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A Limit Formula for a Class of Gibbs Measures

with Long Range Pair Interactions

By Taizo Chiyonobu

Abstract. Let Xi, i = 1, 2, . . . be real-valued i.i.d. variables with
a compactly supported density. Under certain assumptions on V, we
give an asymptotic evaluation of E[exp(−1

2

∑n
i,j=1 V (Xi, Xj))] up to

the factor (1 + o(1)). As an application of this result, we prove a limit
formula for a class of Gibbs measures with long range pair interactions.

1. Introduction

Let Pn be the probability measure on Rn given by

(1.1) Pn(dt
¯
) =

1

Zn
· exp


−1

2




n∑
i,j=1
i�=j

log |ti − tj |−1 + n
n∑
i=1

t2i





 dt

¯

Here dt
¯

= dt1dt2 · · · dtn and Zn is the normalizing constant. In [J],

K. Johansson showed the following asymptotic formula:

(1.2) lim
n→∞

1

n
log

∫
exp

(
n∑
i=1

g(ti)

)
Pn(dt

¯
) =

∫
g(t)µ0(dt)

for every good test function g. Here µ0 is the semi-circle distribution, which

minimizes the functional

J [µ] =

∫ ∫
V (s, t)µ(ds)µ(dt)
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of all the probability measures on R where

V (s, t) = log |s− t|−1 +
1

2
(s2 + t2).

Based on this result, in [J], not only the logarithmic asymptotics but the

limiting value of

(1.3)

∫
Rn

exp

(
n∑
i=1

g(ti)

)
Pn(dt

¯
),

up to the factor (1+ o(1)) is also derived. Altohough the method employed

in the article is based on the theory of the orthogonal functions and is quite

analytic, the results seems to have the strong connection with the large

deviation principle for Pn established by G. Ben Arous and A. Guionnet

[BG].

In this context, the objective of the present article is to evaluate the

integral (1.3) up to the factor (1 + o(1)) for

Pn(dt
¯
) =

1

Zn
· exp


−1

2

n∑
i,j=1

V (ti, tj)


 dt1dt2 · · · dtn,

in the case V has a good regularity, applying the ideas and techniques in

the probability theory. Since first initiated by [KT] and [B], many results

have been obtained on the precise estimate of Laplace-type integrals based

on the principle of large deviation and have been applied to study some

limiting behavior of the Gibbs measures with the mean field interactions.

However, since the interaction in Pn is not of ordinary large deviation order,

the method using the large deviation principle is not applicable here.

Now let us state the precise setting. Let I = [0, 1] ⊂ R and M1(I) be

the space of the probability measures on I. Let V be a real-valued functional

on I × I, for which we assume the following conditions:

(V.1) V (s, t) = V (t, s) for all (s, t) ∈ I × I.

(V.2) There is an α ∈ (0, 1] and a C > 0 such that

|V (s, t) − V (s′, t)| ≤ C|s− s′|α for all (s, s′, t) ∈ I × I × I.
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(V.3) There is only one µ0 ∈ M1(I) which minimizes the real-valued func-

tional

J [µ] =

∫
I

∫
I
V (s, t)µ(ds)µ(dt)

on M1(I), i.e., there is only one µ0 ∈ M1(I) such that

J [µ0] = inf{J [µ], µ ∈ M1(I)}.

(V.4) µ0(dt) is mutually absolutely continuous with respect to dt and the

Radon-Nikodym derivative satisfies that

µ0(dt)

dt
≥ cµ0 on I for some cµ0 > 0 and

∫
I
log
µ0(dt)

dt
µ0(dt) <∞.

For this µ0 let L2
0(µ0) =

{
f ∈ L2(µ0);

∫
I
f(t)µ0(dt) = 0

}
with the norm

‖ · ‖L2
0(µ0), and let V0(s, t) = V (s, t) − J [µ0] on I × I. Then, in view of

(V.1), (V.2) and (V.3), we are able to define a non-negative, symmetric

and compact operator V0 on L2
0(µ0) given by

(1.4) 〈u, V0v〉L2(µ0) =

∫
I

∫
I
V0(s, t)u(s)v(t)µ0(ds)µ0(dt)

for all u, v ∈ L2
0(µ0). Let {λk}k=1,2... and {φk}k=1,2... be its eigenvalues and

eigenfunctions.

We further assume the following:

(V.5) V0 is strictly positive, i.e., λk > 0 for all k ≥ 1.

(V.6)
∞∑
k=1

λ
p
k <∞ for some p <

1

3
· α

α+1
.

with the exponent α appeard in (V.2) and

(V.7)

sup
k≥1
λ

1−p
2
k sup

t∈I
|φk(t)| <∞.

(V.8)

ξ0(·) = log
µ0(dt)

dt
(·) −

∫
I
log
µ0(dt)

dt
µ0(dt) ∈ H1.
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Here, H1 is defined to be the domain of the operator V
− 1

2
0 on L2

0(µ0),

equipped with the norm

‖g‖H1 = ‖V − 1
2

0 g‖L2
0(µ0).

For each n ∈ N, define

(1.5) Zn =

∫
I
· · ·

∫
I
exp


−1

2

n∑
i,j=1

V (ti, tj)


 dt1dt2 · · · dtn

and define a probability measure on I⊗n by

(1.6) Pn(dt
¯
) =

1

Zn
· exp


−1

2

n∑
i,j=1

V (ti, tj)


 dt1dt2 · · · dtn.

Here, dt
¯

stands for dt1dt2 · · · dtn.
Our main theorems are the following:

Theorem 1. Under the assmption (V.1)-(V.7), we have

Zn = exp

(
−1

2
n2J [µ0] − n

∫
I
log
µ0(dt)

dt
µ0(dt) +

1

2
‖V − 1

2
0 ξ0‖2

L2
0(µ0)

)

· {det(I + nV0)}−
1
2 (1 + o(1))

as n → ∞. Here, det(I + nV0) is the determinant of the operator I + nV0

on L2
0(µ0).

Theorem 2. Under the assmption (V.1)-(V.7), for any f ∈ H1,

∫
I⊗n

exp


 n∑

j=1

f(tj)


Pn(dt

¯
)

= exp

(
n

∫
I
f(t)µ0(dt) + 〈V − 1

2
0 ξ0, V

− 1
2

0 f 〉L2
0(µ0) −

1

2
‖V − 1

2
0 f‖2

L2
0(µ0)

)
· (1 + o(1))
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as n→ ∞.

Remark. (i) By (V.6), V0 is of trace class, and so det(I + nV0) exists.

Moreover, under the assumption (V.6), {det(I + nV0)}−
1
2 converges to 0

slower than exp(−c · np) for any positive constant c.

(ii) The method we adopt to prove the theorems is not applicable in the case

I consisits of isolated points, say I = {−1, 1}. The sample path regularity

of the Gaussian process Π, which has mean 0 and V0 as its covariance, plays

the crucial role in the proof.

The organization of this article is as follows. In the next section we

intruduce the Gaussian process and give some useful formulas for later

use. In section 3, we study the asymptotic behavior of log det(I + nV0).

With these preliminaries, in section 4 and 5, we show Theorem(5.6). After

this theorem is established, we show Theorem 1 and Theorem 2 rather

straightforwardly in section 6 and 7. We sketch an example of V in section 8.

2. Preliminary Results I

Let H−1 be the completion of L2
0(µ0) with respect to the norm

‖f‖H−1 = ‖V
1
2

0 f‖L2
0(µ0),

then, by (V.5), H1 is a dense subspace of L2
0(µ0) and so is L2

0(µ0) in H−1.

Note that V −1
0 : H1 → H−1 is an isometric isomorphism. The mapping

i : H−1 → H∗
1,0 = {ν ∈ H∗

1 , 〈 ν, 1 〉 = 0} defined by

〈 i(ν), f 〉 = 〈V
1
2

0 ν, V
− 1

2
0 f 〉L2

0(µ0)

is also an isometric isomorphism, and thus we identify ν ∈ H−1 with i(ν) ∈
H∗

1,0.

For any w : t ∈ I → wt ∈ R, let ‖ · ‖β be the Hölder norm of w, i.e.,

(2.1) ‖w‖β = sup
s,t∈I

|ws − wt|
|t− s|β

and let

W β = { w ∈ C(I); ‖w‖β <∞ }.
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Then, in view of (V.1), (V.2) and (V.5), there is a unique Gaussian measure

Π on W β, for any β < α
2 , for which

EΠ[wt] = 0, t ∈ I

and

EΠ[ws · wt] = V0(s, t) s, t ∈ I

hold. This is showed by applying the result of Ciesielski([C]) of the path

regularity the Gaussian processes. Moreover, since

EΠ

[(∫
I
wsµ0(ds)

)2
]

=

∫
I

∫
I
V0(s, t)µ0(ds)µ0(dt)

= 0,

we see that

(2.2) Π
(
w ∈W β,0

)
= 1.

where

W β,0 =

{
w ∈W β;

∫
I
wsµ0(ds) = 0

}
.

Accordingly, the following Landau-Shepp-Fernique-type estimate holds. We

refer to [Kuo] for its proof.

Proposition (2.3). For any β < α
2 , there is a constant c = cβ > 0

such that

EΠ
[
ec‖w‖

2
β

]
<∞.

As an application of this proposition, we have the following estimate,

which will be useful in the coming sections.

Corollary (2.4). For any β < α
2 , there is a constant c = cβ > 0 and

C = Cβ > 0 such that for all r > 0,

Π(w ∈W β,0; ‖w‖β ≥ r ) ≤ C · e−c·r2 .
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Now observe that, for all f ∈ L2
0(µ0),

EΠ

[∣∣∣〈w, f 〉L2
0(µ0)

∣∣∣2] = 〈 f, V0f 〉L2
0(µ0) .

Thus, we can define 〈w, ν 〉 ∈ L2(W β,0) for all ν ∈ H−1 and we have

(2.5) EΠ
[
exp

(
−
√
−1 〈w, ν 〉

)]
= exp

(
−1

2
〈 ν, V0ν 〉

)
.

For each t
¯

= (t1, t2, . . . ) ∈ I⊗∞ and n ∈ N, we denote by ρn(t
¯
) the proba-

bility measure on I given by

ρn(t
¯
)(dy) =

1

n

n∑
j=1

δtj (dy)

and by ηn(t
¯
) the signed measure on I given by

ηn(t
¯
)(dy) = n(ρn(t

¯
) − µ0).

Notice that, since

sup
t∈I

‖δt‖2
H−1

= sup
t∈I

∞∑
k=1

λk φk(t)
2 <∞,

by virtue of (V.6) and (V.7), we see that ρn ∈ H−1 and ηn ∈ H−1. As a

result of (2.5), we have the following.

Lemma (2.6). For all ν ∈ H−1,

∫
I⊗n

exp

(
−1

2
〈 ηn(t

¯
) − ν, V0(ηn(t

¯
) − ν) 〉

)
µ⊗n0 (dt)(2.7)

=

∫
Wβ,0

Π(dw) exp
(√

−1 〈w, ν 〉
)
F (w)n
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where

(2.8) F (w) =

∫
I
exp

(
−
√
−1wt

)
µ0(dt).

Proof. By (2.5) and Fubini’s theorem,

∫
I⊗n

exp

(
−1

2
〈 ηn(t

¯
) − ν, V0(ηn(t

¯
) − ν) 〉

)
µ⊗n0 (dt)

=

∫
I⊗n

µ⊗n0 (dt)

∫
Wβ,0

Π(dw) exp
(
−
√
−1 〈w, ηn(t

¯
) − ν 〉

)
=

∫
Wβ,0

Π(dw) exp
(√

−1 〈w, ν 〉
) ∫

I⊗n

µ⊗n0 (dt) exp
(
−
√
−1 〈w, ηn(t

¯
) 〉

)
=

∫
Wβ,0

Π(dw) exp
(√

−1 〈w, ν 〉
)
F (w)n.

where

F (w) =

∫
I
exp

(
−
√
−1 〈w, δt − µ0 〉

)
µ0(dt) =

∫
I
exp

(
−
√
−1wt

)
µ0(dt).

The last equality comes from (2.2). �

3. Preliminary Results II

In this section we investigate the behavior of det(I + nV0) under our

assumptions. In the remainder of this article, we write an ≺ bn if the two

positive sequences {an} and {bn} satisfy that limn→∞ an/bn = 0.

For any p ∈ (0, 1), we define

Lp =



V : L2

0(µ0) → L2
0(µ0) :

positive, symmetric and compact

operator with the eigenvalues

λ1 ≥ λ2 ≥ · · · > 0 satisfying
∞∑
k=1

λ
p
k <∞.



.
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For any V ∈ Lp with the eigenvalues λ1 ≥ λ2 ≥ · · · > 0, let N(λ) =
�{k; λk ≥ λ}, where �{A} stands for the number of the elements of the set

A.

Lemma (3.1). If V ∈ Lp, then N(λ) ≺ λ−p as λ→ 0.

Proof. Let

f(t) =
1

t1/p

on (0,∞) and g : (0,∞) → (0,∞) be given by

g(t) = 1 λk−1 +(1 − 1)λk

if t = 1(k−1)+ 1k for some k ∈ N and 0 ≤ 1 ≤ 1. Then, by the assumption

λk ≺ 1
k1/p

as k → ∞, and so ε(t) = g(t)
f(t) → 0 as t→ ∞.

Let f−1(λ) = λ−p and g−1(λ) = max{s : g(s) = λ} for λ > 0. Then

g−1(λ) = ε(g−1(λ))
p · f−1(λ)

and so

lim
λ→0

g−1(λ)

f−1(λ)
= 0,

which completes the proof noting N(λ) and g−1(λ) have the same order as

λ→ 0. �

Lemma (3.2). For every V ∈ Lp and n ∈ N,

log det(I + nV ) =

∫ λ1

0

n

1 + nλ
N(λ)d λ .

Proof. For each ε > 0, let kε denote the smallest integer k such that

λk ≤ ε . Then

log det(I + nV ) =

∞∑
k=1

log(1 + nλk) = lim
ε→0

kε∑
k=1

log(1 + nλk)
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and

kε∑
k=1

log(1 + nλk) = −
∫ λ1

ε
log(1 + nλ)N(d λ)

= log(1 + n ε)N(ε) +

∫ λ1

ε

n

1 + nλ
N(λ)d λ .

By Lemma(3.1),

log(1 + n ε)N(ε) = n ε ·N(ε)(1 + o(1)) ≺ n ε1−p

as ε→ 0 and thus

lim
ε→0

log(1 + n ε)N(ε) = 0,

from which (3.2) follows. �

Proposition (3.3). For any 0 < p < 1, if V ∈ Lp, then

log det(I + nV ) ≺ np

as n→ ∞.

Proof. For any δ > 0,

∫ λ1

δ

n

1 + nλ
dλ is bounded in n, whereas

lim
n→∞

∫ δ

0

n

1 + nλ
dλ = ∞. Thus, noting that N(λ) is decreasing in λ,

(3.4) lim
n→∞

∫ λ1

δ

n

1 + nλ
N(λ)d λ∫ δ

0

n

1 + nλ
N(λ)d λ

≤ lim
n→∞

∫ λ1

δ

n

1 + nλ
dλ∫ δ

0

n

1 + nλ
dλ

= 0.

Moreover, by Lemma(3.1), for every small ζ > 0, there is a δ > 0 such that

N(λ) ≤ ζ · λ−p for all λ ∈ [0, δ], and thus

∫ δ

0

n

1 + nλ
N(λ)d λ ≤ ζ

∫ δ

0

nλ−p

1 + nλ
dλ(3.5)

≤ ζ · np
∫ ∞

0

λ−p

1 + λ
dλ .
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Hence, by (3.4) and (3.5),

∫ λ1

0

n

1 + nλ
N(λ)d λ ≺ np

as n→ ∞, and thus the Proposition follows from Lemma(3.2). �

4. Evaluation of the Integral (2.7), I

For each n ∈ N, define cn and dn by

(4.1) cn = n−
2−p
4 ·{log det(I+nV0)}

1
4 and dn = n

p
4 ·{log det(I+nV0)}

1
4 .

By assumption (V.6), we are able to pick a β < α
2 such that V0 ∈ Lp for some

p < 1
3 ·

2β
2β+1 . By (V.6) and Proposition (3.3), we see that log det(I+nV0) ≺

np, and thus we see easily that limn→∞ cn = 0 , limn→∞ dn = ∞,

(4.2) log det(I + nV0) ≺ nc2n ≺ np and log det(I + nV0) ≺ d2n ≺ np.

Note also that, since p < 1
3 · 2β

2β+1 ,

(4.3) lim
n→∞

n · c2+ 2β
2β+1

n · d
1

2β+1
n = 0.

For every n ∈ N, let

Γn =
{
w∈̇W β,0; ‖w‖L2

0(µ0) ≤ cn and ‖w‖β ≤ dn
}
.

Lemma (4.4). For the choice of {cn} and {dn} given by (4.1),

(4.5) lim
n→∞

n · sup
w∈Γn

∫
|wt|3µ0(dt) = 0

and

(4.6) lim
n→∞

n · sup
w∈Γn

(∫
|wt|2µ0(dt)

)2

= 0.
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Proof. Recall that the Hölder norm ‖ · ‖β is defined in (2.1). The

following interpolation inequality holds: there is a C > 0 such that for all

g ∈ L2
0(µ0) ∩W β,0,

‖g‖∞ ≤ C
{
‖g‖2β

L2
0(µ0)

· ‖g‖β
} 1

2β+1
.

We refer to [T] for the proof. Thus, for all w ∈ Γn,

n ·
∫

|wt|3µ0(dt) ≤ n‖w‖∞
∫
I
|wt|2µ0(dt)

≤ Cn · c2+ 2β
2β+1

n · d
1

2β+1
n

and so, by (4.3), (4.5) follows. Also, since nc2n ≺ np, for every w ∈ Γn,

n ·
(∫

|wt|2µ0(dt)

)2

≤ nc4n ≺ n2p−1,

and thus (4.6) follows noting that p < 1
6 . �

Now recall that F :W β,0 → C is defined by (2.8).

Lemma (4.7).

lim
n→∞

sup
w∈Γn

∣∣∣F (w)n · exp
(n

2
‖w‖2

L2
0(µ0)

)
− 1

∣∣∣ = 0.

Proof. Since∣∣∣∣e−√−1x −
(

1 −
√
−1x− 1

2
x2

)∣∣∣∣ ≤ |x|3,

for all x ∈ R, it follows that

(4.8)

∣∣∣∣F (w) −
(

1 − 1

2
‖w‖2

L2
0(µ0)

)∣∣∣∣ ≤
∫
I
|wt|3µ0(dt)
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and thus

(4.9) |F (w) − 1| ≤ 1

2
‖w‖2

L2
0(µ0) +

∫
I
|wt|3µ0(dt)

for all w ∈W β,0. By (4.9) and Lemma(4.4), |F (w)−1| < 1/2 for all w ∈ Γn
for sufficiently large n. Note also that for any z ∈ C safisfying |z−1| < 1/2,

(4.10) |Log z − (z − 1)| ≤ |z − 1|2.

Here, Log z is the principal value of log z. Thus, by (4.8) and (4.10),∣∣∣∣LogF (w) +
1

2
‖w‖2

L2
0(µ0)

∣∣∣∣ ≤ |LogF (w) − (F (w) − 1)|

+

∣∣∣∣(F (w) − 1) +
1

2
‖w‖2

L2
0(µ0)

∣∣∣∣
≤ |F (w) − 1|2 +

∫
I
|wt|3µ0(dt).

Thus, by (4.5), (4.6) and (4.9),

lim
n→∞

n · sup
w∈Γn

∣∣∣∣LogF (w) +
1

2
‖w‖2

L2
0(µ0)

∣∣∣∣ = 0,

from which the assertion follows immediately. �

Lemma (4.11). For all ν ∈ H−1,

EΠ
[
exp

(√
−1 〈w, ν 〉

)
exp

(
−n

2
‖w‖2

L2
0(µ0)

)
; w ∈ Γn

]
(4.12)

= {det(I + nV0)}−
1
2 (1 + o(1)).

Proof. First, notice that if a positive sequence {an} satisfies that

log det(I + nV0) ≺ an,

then

e−c·an ≺ {det(I + nV0)}−
1
2
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for any constant c > 0. Thus, by (4.2), we see that

EΠ
[
exp

(
−n

2
‖w‖2

L2
0(µ0)

)
; ‖w‖L2

0(µ0) ≥ cn
]
≤ exp

(
−n · c

2
n

2

)

≺ {det(I + nV0)}−
1
2

as n→ ∞. Also, by Corollary(2.4) and (4.2),

EΠ
[
exp

(
−n

2
‖w‖2

L2
0(µ0)

)
; ‖w‖β ≥ dn

]
≤ Π(‖w‖β ≥ dn)

≺ {det(I + nV0)}−
1
2 .

Thus,

(4.13) EΠ
[
exp

(
−n

2
‖w‖2

L2
0(µ0)

)
; w ∈ Ω \ Γn

]
≺ {det(I + nV0)}−

1
2

as n→ ∞.
Now, recall {φk}k=1,2,··· be the eigenfunctions of V0 corresponding to the

eigenvalues {λk}k=1,2,···. Notice that, for all ν ∈ H−1,

∞∑
k=1

λk | 〈 ν, φk 〉 |2 <∞

and (nλk +1)−1 < 1 for all n and k and limn→∞(nλk +1)−1 = 0 for all

k ≥ 1 by (V.5). Hence, by virtue of the bounded convergence theorem, we

obtain

lim
n→∞

〈 (I + nV0)
−1ν, V0ν 〉 = lim

n→∞

∞∑
k=1

(nλk +1)−1
λk 〈 ν, φk 〉2 = 0

and so

EΠ
[
exp

(√
−1 〈w, ν 〉

)
exp

(
−n

2
‖w‖2

L2
0(µ0)

)]
(4.14)

= {det(I + nV0)}−
1
2 exp

(
−1

2
〈 (I + nV0)

−1ν, V0ν 〉
)

= {det(I + nV0)}−
1
2 (1 + o(1))
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as n→ ∞. Hence, the Lemma follows from (4.13) and (4.14). �

Proposition (4.15). For all ν ∈ H−1,

EΠ[ exp
(√

−1 〈w, ν 〉
)
F (w)n, w ∈ Γn ] = {det(I + nV0)}−

1
2 (1 + o(1))

as n→ ∞.

Proof. For each n ∈ N, let

Gn(w) = F (w)n · exp
(n

2
‖w‖2

L2
0(µ0)

)
− 1

for all w ∈ Γn. Then,

∣∣∣∣∣∣
EΠ[ exp

(√
−1 〈w, ν 〉

)
F (w)n; w ∈ Γn ]

EΠ
[
exp

(√
−1 〈w, ν 〉

)
exp

(
−n

2 ‖w‖2
L2

0(µ0)

)
; w ∈ Γn

] − 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
EΠ

[
exp

(√
−1 〈w, ν 〉

)
Gn(w) exp

(
−n

2 ‖w‖2
L2

0(µ0)

)
; w ∈ Γn

]
EΠ

[
exp

(√
−1 〈w, ν 〉

)
exp

(
−n

2 ‖w‖2
L2

0(µ0)

)
; w ∈ Γn

]
∣∣∣∣∣∣

≤ sup
w∈Γn

|Gn(w)| ·
EΠ

[
exp

(
−n

2 ‖w‖2
L2

0(µ0)

)
; w ∈ Γn

]
∣∣∣EΠ

[
exp

(√
−1 〈w, ν 〉

)
exp

(
−n

2 ‖w‖2
L2

0(µ0)

)
; w ∈ Γn

]∣∣∣ .

Thus, by Lemma(4.7) and Lemma(4.11), we see

EΠ[ exp
(√

−1 〈w, ν 〉
)
F (w)n; w ∈ Γn ]

= EΠ
[
exp

(√
−1 〈w, ν 〉

)
exp

(
−n

2
‖w‖2

L2
0(µ0)

)
; w ∈ Γn

]
(1 + o(1))

and so the Proposition follows from Lemma(4.11). �
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5. Evaluation of the Integral (2.7), II

Lemma (5.1). For any β < α
2 , there is a constant c > 0 and C > 0

such that

Π

(
w ∈W β,0; |F (w)| ≥ 1 − τ and ‖w‖L2

0(µ0) >

√
π2τ

2

)

≤ C exp
(
− c

τ2β

)
for all 0 < τ < 1.

Proof. For j = 0, 1, 2, . . . , 15, let Ij = ∪∞
m=−∞[(2m + j

8)π, (2m +
j+1
8 )π). Then Ij ’s are disjoint and ∪15

j=0Ij = R . For each w ∈W β,0, let θj =

µ0(t;wt ∈ Ij). Since
∑15
j=0 θj = 1, there is at least one j0 ∈ {0, 1, 2, . . . , 15}

such that θj0 ≥ 1
16 .

Let τ > 0. If w ∈W β,0 satisfies that ‖w‖β ≤ π
8

1
τβ
, then,

µ0(t; wt ∈ [a, a+ π/8) ) ≥ cµ0 · |t;wt ∈ [a, a+ π/8)| ≥ cµ0 · τ

in the case the path w passes [a, a+π/8), i.e., there are t0, t1 ∈ I such that

wt0 = a and wt1 = a + π/8. Here, cµ0 is the one given in the assumption

(V.4).

Noting this, let us assume that w ∈ W β,0 satisfies ‖w‖∞ > π
2 and

‖w‖β ≤ π
8

1
τβ
. Then, inevitably w ∈ W β,0 passes the interval [0, π/2] or

[−π/2, 0]. Thus there is at least one Ij1 such that dis(Ij1 , Ij0) ≥ π
8 and

θj1 ≥ cµ0 · τ. Therefore,

|F (w)|2 =

∫
I

∫
I
e
√
−1(ws−wt)µ0(ds)µ0(dt)

=

∫
I

∫
I
cos(ws − wt)µ0(ds)µ0(dt)

≤(1 − 2 θj0 θj1) + 2 θj0 θj1 cos(
π

8
)

≤1 − 2cµ0

(
1 − cos(

π

8
)
)
· τ
16
.

and thus

|F (w)| ≤ 1 − C · τ
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where C =
cµ0
8

(
1 − cos(π8 )

)
< 1.

Hence, if ‖w‖∞ > π/2 and |F (w)| > 1 − τ, then ‖w‖β ≥ π
8Cβ · 1

τβ
, and

thus, applying Corollary(2.4), for 0 < τ < 1,

Π
(
w ∈W β,0; |F (w)| > 1 − τ and ‖w‖∞ ≥ π

2

)
(5.2)

≤ Π

(
w ∈W β,0; ‖w‖β ≥ C ′

τβ

)
≤ C · exp

(
− c

τ2β

)
,

where C ′ = π
8 · C−β and c = cβ · C ′2.

Next, let us assume that w ∈W β,0 satisfies |F (w)| ≥ 1− τ and ‖w‖∞ ≤
π
2 . Then, since

cosx ≤ 1 − 2

π2
x2

for all x ∈ [−π, π],

|F (w)|2 ≤ 1 − 2

π2

∫
I

∫
I
(wt − ws)2µ0(ds)µ0(dt)

= 1 − 4

π2

∫
I
|wt|2µ0(dt).

Thus, if |F (w)| ≥ 1 − τ and ‖w‖∞ ≤ π
2 , then

∫
I
|wt|2µ0(dt) ≤

π2τ

2

and thus

Π

(
w ∈W β,0; |F (w)| ≥ 1 − τ, ‖w‖∞ ≤ π

2
and(5.3)

‖w‖L2
0(µ0) >

√
π2τ

2

)
= 0.

Hence, by (5.2) and (5.3), we have proved Lemma(5.1). �

Proposition (5.4). As n→ ∞,

EΠ[ |F (w)|n; w ∈ Ω \ Γn] ≺ {det(I + nV0)}−
1
2 .
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Proof. Note that

EΠ[ |F (w)|n, ‖w‖L2
0(µ0) > cn]

=

∫ 1

0
τnΠ(w; |F (w)| ∈ dτ, ‖w‖L2

0(µ0) > cn)

= n

∫ 1

0
(1 − τ)n−1Π(w; |F (w)| ≥ 1 − τ, ‖w‖L2

0(µ0) > cn)dτ.

Let tn = 2c2n
π2 , where cn is the one defined by (4.1), and we apply Lemma(5.1)

to obtain,

∫ tn

0
(1 − τ)n−1Π(w; |F (w)| ≥ 1 − τ, ‖w‖L2

0(µ0) > cn)dτ

≤ C
∫ tn

0
(1 − τ)n−1 exp

(
− c

τ2β

)
dτ

=
C

(n− 1)1/(1+2β)

·
∫ (n−1)1/(1+2β)·tn

0

(
1 − τ

(n− 1)1/(1+2β)

)n−1

· exp

(
−c · (n− 1)2β/(1+2β)

τ2β

)
dτ

≤ C
∫ (n−1)−β′+p

0
exp

(
−(n− 1)β

′ · τ − c(n− 1)β
′

τ2β

)
dτ

≤ C
∫ 1

0
exp

(
−(n− 1)β

′
(τ +

c

τ2β
)
)
dτ

≤ C · e−A·(n−1)β
′

for sufficiently large n. Here,

A = inf
τ∈[0,1]

(
τ +

c

τ2β

)
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is a positive constant and β′ = 2β
1+2β . The second inequality comes by ap-

plying s = τ/(n− 1)1/(1+2β) to the inequality (1 − s)n−1 ≤ e−(n−1)s for all

s < 1 and n ∈ N . Since p < 1
3β

′ < β′, log det(I+nV0) ≺ (n−1)p ≺ (n−1)β
′

and so

e−A·(n−1)β
′
≺ {det(I + nV0)}−

1
2 .

Also,∫ 1

tn

(1 − τ)n−1Π(w; |F (w)| ≥ 1 − τ, ‖w‖L2
0(µ0) > cn)dτ ≤

∫ 1

tn

(1 − τ)n−1dτ

≤ (1 − tn)n−1

≤ e−(n−1)tn .

By the choice of {tn},

e−(n−1)tn ≺ {det(I + nV0)}−
1
2 .

and thus

(5.5) EΠ[ |F (w)|n; ‖w‖L2
0(µ0) > cn] ≺ {det(I + nV0)}−

1
2 .

On the other hand, since |F (w)| ≤ 1, by Corollary(2.4),

EΠ[ |F (w)|n; ‖w‖β > dn] ≤ Π( ‖w‖β > dn )(5.6)

≺ {det(I + nV0)}−
1
2 .

as n→ ∞. Thus the proposition follows from (5.5) and (5.6). �

Before we close this section we summarize what we have established so

far. By Proposition(4.15) and Proposition(5.4), along with Lemma(2.6), we

obtain the following.

Theorem (5.7). For all ν ∈ H−1,∫
exp

(
−1

2
〈 ηn(t

¯
) − ν, V0(ηn(t

¯
) − ν) 〉

)
µ⊗n0 (dt

¯
)

= {det(I + nV0)}−
1
2 (1 + o(1)).
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6. Proof of Theorem 1

Let Λ be the set of bounded measurable functions on I. Then by (V.3),

we see that for any h ∈ L2
0(µ0) ∩ Λ,

0 =
d

dt
J [µ0 + thµ0]|t=0

=

∫
I

∫
I
V (s, t)µ0(ds)h(t)µ0(dt).

Since L2
0(µ0) ∩ Λ is dense in L2

0(µ0), we see that there exists a λ ∈ R for

which

(6.1)

∫
I
V (s, t)µ0(ds) = λ .

Integrating the both sides of the above identity by µ0, we obtain

(6.2) J [µ0] = λ .

Thus, by (6.1) and (6.2), we see that V0 defined in the Introduction satisfies

that ∫
I
V0(s, t)µ0(ds) = 0

and so the operator V0 defined by (1.4) is an operator on L2
0(µ0). Moreover,

by (6.1), we have

J [µ] − J [µ0] =

∫
I

∫
I
V0(s, t)(µ− µ0)(ds)(µ− µ0)(dt)

for all µ ∈ M1(I), and thus

n2(J [ρn(t
¯
)] − J [µ0]) =

∫
I

∫
I
V0(s, t)ηn(t

¯
)(ds)ηn(t

¯
)(dt)(6.3)

= 〈 ηn(t
¯
), V0ηn(t

¯
) 〉 .
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Now, noting (V.4), we have

Zn =

∫
I⊗n

exp

(
−1

2
n2J [ρn(t

¯
)]

)
dt1 · · · dtn

=

∫
I⊗n

exp


−1

2
n2J [ρn(t

¯
)] −

n∑
j=1

log
µ0(dt)

dt
(tj)


µ⊗n0 (dt

¯
),

and thus, by (6.3),

exp

(
1

2
n2J [µ0] + n

∫
I
log
µ0(dt)

dt
µ0(dt)

)
Zn(6.4)

=

∫
I⊗n

exp

(
−1

2
n2(J [ρn(t

¯
)] − J [µ0])

− n
∫
I
log
µ0(dt)

dt
(ρn(t

¯
) − µ0)(dt)

)
µ⊗n0 (dt

¯
)

=

∫
I⊗n

exp

(
−1

2
〈 ηn(t

¯
), V0ηn(t

¯
) 〉− 〈 ξ0, ηn(t

¯
) 〉

)
µ⊗n0 (dt

¯
)

= exp

(
1

2
〈V −1

0 ξ0, ξ0 〉
)

·
∫
I⊗n

exp

(
−1

2
〈 ηn(t

¯
) + V −1

0 ξ0, V0(ηn(t
¯
) + V −1

0 ξ0) 〉
)
µ⊗n0 (dt

¯
).

Here, V −1
0 ξ0 ∈ H−1 and 〈V −1

0 ξ0, ξ0 〉 = ‖V − 1
2

0 ξ0‖2
L2

0(µ0)
by (V.8). Therefore,

Theorem 1 follows from Theorem(5.7). �

7. Proof of Theorem 2

In view of (6.4), we observe

Pn(dt
¯
) =

1

Z ′
n

· exp

(
−1

2
〈 ηn(t

¯
), V0ηn(t

¯
) 〉− 〈 ξ0, ηn(t

¯
) 〉

)
µ⊗n0 (dt

¯
)

where

Z ′
n =

∫
I⊗n

exp

(
−1

2
〈 ηn(t

¯
), V0ηn(t

¯
) 〉− 〈 ξ0, ηn(t

¯
) 〉

)
µ⊗n0 (dt

¯
).
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By Theorem(5.7),

Z ′
n = exp

(
1

2
〈V −1

0 ξ0, ξ0 〉
)

·
∫
I⊗n

exp

(
−1

2
〈 ηn(t

¯
) + V −1

0 ξ0, V0(ηn(t
¯
) + V −1

0 ξ0) 〉
)
µ⊗n0 (dt

¯
)

= exp

(
1

2
〈V −1

0 ξ0, ξ0 〉
)
{det(I + nV0)}−

1
2 (1 + o(1))

and, for any f ∈ H1,

∫
I⊗n

exp

(
−1

2
〈 ηn(t

¯
), V0ηn(t

¯
) 〉− 〈 ξ0 − f, ηn(t

¯
) 〉

)
µ⊗n0 (dt

¯
)

= exp

(
1

2
〈V −1

0 (ξ0 − f), ξ0 − f 〉
)

·
∫
I⊗n

exp

(
−1

2
〈 ηn(t

¯
) + V −1

0 (ξ0 − f),

V0(ηn(t
¯
) + V −1

0 (ξ0 − f)) 〉
)
µ⊗n0 (dt

¯
)

= exp

(
1

2
〈V −1

0 (ξ0 − f), ξ0 − f 〉
)
{det(I + nV0)}−

1
2 (1 + o(1)).

Hence

exp

(
−n

∫
I
fdµ0

)∫
I⊗n

exp


 n∑
j=1

f(tj)


Pn(dt

¯
)

=

∫
I⊗n

exp( 〈 f, ηn(t
¯
) 〉 )Pn(dt

¯
)

=
1

Z ′
n

·
∫
I⊗n

exp

(
−1

2
〈 ηn(t

¯
), V0ηn(t

¯
) 〉− 〈 ξ0 − f, ηn(t

¯
) 〉

)
µ⊗n0 (dt

¯
)

= exp

(
1

2
〈V −1

0 (ξ0 − f), ξ0 − f 〉−
1

2
〈V −1

0 ξ0, ξ0 〉
)

(1 + o(1)).

This completes the proof. �
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8. An Example

Assume that v : R → R satisfies that

(i) v(t) = v(t+ 1) and v(t) = v(−t) for all t ∈ R .

(ii) v is 6 times differentiable and v(6) ∈ C(R).

(iii) v is positive-definite.

Then, V : I × I → R given by

V (s, t) = v(t− s)

satisfies the assumptions (V.1) to (V.8) with µ0(dt) = dt and α = 1.

We briefly check this. Let {λk}k∈Z be the Fourier coefficients of v, i.e.,

λk =

∫ 1/2

−1/2
e2kπ

√
−1tv(t)dt.

Since v is real-valued and v(t) = v(−t), λk ∈ R and λ−k = λk for all k ∈ Z.

For all probability measure on I,

J [µ] = 1 + 2
∞∑
k=1

λk

∣∣∣∣
∫
I
e2kπ

√
−1tµ(dt)

∣∣∣∣
2

,

and thus µ0(dt) = dt is the only probability measure which minimizes J.

By (ii) and by the standard theory of Fourier analysis, we have

∞∑
k=1

k12
λ

2
k <∞,

and so by Hölder’s inequality,

∞∑
k=1

λ
1

6+δ

k ≤
( ∞∑
k=1

k12
λ

2
k

) 1
12+2δ

·
( ∞∑
k=1

k−
12

11+2δ

) 11+2δ
12+2δ

<∞

if δ < 1
2 . Thus, this V satisfies the assumptions.
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