p]1/p

= EP [disN (X ◦ Z,G ◦ Z)p]1/p < ε.

This implies our assertion. �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. The ’ if’ part follows from Proposition 6. So

it is sufficient to prove the ’only if’ part. By Lemma 7 for any ε > 0, there

is a G ∈ Cb(M ;N) such that

Eµ[disN (X,G)p]1/p + lim sup
n→∞

Eµn [disN (Xn, G)p]1/p < ε.

Then we have

lim sup
n→∞

EP [disN (X ◦ Z,Xn ◦ Zn)p]1/p

≤ EP [disN (X ◦ Z,G ◦ Z)p]1/p + lim sup
n→∞

EP [disN (Xn ◦ Zn, G ◦ Zn)p]1/p

+ lim sup
n→∞

EP [disN (G ◦ Z,G ◦ Zn)p]1/p

< ε.
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Thus we have our assertion.

Let us remind again that if µn → µ weakly, then by Skorohod’s theorem

there are a probability space (Ω, F, P ) and measurable maps Zn : Ω → M,

n ≥ 1, and Z : Ω → M such that P ◦ Z−1
n = µn, n ≥ 1, and P ◦ Z−1 = µ

and that Zn → Z, n→ ∞, P − a.s.
The following is easy consequence of Theorem 1 and Skorohod’s theorem.

Corollary 8. Suppose that µ, µn ∈ P(M), n ≥ 1.

(1) Let N be an arcwise connected Polish space and M be a Polish space, and

let Xn :M → N, X :M → N, X
(k)
n :M → N and X(k) :M → N, n, k ≥ 1,

be measurable maps. If (X
(k)
n , µn) → (X(k), µ) in X p

M ;N , k = 1, 2, . . . , and

if

lim sup
k→∞

sup
n
Eµn [disN (Xn, X

(k)
n )p] = 0

and

lim sup
k→∞

Eµ[disN (X,X(k))p] = 0,

then (Xn, µn) → (X,µ) in X p
M ;N .

(2) Let N1 and N2 be arcwise connected Polish spaces, X
(i)
n : M → Ni,

n ≥ 1, and X(i) : M → Ni, i = 1, 2, be measurable maps. If (X
(i)
n , µn) →

(X(i), µ) in X p
M ;Ni

, i = 1, 2, then ((X
(1)
n , X

(2)
n ), µn) → ((X(1), X(2)), µ) in

X p
M ;N1×N2

.

(3) Let E be a real Banch space. X
(i)
n :M → E, n ≥ 1, and X(i) :M → E,

i = 1, 2, be measurable maps. If (X
(i)
n , µn) → (X(i), µ) in X p

M ;E , i = 1, 2, and

if an → a, and bn → b in R, then (anX
(1)
n +bnX

(2)
n , µn) → (aX(1)+bX(2), µ)

in X p
M ;E .

4. Application

Let d ≥ 1, and {v0, v1, . . . , vd} be a subset of Rd in a general posi-

tion, i,e, v1 − v0, . . . , vd − v0 are linearly independent. Let us assume that

p0, p1, . . . , pd ∈ (0, 1) exist and satisfy

d∑
i=0

pi = 1,
d∑

i=0

pivi = 0,
d∑

i=0

pivi ⊗ vi = Id,
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where Id is the d× d identity matrix.

Let (Ωn,Fn, Pn), n ≥ 1 be probability spaces, and let Z
(n)
k , k = 1,

2, . . . , n be independent identically distributed Rd-valued random variables

defined on (Ωn,Fn, Pn) such that

Pn(Z
(n)
k = vi) = pi, i = 0, 1, . . . , d, k = 1, . . . , n.

Let

Wn(t) =
1√
n

[nt]∑
k=1

Z
(n)
k , t ∈ [0, 1].

Now let us think of the space Dd = D([0, 1];Rd). Let X : [0, 1] ×Dd →
Rd be defined by X(t, w) = w(t), t ∈ [0, 1], w ∈ Dd. We define a filtration

{Ft}t∈[0,1] by

Ft =
⋂
u>t

σ{X(s, ·); s ≤ u ∧ 1}.

Let µn, n ≥ 1, denote a probability measure Pn ◦W−1
n on Dd.

Let Ln, n ≥ 1, be the set of bounded function f : Dd × [0, 1] → Rd such

that

f(w)(t) = f(w)(
k

n
),

k − 1

n
< t ≤ k

n
, k = 1, . . . , n,

and f(·)(t) : Dd → Rd is continuous and F(k−1)/n-measurable for (k −
1)/n < t ≤ k/n, k = 1, . . . , n. Then we have the following (e.g. Nakayama

[3]).

Proposition 9. Let n ≥ 1.

(1) If X = c+
∫
(0,1] f(w)(t)dw(t), c ∈ R, f ∈ Ln, then

Eµn [X2] = c2 + Eµn [

∫
(0,1]

|f(w)(t)|2dt].

(2) For any X ∈ L2(Dd,F1, dµn) there exist cn(X) ∈ R and Fn(X) ∈ Ln,

such that

X = cn(X) +

∫
(0,1]

(Fn(X)(w))(t)dw(t).



352 Shigeo Kusuoka and Toshiyuki Nakayama

Let µ be a standard Wiener measure on Dd. Let L be the set of mea-

surable maps f : Dd → L2([0, 1];Rd, dt) such that (t, w) ∈ [0, 1] × Dd →
f(w)(t) ∈ Rd is progressively measurable and

Eµ[

∫ 1

0
|f(w)(t)|2dt] <∞.

Then we have the following naturally by Ito’s representation theorem.

Proposition 10. (1) If X = c +
∫
(0,1] f(w)(t)dw(t), c ∈ R, f ∈ L,

then

Eµ[X2] = c2 + Eµ[

∫
(0,1]

|f(w)(t)|2dt].

(2) For any X ∈ L2(Dd,F1, dµ) there exist c(X) ∈ R and F (X) ∈ L, such

that

X = c(X) +

∫ 1

0
(F (X)(w))(t)dw(t).

Then Donsker’s invariance principle (c.f.[1]) implies that µn → µ, weakly

as n→ ∞. Our main purpose in this section is to prove the following.

Theorem 11. (1) If (Xn, µn) → (X,µ), in X 2
Dd;R

, then ((cn(Xn),

Fn(Xn)), µn) → ((c(X), F (X)), µ) in X 2
Dd;R×L2([0,1];Rd,dt)

, and

({Eµn [Xn|Ft]}t∈[0,1], µn) → ({Eµ[X|Ft]}t∈[0,1], µ) in X 2
Dd;D

.

(2) If fn ∈ Ln, n ≥ 1, and f ∈ L, and if (fn, µn) → (f, µ) in

X 2
Dd;L2([0,1];Rd,dt)

, then (
∫
(0,1] fn(w)(t)dw(t), µn) → (

∫ 1
0 f(w)(t)dw(t), µ),

n→ ∞, in X 2
Dd;R

.

We make some preparations before proving this theorem.

Proposition 12. Let m ≥ 1 and f ∈ Lm. Then (
∫
(0,1] f(w)(t)dw(t),

µn) → (
∫ 1
0 f(w)(t)dw(t), µ), n → ∞, in X 2

Dd;R
. Also,

({
∫
(0,t] f(w)(s)dw(s)}t∈[0,1], µn) → ({

∫
(0,t] f(w)(s)dw(s)}t∈[0,1], µ), n → ∞,

in X 2
Dd;D

.

Proof. Note that if n > 2m for µn − a.s.w∫
(0,t]
f(w)(s)dw(s)
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=
n∑

k=1

f(w)(
k

n
)(w((

k

n
) ∧ t) − w((

k − 1

n
) ∧ t))

=
m∑
j=1

n∑
k=1

1((j−1)/m,j/m)(k/n)f(w)(
j

m
)(w((

k

n
) ∧ t) − w((

k − 1

n
) ∧ t)).

=
m∑
j=1

f(w)(
j

m
)(w((

j

m
) ∧ t) − w((

j − 1

m
) ∧ t)) µn − a.s..

Here we use the fact that

n∑
k=1

1((j−1)/m,j/m)(k/n)(w((
k

n
) ∧ t) − w((

k − 1

n
) ∧ t))]

= w((
j

m
) ∧ t) − w(

j − 1

m
∧ t) µn − a.s.w.

For N > n, let GN : Dd → D be given by

GN (w)(t) =
m∑
j=1

f(w)(
j

m
)N

∫ 1/N

0
(w((

j

m
+ s) ∧ t) − w((

j − 1

m
+ s) ∧ t))ds.

Then GN is a bounded continuous map and

|GN (w)(t) −
m∑
j=1

f(w)(
j

m
)(w((

j

m
) ∧ t) − w((

j − 1

m
) ∧ t))|

≤ 2m(sup
t,w

|f(w)(t)|)( sup
t∈[0,1],s∈[0,1/N ]

|w((t+ s) ∧ 1) − w(t)|).

So we see that

sup
t∈[0,1]

|GN (w)(t) −
∫
(0,t]
f(w)(s)dw(s))|

≤ 2m((sup
t,w

|f(w)(t)|)( sup
t∈[0,1],s∈[0,1/N ]

|w((t+ s) ∧ 1) − w(t)|)

+n−1/2 max{|v0|, . . . , |vd|})

for µn − a.s.w. This implies that

lim
N→∞

(lim sup
n→∞

Eµn [ sup
t∈[0,1]

(

∫
(0,t]
f(w)(s)dw(s) −GN (w)(t))2]

+Eµ[ sup
t∈[0,1]

(

∫
(0,t]
f(w)(s)dw(s) −GN (w)(t))2]) = 0.



354 Shigeo Kusuoka and Toshiyuki Nakayama

Therefore by Lemma 7 we have our assertion. �

Also, we have the following.

Proposition 13. Let m ≥ 1, f ∈ Lm and Xn =
∫
(0,1] f(w)(t)dw(t),

µn − a.s.w. Then

Eµn [

∫ 1

0
|Fn(Xn)(w)(t) − f(w)(t)|2dt] → 0, n→ ∞

Proof. Let n > m. Then for k = 1, . . . , n, we see that

Fn(Xn)(w)(t) = f(w)(
k

n
), t ∈ (

k − 1

n
,
k

n
], µn − a.s.w.

So we have our assertion. �

Let L′ =
⋃∞

m=1 Lm. The following is well-known.

Proposition 14. For any f ∈ L and ε > 0, there is a g ∈ L′ such

that

Eµ[

∫ 1

0
|f(w)(t) − g(w)(t)|2dt] < ε.

Now let us prove Theorem 11. First we prove the assetion (1).

Suppose that (Xn, µn) → (X,µ), in X 2
Dd;R

. Then by Proposition 14 there

are gk ∈ L′, k ≥ 1, such that

Eµ[

∫ 1

0
|F (X)(w)(t) − gk(w)(t)|2dt] → 0, k → ∞.

Let X
(k)
n = c(X) +

∫
(0,1] gk(w)(t)dw(t) ∈ L2(Dd, dµn), n ≥ 1, and X(k) =

c(X) +
∫ 1
0 gk(w)(t)dw(t) ∈ L2(Dd, dµ). Then we have

Eµ[|X −X(k)|2] → 0, k → ∞

By Proposition 13, we see that ((cn(X
(k)
n ), Fn(X

(k)
n )), µn) → ((c(X(k)),

F (X(k))), µ) in X 2
Dd,R×L2([0,1];Rd,dt)

. By Proposition 12, we see that

({Eµn [X
(k)
n |Ft]}t∈[0,1], µn) → ({Eµ[X(k)|Ft]}t∈[0,1], µ), n→ ∞, in X 2

Dd;D
.
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By Lemma 7, Corollary 8(3) and Proposition 9, we have

|cn(Xn) − cn(X(k)
n )|2 + Eµn [

∫ 1

0
|Fn(Xn) − Fn(X(k)

n )|2dt]

= Eµn [|Xn −X(k)
n |2] → Eµ[|X −X(k)|2], n→ ∞

and

Eµn [ sup
t∈[0,1]

|Eµn [Xn|Ft] − Eµn [X(k)
n |Ft]|2]

≤ 4Eµn [|Xn −X(k)
n |2] → 4Eµ[|X −X(k)|2], n→ ∞.

So by Corollary 8(1) we see that ((cn(Xn), Fn(Xn)), µn) → ((c(X),

F (X)), µ) in X 2
Dd,R×L2([0,1];Rd,dt)

. This completes the proof of the assertion

(1).

Now suppose that fn ∈ Ln, n ≥ 1, and f ∈ L, and that (fn, µn) → (f, µ)

∈ X 2
Dd;L2([0,1];Rd,dt)

. Then by Proposition 14 there are hk ∈ L′, k ≥ 1, such

that

Eµ[

∫ 1

0
|f(w)(t) − hk(w)(t)|2dt] → 0, k → ∞.

Let Y
(k)
n =

∫
(0,1] hk(w)(t)dw(t) ∈ L2(Dd, µn), and Y (k) =

∫ 1
0 hk(w)(t)dw(t)

∈ L2(Dd, µ). Then we have

Eµ[|
∫ 1

0
f(w)(t)dw(t) − Y (k)|2] → 0, k → ∞.

Also, by Proposition 12 we see that (Y
(k)
n , µn) → (Y (k), µ) in X 2

Dd;R
, and

(Fn(Y
(k)
n ), µn) → (hk, µ) in X 2

Dd;L2([0,1];Rd,dt)
. Therefore we have

Eµn [|
∫
(0,1]

fn(w)(t)dw(t) − Y (k)
n |2]

= Eµn [

∫ 1

0
|fn(w)(t) − Fn(Y (k)

n )(t)|2dt]

→ Eµ[

∫ 1

0
|f(w)(t) − hk(t)|2dt], n→ ∞.

So by Corollary 8(1) and Proposition 12 we see that (
∫
(0,1] fn(w)(t)dw(t), µn)

→ (
∫ 1
0 f(w)(t)dw(t), µ) in X 2

Dd;R
. This completes the proof of Thorerm 11.
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