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The Generalized Whittaker Functions for Sp(2,R) and

the Gamma Factor of the Andrianov L-function

By Takuya Miyazaki

Abstract. We study the archimedean generalized Whittaker func-
tions for the generalized principal series and the large discrete series of
the real symplectic group of degree 2. Using gradient type differen-
tial operators, which was introduced by Schmid, we give a system of
differential equations which is satisfied by a Whittaker function. We
study this system, and give the Mellin transform of its solution. We
apply the result to a study of Andrianov’s spinor L-function for a non-
holomorphic Siegel modular form via Rankin-Selberg integral with an
explicitly described archimedean factor.

Introduction

In this paper we study the generalized Whittaker functions associated

with some admissible Hilbert representations of the real symplectic group

of degree two G = Sp(2,R). Our motivation to study these functions is to

obtain some basic material in the archimedean theory of the automorphic

L-functions for the symplectic group of rank 2. Current works on the con-

struction of the automorphic L-functions do not seem sufficiently detailed

at archimedean places and ramified p-adic places. A more precise harmonic

analysis of the generalized spherical functions on a real reductive group

is indispensable to complete the analytic properties of an automorphic L-

function. Here we want to support it by an investigation of the generalized

Whittaker functions on G.

Let P be the Siegel maximal parabolic subgroup of G with the abelian

unipotent radical N . Define a closed subgroup R of P by the semi direct

product of N and the connected component of the stabilizer of a char-

acter of N in the Levi part. We consider the G-module induced from a

non-degenerate unitary character of R. Then the generalized Whittaker

functions are defined to be the generalized spherical functions that appear
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in the images of G-intertwining maps from an admissible Hilbert G-module

into the module considered above. These functions with specified K-types

satisfy a holonomic systems of differential equations. We study these holo-

nomic systems and their solutions.

Let π be a generalized principal series representations corresponding to

the another maximal parabolic subgroup P1 of G, or a large discrete series

representations of G. Then main theorems are given on

(i) Multiplicity free property of the space of the generalized Whittaker real-

izations of π that correspond to moderate growth functions on a split torus

subgroup of G, Theorems 7.5, 7.14 for the generalized principal series, and

11.5 for the large discrete series;

(ii) Formulas of the Mellin transforms of the generalized Whittaker func-

tions and its application to a study of Andrianov’s spinor L-functions, The-

orems 8.1, 8.2, 11.8, and 12.2.

In this paper we take a definite character of N to give these theorems. In

(i) the word “multiplicity free” means that “the dimension is less than or

equal to one”. We will also give existence theorems in some cases, 7.6, and

11.7.

To obtain the holonomic systems for the generalized Whittaker func-

tions, we use the action of the Casimir operator in Z(gC) and also a differ-

ential operator of gradient type, which was introduced to characterize the

discrete series representations by Schmid [S]. Yamashita [Y2, Y3] applies

the later operators to study the realization of the discrete series represen-

tations into several types of induced representations.

Here is the organization of this article. From Sections 1 to 5, we collect

fundamental ingredients in this paper. In Section 1 we define the generalized

Whittaker functions for the admissible modules. Basic notation on Lie

groups, Lie algebras is given in Section 2. We recall things about the

representations of a maximal compact subgroup K of G in Section 3. We

need the irreducible decompositions of the tensor products, which are given

in 3.2. In Section 4 Schmid operator and shift operators are introduced.

In Section 5, we give the explicit formula of the A-radial parts of the shift

operators and the Casimir operator, Proposition 5.3 and Proposition 5.6.

From Sections 6 to 8, we study the generalized principal series represen-

tations. We recall its K-type decomposition in Section 6, and define the
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“corner” K-type. In Section 7, we give a system of differential equations,

which are satisfied by the generalized Whittaker functions with the corner

K-type of a generalized principal series. A solution with a good asymptotic

behavior is obtained in Theorem 7.5 and 7.14. In Section 8 we calculate its

generalized Mellin transform, Theorem 8.1 and 8.2.

From Sections 9 to 12, the large discrete series representations are stud-

ied. After recalling its K-type decomposition, Section 9, we give a holo-

nomic system of rank 4, Section 10. In Section 11, we study about a formal

power series solution with good analytic properties. The Mellin transform

is obtained in Theorem 11.8. In Section 12, we apply our results to study

of Andrianov’s L-function via Rankin-Selberg convolution.

Niwa [Ni] studied the generalized Whittaker functions with trivial K-

type for the spherical principal series of Sp(2,R), which was characterized

by the action of generators in Z(gC).

The author would like to express his gratitude to Takayuki Oda for valu-

able advice on this work. Also he would like to thank Sinji Niwa, Takashi

Sugano, Nobukazu Shimeno, and Takahiro Hayata for helpful discussions.

1. Definition of the Space of Generalized Whittaker Reali-

zations

We recall a notion of a generalized Whittaker realizations of an irre-

ducible admissible Hilbert representation (π,Hπ) of a semisimple Lie group,

[Y1]. In particular, we formulate it for the real symplectic group of rank 2.

1.1. Let G = Sp(2,R) =
{
g ∈ SL(4,R) | tgJ2g = J2

}
be the real

symplectic group of real rank 2, where J2 =
(

0
−12

12
0

)
with the 2 × 2 unit

matrix 12. Let Ps be the Siegel maximal parabolic subgroup of G. It has

a Levi decomposition Ps = Ls � Ns; Ls =
{(

m
0

0
tm−1

)
| m ∈ GL(2,R)

}
,

Ns =
{
nT =

(
12
0

T
12

)
| T = tT =

(
t1
t3
t3
t2

)}
. The nilpotent radical Ns is

abelian. Fix a non-degenerate unitary character η of Ns; for nT ∈ Ns, set

η(nT ) = exp
(
2π
√
−1 tr(HηT )

)
with Hη = tHη =

(
h1

h3/2
h3/2
h2

)
∈M2(R), detHη �= 0.

The Levi subgroup naturally acts on the set of unitary characters of Ns.

Define SO(η) to be the identity component of the subgroup of Ls which
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stabilizes η by the action. It is isomorphic to the group SO(2), or SO(1, 1),

according to the sign of Hη. Denote by R the semi direct product group

SO(η) � Ns. For a character χ of SO(η), the character χ · η of R is well-

defined by χ ·η(r) := χ(m)η(n), r = (m,n) ∈ R. We use the same notations

η, χ and χ ·η for the differentials of them on the Lie algebras ns, so(η), and

r, of the corresponding groups, respectively. We fix a generator Yη of so(η)

by

Yη =
(Bη

0
0

−tBη

)
, Bη = H−1

η

(
0
−1

1
0

)
.

We now consider the representation of G induced from (χ · η, Cχ·η) in

C∞-context:

C∞-IndGR(χ · η) =
{
f : G→ Cχ·η | smooth, f(rg) = χ · η(r)f(g),

(r, g) ∈ R×G
}
.

Here G acts by the right translations. This is the reduced generalized

Gelfand-Graev representation [Y1] II, Sections 1, 2. Through differentiation

it has a (gC,KC)-module structure for the Lie algebra g and a maximal

compact subgroup K of G.

Let (π,Hπ) be an irreducible admissible Hilbert representation of G.

Then the set of KC-finite vectors Hπ,K gives a Harish-Chandra (gC,KC)-

module (π,Hπ,K) through the differentiation.

1.2 Definition. We define a space of intertwining maps

Whχ·η(π) = Hom(gC,KC)

(
Hπ,K , C∞-IndGR(χ · η)K

)
that is called the space of the algebraic generalized Whittaker realizations

of (π,Hπ).

1.3. For a finite dimensional K-representation (τ, V ), denote by

C∞
χ·η,τ∗(R\G/K) the space of Cχ·η ⊗ V ∗-valued functions f on G satisfy-

ing

f(rgk) = χ · η(r)τ∗(k)−1f(g), (r, g, k) ∈ R×G×K.

If we restrict (π,Hπ,K) to the subgroup K, it decomposes into a direct

Hilbert sum of irreducible finite dimensional K-modules, each of which

occurs with finite multiplicity. We call a K-module (τ, V ) with non-zero
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multiplicity a K-type of (π,Hπ,K). Fix a K-type (τ, V ) of (π,Hπ,K) and

a KC-embedding ι : V ↪→ Hπ,K . Considering the KC-map Φ ◦ ι for each

functional Φ ∈Whχ·η(π), we define a function ϕ on G with values in Cχ·η⊗
V ∗ by

Φ ◦ ι(v)(g) = 〈v, ϕ(g)〉 for all v ∈ V,

with the canonical dual Cχ·η-valued pairing 〈 , 〉 on V × (Cχ·η ⊗ V ∗).
Here (τ∗, V ∗) denotes the contragradient of (τ, V ). Then ϕ belongs to

C∞
χ·η,τ∗(R\G/K). We call it a generalized Whittaker function for π with

values in Cχ·η ⊗ V ∗.

2. Basic Notation, and the Structure of Lie Groups and

Algebras

2.1. Let us introduce some notation. Take a maximal compact sub-

group K =
{(

A
−B

B
A

)
∈ G | A,B ∈ M2(R)

}
of G, which is isomorphic to

the unitary group U(2) of degree 2. Denote by g the Lie algebra of G; g ={
X ∈ M4(R) | JX + tXJ = 0

}
, on which we define the Cartan involution

θ by θ(X) = −tX, X ∈ g. Denote by g = k⊕ p the Cartan decomposition.

The space k =
{
XA,B =

(
A
−B

B
A

)
∈ g | tA = −A, tB = B, A,B ∈ M2(R)

}
is the Lie algebra of K. An isomorphism between k and u(2) is given by

XA,B �→ A +
√
−1B. We give a basis of u(2) by

√
−1

(
1 0

0 1

)
,
√
−1

(
1 0

0 −1

)
,

Y =

(
0 1

−1 0

)
, Y ′ =

√
−1

(
0 1

1 0

)
.

The space p is given by p =
{(

A
B

B
−A

)
∈ g | tA = A, tB = B;A,B ∈

M2(R)
}
. It determines the adjoint representation of K. We express the

complexification of a Lie algebra by putting the subscript C; gC = g⊗R C,

etc.

2.2. A compact Cartan subalgebra h and its roots. We take a basis of

u(2)C as

Z =

(
1 0

0 1

)
, H ′ =

(
1 0

0 −1

)
, X =

(
0 1

0 0

)
, X =

(
0 0

1 0

)
.
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Here note that 2X = Y −
√
−1Y ′, −2X = Y +

√
−1Y ′ and

(
H ′, X,X

)
determines an sl2-triple. Via the isomorphism kC � u(2)C, the preimage of

the above basis is given by

Z = −
√
−1

 0
1 0

0 1
−1 0

0 −1
0

 ,

H ′ = −
√
−1

 0
1 0

0 −1
−1 0

0 1
0

 ,

Y =

 0 1

−1 0
0

0
0 1

−1 0

 , Y ′ =

 0
0 1

1 0
0 −1

−1 0
0

 .

A compact Cartan subalgebra h of g is given by h = R ·
√
−1Z+R ·

√
−1H ′.

Let us define H ′
1 = 1

2(Z + H ′) and H ′
2 = 1

2(Z −H ′). Then
√
−1H ′

i belong

to h for i = 1, 2.

We write the value βi = β(
√
−1Hi) of a linear form β : hC → C. Then

β may be realized by the values (β1, β2) and the set of roots Σ(gC, hC) of

hC on gC is
√
−1{±(2, 0),±(0, 2),±(1, 1),±(1,−1)}. This determines the

C2 root system. For each root β ∈ Σ(gC, hC), put gβ = {X ∈ gC | [H,X] =

β(H)X, ∀H ∈ hC}. We fix a root vector Xβ ∈ gβ as in Table 1. Then

X(1,−1) and X(−1,1) are the compact roots and kC = hC + C ·X(1,−1) + C ·
X(−1,1).

We have a decomposition pC = p+ ⊕ p−, where p+ = C · X(2,0) + C ·
X(1,1) + C · X(0,2), and p− = C · X−(2,0) + C · X−(1,1) + C · X−(0,2). This

corresponds to the irreducible decomposition the adjoint representation of

KC on pC and a complex structure on the Siegel upper half plane G/K. We

put Σ+
c = {(1,−1)} the compact positive roots, Σ+

nc = {(2, 0), (1, 1), (0, 2)}
the set of non-compact positive roots, Σc = Σ+

c ∪ (−Σ+
c ) all the compact

roots, and Σnc = Σ+
nc ∪ (−Σ+

nc) all the non-compact roots, respectively.

For each root β = (β1, β2), put ‖β‖ =
√
|β1|2 + |β2|2; here we note

‖β‖2 = 4 or 2. Then the set
{
c · |β|(Xβ +X−β), c ·

√
−1|β|(Xβ−X−β), β ∈

Σ+
nc

}
forms an orthonormal basis of p = pR with respect to the Killing form

under adjustment by a constant multiple.
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Table 1.

−
√
−1β (2, 0) (1, 1) (0, 2) (1,−1)

Xβ


1
0

i
0

i
0

−1
0




1
1

i
i

i
i

−1
−1




0
1

0
i

0
i

0
−1




1
−1

−i
−i

i
i

1
−1



X−β


1
0

−i
0

−i
0

−1
0




1
1

−i
−i

−i
−i

−1
−1




0
1

0
−i

0
−i

0
−1




1
−1

i
i

−i
−i

1
−1

 .

2.3. The restricted root system and the Iwasawa decomposition. Let

a =
{(

A
0

0
−A

)
∈ g | A =

(
t1
0

0
t2

)
; t1, t2 ∈ R

}
be a maximal abelian subalgebra

of p. Fix a basis {H1, H2} of a;

H1 =

 1 0

0 0
0

0
−1 0

0 0

 H2 =

 0 0

0 1
0

0
0 0

0 −1

 .

Let ei, i = 1, 2 be linear forms on a defined by ei(Hj) = δi,j , i, j = 1, 2. Then

the set of restricted roots Ψ(g, a) of a on g is given by {±2e1, ±2e2, ±e1±
e2}. This determines the C2 root system. Fix the positive roots Ψ+ =

{2e1, 2e2, e1 + e2, e1 − e2}. Then n =
∑

α∈Ψ+
gα determines the nilradical

of a minimal parabolic subalgebra, and we have Iwasawa decomposition of

g: g = k⊕ a⊕ n. We fix the root vectors Eα of α ∈ Ψ+ as follows:

E2e1 =

 0
1 0

0 0

0

 ; Ee1+e2 =

 0
0 1

1 0

0

 ;

E2e2 =

 0
0 0

0 1

0

 ; Ee1−e2 =

 0 1

0 0
0

0
0 0

−1 0

 .
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3. Representations of the Maximal Compact Subgroup

We recall some basic facts about the representations of the maximal

compact subgroup K. Because KC is isomorphic to GL(2,C), the ir-

reducible finite-dimensional U(kC)-modules are parameterized by the set

{λ = (λ1, λ2) ∈ Z⊕2 | λ1 ≥ λ2}, which corresponds to dominant highest

weights. For each dominant weight λ, define an integer d = λ1 − λ2. Then

the module τλ with the highest weight λ is of d+ 1 dimension. Now we fix

a realization of Vλ with a basis (vλj | 0 ≤ j ≤ d), which is used throughout

this paper.

3.1 Lemma. We have a basis 〈 vλj | 0 � j � d 〉 of Vλ such that the

U(kC)-module is realized as

τλ(Z)vλj = (λ1 + λ2)v
λ
j , τλ(H

′)vλj = (2j − d)vλj ,

τλ(X)vλj = (j + 1)vλj+1, τλ(X)vλj = (d + 1− j)vλj−1.

For the elements H ′
1 = (Z + H ′)/2 and H ′

2 = (Z −H ′)/2, we have

τλ(H
′
1)v

λ
j = (j + λ2)v

λ
j , τλ(H

′
2)v

λ
j = (−j + λ1)v

λ
j .

3.2. For the adjoint representations of KC on p±, we have the isomor-

phisms p+
∼= V(2,0); X(0,2) �→ v

(2,0)
0 , X(1,1) �→ v

(2,0)
1 , X(2,0) �→ v

(2,0)
2 , and

p− � V(0,−2); X(−2,0) �→ v
(0,−2)
0 , X(−1,−1) �→ −v(0,−2)

1 , X(0,−2) �→ v
(0,−2)
2 .

The tensor representations Vλ ⊗ p± has the irreducible decompositions:

Vλ ⊗ p+
∼= Vλ ⊗ V(2,0) = V(λ1+2,λ2) ⊕ V(λ1+1,λ2+1) ⊕ V(λ1,λ2+2),

Vλ ⊗ p+
∼= Vλ ⊗ V(0,−2) = V(λ1−2,λ2) ⊕ V(λ1−1,λ2−1) ⊕ V(λ1,λ2−2),

where some summands may vanish. Let P up, P even, and P down be the

projections from Vλ ⊗ p+ (resp. Vλ ⊗ p−) to the components V(λ1+2,λ2)

(resp. V(λ1,λ2−2)); V(λ1+1,λ2+1) (resp. V(λ1−1,λ2−1)); and V(λ1,λ2+2) (resp.

V(λ1−2,λ2)).

We denote by wj the basis v
(2,0)
j or v

(0,−2)
j , j = 0, 1, 2. Then the following

lemmas give formulas of these projections.
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3.3 Lemma. Set µ = (λ1 + 2, λ2) (or (λ1, λ2− 2)). Then the projector

P up is;

(i) P up(vλj ⊗ w2) =
(j + 1)(j + 2)

2
vµj+2;

(ii) P up(vλj ⊗ w1) = (j + 1)(d + 1− j)vµj+1;

(iii) P up(vλj ⊗ w0) =
(d + 1− j)(d + 2− j)

2
vµj .

3.4 Lemma. Set ν = (λ1 + 1, λ2 + 1) (or (λ1 − 1, λ2 − 1)). Then the

projector P even is;

(0) P even(vλd ⊗ w2) = 0

(i) P even(vλj ⊗ w2) = (j + 1)vνj+1 0 ≤ j ≤ d− 1;

(ii) P even(vλj ⊗ w1) = (d− 2j)vνj 0 ≤ j ≤ d;

(iii) P even(vλj ⊗ w0) = −(d + 1− j)vνj−1 1 ≤ j ≤ d.

3.5 Lemma. Set π = (λ1, λ2 + 2) (or (λ1− 2, λ2)). Then the projector

P down is;

(i) P down(vλj ⊗ w2) = vπj 0 ≤ j ≤ d− 2;

(ii) P down(vλj ⊗ w1) = −2vπj−1 1 ≤ j ≤ d− 1;

(iii) P down(vλj ⊗ w0) = vπj−2 2 ≤ j ≤ d;

(iv) P down(vλd ⊗ w2) = P down(vλd ⊗ w1) = P down(vλd−1 ⊗ w2) = 0.

Proof. To show these lemmas it is enough to find the highest weight

vectors in Vλ⊗p+ corresponding to the factors Vµ, Vν , and Vπ, respectively.

The other steps of the proof are completed by induction. �

4. The Schmid Operator

We introduce the Schmid operator and the shift operators, which we

use to obtain the generalized Whittaker functions for an admissible Hilbert

space representation.

4.1. Definition of the Schmid operator and the shift operators. Let g =

k⊕p be the Cartan decomposition. Then the maximal compact subgroup K
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acts on pC by the adjoint action. We denote this K-module by (AdpC
, pC).

Let C∞
τ (G/K) be that space of Vτ -valued C∞-functions φ on G satisfying

φ(gk) = τ(k)−1φ(g) for all g ∈ G and k ∈ K. Then we define the left

G-equivariant differential operator ∇ : C∞
τ (G/K)→ C∞

τ⊗AdpC
(G/K) by

∇φ =
∑
i∈I

RXiφ(·)⊗Xi,

for an orthonormal basis (Xi)i∈I of p = pR with respect to the Killing form

on g. Here RXφ means the right differentiation of the function φ by X ∈ g:

RXφ(g) = d
dtφ(g exp tX)|t=0. The definition does not depend on the choice

of an orthonormal basis. We call this operator the Schmid operator. We

composite it with the projections P up, P even, and P down onto the irreducible

components of τλ⊗AdpC
as K-modules. We call these composite operators

P • ◦ ∇ the shift operators.

5. Radial Part of the Schmid Operator and the Casimir

Operator

Define a subgroup A = {a = diag(a1, a2, a
−1
1 , a−1

2 ) | a1, a2 > 0} of G

and denote its Lie algebra by a. There is a decomposition gC =

Ad(a−1)(so(η)C + nsC) + aC + kC with a ∈ A, then G = RAK. Now we

study the restriction φ|A to A of a function φ ∈ C∞
χ·η,τλ(R\G/K) through

an inclusion of C∞
χ·η,τλ(R\G/K) into C∞(A;Vτλ), where C∞(A;Vτλ) is the

space of Vτλ-valued C∞-functions on A. It is given by the left R- and right

K-equivariance of the function φ. Then we need to describe how the each

differential operator acts on the restriction when we fix a character χ · η of

R and a K-module τλ. We call the action the A-radial part of an operator,

and denote by R(∇±
χ·η,τλ) the A-radial part of ∇±, for example. In this

section we give formulas of the A-radial part of the Schmid operator and

the Casimir operator acting on the generalized Whittaker functions with a

fixed K-type. We use the notation given in the previous sections.

5.1. Radial part of the Schmid operator. Let us take an orthogonal

basis of p by
(
C‖β‖(Xβ + X−β), C‖β‖√

−1
(Xβ −X−β) | β ∈ Σ+

n

)
where X±β,

β ∈ Σ+
n are the non-compact root vectors {X±β;β ∈ Σ+

n } of hC in pC ,
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and C is a normalizing constant depending on the Killing form. Then the

Schmid operator ∇ is given by

∇F = 2C2
∑

β∈
∑+

n

‖β‖2RX−β
F ⊗Xβ + 2C2

∑
β∈
∑+

n

‖β‖2RXβ
F ⊗X−β.

We can write it as a sum of two operators corresponding to the irre-

ducible decomposition pC = p+ ⊕ p− as K-modules. These operators

∇± : C∞
τ (G/K)→ C∞

τ⊗Adp±
(G/K) are given by

∇+F =
1

4
Σ‖β‖2 ·RX−β

F ⊗Xβ(5.1)

= RX(−2,0)
F ⊗X(2,0) +

1

2
RX(−1,−1)

F ⊗X(1,1)

+ RX(0,−2)
F ⊗X(0,2),

∇−F =
1

4
Σ‖β‖2 ·RXβ

F ⊗X−β(5.2)

= RX(2,0)
F ⊗X(−2,0) +

1

2
RX(1,1)

F ⊗X(−1,−1)

+ RX(0,2)
F ⊗X(0,−2).

We prepare the following lemma to describe the A-radial parts of the actions

of ∇± on the generalized Whittaker functions.

5.2 Lemma. For the character η of Ns we suppose that Hη is invertible

and both of h1 and h2 are not equal to zero. Then

X(±2,0) = H1 ±H ′
1 ± 2

√
−1a2

1Ad(a−1)E2e1 ;(i)

X(0,±2) = H2 ±H ′
2 ± 2

√
−1a2

2Ad(a−1)E2e2 ;(ii)

X(1,1) = 2Ee1−e2 + 2 X + 2
√
−1a1a2Ad(a−1)Ee1+e2(iii)

= −2
(
a1a2/D

){
detHη ·Ad(a−1)Yη −

(
h3/2

)
(H1 −H2)

− h1

(
a1/a2

)
(X −X)

}
+ 2 X + 2

√
−1a1a2Ad(a−1)Ee1+e2 ;

X(−1,−1) = 2Ee1−e2 − 2 X − 2
√
−1a1a2Ad(a−1)Ee1+e2(iv)

= −2
(
a1a2/D

){
detHη ·Ad(a−1)Yη −

(
h3/2

)
(H1 −H2)

− h1

(
a1/a2

)
(X −X)

}
− 2 X − 2

√
−1a1a2Ad(a−1)Ee1+e2 .
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Here we use the symbols: D = h1a
2
1 − h2a

2
2 and Yη is a generator of so(η).

The second equalities in (iii) and (iv) are valid for generic elements a ∈ A,

satisfying a1a2(h1a
2
1 − h2a

2
2) �= 0.

Proof. These formulas can be given along with the decomposition

gC = Ad(a−1)(so(η)C + nsC) + aC + kC, a ∈ A.

The equalities (i), (ii) and the first ones of (iii), (iv) can be checked by

definition.

To get the second equality in (iii), or (iv), we note that a generator Yη
of so(η) is given by

H−1
η

(
0 1

−1 0

)
�→ Yη = (detHη)

−1
{h3

2
(H1−H2)+h2Ee1−e2−h1E−e1+e2

}
.

For a ∈ A satisfying the generic condition, computing detHη Ad(a−1)Yη,

and solving it for Ee1−e2 , then we have

Ee1−e2 = −a1a2

D

{
detHη ·Ad(a−1)Yη(5.3)

− h3

2
(H1 −H2)− h1

a1

a2
(X −X)

}
,

in the decomposition of gC. This completes the proof of lemma. �

We give formulas of the A-radial parts of Schmid operators.

5.3 Proposition. We assume the same condition on the character η
of Ns as in Lemma 5.2. Then the A-radial parts of the Schmid operators:
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R(∇±
χ·η,τλ) : C∞(A;Vτλ)→ C∞(A;Vτλ ⊗ p±), are given by

R(∇+
χ·η,λ)f(a)(5.4)

=
(
∂1 + 4πh1a

2
1 + (τλ ⊗ Adp+)(H ′

1) + 2
h2a

2
2

D
− 2
)
(f(a) ⊗X(2,0))

+
(
I− − h2a

2
2

D
(τλ ⊗ Adp+)(X) +

h1a
2
1

D
(τλ ⊗ Adp+)(X)

)
(f(a) ⊗X(1,1))

+
(
∂2 + 4πh2a

2
2 + (τλ ⊗ Adp+)(H ′

2) − 2
h1a

2
1

D
− 2
)
(f(a) ⊗X(0,2));

R(∇−
χ·η,λ)f(a)(5.5)

=
(
∂1 − 4πh1a

2
1 − (τλ ⊗ Adp−)(H ′

1) + 2
h2a

2
2

D
− 2
)
(f(a) ⊗X(−2,0))

+
(
I+ − h1a

2
1

D
(τλ ⊗ Adp−)(X) +

h2a
2
2

D
(τλ ⊗ Adp−)(X)

)
(f(a) ⊗X(−1,−1))

+
(
∂2 − 4πh2a

2
2 − (τλ ⊗ Adp−)(H ′

2) − 2
h1a

2
1

D
− 2
)
(f(a) ⊗X(0,−2)).

Here we use the symbols

∂i = ai
∂
∂ai

, i = 1, 2; D = h1a
2
1 − h2a

2
2, and

I± =
h3

2

a1a2

D
(∂1 − ∂2)∓ 2πh3a1a2 −

χ(Yη) detHηa1a2

D
.

Proof. These are obtained by applying the equalities in Lemma 5.2

into the expressions (5.1) and (5.2) of ∇±. Here we show a computation

of R(∇+
χ·η,τλ) from (5.1). Because RH1F|A(a) = ∂1F|A(a), RH′

1
F|A(a) =

−τλ(H ′
1)F|A(a), and RAd(a−1)E2e1

F|A(a) = 2π
√
−1h1F|A(a), we have

RX(−2,0)
F|A(a)⊗X(2,0)

= {(H1 −H ′
1 − 2

√
−1a2

1Ad(a−1)E2e1)F|A(a)} ⊗X(2,0)

=
{(
∂1 + τλ(H

′
1) + 4πh1a

2
1

)
F|A(a)

}
⊗X(2,0).

Note
(
τλ(H

′
1)F|A

)
⊗ X(2,0) = τλ ⊗ Adp+(H ′

1)
(
F|A(a) ⊗ X(2,0)

)
− F|A(a) ⊗

[X(2,0),−H ′
1] = τλ⊗Adp+(H ′

1)
(
F|A(a)⊗X(2,0)

)
− 2
(
F|A(a)⊗X(2,0)

)
. Com-

putations of the other terms are done similarly, where we only remark

that Ad(a−1)YηF|A(a) = (d/dt)F (exp(tYη)a)|t=0 = χ(Yη)F|A(a) in the term
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RX(−1,−1)
F|A(a)⊗X(1,1). The formula (5.5) for ∇− is obtained in a parallel

way. �

5.4. The Radial part of the Casimir operator. The Casimir element L

in the center Z(gC) of the universal enveloping algebra U(gC) is given by

L = H2
1 + H2

2 − 4H1 − 2H2

+ 2Ee1−e2 · E−e1+e2 + 4E2e1 · E−2e1 + 2Ee1+e2 · E−e1−e2

+ 4E2e2 · E−2e2

= H2
1 + H2

2 − 4H1 − 2H2 + 2Ee1−e2 · E−e1+e2 + 4E2
2e1 + 2E2

e1+e2 + 4E2
2e2

− 4E2e1(E2e1 − E−2e1)− 2Ee1+e2(Ee1+e2 − E−e1−e2)

− 4E2e2(E2e2 − E−2e2)

up to a scalar multiple, see [M-O1], §7. In this expression we note that the

elements E2e1 − E−2e1 =
√
−1H ′

1, E2e2 − E−2e2 =
√
−1H ′

2, and Ee1+e2 −
E−e1−e2 =

√
−1(X+X), are all contained in kC. Therefore, we can describe

the A-radial part of L by fixing data χ · η and τλ, for the terms other

than 2Ee1−e2 · E−e1+e2 . We have to calculate also the action of this term

2Ee1−e2 · E−e1+e2 . To make our expression simple, we shall only treat the

case h3 = 0 for the character η of Ns. This assumption is not essentially

restrictive for our purpose.

5.5 Lemma. Assume that the matrix Hη is non-degenerate and h3 = 0

for the character η of Ns. Put W = X −X in kC. Then we get

2Ee1−e2 · E−e1+e2 = 2
h1a

2
1

D
(H1 −H2) + 2

(
h2a

2
2

D

)(
h1a

2
1

D

)
W 2

+ 2

(
h1a1h2a2

D

)2 (
Ad(a−1)(Yη)

)2
− 2

h1a1h2a2

(
h1a

2
1 + h2a

2
2

)
D2

Ad(a−1)(Yη)W

for generic elements a ∈ A.

Proof. The formula follows from the expression (5.3) of Ee1−e2 in

the proof of Lemma 5.2 by a similar computation given in [Kn], Chap. 8,

Proposition 8.16. �
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Now we give a formula of the A-radial part of the Casimir operator.

5.6 Proposition. Assume the same condition on Hη as in Lemma

5.5. Then the A-radial part R(L) = R(Lχ·η,τλ) of the Casimir operator L

acting on the space C∞(A;Vτλ) is given by

R(L) = ∂2
1 + ∂2

2 − 2(∂1 + ∂2) + 2
h2a

2
2

D
∂1 − 2

h1a
2
1

D
∂2

− 16π2h2
1a

4
1 − 16π2h2

2a
4
2

− 8πh1a
2
1 τλ(H

′
1)− 8πh2a

2
2 τλ(H

′
2)

+ 2χ(Yη)

(
h1a

2
1 + h2a

2
2

D

)(
h1a1h2a2

D

)
τλ(W )

+ 2

(
h1a

2
1

D

)(
h2a

2
2

D

)
{τλ(W )}2 + 2S2.

Here we use the symbols: S :=
χ(Yη)h1a1h2a2

D and W := X −X ∈ kC.

6. Generalized Principal Series Representations Induced from

a Maximal Parabolic Subgroup and Their K-types

For a maximal parabolic subgroup P1 of G we consider a generalized

principal series representation π = IndGP1
(σ ⊗ (ν1 + ρ1)) of G.

6.1. Let P1 be the maximal parabolic subgroup of G with Langlands

decomposition P1 = M1A1N1, where the unipotent radical N1 is the two

step 3 dimensional nilpotent group, A1 = {diag(a, 1, a−1, 1) | a > 0}, and

M1 � {±1} × SL(2,R). We call P1 the Jacobi maximal parabolic subgroup

of G.

Fix a representation of M1 by a pair σ = (ε,D), where ε : {±1} → C∗

is a character and D is a discrete series representation of SL(2,R). Take

also ν1 ∈ a∗1C and define the character exp(ν1) : A1 → C×. Then we define

the generalized principal series representation π = I(P1;σ, ν1) of G by the

smooth induced representation IndGP1
(σ ⊗ (ν1 + ρ1)) from P1 to G ([Kn],

Chap.7, §1). Here 2ρ1 = (e1 − e2) + 2e1 + (e1 + e2) = 4e1.

6.2 The K-types of the generalized principal series representations. We

recall the K-type decomposition of a generalized principal series repre-

sentation I(P1;σ, ν1). Each discrete series representation of SL(2,R) has
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the Harish-Chandra parameter parameterized by Z \ {0}. For the Harish-

Chandra parameter B ∈ Z \ {0} we know that the Blattner parameter k of

the discrete series is written as k = B + sgn(B) · 1. We denote by D+
k the

discrete series representation of SL(2,R) with Blattner parameter k > 0 (in

fact k ≥ 2) and also by D−
k the discrete series representation with Blattner

parameter k < 0 (k ≤ −2). Then the K-types of D+
k |so(2) are parameter-

ized by the highest weights k+2j where j runs through the all non-negative

integers.

Irreducible finite dimensional representations of K are parameterized

by the associated dominant highest weights; we write by τλ1,λ2 the mod-

ule with the highest weight (λ1, λ2) ∈ Z ⊕ Z, λ1 ≥ λ2. Define γ2e1 =

diag(−1, 1,−1, 1) ∈M1.

6.3 Proposition. Let π = I(P1;σ, ν1), σ = (ε,D±
k ), ν1 ∈ a∗1C, be a

generalized principal series representation of G. Then the multiplicity of

τλ1,λ2 in the restriction of π to K is given by

[π : τλ1,λ2 ] = #

{
m ∈ Z |

m ≡ k(mod 2), sgn(D±
k ) · (m− k) ≥ 0,

(−1)λ1+λ2−m = ε(γ2e1), λ2 ≤ m ≤ λ1

}
,

which may be zero. Here we set that sgn(D+
k ) = +1, sgn(D−

k ) = −1.

Proof. The multiplicity formula is derived from the Frobenius reci-

procity for induced representations. It says that the multiplicity of τλ1,λ2

in I(P1;σ, ν1)|K is given by

[I(P1;σ, ν1)|K : τλ1,λ2 ] =
∑

ω∈(K∩M1 )̂

[σ|K∩M1 : ω] · [τλ1,λ2 |K∩M1 : ω],

([Kn], Chap.1, Theorem 1.14). Here we consider the restriction of the

representation σ to K ∩ M1, σ|K∩M1 =
∑

ω∈(K∩M1 )̂[σ|K∩M1 : ω]. Since

K ∩M1 � {±1} × SO(2), any character ω ∈ (K ∩M1)̂ is specified by the

value ω(γ2e1) and the restriction ω|so(2). The characters χm of SO(2) are

parameterized by m ∈ Z as χm(rθ) = exp(
√
−1mθ), where rθ ∈ SO(2)

is the rotation with angle θ. Then this fact for the SO(2)-types for D±
k

implies that the multiplicity [σ|K∩M1 : ω] is given in terms of the pair
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{ω(γ2e1), χm := ω|so(2)} as: 1, if m ≡ k (mod 2), sgn(D±
k ) · (m − k) ≥ 0,

ω(γ2e1) = ε(γ2e1), or 0, otherwise.

On the other hand, we have that τλ1,λ2 |K∩M1 =∑
λ2≤m≤λ1

{(−1)λ1+λ2−m, χm}, where {(−1)λ1+λ2−m, χm} denotes the

value assigned to this pair in the previous paragraph, holds. Applying

these equalities into the multiplicity formula, we obtain our assertion. �

6.4 Corollary. (0) τλ1,λ2 with λ1 < k (resp. λ2 > k) does not occur

in the K-type of I(P1;σ, ν1), if k > 0, σ = (ε,D+
k ) (resp. k < 0, σ =

(ε,D−
k )).

(i) When σ = (ε,D+
k ), ε(γ2e1) = (−1)k, (k > 0) then each of τλ,λ, (λ ∈

Z, λ ≡ k (mod 2), λ ≥ k), or τk,λ, (λ ∈ Z, λ ≡ k (mod 2), λ ≤ k), occurs

in I(P1;σ, ν1) with multiplicity one.

(ii) When σ = (ε,D+
k ), ε(γ2e1) = −(−1)k, (k > 0) then each of τλ,λ−1,

(λ ∈ Z, λ ≥ k), or τk,λ−1, (λ ∈ Z, λ ≡ k (mod 2), λ ≤ k) occurs in

I(P1;σ, ν1) with multiplicity one.

(iii) When σ = (ε,D−
k ), ε(γ2e1) = (−1)k, (k < 0) then each of τλ,λ, (λ ∈

Z, λ ≡ k (mod 2), λ ≤ k), or τλ,k, (λ ∈ Z, λ ≡ k (mod 2), λ ≥ k) occurs

in I(P1;σ, ν1) with multiplicity one.

(iv) When σ = (ε,D−
k ), ε(γ2e1) = −(−1)k, (k < 0) then each of τλ+1,λ,

(λ ∈ Z, λ ≤ k), or τλ+1,k, (λ ∈ Z, λ ≡ k (mod 2), λ ≥ k) occurs in

I(P1;σ, ν1) with multiplicity one.

We call the K-type τk,k in the case (i), τk,k−1 in (ii), τk,k in (iii), or τk+1,k

in (iv), the corner K-type of the principal series representation, respectively.

7. The Generalized Whittaker Functions for the Generalized

Principal Series Representations from a Maximal Parabolic

Subgroup P1

We study the generalized Whittaker functions with the corner K-type

for the generalized principal series representation I(P1;σ, ν1) of G.

Definition. We say that a generalized principal series I(P1; (ε,D
±
k ),

ν1) is of

(i) even type, if ε(γ2e1) = (−1)k, or (ii) odd type, if ε(γ2e1) = −(−1)k.
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By Corollary 6.4, we have that the corner K-type of I(P1;σ, ν1) is one

dimensional, if the principal series is of even type, or two dimensional, if it

is of odd type.

To begin with, we have a remark. Set M = {diag(ε1, ε2, ε1, ε2) | εi =

±1} the centralizer of A in K. Then a generalized Whittaker function

φ(a), a ∈ A, must satisfy φ(a) = φ(γaγ−1) = χ(γ)τ(γ)φ(a) for γ ∈ M ∩
SO(η). Assume that Hη = 12, hence SO(η) = SO(2). Then M ∩ SO(η) =

{diag(ε, ε, ε, ε) | ε = ±1}. Denote by γ0 the nontrivial element in this

group. In the even (resp. the odd) case with the corner K-type τ = τk,k
(resp. τ = τk+1,k), we have τk,k(γ0) = det(−12)

k = 1 (resp. τk+1,k(γ0) =

det(−12)
k ⊗ Sym1(−12) = (−1) · id). Hence it should be satisfied that

χ(γ0) = 1 (resp. χ(γ0) = −1) in the even case (resp. the odd case)

for φ(a) �= 0. This parity condition appears again as a result of direct

calculation, Lemmas 7.4 and 7.9.

7.1. The generalized principal series of even type: a system of differ-

ential equations. Since our treatment proceeds in parallel, we study only

the case k > 0, σ = (ε,D+
k ), for the generalized principal series I(P1;σ, ν1)

of even type; ε(γ2e1) = (−1)k. This module has the corner K-type τk,k with

multiplicity one by Corollary 6.4. The A-radial part of a generalized Whit-

taker function with K-type τ−k,−k = τ∗k,k for the principal series satisfies a

set of differential equations, which we give by using the shift operators and

the Casimir operators. We fix a base {v−k,−k
0 } of τ−k,−k given in Lemma

3.1.

7.2 Proposition. Suppose that h3 = 0 and Hη =
(
h1
0

0
h1

)
is positive

definite for the character η of Ns. Let φ(a1, a2) = b(a1, a2) · v−k,−k
0 ∈

C∞(A;Vτ−k,−k
) be the restriction to A of a generalized Whittaker func-

tion with the K-type τ−k,−k for I(P1;σ, ν1) of even type. Set b(a1, a2) =

(
√
h1a1)

k+1(
√
h2a2)

k+1e−2π(h1a2
1+h2a2

2)c(a1, a2). Then the function c(a1, a2)

has to satisfy the following set of differential equations:

(
∂1∂2 −

h2a
2
2

D
∂1 +

h1a
2
1

D
∂2 − S2

)
c(a1, a2) = 0;(7.1) {

(∂1 + ∂2)
2 + 2k(∂1 + ∂2)− 8πh1a

2
1∂1 − 8πh2a

2
2∂2(7.2)

− 8π(h1a
2
1 + h2a

2
2) + k2 − ν2

1

}
c(a1, a2) = 0,
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where we use the symbols: D = h1a
2
1 − h2a

2
2 and S =

χ(Yη)h1a1h2a2

D .

Proof. The differential equation (7.1) is derived from the action of

the shift operator on φ(a1, a2). (7.2) is essentially from the action of the

Casimir operator. We explain first (7.1). We know, by Corollary 6.4, the

K-module τk−2,k−2 does not occur in the principal series. Take two shift

operators: P up◦R(∇+
χ·η,τ−k,−k

) and P down◦R(∇+
χ·η,τ−k+2,−k

) which moves the

K-types from τ−k,−k to τ−k+2,−k, and from τ−k+2,−k to τ−k+2,−k+2. Then

the composition of these operators must annihilate a generalized Whittaker

function φ with the K-type τ−k,−k for I(P1;σ, ν1).

By Proposition 5.3, Lemma 3.1, and the projection formula in Lemma

3.3, we can write

P up ◦R(∇+
χ·η,τ−k,−k

)φ(a) =
(
∂1 + 4πh1a

2
1 − k

)
b(a)v−k+2,−k

2

− Sb(a)v−k+2,−k
1

+
(
∂2 + 4πh2a

2
2 − k

)
b(a)v−k+2,−k

0

with the basis (v−k+2,−k
j | j = 0, 1, 2) of τ−k+2,−k. Also for a function

φ̃(a) =
∑2

j=0 b̃j(a)v
−k+2,−k
j in C∞(A;Vτ−k+2,−k

), we have

P down ◦R(∇+
χ·η,τ−k+2,−k

)φ̃(a)

=
{(
∂1 + 4πh1a

2
1 + 2

h1a2
1

D − (k + 2)
)
b̃0(a) + 2S b̃1(a)

+
(
∂2 + 4πh2a

2
2 − 2

h2a2
2

D − (k + 2)
)
b̃2(a)

}
v−k+2,−k+2
0 .

Then the composition of these operators, which annihilates φ, reads

{(
∂1 + 4πh1a

2
1 + 2

h1a
2
1

D
− (k + 2)

)(
∂2 + 4πh2a

2
2 − k

)
− 2S2

+
(
∂2 + 4πh2a

2
2 − 2

h2a
2
2

D
− (k + 2)

)(
∂1 + 4πh1a

2
1 − k

)}
b(a1, a2) = 0.

Rewrite this equation for c(a1, a2), then it becomes the equation (7.1).

We produce the equation (7.2). We remark that the Casimir operator L

acts by a scalar multiplication on I(P1;σ, ν1); it is written by ν2
1 +(k−1)2−5
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with the parameter of the module, [M-O1], §7. Therefore we have the

following equation:

(
∂2

1 + ∂2
2 − 2(∂1 + ∂2) + 2

h2a
2
2

D
∂1 − 2

h1a
2
1

D
∂2 − 16π2h2

1a
4
1 − 16π2h2

2a
4
2

+ 8kπh1a
2
1 + 8kπh2a

2
2 + 2S2

)
b(a) = {ν2

1 + (k − 1)2 − 5}b(a)

by Proposition 5.6. Substituting (7.1) for the part 2
h2a2

2
D ∂1− 2

h1a2
1

D ∂2 in the

above, and rewriting it for c(a1, a2), we obtain the equation (7.2). �

7.3. A solution with an integral expression in the even case. We search

a formal power series solution of (7.1) and (7.2) satisfying certain asymp-

totic behavior.

We introduce new variables x and y by

x = 2π(h1a
2
1 − h2a

2
2) and y = 2π(h1a

2
1 + h2a

2
2),

[Ni]. Then the equations (7.1), (7.2) in Proposition 7.2 are rewritten into

x2 − y2

x2

{
x2
( ∂2

∂x2
− ∂2

∂y2

)
+ x

∂

∂x
+ χ(Yη)

2h1h2

4

}
c(x, y) = 0,(7.3) {

x2 ∂2

∂x2
+ y2 ∂2

∂y2
+ 2xy

∂

∂x

∂

∂y
+ (k + 1)

(
x
∂

∂x
+ y

∂

∂y

)
(7.4)

− (x2 + y2)
∂

∂y
− 2xy

∂

∂x
− y +

k2 − ν2
1

4

}
c(x, y) = 0.

Consider a formal power series solution at x = 0: c(x, y) =∑∞
m=m0

pm(y)xm. We assume that it is holomorphic at x = 0 in the vari-

able x, so m0 ≥ 0, and increase at most in polynomial order in y when

y → +∞. The equations (7.3) and (7.4) yields the following differential

recurrence equations satisfied by pm(y), m ≥ m0:

(7.5)
(
m2 +

χ(Yη)
2h1h2

4

)
pm(y) =

d2

dy2
pm−2(y),
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{(
y
d

dy

)2
− (y − 2m− k)y

d

dy
− (2m + 1)y(7.6)

− ν2
1 − (2m + k)2

4

}
pm(y) =

d

dy
pm−2(y).

Then we obtain the following lemma:

7.4 Lemma. Let m0 be the degree of the first non-vanishing term

pm0(y) �= 0 of the series expansion. Then we have

(7.7)
(
4m2

0 + χ(Yη)
2h1h2

)
pm0(y) = 0,

{(
y
d

dy

)2
−
(
y − (2m0 + k)

)
y
d

dy
− (2m0 + 1)y(7.8)

− ν2
1 − (2m0 + k)2

4

}
pm0(y) = 0.

So it must be satisfied that χ(Yη)
2h1h2 = −4m2

0, and m0 is an integer.

Moreover if pm(y) �= 0 for m ≥ m0, then m = m0 + 2B with a non-negative

integer B.

Proof. The remark in the top of this section implies that

−
√
−1χ(Yη)

√
h1h2 = 2m0 should be an even integer. Hence we conclude

that m0 is an integer. �

By this lemma we can write c(x, y) = xm0 ·
∑∞

/=0 pm0+2/(y)x
2/. As-

sume that each pm0+2/(y) is written by a Laplace integral pm0+2/(y) =∫∞
0 qm0+2/(t)e

−ytdt. Then (7.5) becomes t2qm0+2/−2(t) =

4B(m0 + B)qm0+2/(t), B ≥ 0. A general term is given recurrently by

qm0+2/(t) =
m0!
(
t
2

)2/
B! Γ(m0 + B + 1)

qm0(t).

One can also check these expressions and the equation (7.6) give the equa-

tion (7.8).
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Recall that the ν-th Bessel function of the first kind has a series expan-

sion

Jν(z) =
∞∑

m=0

(−1)m
(
z
2

)ν+2m

m! Γ(ν + m + 1)

with the gamma function Γ(z), [M-O-S], 3.1, p.65. Hence we have

c(x, y) = m0! e
−m0π

√
−1

2 xm0

∫ ∞

0

(
tx

2

)−m0

Jm0(
√
−1 tx)qm0(t)e

−ytdt.

We have to determine the first non-vanishing term pm0(y), or equiva-

lently qm0(t), satisfying (7.8). Put pm0(y) = e
y
2 y−

2m0+k+1
2 W (y). Then (7.8)

gives the following equation for W (y):

(7.9)
{
y2 d2

dy2
− y2

4
− 2m0 − k + 1

2
y −
(ν2

1

4
− 1

4

)}
W (y) = 0.

It has a solution W (y) = W k−2m0−1
2

,
ν1
2

(y) with

Wκ,m(z) =
e−

z
2 zκ

Γ
(

1
2 − κ + m

) ∫ ∞

0
t−κ− 1

2
+m

(
1 +

t

z

)κ− 1
2
+m

e−tdt.

It gives a solution of (7.9) which decays rapidly as Re(z)→∞, and such a

solution is unique up to constant multiple, [M-O-S], §7.1, or [W-W], 16.12,

p.340. We have pm0(y) ∼ y−(2m0+1) as y → +∞, since W k−2m0−1
2

,
ν1
2

(y) ∼

e−
y
2 y−

2m0+1−k
2 . We can also express pm0(y) by the Laplace transform, [M-

O-S] §7.5.2, p.316, or [ET] I, §5.20, p.294, (9):

pm0(y) = Γ(2m0 + 1)−1

∫ ∞

0
t2m0F

(
α + ν1

2 , α−
ν1
2 ; 2m0 + 1;−t

)
e−ytdt,

where F (a, b; c; z) = 2F1(a, b; c; z) is the Gauss’s hypergeometric function,

and α = 2−k+2m0
2 . Note that m0 is non-negative.

7.5 Theorem. Assume that h1 and h2 are both positive, and h3 = 0

for the character η of Ns; in particular, Hη is positive definite. Consider the

system of differential equations in Proposition 7.2. Then there is a unique
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solution φsol(a1, a2) = bsol(a1, a2)v
−k,−k
0 , up to a constant multiple, that is

characterized by the following conditions (a) and (b): (a) it is holomorphic

at x = 0, and (b) it decays rapidly, when a1 and a2 tend to +∞. The

solution is expressed by the following integral:

bsol(a1, a2) =
e−

m0π
√

−1
2

(
a1a2

)k+1

Γ(2m0 + 1)

∫ ∞

0
tm0Jm0

(
2π
√
−1(h1a

2
1 − h2a

2
2) t
)

× F
(

2−k+2m0+ν1
2 , 2−k+2m0−ν1

2 ; 2m0 + 1;−t
)

× e−2π(h1a2
1+h2a2

2)(t+1)dt.

Here 2m0 = |χ(Yη)|
√
h1h2 is a non-negative integer, Jν(z) is the ν-th Bessel

function of the first kind, and F (a, b; c; z) is the Gauss’s hypergeometric

function.

Proof. All of pm(y) with m = m0 + 2B are recursively determined,

once the first non-zero term pm0(y) is given. The equation (7.9) for W (y)

has 2 dimensional solution space. By Lemma 7.4 the integer m0 should

satisfy 4m2
0 = −χ(Yη)

2h1h2. Hence (7.1) and (7.2) determine a holonomic

system of rank 4.

We have already seen that the integral in the statement of our theorem

gives a solution of the set of differential equations in Proposition 7.2. We

remark the convergence of the integral. To estimate the integrand as t tend

to +∞, we recall the asymptotic behavior of the functions appearing in the

formula; they are F (a, b; c; t) ∼ C1t
−a+C2t

−b+O(t−a−1)+O(t−b−1) as t→
+∞, and Jm0(

√
−1xt) = e

m0π
√
−1

2 Im0(xt) ∼ C3e
xt(2πxt)−

1
2 as t → +∞,

where −π
2 < arg(xt) < 3π

2 , x = 2π(h1a
2
1 − h2a

2
2), [M-O-S] p.139; this is the

asymptotic formula for the modified Bessel function Iν(z) of second kind.

Therefore the integrand grows at most ∼ C × tκ× e−4πh2a2
2te−2π(h1a2

1+h2a2
2)

as t → +∞, where we note h1, h2 > 0. This implies that the integral

converges. Then it determines a solution satisfying the condition (a) and

(b).

For the uniqueness, first remark that there are 2 choices of c(x, y) with

holomorphic expansion, hence m0 ≤ 0, at x = 0, which correspond to the

solutions of (7.9). We use one of them in the above. Another solution cor-

responds to the solution M k−2m0−1
2

,
ν1
2

(y) of (7.9), [M-O-S], 7.1, p.296. Then
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the first non-zero term pm0(y) = e
y
2 y−

2m0+k+1
2 M k−2m0−1

2
,
ν1
2

(y) increases as

∼ C1e
yy−k+C2y

−(2m0+1) when y → +∞ along the real line, [M-O-S], 7.6.1,

p.317. Multiplying (x2 − y2)
k+1
2 e−y = (

√
h1a1

√
h2a2)

k+1e−2π(h1a2
1+h2a2

2),

we get an asymptotic formula of b(a1, a2) on x = 0 by b(a1, a2) ∼ C1y +

C2e
−yyk−2m0 when y → +∞. Hence it does not satisfy the condition (b). �

Let Φ(v)(g) = 〈v, φsol(g)〉K be the function in C∞-IndGR(χ · η), where

v is a vector in the K-type τk,k of I(P1;σ, ν1). Consider the right U(gC)

module RU(gC)Φ(v) in C∞-IndGR(χ · η) generated by Φ(v). Then we have

the following theorem.

7.6 Theorem. The module RU(gC)Φ(v) determines the generalized

principal series I(P1;σ, ν1) of even type. Hence the principal series has

a unique (up to a constant multiple) non-trivial generalized Whittaker re-

alization with the η and χ in Theorem 7.5, whose restriction to a K-type

corresponds to K-finite functions satisfying the properties (a), (b) given

above.

Proof. We prove this theorem by the following lemmas.

7.7 Lemma. The equations (7.1) and (7.2) determine the action of the

A-radial parts of Z(gC), the center of the universal enveloping algebra, on

the function φ with the one dimensional K-type τ−k,−k.

Proof. A set of generators of Z(gC) is given by the Casimir element

in degree 2 and another element C4 in degree 4. Proposition 7.2 explains

the action of the Casimir operator. For C4, the same argument as given

in [M-O1] Lemma 10.2, tells us that the composition of the following four

operators: P up ◦ R(∇+
τ−k,−k

), P down ◦ R(∇+
τ−k+2,−k

), P up ◦ R(∇−
τ−k+2,−k+2

),

and P down◦R(∇−
τ−k+2,−k

) is written as a C-linear sum of the C4, the Casimir

operator, and a scalar multiplication. Then we can determine the action of

the C4 because (7.2) implies that this composition, indeed, the composition

of the first two, annihilates φ(a1, a2). �

By this lemma we know that the module RU(gC)Φ(v) has the same infin-

itesimal character ν as that of I(P1;σ, ν1). Since RU(gC)Φ(v) is generated
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by a K-finite vector, and it has an infinitesimal character, it is admissible

of finite length, [W] Theorem 4.2.1.

7.8 Lemma. The module RU(gC)Φ(v) has the K-type τk,k with multi-

plicity one.

Proof. We want to use Lemma 3.5.3 of Wallach [W]. To apply it we

have to know the right action of U(g)K on RU(kC)Φ(v). Hereupon, since

RU(kC)Φ(v) = Vτk,k is one dimensional, Proposition 2.1 and Theorem 2.4 of

Shimura [Sh] state that this action is realized by that of Z(gC) which has

been specified by (7.1) and (7.2), Lemma 7.6. �

Considering the family of irreducible admissible modules of Sp(2,R) with

the common infinitesimal character ν, we conclude that I(P1;σ, ν1) is one

of the constituents of RU(gC)Φ(v), occurs with multiplicity one. Moreover,

it is contained as a submodule, since the equations (7.1) hold. If ν1 is

generic, then I(P1;σ, ν1) is irreducible, and the K-type τk,k � RU(kC)Φ(v)

occurring in RU(gC)Φ(v) must coincide with the corner K-type of I(P1;σ, ν1)

by Lemma 7.7. Hence RU(gC)Φ(v) is isomorphic to the generalized principal

series.

7.9. The generalized principal series of odd type: a system of dif-

ferential equations. In the next place, we study the generalized princi-

pal series I(P1;σ, ν1) = I(P1; (ε,D
+
k ), ν1), k > 0, of odd type, that is,

ε(γ2e1) = −(−1)k . Then the corner K-type τk,k−1 of the module is two

dimensional and occurs with multiplicity one. Also we know that the K-

type τk−1,k−2 does not occur in I(P1;σ, ν1) by Corollary 6.4. Hence the

map P even ◦ R(∇+
χ·η,τ−k+1,−k

), which moves the K-types from τ−k+1,−k to

τ−k+2,−k+1, annihilates the generalized Whittaker functions with the K-

type τ∗k,k−1 = τ−k+1,−k for I(P1;σ, ν1). Pairing it with an equation given

by the Casimir operator, we set a system of differential equations.

7.10 Proposition. Suppose that h3 = 0 and h1 and h2 are both pos-

itive for the character η of Ns. Let φ(a1, a2) =
∑

j=0,1 bj(a1, a2)v
−k+1,−k
j a

generalized Whittaker function with the K-type τ−k+1,−k for I(P1;σ, ν1) of

odd type. Set

bj(a1, a2) = (
√
h1a1)

k+1+j(
√
h2a2)

k+2−je−2π(h1a2
1+h2a2

2)cj(a1, a2)
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for j = 0 and 1. Then cj(a1, a2), j = 0 and 1, must satisfy the following

set of differential equations:

χ(Yη)
√
h1h2

h1a
2
1h2a

2
2

D
c0(a1, a2)(7.10)

+ h1a
2
1

(
∂2 −

h2a
2
2

D

)
c1(a1, a2) = 0,

h2a
2
2

(
∂1 +

h1a
2
1

D

)
c0(a1, a2)(7.11)

+ χ(Yη)
√
h1h2

h1a
2
1h2a

2
2

D
c1(a1, a2) = 0,

{(∂1 + ∂2)
2 + 2(k + 1)(∂1 + ∂2)− 8πh1a

2
1∂1(7.12)

− 8πh2a
2
2∂2 + 8π(h1a

2
1 − h2a

2
2)

− 16π(h1a
2
1 + h2a

2
2) + (k + 1)2 − ν2

1}c0(a1, a2) = 0,

{(∂1 + ∂2)
2 + 2(k + 1)(∂1 + ∂2)− 8πh1a

2
1∂1(7.13)

− 8πh2a
2
2∂2 − 8π(h1a

2
1 − h2a

2
2)

− 16π(h1a
2
1 + h2a

2
2) + (k + 1)2 − ν2

1}c1(a1, a2) = 0.

Here we use the symbol: D = h1a
2
1 − h2a

2
2.

Proof. The equation P even ◦ R(∇+
χ·η,τ−k+1,−k

)φ = 0 yields (7.10) and

(7.11). By the projection formula in Lemma 3.4 and Proposition 5.3, it says

{
(∂1 + 4πh1a

2
1 +

h2a2
2

D − k)b0(a) + Sb1(a)
}
v−k+2,−k+1
1

−
{
Sb0(a) + (∂2 + 4πh2a

2
2 −

h1a2
1

D − k)b1(a)
}
v−k+2,−k+1
0 = 0,

where S =
χ(Yη)h1a1h2a2

D . Then each coefficient should vanish. Rewriting

them for cj(a1, a2), we get the equations (7.10) and (7.11).

By Proposition 5.6, the action of the Casimir operator on φ is given by

(
P + 8kπh1a

2
1 + 8(k − 1)πh2a

2
2 −2

h1a2
1+h2a2

2
D S

2
h1a2

1+h2a2
2

D S P + 8(k − 1)πh1a
2
1 + 8kπh2a

2
2

)
×
(
b0(a)

b1(a)

)
= 0,
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where

P = ∂2
1 + ∂2

2 − 2(∂1 + ∂2) + 2
h2a

2
2

D
∂1 − 2

h1a
2
1

D
∂2 − 16π2h2

1a
4
1 − 16π2h2

2a
4
2

− 2
h1a

2
1h2a

2
2

D2
+ 2S2 − ν2

1 − (k + 1)2 + 5.

Here we note a relation between the Casimir operator L and the shift op-

erator. Let us put

S+− =
(
P even ◦R(∇−

χ·η,τ−k+2,−k+1
)
)
◦
(
P even ◦R(∇+

χ·η,τ−k+1,−k
)
)

S−+ =
(
P even ◦R(∇+

χ·η, τ−k,−k−1
)
)
◦
(
P even ◦R(∇−

χ·η,τ−k+1,−k
)
)
.

Then they satisfy the relation

R(Lχ·η,τ−k+1,−k
)− 2(k + 1)(k − 2) = S+− + S−+.

Now the equation obtained above from the Casimir operator can be written

as (
Q1 −2

h1a2
1+h2a2

2
D S

2
h1a2

1+h2a2
2

D S Q2

)(
b0(a)

b1(a)

)
= (ν2

1 − k2)

(
b0(a)

b1(a)

)
,

with

Q1 =
(
∂1 − 4πh1a

2
1 +

h2a2
2

D + k − 2
)(
∂1 + 4πh1a

2
1 +

h2a2
2

D − k
)

+
(
∂2 + 4πh2a

2
2 −

h1a2
1

D − k − 1
)(
∂2 − 4πh2a

2
2 −

h1a2
1

D + k − 1
)

+ 2S2,

Q2 =
(
∂2 − 4πh2a

2
2 −

h1a2
1

D + k − 2
)(
∂2 + 4πh2a

2
2 −

h1a2
1

D − k
)

+
(
∂1 + 4πh1a

2
1 +

h2a2
2

D − k − 1
)(
∂1 − 4πh1a

2
1 +

h2a2
2

D + k − 1
)

+ 2S2.

If we take (7.10) and (7.11) into account, it provides us with equations of

the single cj(a1, a2) for j = 0 and 1. For example, we obtain that

{(
∂1 − 8πh1a

2
1 +

h1a
2
1

D
+ 2(k − 1)

)(
∂1 +

h1a
2
1

D

)
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+ 2
h1a

2
1 + h2a

2
2

D

(
∂1 +

h1a
2
1

D

)
+
(
∂2 −

h2a
2
2

D

)(
∂2 − 8πh2a

2
2 −

h2a
2
2

D
+ 2k

)
+ 2S2 + k2 − ν2

1

}
c0(a) = 0

for c0(a1, a2). On the other hand, (7.10) and (7.11) yield the equations{(
∂2 − 3

h2a
2
2

D

)(
∂1 +

h1a
2
1

D

)
− S2

}
c0(a1, a2) = 0,

{(
∂1 + 3

h1a
2
1

D

)(
∂2 −

h2a
2
2

D

)
− S2

}
c1(a1, a2) = 0.

By canceling the term 2S2c0(a1, a2) in the 2 equations for c0(a), we obtain

(7.12). The equation (7.13) for c1(a) is obtained in a similar way. �

7.11. A solution with an integral expression in the odd case. We inves-

tigate a formal power series solution of the system of equations in Propo-

sition 7.10. We change the variables a1, a2 by x and y, the same as in the

even case, 7.3. Then the equations are written as

(7.14)
x2 − y2

4x

{
−ρ c0(x, y) +

(
2x

d

dx
− 2x

d

dy
+ 1
)
c1(x, y)

}
= 0,

(7.15)
x2 − y2

4x

{(
2x

d

dx
+ 2x

d

dy
+ 1
)
c0(x, y) + ρ c1(x, y)

}
= 0,

{
x2 ∂2

∂x2
+ y2 ∂2

∂y2
+ 2xy

∂

∂x

∂

∂y
(7.16)

+ (k + 2)
(
x
∂

∂x
+ y

∂

∂y

)
− (x2 + y2)

∂

∂y
− 2xy

∂

∂x

+ x− 2y +
(k + 1)2 − ν2

1

4

}
c0(x, y) = 0,

{
x2 ∂2

∂x2
+ y2 ∂2

∂y2
+ 2xy

∂

∂x

∂

∂y
(7.17)

+ (k + 2)
(
x
∂

∂x
+ y

∂

∂y

)
− (x2 + y2)

∂

∂y
− 2xy

∂

∂x

− x− 2y +
(k + 1)2 − ν2

1

4

}
c1(x, y) = 0.
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Consider formal series solutions cj(x, y) =
∑∞

m=mj
0
pjm(y)xm for j = 0 and

1. We suppose that mj
0 ≥ 0, hence they are holomorphic at the singular

locus x = 0. Then (7.14) and (7.15) provide us with the following recurrence

differential equations,

(7.18) 2
d

dy

(
p0
m−1(y)

p1
m−1(y)

)
= Mm ·

(
p0
m(y)

p1
m(y)

)

with

Mm =

(
−(2m + 1) −χ(Yη)

√
h1h2

−χ(Yη)
√
h1h2 2m + 1

)
.

Now we obtain the following lemma concerning with the terms pjm0(y) in

the first degree for j = 0, 1.

7.12 Lemma. The numbers m0
0, m

1
0 must coincide with each other for

the first non-vanishing terms. Denote the common one by m0 = m0
0 = m1

0.

Then it should be satisfied that χ(Yη)
2h1h2 = −(2m0 + 1)2 and m0 is an

integer.

Proof. Consider the matrix Mm0 for m0 := min
(
m0

0,m
1
0

)
. Then it is

easy to obtain the first assertion. Also it should be satisfied that detMm0 =

0, which produces the second condition. The remark at the beginning of

this section implies that −
√
−1χ(Yη)

√
h1h2 = 2m0 + 1 should be an odd

integer. �

Express pjm(y) by a Laplace integral: pjm(y) =
∫∞
0 qjm(t)e−ytdt. Then

(7.18) gives us that

(7.19) −2t

(
q0
m−1(t)

q1
m−1(t)

)
= Mm

(
q0
m(t)

q1
m(t)

)
.

If we look at the first pair
(
q0
m0

(t), q1
m0

(t)
)
, Lemma 7.12 tells us that it is

written as

(7.20)

(
q0
m0

(t)

q1
m0

(t)

)
= Qm0(t)

(
1√
−1

)
.



270 Takuya Miyazaki

with a non-zero function Qm0(t) that does not depend on j. Here we note

that the vector t
(
1,
√
−1
)

generates the kernel of Mm0 . By an inductive

calculation we conclude that

7.13 Lemma.

(
q0
m0+r(t)

q1
m0+r(t)

)
=

{ (t/2)2�m0!
/! Γ(m0+/+1)Qm0(t)

(
1√
−1

)
, if r = 2B ≥ 0

(t/2)2�+1m0!
/! Γ(m0+1+/+1)Qm0(t)

(
1

−
√
−1

)
, if r = 2B + 1 > 0.

Hence we obtain that

cj(x, y) = m0!(
√
−1)jxm0

×
∫ ∞

0

(
tx

2

)−m0(
Im0(xt) + (−1)jIm0+1(xt)

)
Qm0(t)e

−ytdt

for j = 0 and 1. Here the ν-th modified Bessel function Iν(z) of second

kind is defined by

Iν(z) =
∞∑

m=0

(
z
2

)ν+2m

m! Γ(ν + m + 1)
,

[M-O-S], 3.1, p.66. �

It remains to determine the Qm0(t). The equations (7.16) and (7.17)

read

d

dy
pjm−2(y)− (−1)jpjm−1(y)

=
{
y2 d2

dy2
− {y − (2m + k + 2)}y d

dy
− 2(m + 1)y

− ν2
1 − (2m + k + 1)2

4

}
pjm(y)

for j = 0 and 1. If m = m0, so p0
m0−1(y) = p0

m0−2(y) = 0, then each

equation above has a solution

pjm0
(y) = (

√
−1)je

y
2 y−

2m0+k+2
2 W k−2m0−2

2
,
ν1
2

(y)
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that satisfies pjm0(y) ∼ y−(2m0+2) when y → +∞. They can be expressed

by Laplace integrals, then Qm0(t) is determined. We state now the main

result for I(P1;σ, ν1) of odd type.

7.14 Theorem. Suppose that h3 = 0 and h1 and h2 are both pos-

itive for the character η of Ns. Consider the set of differential equa-

tions given in Proposition 7.10. Then there is a solution φsol(a1, a2) =∑
j=0,1 b

sol
j (a1, a2)v

−k+1,−k
j that is uniquely determined up to a constant

multiple by the conditions (a) and (b): (a) it is holomorphic at x =

2π(h1a
2
1 − h2a

2
2) = 0, and (b) it decays rapidly, when a1, a2 → +∞. The

functions bsolj (a1, a2), j = 0 and 1 are given as follows:

bsolj (a1, a2) =
(
√
−1)je−

m0π
√
−1

2 (
√
h1a1)

k+1+j(
√
h2a2)

k+2−j

Γ(2m0 + 2)

×
∫ ∞

0
tm0+1e−2π(h1a2

1+h2a2
2)(t+1)

× F
(2m0 + 3 + ν1 − k

2
,
2m0 + 3− ν1 − k

2
; 2m0 + 2;−t

)
×
(
Jm0(2π

√
−1t(h1a

2
1 − h2a

2
2))

+
(√
−1
)2j+3

Jm0+1(2π
√
−1t(h1a

2
1 − h2a

2
2))
)
dt,

for j = 0 and 1. Here m0 is a non-negative integer that satisfies

χ(Yη)
2h1h2 = −(2m0 + 1)2, Jν(z) is the ν-th Bessel function of the first

kind, and F (a, b; c; z) is the Gauss’s hypergeometric function.

Proof. This is proved by a similar argument as in the even case. We

mention that the differential equations in Proposition 7.10 determines a

holonomic system of rank 4. �

7.15 Remarks. We conjecture that the solution given above presents

a non-trivial generalized Whittaker realization of the principal series

I(P1;σ, ν1) of odd type, and the dimension of the space of the realizations

whose images satisfy the conditions (a) and (b) above, is equal to one. But

the author can not verify this conjecture. We know that the set of equations

in Proposition 7.10 is necessary to characterize such realizations, but the

author does not know whether all the solution generate the module. The
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problem is to determine the action of U(gC)K on the space of functions

whose values are in a two dimensional K-type. This was known in the even

case, Lemma 7.7.

8. The Mellin Transform of a Generalized Whittaker Function

for the Generalized Principal Series Representation

Andrianov [An] studied L-functions for a Hecke eigen holomorphic Siegel

cusp forms of degree 2. In order to generalize his results to non-holomorphic

forms, it becomes crucial to investigate the generalized Whittaker functions

belonging to the other standard representations than holomorphic discrete

series, and their Mellin transforms. Using an explicit formula of a class 1

generalized Whittaker function obtained by Niwa [Ni], Hori [H] carries out

the steps for the Siegel wave forms. They treat a spherical vector in the

principal series induced from a minimal parabolic subgroup of G. Now we

study the same steps for the generalized principal series I(P1;σ, ν1).

To obtain the L-function we consider an integral transform of a Siegel

modular form over a real three dimensional hyperbolic manifold [An]. We

recall the paper [H], which studied the Siegel wave forms of degree two. Let

F (Z) be a Siegel wave form on the Siegel upper half space H2 of degree two,

[H] Definition (1.1). It is, by definition, a class 1 (with the trivial K-type)

function. The integral is given by

R̃F (s) =

∫ ∞

0

∫
X12 (R)/X12 (Z)

F (X +
√
−1 v12)v

s−1dXdv,

where Z = X+
√
−1Y ∈ H2, X12(R) = {X ∈M2(R) | tX = X, tr(X) = 0},

and X12(Z) = X12(R) ∩ M2(Z). Consider the Fourier expansion of F ,

[H] Section 1: F (Z) =
∑

N∈N aF (N,Y )e2π
√
−1tr(NX), where N = {n ∈

M2(Q) | tN = N, semi integral}. Also for a definite N , we consider the

expansion: aF (N,Y ) =
∑

n∈Z aN,n(F )WN,n(Y ) by the class 1 generalized

Whittaker functions WN,n(Y ), where aN,n(F ) ∈ C. The the above integral

is also written as

R̃F (s) =

(∑
m∈N

am12,0(F ) + a−m12,0(F )

ms

)∫ ∞

0
W12,0(u12)u

s−1du,
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[H], Section 4. Here the function R̃F (s) can be separated into the local parts

corresponding to the nonarchimedean, or the archimedean, places. The

above integral of the generalized Whittaker function W12,0(u12) is related

to the gamma factor of the L-function associated with F (Z), [H], Theorem

(2.1), Sections 5 and 6.

Now we study the same integral transform of the solution obtained for

I(P1;σ, ν1) in the last section.

8.1 Theorem. Take the special character η0 of Ns by h1 = h2 = 1 and

h3 = 0. Let φsol(a1, a2) = bsol(a1, a2)v
−k,−k
0 be the unique solution given in

Theorem 7.5, which represents the generalized Whittaker function with the

corner K-type for I(P1;σ, ν1) of even type. Then we obtain the following

formula of the generalized Mellin transform of φsol: if m0 = 0, then for

Re(s + k−1
2 ± ν1

2 ) > 0

∫ ∞

0
bsol(

√
a,
√
a)as−

3
2
da

a
=

Γ(s + k−1
2 + ν1

2 )Γ(s + k−1
2 − ν1

2 )

(4π)s+k− 1
2 Γ(s + 1

2)
.

This integral vanishes, if m0 > 0.

Proof. This is obtained by direct calculation. If m0 = 0, then the

integral equals∫ ∞

0

(∫ ∞

0
as+k− 1

2 e−4πa(t+1)da

a

)
F
(

2−k+ν1
2 , 2−k+ν1

2 ; 1;−t
)
dt.

We note that Jm0(0) = 0, if m0 �= 0. It is calculated as

=
Γ(s + k − 1/2)

(4π)s+k−1/2

∫ ∞

0
(t + 1)−s−k+ 1

2F
(

2−k+ν1
2 , 2−k+ν1

2 ; 1;−t
)
dt.

Then a formula [ET] II, §20.2, p. 400 (9), gives the result. �

We also give a formula of the Mellin transform in the case of I(P1;σ, ν1)

of odd type.

8.2 Theorem. Take the same character η0 as in Theorem 8.1. Let

φsol(a1, a2) =
∑

j=0,1 b
sol
j (a1, a2)v

−k+1,−k
j be the unique solution given in
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Theorem 7.11 in the case of I(P1;σ, ν1) of odd type. Then the generalized

Mellin transform of each bsolj (a1, a2) is given as follows: if m0 = 0, then for

Re(s + k−1
2 ± ν1

2 ) > 0∫ ∞

0
bsolj (

√
a,
√
a)as−

3
2
da

a
=

Γ(s + k−1
2 + ν1

2 )Γ(s + k−1
2 − ν1

2 )

(4π)s+kΓ(s + 1)
.

If m0 > 0, then the integral vanishes.

9. Parameterization of the Discrete Series Representations

Now we study the generalized Whittaker functions for the large discrete

series representations of G = Sp(2,R). We recall the parameterization of

the discrete series representations of G, and its K-type decompositions in

this section.

9.1. The Harish-Chandra parameterization of the discrete series rep-

resentations and their K-types. Consider a compact Cartan subgroup of

G = Sp(2,R)

exp(h) =

k(θ1, θ2) =


cos θ1 0 sin θ1 0

0 cos θ2 0 sin θ2

− sin θ1 0 cos θ1 0

0 − sin θ2 0 cos θ2

 | θ1, θ2 ∈ R


corresponding to the compact Cartan subalgebra h, Section 2. Then the

characters of this group are given by k(θ1, θ2) �→ exp
(√
−1(m1θ1+m2θ2)

)
∈

C× with some integers m1 and m2. The derivations of these characters

determine the weight lattice in h∗C = Hom(hC,C).

In Section 2.2 we fixed the set of compact positive roots as Σ+
c =

{(1,−1)}. Then the set of dominant integral weights is given by {(Λ1,Λ2) ∈
Z⊕2 | Λ1 ≥ Λ2}. Here we pick up all sets of the positive roots with respect

to Σ+
c = {(1,−1)}:

Σ+
I = {(1,−1), (2, 0), (1, 1), (0, 2)},

Σ+
II = {(1,−1), (2, 0), (1, 1), (0,−2)},

Σ+
III = {(1,−1), (2, 0), (0,−2), (−1,−1)},

Σ+
IV = {(1,−1), (−2, 0), (0,−2), (−1,−1)}.
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For the index J ∈ {I, II, III, IV} we define Σ+
J,nc := Σ+

J \ Σ+
c , the set

of non-compact positive roots for J . Also we define a subset ΞJ of the

dominant weights for each J by ΞJ = {Λ = (Λ1,Λ2) | 〈Λ, β〉 > 0, for all β ∈
Σ+
J }. Then it is known that the union of ΞJ , J = I, II, III, IV, gives a

parameterization of the discrete series of G, which is called the Harish-

Chandra parameterization.

Let us write πΛ for the discrete series representation of G with the

Harish-Chandra parameter Λ ∈ ΞJ for one J . Then its K-type decomposi-

tion πΛ|K is given by the Blattner formula [H-S]. If a K-module τ occurs

in the restriction, then its highest weight is of the form λ +
∑

β∈Σ+
J,nc

mββ

with mβ ∈ Z≥0, where λ = Λ − ρc + ρnc, and ρc (resp. ρnc) is the half

of the sum of compact positive roots (resp. non-compact positive roots)

in Σ+
J . We call λ the Blattner parameter of πΛ. We also use the symbol

πλ for the discrete series representation with the Blattner parameter λ. Its

minimal K-type τλ occurs with multiplicity one. The Blattner parameter

λ associated with a Harish-Chandra parameter Λ = (Λ1,Λ2) is given by

λ = (Λ1 +1,Λ2 +2), if Λ is of type I; (Λ1 +1,Λ2), type II; (Λ1,Λ2−1), type

III; (Λ1 − 2,Λ2 − 1), type IV. A discrete series representation πΛ with the

Harish-Chandra parameter Λ ∈ ΞII or ΞIII is called a large discrete series

representation. The Gelfand-Kirillov dimension of a large discrete series

is equal to 4, which is the dimension of the maximal unipotent subgroup

of G. Hence the large discrete series representation has a non-degenerate

Whittaker model for the maximal unipotent subgroup [V1].

10. The Generalized Whittaker Functions for the Large Dis-

crete Series Representations

This section is devoted to a study on a generalized Whittaker function

with the minimal K-type of a large discrete series. We give a system of

differential equations satisfied by the Whittaker function. Then we check

the holonomicity of the system.

10.1. A system of differential equations. Let (π,Hπ) be a large discrete

series representation of G with the Harish-Chandra parameter (Λ1,Λ2) ∈
ΞII defined in Section 9. Its Blattner parameter, that is the highest weight

of the minimal K-type of π, is given by (λ1, λ2) = (Λ1 + 1,Λ2). The min-

imal K-type τλ1,λ2 occurs with multiplicity one in the large discrete series
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π = πλ1,λ2 . The K-type decomposition of πλ1,λ2 tells us that each of the fol-

lowing 3 shift operators: P down ◦R(∇+
χ·η,τ−λ2,−λ1

), P even ◦R(∇+
χ·η,τ−λ2,−λ1

),

and P down ◦ R(∇−
χ·η,τ−λ2,−λ1

) annihilates the generalized Whittaker func-

tions φ with the K-type τ−λ2,−λ1 = τ∗λ1,λ2
for πλ1,λ2 . On the other hand,

Yamashita proved

Theorem. (Yamashita [Y1]) The system of differential equations in

the above determines the generalized Whittaker functions for the large dis-

crete series representation.

Write d = λ1−λ2, then the minimal K-type τλ1,λ2 is of d+1 dimension.

We take the basis {v−λ2,−λ1
j }0≤j≤d of τ−λ2,−λ1 defined in Lemma 3.1.

10.2 Proposition. Suppose that h3 = 0 and both h1 and h2 are pos-

itive for the character η of Ns. Let φ(a1, a2) =
∑d

j=0 bj(a1, a2)v
−λ2,−λ1
j be

the restriction to A of a generalized Whittaker function with the minimal

K-type τ∗λ1,λ2
= τ−λ2,−λ1 for a large discrete series πλ1,λ2 of G. Then we

have the following system of differential equations for bj(a) = bj(a1, a2),

0 ≤ j ≤ d:(
∂1 + 4πh1a

2
1 + 2j

h2a
2
2

D
+ j − 1− λ1

)
bj−1(a) + 2Sbj(a)(10.1; j)

+
(
∂2 + 4πh2a

2
2 − 2(d− j)

h1a
2
1

D
− j − 1− λ2

)
bj+1(a) = 0

for 1 ≤ j ≤ d− 1,

j
(
∂1 + 4πh1a

2
1 − (d− 2j)

h2a
2
2

D
+ j − 1− λ1

)
bj−1(a)(10.2; j)

− (d− 2j)Sbj(a)

− (d− j)
(
∂2 + 4πh2a

2
2 − (d− 2j)

h1a
2
1

D
− j − 1− λ2

)
bj+1(a)

= 0

for 0 ≤ j ≤ d, and(
∂2 − 4πh2a

2
2 − 2j

h1a
2
1

D
+ j − 1 + λ2

)
bj−1(a)− 2Sbj(a)(10.3; j)

+
(
∂1 − 4πh1a

2
1 + 2(d− j)

h2a
2
2

D
− j − 1 + λ1

)
bj+1(a) = 0
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for 1 ≤ j ≤ d− 1.

Here we use the symbols: D = h1a
2
1 − h2a

2
2, and S =

χ(Yη)h1a1h2a2

D .

Proof. The equations (10.1; j), 1 ≤ j ≤ d − 1 are obtained from

the equation P down ◦ R(∇+
χ·η,τ−λ2,−λ1

)φ(a1, a2) = 0 for φ, where we use

Proposition 5.3, Lemma 3.5, and Lemma 3.1. The others are from P even ◦
R(∇+

χ·η,τ−λ2,−λ1
)φ(a1, a2) = 0, and P down ◦R(∇−

χ·η,τ−λ2,−λ1
)φ(a1, a2) = 0. �

In the next place, we study about the holonomicity of the system of

differential equations given above. We need to prepare some lemmas to

check the holonomicity. To simplify our calculations, it is convenient to put

bj(a1, a2) = (
√
h1a1)

λ1−j(
√
h2a2)

λ2+je−2π(h1a2
1+h2a2

2)cj(a1, a2),

for 0 ≤ j ≤ d and consider the functions cj(a1, a2).

Making (10.1; j) × (d − j) + (10.2; j) and (10.1; j) × j − (10.2; j) for

1 ≤ j ≤ d − 1, we have the following system of equations for cj(a1, a2),

0 ≤ j ≤ d, which is equivalent to the original system in Proposition 10.2:

(10.4; j)
(
∂1 + j

h2a
2
2

D

)
cj−1(a) + ρ

h2a
2
2

D
cj(a)− (d− j)

h2a
2
2

D
cj+1(a) = 0

for 1 ≤ j ≤ d,

(10.5; j) j
h1a

2
1

D
cj−1(a) + ρ

h1a
2
1

D
cj(a) +

(
∂2 − (d− j)

h1a
2
1

D

)
cj+1(a) = 0

for 0 ≤ j ≤ d− 1, and

h1a
2
1

(
∂2 − 8πh2a

2
2 − 2j

h2a
2
2

D
+ 2λ2 − 2

)
cj−1(a)(10.6; j)

− 2ρ
h1a

2
1h2a

2
2

D
cj(a) + h2a

2
2

(
∂1 − 8πh1a

2
1

+ 2(d− j)
h1a

2
1

D
+ 2λ2 − 2

)
cj+1(a) = 0

for 1 ≤ j ≤ d− 1, where we put ρ = χ(Yη)
√
h1h2.

From these equations we can obtain C(a1, a2)-linear relations among the

cj(a).
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10.3 Lemma. When d = λ1 − λ2 ≥ 4, we obtain the following d − 3
linear relations over C(a1, a2) among cj(a1, a2) with 0 ≤ j ≤ d. These are
given by

(j − 2)
(h1a

2
1)

2

D
cj−3(a) + ρ

(h1a
2
1)

2

D
cj−2(a)(10.7; j)

− h1a
2
1

(
(d− j + 2)

h1a
2
1

D
− 2j

h2a
2
2

D
+ 2λ2 − 2− 8πh2a

2
2

)
cj−1(a)

+ 2ρ
h1a

2
1h2a

2
2

D
cj(a)

− h2a
2
2

(
2(d− j)

h1a
2
1

D
− (j + 2)

h2a
2
2

D
+ 2λ2 − 2− 8πh1a

2
1

)
cj+1(a)

+ ρ
(h2a

2
2)

2

D
cj+2(a)− (d− j − 2)

(h2a
2
2)

2

D
cj+3(a) = 0.

for 2 ≤ j ≤ d− 2.

Proof. We use the equations (10.4; j), (10.5; j) to cancel the terms of

differentials ∂1cj+1(a) and ∂2cj−1(a) in (10.6; j) for 2 ≤ j ≤ d− 2. �

10.4 Corollary. Let d ≥ 4 and χ(Yη) �= 0. Then the above d − 3

linear relations are mutually independent of each other. In particular, if we

pick up arbitrary 4 functions among cj(a1, a2), 0 ≤ j ≤ d, then the others

can be written by the C(a1, a2)-linear sums of them.

Proof. For example, take c0(a), c1(a), cd−1(a) and cd(a) and write

down the linear combinations of the other d − 3 functions by these four

functions in the natural order for cj(a). Considering the coefficient matrix

of the other d − 3 functions in the above, then it is a 7-gonal matrix (for

d ≥ 10 and we can check directly for smaller d cases) and in each coefficient

appear only the terms of the degree, either 2 or 4, with respect to the

variables a1, a2. Here “degree 2” terms mean the terms containing
(h1a2

1)2

D ,
(h2a2

2)2

D ,
h1a2

1h2a2
2

D , or hia
2
i as a factor. Also “degree 4” terms mean the terms

containing 8πh1a
2
1h2a

2
2. We find that the terms of “degree 4” appears only

in the (i, i + 1)-th, 1 ≤ i ≤ d− 4, or (i, i− 1)-th, 2 ≤ i ≤ d− 3 coefficients

of the matrix. From this observation on the degree we can easily show that

the matrix has non zero determinant. �
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10.5 Lemma. Let d ≥ 4 and χ(Yη) �= 0. Then each of ∂1cj(a), ∂2cj(a),

0 ≤ j ≤ d, can be written as a C(a1, a2)-linear combination of 4 functions

which are arbitrary chosen among {cj(a1, a2), 0 ≤ j ≤ d}.

Proof. From (10.4; j) with 1 ≤ j ≤ d, and (10.5; j) with 0 ≤ j ≤ d−1

we can describe ∂1cj(a) by a C(a1, a2)-linear combination of cj(a), cj+1(a),

and cj+2(a) for 0 ≤ j ≤ d− 1:

∂1cj(a) = − (j + 1)
h2a

2
2

D
cj(a)− ρ

h2a
2
2

D
cj+1(a)(10.8; j)

+ (d− j − 1)
h2a

2
2

D
cj+2(a)

Similarly we have

∂2cj(a) = − (j − 1)
h1a

2
1

D
cj−2(a)− ρ

h1a
2
1

D
cj−1(a)(10.9; j)

+ (d− j + 1)
h1a

2
1

D
cj(a)

for 1 ≤ j ≤ d. Therefore, by Corollary 10.4, the assertion in the lemma is

verified for ∂1cj(a), ∂2cj(a) with 1 ≤ j ≤ d− 1 and for ∂1c0(a), ∂2cd(a).

For the remaining ones: ∂2c0(a) and ∂1cd(a), we use the equations

(10.6; j), j = 1 or d − 1. We see ∂2c0(a), (resp. ∂1cd(a)) can be ex-

pressed as C(a1, a2)-linear combination of c0(a), c1(a), c2(a), and ∂1c2(a)

(resp. cd−2(a), cd−1(a), cd(a), and ∂2cd−2(a)). Then, combining the re-

sult above for ∂1c2(a) or ∂2cd−2(a), and Corollary 10.6, we conclude the

lemma. �

By the lemmas above, we can conclude that, if the integrability condition

is also satisfied, then the equations in 10.2 determine a holonomic system

of rank 4. We now check the integrability condition.

10.6 Lemma. The system of equations (10.4; j) with 1 ≤ j ≤ d − 1,

(10.5; j) with 0 ≤ j ≤ d, and (10.6; j) with 1 ≤ j ≤ d − 1, satisfies the

integrability condition.

Proof. The system of equations is equivalent to the set of (10.7; j)

with 2 ≤ j ≤ d − 2, (10.8; j) with 0 ≤ j ≤ d − 1, (10.9; j) with 1 ≤ j ≤ d,
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and (10.6; j) with j = 1, d − 1. One has to check that these equations

yield the integrability conditions: ∂1∂2cj(a) = ∂2∂1cj(a) for 0 ≤ j ≤ d, and

also that these conditions add no more equation that is independent of the

system.

The integrability conditions for 1 ≤ j ≤ d − 1 are obtained from (10.8;

j) for 0 ≤ j ≤ d − 1 and (10.9; j) for 1 ≤ j ≤ d. Applying ∂2 to (10.8; j),

0 ≤ j ≤ d− 1 from the left, we have

∂2∂1cj(a) = −h2a
2
2

D

(
∂2+2

h1a
2
1

D

)(
(j+1)cj(a)+ρcj+1(a)−(d−j−1)cj+2(a)

)
for 0 ≤ j ≤ d− 1. Then using (10.9; j) for 1 ≤ j ≤ d, we see that the above

formulas are equal to

=
{
(j + 1)(j − 1)cj−2(a) + ρ(2j + 1)cj−1(a)

−
(
2(j + 1)(d− j + 1)− ρ2

)
cj(a)

− ρ(2d− 2j + 1)cj+1(a) + (d− j + 1)(d− j − 1)cj+2(a)
}h1a

2
1h2a

2
2

D2

for 1 ≤ j ≤ d− 1. On the other hand, (10.9; j) with 1 ≤ j ≤ d, and (10.8;

j) with 0 ≤ j ≤ d− 1, give the same results for ∂1∂2cj(a) for 1 ≤ j ≤ d− 1.

Therefore the conditions are shown to be satisfied with cj(a) for 1 ≤ j ≤
d−1. For c0(a) and cd(a) we also use (10.6; j) with j = 1 and d−1. I omit a

detailed computation. We mention finally that the integrability conditions

are compatible with the equations (10.7; j) for 2 ≤ j ≤ d− 2. �

Combining Corollary 10.4, Lemmas 10.5, and 10.6, we conclude the fol-

lowing:

10.7 Proposition. If χ(Yη) �= 0, then the system of differential equa-

tions in Proposition 10.2 determines a holonomic system of rank 4.

11. Multiplicity Free Theorem and the Mellin Transforms of

the Generalized Whittaker Functions of a Large Discrete

Series

11.1. In the previous section we have shown that the system of dif-

ferential equations in Proposition 10.2 is holonomic of rank 4. Using the
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integrable conditions, we rewrite the system into an equivalent one to obtain

its solutions. Remind that we have set

bj(a1, a2) = (
√
h1a1)

λ1−j(
√
h2a2)

λ2+je−2π(h1a2
1+h2a2

2)cj(a1, a2)

for 0 ≤ j ≤ d, and ρ = χ(Yη)
√
h1h2. Then we have the following equations

for the set of cj(a):

(11.1; j)
( D

h2a2
2

∂1 + j
)
cj−1(a) + ρcj(a)− (d− j)cj+1(a) = 0

for 0 ≤ j ≤ d− 1,

(11.2; j) j cj−1(a) + ρcj(a) +
( D

h1a2
1

∂2 − (d− j)
)
cj+1(a) = 0

for 1 ≤ j ≤ d− 1, and

h1a
2
1

(
∂1 + ∂2 − 8πh2a

2
2 + 2λ2 − 2

)
cj−1(a)(11.3; j)

+ h2a
2
2

(
∂1 + ∂2 − 8πh1a

2
1 + 2λ2 − 2

)
cj+1(a) = 0

for 1 ≤ j ≤ d− 1.

The equations (11.3; j) are obtained from (10.4; j), (10.5; j), and (10.6;

j). The equations (11.1; j) and (11.2; j) rewrite (10.4; j) and (10.6; j), and

they also yield

h1a
2
1∂1cj−1(a)− h2a

2
2∂2cj+1(a) = 0

for 1 ≤ j ≤ d− 1. Combining these and (11.3; j), we get{
(∂1 + ∂2)

2 + 2(λ2 − 2)(∂1 + ∂2)− 8πh1a
2
1∂1(11.4; j)

− 8πh2a
2
2∂2 − 4(λ2 − 1)

}
cj(a) = 0

for 0 ≤ j ≤ d.

11.2. A formal power series solution. We introduce the following pair

of variables

x =
2π(h1a

2
1 − h2a

2
2)

4π2h1a2
1h2a2

2

, y =
2π(h1a

2
1 + h2a

2
2)

4π2h1a2
1h2a2

2

.
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We consider a holomorphic formal power series solution at {x = 0}, which

is a singular locus of the equations. We denote it by cj(a1, a2) = cj(x, y) =∑∞
m=mj

0
pjm(y)xm with mj

0 ≥ 0 for 0 ≤ j ≤ d. The equations (11.1; j) and

(11.2; j) lead to the following recurrence differential equations for pjm(y)’s:

d

dy

(
pj−1
m−1(y) + pj+1

m−1(y)
)

= (m + j)pj−1
m (y) + ρ pjm(y)(11.5; j)

− (m + d− j)pj+1
m (y)

for 1 ≤ j ≤ d− 1,

(11.6; j)
d

dy

(
pj−1
m−1(y)− pj+1

m−1(y)
)

= m
(
pj−1
m (y) + pj+1

m (y)
)

for 1 ≤ j ≤ d− 1, and

2
d

dy
p1
m−1(y) = ρ p0

m(y)− (2m + d)p1
m(y),(11.7)

2
d

dy
pd−1
m−1(y) = (2m + d)pd−1

m (y) + ρ pdm(y).

Let mj
0 be the degree in x of the first non-vanishing term of cj(x, y); p

j
m(y) =

0, if m < mj
0, and p

mj
0
(y) �= 0. Then we obtain a lemma.

11.3 Lemma. The degrees mj
0 coincide with each other for all j, 0 ≤

j ≤ d. Denote the common value by m0. If m0 > 0, then there should be

a relation that ρ2 = −(d + 2m0)
2. If m0 = 0, then it should be that ρ2 =

−(d− 2k)2 with 0 ≤ k ≤
[
d
2

]
. Moreover, if m0 ≥ 0 and ρ = (d+ 2m0)

√
−1

(resp. −(d + 2m0)
√
−1), then pjm0(y) are given by

pjm0
(y) = (

√
−1)jPm0(y) (resp. (

√
−1)d−jPm0(y))

with a nonzero function Pm0(y) that is independent of j.
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Proof. Denote by m0 the smallest number in the set of integers{
mj

0

}
0≤j≤d

. Let Mm be the matrix

Mm =


ρ −(2m + d) 0 0

m + 1 ρ −(m + d− 1)
. . .

. . .
. . .

. . .

m + d− 1 ρ −(m + 1)

0 0 2m + d ρ

 .

Then the equations (11.5; j) and (11.7) read

(11.8) Mm0 · t
(
p0
m0

(y), · · · · · · , pdm0
(y)
)

= t
(
0, · · · · · · , 0

)
.

Further if m0 �= 0, then (11.6; j) for 1 ≤ j ≤ d− 1 tell us

(11.9; j) pj−1
m0

(y) + pj+1
m0

(y) = 0, 1 ≤ j ≤ d− 1.

From (11.8) we can conclude that neither p0
m0

(y) nor pdm0
(y) vanishes, oth-

erwise all pjm0(y) become zero, which contradicts the definition of m0. So

we obtain that m0
0 = md

0 = m0. Then we can also see easily that all the

other mj
0 must be equal to m0.

Using the first row of (11.8): ρp0
m0

(y) = (2m0 + d)p1
m0

, and (11.9; j) for

j = 1, we can write that p0
m0

(y) = (d + 2m0)f(y), p1
m0

(y) = ρf(y), and

p2
m0

(y) = −(d + 2m0)f(y) with a function f(y) �= 0. Then the second row

of (11.8) gives (ρ2 +(d+2m0)
2)f(y) = 0. Hence ρ2 = −(d+2m0)

2. On the

other hand, if ρ = (d+ 2m0)
√
−1 (resp. −(d+ 2m0)

√
−1), then the vector

t
(
1,
√
−1, . . . , (

√
−1)j , . . . , (

√
−1)d

)
(resp. t

(
(
√
−1)d, . . . , (

√
−1)d−j , . . . ,

1)
)

generates the one dimensional kernel of Mm0 . Hence we get pjm0(y) =

(
√
−1)jPm0(y) or (

√
−1)d−jPm0(y), where Pm0(y) is independent of j.

We consider the case m0 = 0. Then the kernel of the matrix M0 = Mm0

becomes non-trivial if and only if ρ2 = −(d − 2k)2, 0 ≤ k ≤
[
d
2

]
. If one of

these is satisfied, then (11.8) has a non-trivial solution. �

Remark. If m0 > 0, then ρ = χ(Yη)
√
h1h2 can not be equal to zero,

and Proposition 10.7 is applicable to this case.
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11.4. In the next place, we determine the function Pm0(y) appearing

in the above lemma. The equations (11.4; j) give the following equations of

second degree for pjm(y) with general degree m:

{(
y
d

dy

)2

+ (2m− λ2 + 2)y
d

dy
(11.10)

+ 4
d

dy
+ (m + 1)(m + 1− λ2)

}
pjm(y) = 0

for 0 ≤ j ≤ d. Each of them has a solution

pjm(y) = Cj
m ×

(−1)m−m0m!(m− λ2)!

m0!(m0 − λ2)!
e

2
y y−

2m−λ2+1
2 W− 2m−λ2+1

2
,−λ2

2

(
4
y

)
,

with a constant Cj
m. We note that these solutions take finite limits, when

a1 and a2 tend infinity, and that any solution with this property is given

by a constant multiple of the above. In particular we have

Pm0(y) = e
2
y y−

2m0−λ2+1
2 W− 2m0−λ2+1

2
,−λ2

2

(
4
y

)
,

and, when χ(Yη) �= 0, Cj
m0 =

(√
−1
)j

or
(√
−1
)d−j

.

We should determine Cj
m for 0 ≤ j ≤ d and all integers m ≥ m0. By the

formula in the last line of [M-O-S] p301, the recurrence relations among the

set (Cj
m) are obtained from (11.5; j), (11.6; j), and (11.7) as

2Cj−1
m−1 = (2m + j)Cj−1

m + ρ Cj
m − (d− j)Cj+1

m

for 1 ≤ j ≤ d,

2Cj+1
m−1 = j Cj−1

m + ρ Cj
m − (2m + d− j)Cj+1

m(11.11)

for 0 ≤ j ≤ d− 1.

We note Cj
m0−1 = 0 for all 0 ≤ j ≤ d by the definition of m0. Put cm =

t
(
Cj
m

)
0≤j≤d

. Starting from the vector cm0 satisfying (11.11) for m = m0,

we can determine recurrently the cm for m ≥ m0 by (11.11). Hence it

yields a formal power series solution
(
cj(x, y)

)
of (11.1; j), (11.2; j), and

(11.3; j), then also a formal solution bj(x, y) = (
√
h1a1)

λ1−j(
√
h2a2)

λ2+j ·
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e−2π(h1a2
1+h2a2

2)cj(x, y) of the equations in Proposition 10.2. At this moment

we obtain the following:

11.5 Theorem. Consider the space of solutions for the system of dif-

ferential equations in Proposition 10.2. Then the dimension of the solutions

satisfying the following conditions (a), (b), is less than or equal to one; (a)

they decay rapidly, when a2
1 and a2

2 tend to +∞, and (b) they are holomor-

phic at x = 0 in the variable x.

We make the following conjecture:

11.6 Conjecture. There exists a unique (up to a constant multi-

ple) non-zero generalized Whittaker realization of a large discrete series

representation with an η ∈ N̂s definite, whose restriction to the minimal

K-type corresponds to K-finite functions satisfying the conditions (a), (b)

above. Equivalently, the formal solution defined by the recurrence relations

in (11.11) converges actually on A and determine the solution with proper-

ties (a) and (b).

Convergences of the formal solution are established when (i) ρ = (4 +

2m0)
√
−1 with m0 ≥ 0 for d = 4, (ii) ρ = (5 + 2m0)

√
−1 with m0 ≥ 0 for

d = 5, and (iii) ρ = 0 with m0 = 0 for any even d, hence we have

11.7 Proposition. The conjecture 11.6 is true in the cases (i), (ii),

(iii) above.

We will show these cases more precisely bellow.

(i) Consider the large discrete series with d = 4. It exists uniquely, and its

Blattner parameter is given by (λ1, λ2) = (3,−1). Set ρ = (4 + 2m0)
√
−1

with m0 ≥ 0. Then Cj
m0 =

(√
−1
)j

and the general cm are explicitly

determined by (11.11) as

cm0+2n =



m0!(m2
0+(8n+3)m0+8n2+14n+2)

22n(m0+2+n)!n!√
−1m0!(m0+2)(m0+2n+1)

22n(m0+2+n)!n!
−m0!(m2

0+3m0−2n+2)
22n(m0+2+n)!n!

−
√
−1m0!(m0+2)(m0+2n+1)

22n(m0+2+n)!n!
m0!(m2

0+(8n+3)m0+8n2+14n+2)
22n(m0+2+n)!n!


,
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cm0+2n+1 =



m0!(m0+2n+2)
22n−1(m0+2+n)!n!√

−1m0!(m0+2)
22n(m0+2+n)!n!

0√
−1m0!(m0+2)

22n(m0+2+n)!n!
−m0!(m0+2n+2)

22n−1(m0+2+n)!n!

 ,

where n runs over the all non-negative integers. The proof is given by a

direct inductive calculation, which we omit. We have also that the following

integral formulas express the formal power series solution,

bj(a) =
4(
√
h1a1)

λ1−j(
√
h2a2)

λ2+je−2π(h1a2
1+h2a2

2)

(m0 + 1)!

×
∫ ∞

0

√
t K1

(
4
√
t
)
Rj(xt)e

−ytdt

for 0 ≤ j ≤ 4, where

R0(z) = 8Im0(z)− 2
(
4 +

2(4m0 + 5)

z

)
Im0+1(z)

+ (m0 + 2)
(8
z

+
4(m0 + 3)

z2

)
Im0+2(z),

R1(z) =
√
−1
{(4(m0 + 2)

z

)
Im0+1(z)

− (m0 + 2)
(4
z

+
4(m0 + 3)

z2

)
Im0+2(z)

}
,

R2(z) =
(4
z

)
Im0+1(z) + (m0 + 2)

(4
z
− 4(m0 + 3)

z2

)
Im0+2(z),

R3(z) = −
√
−1
{(4(m0 + 2)

z

)
Im0+1(z)

+ (m0 + 2)
(4
z
− 4(m0 + 3)

z2

)
Im0+2(z)

}
,

R4(z) = 8Im0(z) + 2
(
4− 2(4m0 + 5)

z

)
Im0+1(z)

− (m0 + 2)
(8
z
− 4(m0 + 3)

z2

)
Im0+2(z),
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and Kν(z) and Iν(z) are the modified Bessel functions [M-O-S] p.66. To

obtain these we used the formula (37) in [ET], p.199.

(ii) If d = 5 and ρ = (5 + 2m0)
√
−1 with m0 ≥ 0, we obtain that

cm0+2n =



m0!(m2
0+(12n+3)m0+16n2+18n+2)

22n(m0+2+n)!n!√
−1m0!(m2

0+(4n+3)m0+10n+2)
22n(m0+2+n)!n!

−m0!(m2
0+3m0−2n+2)

22n(m0+2+n)!n!
−
√
−1m0!(m2

0+3m0−2n+2)
22n(m0+2+n)!n!

m0!(m2
0+(4n+3)m0+10n+2)
22n(m0+2+n)!n!√

−1m0!(m2
0+(12n+3)m0+16n2+18n+2)
22n(m0+2+n)!n!


,

cm0+2n+1 =



m0!(5m2
0+5(4n+5)m0+16n2+54n+30)

22n+1(m0+3+n)!n!√
−1m0!(3m2

0+(4n+15)m0+10n+18)
22n+1(m0+3+n)!n!

−m0!(m2
0+5m0−2n+6)

22n+1(m0+3+n)!n!√
−1m0!(m2

0+5m0−2n+6)
22n+1(m0+3+n)!n!

−m0!(3m2
0+(4n+15)m0+10n+18)

22n+1(m0+3+n)!n!
−
√
−1m0!(5m2

0+5(4n+5)m0+16n2+54n+30)
22n+1(m0+3+n)!n!


,

with non-negative integers n. This yields the similar solution with an inte-

gral expression as in the case of d = 4. For greater d, the author has not

obtained the explicit formula for cm. Each coefficient of cm may have the

form

a constant× a polynomial in n of degree
[
d+1
2

]
(±1)

22n (+1)
(
m0 +

[
d+1
2

]
+ n (±1)

)
! n!

,

for m = m0 + 2n, or m0 + 2n + 1.

(iii) In the case ρ = 0 with m0 = 0 for any even d, we obtain p1
m(y) =

pd−1
m (y) = 0 for all m ≥ 0 from the equations (11.7) by an induction on m.

Also we can obtain that p2k+1
m (y) = 0 for 0 ≤ k ≤ d

2 − 1 and m ≥ 0, by

(11.5; j) and (11.6; j), hence c2k+1(y) = 0 for 0 ≤ k ≤ d
2 − 1. Although

this case, indeed χ(Yη) = 0, was not treated in Proposition 10.7 (Corollary

10.4 in particular), we can conclude again the holonomicity of the system of

equations in this case under this observation. Then we obtain the following



288 Takuya Miyazaki

formula:

C/−1
2n =

( /−1
2 )!

22n( /−1
2 + n)! n!

, C/−1
2n+1 =

( /−1
2 )!

22n+1( /+1
2 + n)! n!

;

C/+1
2n =

( /−1
2 )!

22n( /−1
2 + n)! n!

, C/+1
2n+1 = − ( /−1

2 )!

22n+1( /+1
2 + n)! n!

,

if B = d
2 is odd, or

C/−2
2n =

( /2)! (B + 1 + 4n)

22n( /2 + n)! n!
, C/−2

2n+1 =
4( /2)!

22n+1( /2 + n)! n!
;

C/
2n(t) =

( /2)! (B− 1)

22n( /2 + n)! n!
, C/

2n+1(t) = 0;

C/+2
2n =

( /2)! (B + 1 + 4n)

22n( /2 + n)! n!
, C/+2

2n+1 = − 4( /2)!

22n+1( /2 + n)! n!
,

if B = d
2 is even. In the both cases, n runs over all the non-negative integers.

The other C2k
m for 0 ≤ k ≤ d

2 are given by the equations (11.11). They are

written in an integral formula like in the case (i), thus we obtain that the

conjecture holds in these cases.

At the end of this section, we give a formula of the Mellin transform of

the solution obtained above, which will be used in the next section.

11.8 Theorem. (The Mellin transform) Take the character η of Ns

with h3 = 0, and h1 = h2 = h positive. Take ρ = χ(Yη)h = (d + 2m0)
√
−1

with a positive integer m0. Let φ(a1, a2) =
∑d

j=0 bj(a)v
−λ2,−λ1
j be the formal

power series solution given in 11.4 for the large discrete series representa-

tion πλ1,λ2. We assume that it converges globally on A, Conjecture 11.6,

for the general cases. Then

bj(a
1
2 , a

1
2 )

=

{ (√
−1
)j
π

−λ2+1
2 (ha)

λ1+1
2 e−2πhaWλ2−1

2
,−λ2

2

(4πha), if m0 = 0,

0 , otherwise.
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Then its Mellin transform is given by

∫ ∞

0
bj(a

1
2 , a

1
2 )as−

3
2
da

a
=

β
(√
−1
)j

Γ(s + λ1−1
2 + λ2

2 )Γ(s + λ1−1
2 − λ2

2 )

(4πh)sΓ(s + λ1−λ2+1
2 )

,

for Re(s + λ1−1
2 ± λ2

2 ) > 0, where β = 41−λ1
2 π

3−λ1−λ2
2 h

3
2 .

Proof. This can be obtained using the formula in [M-O-S] p.316, line

3. �

Here we remark that (λ1 − 1, λ2) = (Λ1,Λ2) is the Harish-Chandra pa-

rameter of the large discrete series representation with the Blattner param-

eter (λ1, λ2).

12. The Rankin-Selberg Integral and the Andrianov’s L-

function

12.1. The Andrianov’s L-function was studied by Novodvorsky,

Piatetski-Shapiro, Soudry by representation theoretical methods. We refer

to [PS]. Here, according to an investigation by Sugano [Su], we present some

applications of our archimedean results. Styles of necessary discussions,

or proofs, are essentially given in [Su]. The only difference between [Su]

and our treatments is concentrated on the objects at the real archimedean

prime. We treat the large discrete series representations and their gener-

alized Whittaker functions, whereas the (anti) holomorphic discrete series

were considered in [Su].

Let G0 = GSp(2) be the symplectic algebraic group of degree 2 over the

rational numbers. So we take B = M2(Q) in the paper [Su]. Let K0 =∏
v≤∞Kv, Kp = G0(Qp)∩GL4(Zp) for p finite prime, and K∞ � U(2). Set

Kf =
∏

p<∞Kp.

Consider the Siegel maximal parabolic subgroup of G0(QA) and the

unipotent radical Ns(QA). We define a character η = ηH of Ns(QA) by

η(n(T )) = η̃(tr(HT )) for n(T ) =
(

12
0

T
12

)
∈ Ns(QA). Here η̃ is a character

on QA that is trivial on Q such that η̃∞(x) = e2π
√
−1x, and H =

(
1
h3/2

h3/2
h

)
is a primitive positive definite matrix with h, h3 ∈ Z.

Given H, we define the imaginary quadratic field E = Q(
√
D) where

D = h2
3 − 4h = dEf

2. Let O(f) be the order of E with conductor f . Let
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{1, ω} be a Z-basis of O(f). We can embed E into G0(Q); for β = u+ωv ∈
E, define its image by

(
ιH(β) 0

0 N(β)tιH(β)−1

)
∈ G0(Q)

with ιH(β) =
(
u
v

−hv
u+h3v

)
.

Denote by G0(R)+ the identity component of G0(R). Let F (g) be a

cusp form on G0(QA)+ = G0(R)+G0(QAf
) of full level. We suppose that

the central character of F (g) is given by an unramified character λ = ⊗vλv
on Q×

A such that λ∞ ≡ 1. A large discrete series representation of Sp(2,R)

with the minimal K-type of odd dimension can be extended to a repre-

sentation of G0(R)+ with trivial central character. We suppose that the

real archimedean part of F belongs to the minimal K-type τλ1,λ2 of a large

discrete series extended as above, if d = λ1 − λ2 is even. Also extend F

to G0(QA), by a decomposition G0(QA) = G0(Q)G0(R)+Kf , trivially on

G0(Q) and Kf . Then we define a function on G0(QA)

Fη(g) =

∫
Sym2(Q)\Sym2(QA)

η(n(T ))−1F (n(T )g)dT.

We also take a non-trivial primitive character χ on E×
A of conductor f ,

which is trivial on E× ·
∏

p<∞O(f)×p , O(f)p = O(f) ⊗Z Zp and χ|
Q

×
A
≡ λ.

Then we define the generalized Whittaker function associated with F (g):

WF
χ·η(g) =

∫
E×Q

×
A\E×

A

χ(β)−1Fη(βg)d
×β.

Further let h3 = 0 for simplicity and F (g) be a normalized Hecke com-

mon eigenfunction, [Su], (2-24) and p.546. Here we make an indispensable

assumption.

Assumption. We suppose that there exist a suitable pair of η and χ

such that the global integral transform WF
χ·η(g) defined above does not van-

ish.
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We fix a suitable pair χ and η for the assumption in the following dis-

cussion. For s ∈ C, define a function

Aχ·η(F, s) =

∫
Q

×
A

WF
χ·η

((
t12 0

0 12

)
Rη

)
|t|s−3/2

A d×t,

with Rη,∞ = diag(
√
|D|, 2, 2,

√
|D|), Rη,p = 14 for the finite primes. A

version of [Su], Theorem 3-1 is described in our case.

12.2 Theorem. If η and χ are suitable ones under the assumptions,

we have

Aχ·η(F, s) = C0 ×
Γ
(
s + λ1−1

2 + λ2
2

)
Γ
(
s + λ1−1

2 − λ2
2

)(
2π
√
|D|
)s

Γ
(
s + λ1−λ2+1

2

)(12.1)

× L(F, s)

L(χ, s + 1
2)
WF

χ·η(Rη),

with C0 = eπ
√

|D|(2π√|D|)−λ1+1
2 Wλ2−1

2
,−λ2

2

(2π
√
|D|)−1. Here L(F, s) is

the Andrianov’s L-function, [Su], p.547 (3-4), L(χ, s) is the Hecke L-

function for the grössencharacter χ(z) := χ(z) for z ∈ E×
A with the canon-

ical involution.

Proof. Calculation at the non-archimedean places is exactly the same

as in [Su]. We only have to replace the function, [Su], p.549, line 1, at the

real place with our formula for the generalized Whittaker function, which

was studied in Section 11. Then the calculation is similar. �

Define

ζ(F, s) = (2π)−2sΓ(s + λ1−1
2 + λ2

2 )Γ(s + λ1−1
2 − λ2

2 )L(F, s),

and

Bχ·η(F, s) = (2π)s−
λ1−λ2−1

2 Γ(s + λ1−λ2+1
2 )L(χ, s + 1

2)Aχ·η(F, s)

= C1 ×
(√
|D|
)−s

ζ(F, s)×WF
χ·η(Rη),
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where C1 = (2π)−
λ2
2
−1
(√
|D|
)−λ1+1

2 eπ
√

|D|Wλ2−1
2

,−λ2
2

(2π
√
|D|)−1 is a non-

zero constant which does not depend on s.

12.3. Eisenstein series and Rankin-Selberg convolution. Define G1 an

algebraic group over the rational numbers and its rational subgroup B1 by

G1(Q) = {g ∈ GL2(E) | det g ∈ Q×},

B1(Q) =

{(
tβ ∗
0 β

)
| t ∈ Q×, β ∈ E×

}
.

Also fix compact subgroups at each place as Mp = G1(Qp) ∩ GL2(O(f)p),

p < ∞, and M∞ � SU(2). We define a representation (τ̃ , Vτ̃ ) of M∞ by

the restriction (τλ1,λ2 |R−1
η,∞ψH(M∞)Rη,∞

, Vτλ1,λ2
). Here we fix an embedding

ψH of G1 into G0

ψH

((
α β

γ δ

))
=

(
1 0

0 e−1
0

)(
ιH(α) ιH(β)

ιH(γ) ιH(δ)

)(
1 0

0 e0

)
,

e0 =

(
h3 −1

−1 0

)
.

We shall define an Eisenstein series [Su], §3-3, on G1(QA). Let W =

E ⊕ E be a Q-vector space. Define Vτ̃ -valued Schwartz-Bruhat function

ϕ on WA, ϕ =
∏

v≤∞ ϕv, by ϕ∞(t(0, 1)m∞) = tde−2πt2 τ̃(m∞), t ≥ 0,

m∞ ∈M∞, and ϕp is the characteristic function of O(f)p⊕O(f)p. For the

above ϕ and g1 ∈ G1(QA), put

Lχ
ϕ(g1, s) = |det g1|s+1/2

∫
E×

A

χ(t)|tt|s+1/2ϕ(t(0, 1)g1)d
×t.

Put

Eχ
ϕ(g1, s) =

∑
γ∈B1(Q)\G1(Q)

Lχ
ϕ(γg1, s).

Then the proof of [Su], Lemma 3-2 also gives us

(12.2) Bχ·η(F, s) =

∫
G1(Q)Q×

A\G1(QA)
Eχ
ϕ(g1, s)F (ψH(g1)Rη)dg1.
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The Eisenstein series is meromorphically continued to the s-plane. More-

over it is entire in this case, since d = λ1−λ2 is strictly positive, [Su], p.559,

and Theorem 3-2. Hence Bχ·η(F, s), then also ζ(F, s) are meromorphically

continued to the whole plane, and, moreover, determine entire functions in

s.

Sugano also studies the Fourier transform ϕ̂ of the Schwartz-Bruhat

function ϕ, [Su], Lemma 3-3, then he obtains the functional equation for

ζ(F, s), [Su], Theorem 3-2. His calculation can be applied to our case in

the same way. Then the result is

12.4 Theorem. Let ζ(F, s) be the one defined above. Then it is an

entire function in the variable s. Moreover it has the following functional

equation:

ζ(F, s) = (−1)λ2ζ(F ′, 1− s).

Here F ′(g) = λ−1(m(g))F (g), and m(g) is the similitude of g ∈ G0.
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