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The Generalized Whittaker Functions for Sp(2,R) and

the Gamma Factor of the Andrianov L-function

By Takuya MIYAZAKI

Abstract. We study the archimedean generalized Whittaker func-
tions for the generalized principal series and the large discrete series of
the real symplectic group of degree 2. Using gradient type differen-
tial operators, which was introduced by Schmid, we give a system of
differential equations which is satisfied by a Whittaker function. We
study this system, and give the Mellin transform of its solution. We
apply the result to a study of Andrianov’s spinor L-function for a non-
holomorphic Siegel modular form via Rankin-Selberg integral with an
explicitly described archimedean factor.

Introduction

In this paper we study the generalized Whittaker functions associated
with some admissible Hilbert representations of the real symplectic group
of degree two G = Sp(2,R). Our motivation to study these functions is to
obtain some basic material in the archimedean theory of the automorphic
L-functions for the symplectic group of rank 2. Current works on the con-
struction of the automorphic L-functions do not seem sufficiently detailed
at archimedean places and ramified p-adic places. A more precise harmonic
analysis of the generalized spherical functions on a real reductive group
is indispensable to complete the analytic properties of an automorphic L-
function. Here we want to support it by an investigation of the generalized
Whittaker functions on G.

Let P be the Siegel maximal parabolic subgroup of G with the abelian
unipotent radical N. Define a closed subgroup R of P by the semi direct
product of N and the connected component of the stabilizer of a char-
acter of N in the Levi part. We consider the G-module induced from a
non-degenerate unitary character of R. Then the generalized Whittaker
functions are defined to be the generalized spherical functions that appear
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in the images of G-intertwining maps from an admissible Hilbert G-module
into the module considered above. These functions with specified K-types
satisfy a holonomic systems of differential equations. We study these holo-
nomic systems and their solutions.

Let m be a generalized principal series representations corresponding to
the another maximal parabolic subgroup P; of G, or a large discrete series
representations of G. Then main theorems are given on

(i) Multiplicity free property of the space of the generalized Whittaker real-
izations of m that correspond to moderate growth functions on a split torus
subgroup of G, Theorems 7.5, 7.1/ for the generalized principal series, and
11.5 for the large discrete series;

(ii) Formulas of the Mellin transforms of the generalized Whittaker func-
tions and its application to a study of Andrianov’s spinor L-functions, The-
orems 8.1, 8.2, 11.8, and 12.2.

In this paper we take a definite character of N to give these theorems. In
(i) the word “multiplicity free” means that “the dimension is less than or
equal to one”. We will also give existence theorems in some cases, 7.6, and
11.7.

To obtain the holonomic systems for the generalized Whittaker func-
tions, we use the action of the Casimir operator in Z(gc) and also a differ-
ential operator of gradient type, which was introduced to characterize the
discrete series representations by Schmid [S]. Yamashita [Y2, Y3] applies
the later operators to study the realization of the discrete series represen-
tations into several types of induced representations.

Here is the organization of this article. From Sections 1 to 5, we collect
fundamental ingredients in this paper. In Section 1 we define the generalized
Whittaker functions for the admissible modules. Basic notation on Lie
groups, Lie algebras is given in Section 2. We recall things about the
representations of a maximal compact subgroup K of G in Section 3. We
need the irreducible decompositions of the tensor products, which are given
in 3.2. In Section 4 Schmid operator and shift operators are introduced.
In Section 5, we give the explicit formula of the A-radial parts of the shift
operators and the Casimir operator, Proposition 5.3 and Proposition 5.6.

From Sections 6 to 8, we study the generalized principal series represen-
tations. We recall its K-type decomposition in Section 6, and define the
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“corner” K-type. In Section 7, we give a system of differential equations,
which are satisfied by the generalized Whittaker functions with the corner
K-type of a generalized principal series. A solution with a good asymptotic
behavior is obtained in Theorem 7.5 and 7.14. In Section 8 we calculate its
generalized Mellin transform, Theorem 8.1 and 8.2.

From Sections 9 to 12, the large discrete series representations are stud-
ied. After recalling its K-type decomposition, Section 9, we give a holo-
nomic system of rank 4, Section 10. In Section 11, we study about a formal
power series solution with good analytic properties. The Mellin transform
is obtained in Theorem 11.8. In Section 12, we apply our results to study
of Andrianov’s L-function via Rankin-Selberg convolution.

Niwa [Ni] studied the generalized Whittaker functions with trivial K-
type for the spherical principal series of Sp(2,R), which was characterized
by the action of generators in Z(gc).

The author would like to express his gratitude to Takayuki Oda for valu-
able advice on this work. Also he would like to thank Sinji Niwa, Takashi
Sugano, Nobukazu Shimeno, and Takahiro Hayata for helpful discussions.

1. Definition of the Space of Generalized Whittaker Reali-
zations

We recall a notion of a generalized Whittaker realizations of an irre-
ducible admissible Hilbert representation (7, H) of a semisimple Lie group,
[Y1]. In particular, we formulate it for the real symplectic group of rank 2.

1.1. Let G = Sp(2,R) = {g € SL(4,R) | 'gJog = Jo} be the real
symplectic group of real rank 2, where Jo = (%, '2) with the 2 x 2 unit
matrix 1o. Let P be the Siegel maximal parabolic subgroup of G. It has
a Levi decomposition Py = Lg X Ng; Ls = {(82”?_1) | m € GL(2,R)},
Ny = {nr = (15 )T ="T-= (gg)} The nilpotent radical Ny is
abelian. Fix a non-degenerate unitary character n of Ny; for np € Ny, set

n(nr) = exp(2mv/—1 tr(H,T))

. h1 h3/2
with H, = 'H, = (1, "3/%) € My(R), det H,) # 0.

The Levi subgroup naturally acts on the set of unitary characters of .
Define SO(n) to be the identity component of the subgroup of Ls which
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stabilizes n by the action. It is isomorphic to the group SO(2), or SO(1,1),
according to the sign of H,. Denote by R the semi direct product group
SO(n) x N;s. For a character x of SO(n), the character x - n of R is well-
defined by x-n(r) := x(m)n(n), r = (m,n) € R. We use the same notations
n, x and y -n for the differentials of them on the Lie algebras ng, so(n), and
t, of the corresponding groups, respectively. We fix a generator Y;, of so(n)
by

Yy = (G028, By=H'(%3).

We now consider the representation of G induced from (x - n, Cy.,) in
C*>-context:

C=-Ind§(x - n) = {f : G — Cy.y | smooth, f(rg) =x-n(r)f(g),
(r, g) € Rx G}.

Here G acts by the right translations. This is the reduced generalized
Gelfand-Graev representation [Y1] IT, Sections 1, 2. Through differentiation
it has a (gc, K¢)-module structure for the Lie algebra g and a maximal
compact subgroup K of G.

Let (m,H,) be an irreducible admissible Hilbert representation of G.
Then the set of Kc-finite vectors H, k gives a Harish-Chandra (gc, Kc)-
module (7, H, k) through the differentiation.

1.2 DEFINITION. We define a space of intertwining maps
Why () = Homg, ) (Hr.ic. C%-Ind(x - n))

that is called the space of the algebraic generalized Whittaker realizations

of (m, Hr).

1.3. For a finite dimensional K-representation (7,V’), denote by
O3, (R\G/K) the space of Cy., ® V*-valued functions f on G satisfy-
ing

flrgk) =x-n(r) (k)" f(9), (r.g.k) € Rx G x K.
If we restrict (m,Hr i) to the subgroup K, it decomposes into a direct
Hilbert sum of irreducible finite dimensional K-modules, each of which
occurs with finite multiplicity. We call a K-module (7, V) with non-zero
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multiplicity a K-type of (7, Hr k). Fix a K-type (7,V) of (7, Hr k) and
a Kc-embedding ¢ : V' — Hy . Considering the Kc-map ® o ¢ for each
functional ® € Why.,(7), we define a function ¢ on G with values in C,., ®
V* by

®ou(v)(g) = (v,¢(g)) for all v € V,

with the canonical dual C,.,-valued pairing ( , ) on V x (Cy., ® V*).
Here (7%,V*) denotes the contragradient of (7,V). Then ¢ belongs to
O+ (R\G/K). We call it a generalized Whittaker function for m with
values in Cy.,, @ V™.

2. Basic Notation, and the Structure of Lie Groups and
Algebras

2.1. Let us introduce some notation. Take a maximal compact sub-
group K = {(4 §) € G| A,B € My(R)} of G, which is isomorphic to
the unitary group U(2) of degree 2. Denote by g the Lie algebra of G; g =
{X € My(R) | JX +'XJ = 0}, on which we define the Cartan involution
O by 0(X) =—-'X, X € g. Denote by g = €@ p the Cartan decomposition.
The space ¢ = {Xap = (4 §)eg|'A=—-A 'B=B, A, B € M>R)}
is the Lie algebra of K. An isomorphism between ¢ and u(2) is given by
Xap+— A++/—1B. We give a basis of u(2) by

A 2. A 2

Y:<—01 (1)> Y/:\/__1<(1) (1))

The space p is given by p = {(g _]?4) €cgl|'4=A"'B=B;ABc¢
M(R)}. It determines the adjoint representation of K. We express the
complexification of a Lie algebra by putting the subscript C; gc = g ®r C,
etc.

2.2. A compact Cartan subalgebra §h and its roots. We take a basis of
u(2)c as

(10 , (10 (0 1\ — (00
(o 1) =0 b) = (o) =0 0)
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Here note that 2X =Y — /=1, =2X =Y + /=1Y’ and (H', X, X)
determines an slo-triple. Via the isomorphism €c ~ u(2)¢, the preimage of
the above basis is given by

1 0
0o |y
7= -1 ,
T .
o 1,7,
0 ‘ 1
o = —/—1 -1
“T0 .
o 1 ! 0 1
0 0
(=1 0 ‘ , ‘ 10
V= . o1 Y =(70 =1 .
1 0 ~1 0

A compact Cartan subalgebra b of g is given by h = R-/—1Z +R-/—1H'.
Let us define H = 1(Z + H') and H} = £(Z — H'). Then /—1H belong
to h fori=1,2.

We write the value 3; = B(v/—1H;) of a linear form 3 : hc — C. Then
B may be realized by the values (1, 32) and the set of roots X(gc, hc) of
bce on gc is vV—1{=£(2,0),£(0,2),£(1,1),£(1,—1)}. This determines the
C5 root system. For each root 8 € 3(gc, be), put gg ={X € gc | [H,X] =
B(H)X, VH € hc}. We fix a root vector X3 € gg as in Table 1. Then
X(1,—1) and X(_; 1) are the compact roots and ¢ = hc +C- X3 1)+ C-
X(_171).

We have a decomposition pc = p4 @ p—, where p; = C- X5y +C-
X(l,l) +C- X(072), and p_ = C- X—(2,O) +C- X—(l,l) + C- X_(072). This
corresponds to the irreducible decomposition the adjoint representation of
K¢ on pc and a complex structure on the Siegel upper half plane G/K. We
put X1 = {(1,—1)} the compact positive roots, . = {(2,0),(1,1),(0,2)}
the set of non-compact positive roots, ¥, = Xt U (—X7) all the compact
roots, and X, = Xt U (=X1)) all the non-compact roots, respectively.

For each root 8 = (f1,052), put |8l = VIB1|> + |52|?; here we note
|8]|* = 4 or 2. Then the set {c-|8](Xg+X_3), c-v/=1|8|(Xg—X_3), B €
Ef{c} forms an orthonormal basis of p = pgr with respect to the Killing form
under adjustment by a constant multiple.
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Table 1.

_\/—16 (2,0) (171) (072) (17_1)
010 1 —1

X5 1| i -1 | =i
010 ) 1

i —1 7 -1

0 |0 1 %

X_5 1] —3 —1 7
0 0 —1 1

—i| —1 —1 —1

2.3. The restricted root system and the Iwasawa decomposition. Let
a= {(‘% _OA) €glA= ( 61 ?2); t1,12 € R} be a maximal abelian subalgebra
of p. Fix a basis {H1, Ha} of a;

Let e;, i = 1,2 be linear forms on a defined by e;(H;) = 6; 5, ¢, j = 1,2. Then
the set of restricted roots (g, a) of a on g is given by {42e1, +2ey, +ej
ea}. This determines the Cy root system. Fix the positive roots U, =
{2e1,2e2,e1 + e2,e1 — e2}. Then n = Za@h go determines the nilradical
of a minimal parabolic subalgebra, and we have Iwasawa decomposition of
g: g==28D adn. We fix the root vectors E, of a € W as follows:

1 0 0 1
0 0
E261 - 0 O ) E61+62 = 1 O )
0 0
0 0 0 1
By — 0 0 117. E _ [0 0 0
262 - ) er—e2 — 0 0
0 0 -1 0
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3. Representations of the Maximal Compact Subgroup

We recall some basic facts about the representations of the maximal
compact subgroup K. Because K¢ is isomorphic to GL(2,C), the ir-
reducible finite-dimensional U (fc)-modules are parameterized by the set
{A = (M, X2) € Z9 | A\ > )2}, which corresponds to dominant highest
weights. For each dominant weight A, define an integer d = A1 — As. Then
the module 1), with the highest weight X is of d + 1 dimension. Now we fix
a realization of V) with a basis (’UJ)‘ | 0 < j <d), which is used throughout
this paper.

3.1 LEMMA. We have a basis ( v]’-\ |0 < j=<d) of Vi such that the
U (tc)-module is realized as

w2} = M+ Xo)v),  ma(H)) = (25 — d)v},
(X)) = G+ Doj, X)) = (d+1—5)v)y.

For the elements H{ = (Z 4+ H')/2 and H) = (Z — H')/2, we have

HDUY = (4 A)vy,  Ta(Hv) = (= + A1)}

3.2. For the adjoint representations of K¢ on p, we have the isomor-
. ~ 2,0 2,0 2,0
phisms py = V(g0 X(02) — U(() ) Xa1) — vi ), X0 Ué )| and
0,—2 0,—2 0,—2
p— = Vig,—2); X(—2,0) — Ué )7 X121+ —v§ )7 X0,~2) — Ué )

The tensor representations V) ® p+ has the irreducible decompositions:

@ p+ = Va® Vigo) = V2.0 @ Vou+1.041) @ Vo xet2)s
@ptr =Va® Vio,—2) = Via—22) @ Vi —100-1) © Viar x—2)s

where some summands may vanish. Let PP, P and P%"" be the
projections from V) ® p4 (resp. V) ® p—) to the components V() 12,
(resp. Viaixa—2))5 Viiae+1) (tesp. Via—1x,-1)); and Viy, a,42) (resp.
Viai—2.00))-

We denote by w; the basis v§2’0) or vj(o -2
lemmas give formulas of these projections.

, 7 =0,1,2. Then the following
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3.3 LEMMA. Set = (A1 +2,A2) (or (A1, A2 —2)). Then the projector
PYP 4s;

0 Prefou)=UTIFD

(i) PP} @w)=(j+1)(d+1—j)l;

(d+1—j)(d+2—j)v§%'
2

(i)  P"P(v}; ® wp) =

3.4 LEMMA. Setv = (A +1, 2+ 1) (or (A1 —1,A2 —1)). Then the
projector P€°™ is;

(0)  P"(v) @ws) =0

(i) P (v} @ wa) = (j + L)%y, 0<j<d-1;
(i)  PU(v} @wi) = (d— 25)vf 0<j<d
(i) P (0} @wp) = —(d+1—j)oy_y 1<j<d.

3.5 LEMMA. Set7m = (A1, 2+2) (or (A1 —2,A2)). Then the projector
Pdown is;

(i) Pdow”(vj)-‘ ® wy) = v 0<j<d-—2;

(i) PP} @ wi) = —20] , 1<j<d-1
(i) P} @ w) = o7y 2<j<d

(IV) Pdown(vc)l\ ® w2) — Pdoum(vc)l\ ® wl) — Pdown( A ® w2) 0.

PrRoOOF. To show these lemmas it is enough to find the highest weight
vectors in V) ® p4 corresponding to the factors V,, V,, and Vi, respectively.
The other steps of the proof are completed by induction. [

4. The Schmid Operator

We introduce the Schmid operator and the shift operators, which we
use to obtain the generalized Whittaker functions for an admissible Hilbert
space representation.

4.1. Definition of the Schmid operator and the shift operators. Let g =
E®p be the Cartan decomposition. Then the maximal compact subgroup K
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acts on pc by the adjoint action. We denote this K-module by (Ad,., pc).
Let C°(G/K) be that space of V -valued C*°-functions ¢ on G satisfying
#(gk) = 7(k)"'¢(g) for all g € G and k € K. Then we define the left
G-equivariant differential operator V : C°(G/K) — %Ade(G/K) by

Vo= Rx6()® X,

i€l

for an orthonormal basis (X;);er of p = pr with respect to the Killing form
on g. Here Rx¢ means the right differentiation of the function ¢ by X € g:
Rx¢(g) = %cﬁ(g exptX)|i=o. The definition does not depend on the choice
of an orthonormal basis. We call this operator the Schmid operator. We

Pdown onto the irreducible

composite it with the projections P*P, P¢’¢" and
components of 7y ® Ady. as K-modules. We call these composite operators

P*® oV the shift operators.

5. Radial Part of the Schmid Operator and the Casimir
Operator

Define a subgroup A = {a = diag(as,az,a;',a3") | a1,as > 0} of G
and denote its Lie algebra by a. There is a decomposition gc =
Ad(a=1)(so(n)c + nsc) + ac + Ec with a € A, then G = RAK. Now we
study the restriction ¢[4 to A of a function ¢ € CT5, - (R\G/K) through
an inclusion of CY5, . (R\G/K) into C*°(A;V7,), where C*°(A; V7, ) is the
space of V7, -valued C*°-functions on A. It is given by the left R- and right
K-equivariance of the function ¢. Then we need to describe how the each
differential operator acts on the restriction when we fix a character x - n of
R and a K-module 7). We call the action the A-radial part of an operator,
and denote by R(V;nm) the A-radial part of V¥, for example. In this
section we give formulas of the A-radial part of the Schmid operator and
the Casimir operator acting on the generalized Whittaker functions with a

fixed K-type. We use the notation given in the previous sections.

5.1. Radial part of the Schmid operator. Let us take an orthogonal

basis of p by (C||8](Xs + X_p), %(Xﬁ —X_p) | B €X}) where X4,

B € X} are the non-compact root vectors {Xig;3 € X7} of hc in pc ,
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and C' is a normalizing constant depending on the Killing form. Then the
Schmid operator V is given by

VF=2C" Y |IBI*PRx_,F ® X3 +2C* Y ||BI°Rx,F @ X_.

peYy peYy
We can write it as a sum of two operators corresponding to the irre-
ducible decomposition pc = py @ p— as K-modules. These operators

V. C®(G/K) — T Ay, (G/K) are given by
1
(5.1) VIF = 3)8]* - Rx_, F ® X5

1
= Bx 50 ® X@o) T 5Rx @ X
+ RX(0,72)F ® X(0,2);

_ 1
(52) V=S5 Rx,FeX g

1
- RX(ZO)F ® X(—Q’O) + §RX(1,1)F ® X(—l,—l)
+ RX(O’Q)F ® X(07_2).
We prepare the following lemma to describe the A-radial parts of the actions

of V4 on the generalized Whittaker functions.

5.2 LEMMA. For the character n of Ny we suppose that H, is invertible
and both of h1 and ho are not equal to zero. Then

(1) Xzoo) = Hi + H] £2vV—-1aiAd(a™ ") Eae,;
(i) X0+ = Ho + Hy +2vV—-1a3Ad(a™") Bacy;
(i)  X(11) =2FEe;—e, +2 X +2V—-1a1a2Ad(a™ ") Ee, 4e,
= —2(a1az/D){det H, - Ad(a )Y, — (hs/2)(H; — H,)
— hi(ar/a2)(X — X)}
+2 X+ 2\/—_1a1a2Ad(a_1)Eel+82;
(iv) X 1-1)=2Ee,—e, — 2 X —2V—1ajazAd(a™ ") Ee, ye,
= —2(araz/D){det H, - Ad(a™")Y, — (hs/2)(H1 — H>)
— hi(a1/a2)(X — X)}
—2 X — 2V —lajagAd(a ") Eeyyey.
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Here we use the symbols: D = hya? — hoa3 and Y, is a generator of so(n).
The second equalities in (iii) and (iv) are valid for generic elements a € A,
satisfying aiaz(hia? — hoa3) # 0.

PrRoOOF. These formulas can be given along with the decomposition
gc = Ad(a”")(so(n)c + nsc) +ac + ¢, a € A

The equalities (i), (ii) and the first ones of (iii), (iv) can be checked by
definition.

To get the second equality in (iii), or (iv), we note that a generator Y,
of s0(n) is given by

_ 0 1 _1(hs
H77 ' <_1 0> = K’] = (det HW) 1{?(H1_H2)+h2E81—62 _hlE—€1+62}-

For a € A satisfying the generic condition, computing det H,, Ad(a™1)Y,,
and solving it for E, _,, then we have

ai1an
(5.3) Eey ey = — D

{ det H, - Ad(a™)Y,

h3 aiq -
5 (Hy = Hy) — (X~ X)},

in the decomposition of gc. This completes the proof of lemma. [

We give formulas of the A-radial parts of Schmid operators.

5.3 PROPOSITION. We assume the same condition on the character n
of Ns as in Lemma 5.2. Then the A-radial parts of the Schmid operators:
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R(VE, ) :C®(A; V) — C®(A;V,, ®p), are given by

X TTx

(5.4) R(VY,\)f(a)

2
= (0 +drhial + (@ Ady, )(H]) + th? —~2)(f(a) ® X(20))
5 2
w(z - _h%@ (mx ® Adp, )(X) + hll;” (2 ® Adp, )(X) ) (f(0) ® X(1.1)

h 2
+ (82 + 4rhoal + (Th ® Adp, ) (H5) — 2 g‘l - 2) (f(a) ® X(,2));

(5.5) R(Vy,,)f(a)

2 / h2a%
= (al —4rhiaf — (1) ® Adp_)(H1) + 222 — 2) (f(a) ® X(_2,0))
2 2
+ (7 = B8 @ Ady ) () + P22 (7 Ay )() (@) @ X1, 1)

hla%

+ (52 — 4mhga3 — (ty ® Adp_)(H3) — 2 D 2) (f(a) ® X(0,-2))-

Here we use the symbols

0; = aia‘zi, 1=1,2;, D= hla% — hga%, and

h
Ii = —3a1a2 ((91 — 82) F 27rh3a1a2 —

x(Yy,) det Hyaiao
2 D '

D

PROOF. These are obtained by applying the equalities in Lemma 5.2
into the expressions (5.1) and (5.2) of V*. Here we show a computation

of R(VY, ;) from (5.1). Because Ry, Fj,(a) = 01F,(a), Ry F|,(a) =

—TA(H{)F),(a), and Rag(a-1)p,,, F],(a) = 2mv/—1h1 F], (a), we have

RX(7270).F1|A((1) & X(z}o)
= {(H1 — H} - 2V~1a{Ad(a™ ") Eae, ) F, (@)} © X(50)
= {(81 + TA(H{) + 47rh1a%) F|A(CL)} &® X(2,0)'

Note (mA(H{)F},) ® X(20) = Tn ® Ady, (H{)(F|,(a) @ X(20)) — F],(a) ®
(X2, —Hi] = 7y ® Ady, (H) (F], (0) ® X(2,0)) = 2(F] () ® X(2,9)) . Com-
putations of the other terms are done similarly, where we only remark
that Ad(a™1)Y, F, (a) = (d/dt)F(exp(tYy)a)li—o = x(Y3)F], (a) in the term
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RX(_L,_UFIA(“) ® X(1,1)- The formula (5.5) for V™ is obtained in a parallel
way. [

5.4. The Radial part of the Casimir operator. The Casimir element L
in the center Z(gc) of the universal enveloping algebra U(gc) is given by

L= H?+ H? — 4H, — 2H,
+2Ee, ey E—cites +4E2, - E_9e; + 2E¢,1ey  E—c)—ey
+ 4F5, - E_ge,
= H} + H} —4Hy — 2Hy + 2B, ¢, - E_c\ e, + 4E3, +2E2 | +4FE3,
—4Fs¢, (Eoey — E—2¢;) — 2F¢, ey (FEeytes — E—c1—e,)
— 4F9e, (Eoey — E_2e,)

up to a scalar multiple, see [M-O1], §7. In this expression we note that the
elements Eoe, — E_9., = \/—1H}, Ege, — E_9., = \/—1H}, and E¢, ¢, —
E_¢,—e, = V—1(X+X), are all contained in £c. Therefore, we can describe
the A-radial part of L by fixing data x - 1 and 7y, for the terms other
than 2E, ., - E_¢,1e,. We have to calculate also the action of this term
2F¢, ¢, - E_c +e,. To make our expression simple, we shall only treat the
case hg = 0 for the character n of Ng. This assumption is not essentially
restrictive for our purpose.

5.5 LEMMA. Assume that the matriz H,, is non-degenerate and hy = 0
for the character n of Ny. Put W = X — X in tc. Then we get

hiai haad\ [ hia?
2Be)—¢; * Beyte, =2 E)I(HI—H2)+2< 2DQ>( 1DI)W2

D
hiaihsas (hla% + hQCL%)
2 D2

+2 (M>2 (Ad(aH)(Yy))?

Ad(a™) (Y)W

for generic elements a € A.

PrROOF. The formula follows from the expression (5.3) of Eg, ., in
the proof of Lemma 5.2 by a similar computation given in [Kn], Chap. 8,
Proposition 8.16. [
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Now we give a formula of the A-radial part of the Casimir operator.

5.6 PROPOSITION. Assume the same condition on H, as in Lemma
5.5. Then the A-radial part R(L) = R(Ly.r,) of the Casimir operator L
acting on the space C*°(A; V., ) is given by

2

hoa
R(L) = 81+82—2(81+82)+2 81—2

— 167T2h1a1 — 167T2h2a2
- 87rh1a1 T)\(Hl) - 87rh2a% T)\(Hé)

hia? + hoa? hiai1h
) (MR ) () )

+2 (%ﬁ) <hi;§> (W)} + 282,

Here we use the symbols: S := M and W := X — X € tc.

0o

6. Generalized Principal Series Representations Induced from
a Maximal Parabolic Subgroup and Their K-types

For a maximal parabolic subgroup P} of G we consider a generalized
principal series representation m = Indgl(a ® (v1 + p1)) of G.

6.1. Let P, be the maximal parabolic subgroup of G with Langlands
decomposition P, = M; A1 N1, where the unipotent radical Nj is the two
step 3 dimensional nilpotent group, A; = {diag(a,1,a7!,1) | a > 0}, and
M ~ {£1} x SL(2,R). We call P; the Jacobi mazimal parabolic subgroup
of G.

Fix a representation of M; by a pair o = (g, D), where € : {£1} — C*
is a character and D is a discrete series representation of SL(2,R). Take
also v € ajc and define the character exp(v1) : Ay — C*. Then we define
the generalized principal series representation m = I(Py;0,v1) of G by the
smooth induced representation Ind]Ggl(o ® (v1 + p1)) from Py to G ([Kn],
Chap.7, §1). Here 2p; = (e1 — e2) + 2e1 + (e1 + e2) = 4e;.

6.2 The K-types of the generalized principal series representations. We
recall the K-type decomposition of a generalized principal series repre-
sentation I(Pi;o,v1). Each discrete series representation of SL(2,RR) has
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the Harish-Chandra parameter parameterized by Z \ {0}. For the Harish-
Chandra parameter ¢ € Z \ {0} we know that the Blattner parameter k of
the discrete series is written as k = £ + sgn(f) - 1. We denote by D the
discrete series representation of SL(2,R) with Blattner parameter k£ > 0 (in
fact k > 2) and also by D, the discrete series representation with Blattner
parameter k < 0 (k < —2). Then the K-types of D;j|so(2) are parameter-
ized by the highest weights k+ 25 where j runs through the all non-negative
integers.

Irreducible finite dimensional representations of K are parameterized
by the associated dominant highest weights; we write by 7y, ), the mod-
ule with the highest weight (A1,\2) € Z & Z, A1 > Aa. Define yg.,, =
diag(—1,1,—1,1) € M.

6.3 PROPOSITION. Let m = I(Py;0,11), 0 = (¢,DF), v € alc, be a
generalized principal series representation of G. Then the multiplicity of
Ta N 1N the restriction of m to K is given by

m = k(mod 2), Sgn(D,f) -(m—k) >0,

[77:77\1,)\2]:# m € Z | A +Aa—m )

(=DM =e(72e)), A2 <m< N

which may be zero. Here we set that sgn(D;) = +1, sgn(D;) = —1.

PROOF. The multiplicity formula is derived from the Frobenius reci-
procity for induced representations. It says that the multiplicity of 7y, »,
in I(Py;0,v1)|k is given by

[L(Prso, 1)k 7_/\17>\2] = Z [0k, W] - [7—/\17>\2’K0M1 tw],
we(KNM1Y

([Kn], Chap.1, Theorem 1.14). Here we consider the restriction of the
representation o to K N My, o|knn, = Zwe(KQMlj{ﬂKQMl : w|. Since
K N M; ~ {1} x SO(2), any character w € (K N M;] is specified by the
value w(7yge,) and the restriction wlggz). The characters x,, of SO(2) are
parameterized by m € Z as xm(rg) = exp(v/—1m#), where rg € SO(2)
is the rotation with angle #. Then this fact for the SO(2)-types for Df:
implies that the multiplicity [o|xnn, @ w] is given in terms of the pair
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{w(v2e1)s Xm = wlso(2)} as: 1, if m =k (mod 2), sen(DE) - (m — k) > 0,
W(Y2¢;) = €(72¢1 ), Or 0, otherwise.

On  the other hand, we have that 7\ x|kna =
Z/\nggl{(—l)’\ﬁ’\rm, Xm}, where {(—1)M+A2=m 1 denotes the
value assigned to this pair in the previous paragraph, holds. Applying
these equalities into the multiplicity formula, we obtain our assertion. [

6.4 COROLLARY. (0) Ta, z, with A1 < k (resp. A2 > k) does not occur
in the K-type of I(Py;0,11), if k > 0, o = (¢,D}) (resp. k <0, 0 =
(e.D7)).

(i) When o = (,D}), e(v2¢,) = (=1)*, (k > 0) then each of Tax, (A €
Z, A=k (mod 2), A>k), or i n, (A€ Z, A=k (mod 2), A <k), occurs
in I(Py;o0,v1) with multiplicity one.

(ii) When o = (,D;), e(72¢,) = —(=1)¥, (k > 0) then each of T x—1,
A€ Z, X>k), or pp—1, (A € Z, A =k (mod 2), X < k) occurs in
I(Py;0,v1) with multiplicity one.

(iii) When o = (g,Dy), €(y2e;) = (=1)%, (k < 0) then each of Txx, (A €
Zy X=k (mod 2), A< k), or Ak, (A€ Z, A=k (mod 2), A > k) occurs
in I(Py;0,v1) with multiplicity one.

(iv) When o = (,D}), e(y2e;) = —(=1)¥, (k < 0) then each of Tat1.x,
A€ Z, X< k), or g1k, A€ Z, X =Fk (mod 2), X\ > k) occurs in
I(Py;0,v1) with multiplicity one.

We call the K-type 7,1, in the case (i), 7p -1 in (ii), 75 in (iii), or 7414
in (iv), the corner K -type of the principal series representation, respectively.

7. The Generalized Whittaker Functions for the Generalized
Principal Series Representations from a Maximal Parabolic
Subgroup P;

We study the generalized Whittaker functions with the corner K-type
for the generalized principal series representation I(P;;o,v;) of G.

DEFINITION. We say that a generalized principal series I(P; (e, DZE),
v1) is of

(i) even type, if e(v2e,) = (=1)F, or (ii) odd type, if e(yae,) = —(=1).
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By Corollary 6.4, we have that the corner K-type of I(P;;0,14) is one
dimensional, if the principal series is of even type, or two dimensional, if it
is of odd type.

To begin with, we have a remark. Set M = {diag(ei,e2,e1,62) | & =
+1} the centralizer of A in K. Then a generalized Whittaker function
#(a), a € A, must satisfy ¢(a) = ¢p(yay™t) = x(V)7(7)¢(a) for y € M N
SO(n). Assume that H, = 12, hence SO(n) = SO(2). Then M N SO(n) =
{diag(e,e,e,e) | e = £1}. Denote by = the nontrivial element in this
group. In the even (resp. the odd) case with the corner K-type 7 = 7
(resp. T = Tp41k), we have 7 1 (70) = det(—lz)k =1 (resp. Tp+1.6(70) =
det(—19)* ® Sym!(—15) = (—1) - id). Hence it should be satisfied that
X(v) = 1 (resp. x(70) = —1) in the even case (resp. the odd case)
for ¢(a) # 0. This parity condition appears again as a result of direct
calculation, Lemmas 7.4 and 7.9.

7.1. The generalized principal series of even type: a system of differ-
ential equations. Since our treatment proceeds in parallel, we study only
the case k > 0, 0 = (¢, D,j), for the generalized principal series I(Py;0,v1)
of even type; €(y2¢,) = (—1)*. This module has the corner K-type 4 with
multiplicity one by Corollary 6.4. The A-radial part of a generalized Whit-
taker function with K-type 7_; __ = 77, for the principal series satisfies a
set of differential equations, which we gfve by using the shift operators and
the Casimir operators. We fix a base {v, k’fk} of 7_j, _i, given in Lemma
3.1.

7.2 PROPOSITION. Suppose that h3 = 0 and H, = (hé 21) 1§ positive
definite for the character n of Ns. Let ¢(ai,as) = b(ay,as) - vak’_k €
C®(A; Vo, ) be the restriction to A of a generalized Whittaker func-
tion with the K-type 17_j _j for I(Pi;0,v1) of even type. Set b(ai,as) =
(VRia1)* T (Vhgag) e 2r(hat+haad) (g, ay). Then the function c(ay, as)
has to satisfy the following set of differential equations:

h 2 h 2

(1) (e — 2201+ B8, - 87 e(ar, 02) = 0

(7.2)  {(01 + 32)* + 2k(01 + Do) — 8wh1aidy — 8whoa30s

— 87m(h1a3 + hoal) + k* — V%}C(ah az) = 0,
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where we use the symbols: D = hya? — hoal and S = M.

ProoFr. The differential equation (7.1) is derived from the action of
the shift operator on ¢(aj,as). (7.2) is essentially from the action of the
Casimir operator. We explain first (7.1). We know, by Corollary 6.4, the
K-module 7;_53_2 does not occur in the principal series. Take two shift
operators: P*PoR(Vy, - )and Pdow"oR(V;n’LkHﬁk) which moves the
K-types from 7_j _; to T_j42 _k, and from 7_jp o 1 to 742 _jy2. Then
the composition of these operators must annihilate a generalized Whittaker
function ¢ with the K-type 74 _, for I(Py;0,v1).

By Proposition 5.3, Lemma 3.1, and the projection formula in Lemma
3.3, we can write

P R(v;'nﬂTfk,—k)¢(a’) = (01 + dmhiai — k)b(a)vz_k+2’_k
_ Sb(a)vl—k+2,—k

+ (0o + 4rhsa3 — k)b(a)vak+2’_k

with the basis (vj_kﬁ’_k | 7 = 0,1,2) of 7_j42_. Also for a function

o(a) = Zizogj(a)vj_kw’_k in C°(A;Vr_, ., _,), we have
P o R(VE, L, )o(a)

= {(00 + 4mhia? + 2" — (k+2)bo(a) + 25b1(a)
+ (82 + 47rh2a% — 2@513 _ (k 4 2))g2(a)}v0_k+2’_k+2,

Then the composition of these operators, which annihilates ¢, reads

{ (al + drhya? + 2%@ ~(k+ 2)) (82 + drhga2 — k) 282

+ (82 + drhal — 2%35 ~(k+ 2)) (al + drhya? — k) }b(al, as) = 0.

Rewrite this equation for ¢(ai,as), then it becomes the equation (7.1).
We produce the equation (7.2). We remark that the Casimir operator L
acts by a scalar multiplication on I(Py; o, 11); it is written by v2+(k—1)2—5
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with the parameter of the module, [M-O1], §7. Therefore we have the
following equation:

hla

(a% + 02 —2(01 + D) + 2h2a2 O — 2—20y — 167°h3a] — 167%h3a)

+ 8kmhya? + 8krhyal + 252)b(a) = (2 + (k1) - 5}b(a)

by Proposition 5.6. Substituting (7.1) for the part Qh%z% o — 2h1Tg%82 in the
above, and rewriting it for ¢(a1, a2), we obtain the equation (7.2). O

7.3. A solution with an integral expression in the even case. We search
a formal power series solution of (7.1) and (7.2) satisfying certain asymp-
totic behavior.

We introduce new variables x and y by

x = 2m(hia? — hea3) and y = 2n(hia? + hoal),

[Ni]. Then the equations (7.1), (7.2) in Proposition 7.2 are rewritten into

(7.3) i {x2<8—2 - 8—2> + 0 + x(Yn)2h1h2 }c(:z:,y) =0,

x2 ox?  Oy? oz 4
(74) { 8822 + yQaa—Z + 2acya8 5 +(k+ 1)(1:% + ya%)
— (22 + yz)% — Qxyaa —y+ K ; vi }c(a:,y) =0.
Consider a formal power series solution at z = 0: c(z,y) =

> =y Pm(y)z™. We assume that it is holomorphic at x = 0 in the vari-
able z, so mg > 0, and increase at most in polynomial order in y when
y — +o00. The equations (7.3) and (7.4) yields the following differential
recurrence equations satisfied by pp,(y), m > mg:

2 2
(75 (2 + XEDEY ) = 2l
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(7.6) {(y%)Q —(y—2m - k;)yd% — (@m+1)y

22— (9m 2
R S T )

4
Then we obtain the following lemma:

7.4 LEMMA. Let mgo be the degree of the first non-vanishing term
Pmo (Y) # 0 of the series expansion. Then we have

(77) (4m(2) + X(Yﬁ)zhth) Pmg (y) =0,
d\2 d
8)  {(vg,) (= @mot Ry~ Gmo+ 1)y
v — (2mg + k)?
— - ( 4 ) }pmo(y)_o
So it must be satisfied that x(Yy;)*hihe = —4m2, and mg is an integer.

Moreover if pm(y) # 0 for m > myg, then m = mgy + 2¢ with a non-negative
integer £.

Proor. The remark in the top of this section implies that
—v—=1x(Y;)vhiha = 2mg should be an even integer. Hence we conclude
that mg is an integer. [

By this lemma we can write c(z,y) = ™0 - > 0% pgtae(y)z?. As-
sume that each py,,+2/(y) is written by a Laplace integral pp,,+20(y) =
JoS amo+2e(t)e™¥dt.  Then  (7.5)  becomes  t*qpot20—2(t) =
40(mo + ) qmo+20(t), € > 0. A general term is given recurrently by

m0| (L)QZ
— “\2

One can also check these expressions and the equation (7.6) give the equa-
tion (7.8).
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Recall that the v-th Bessel function of the first kind has a series expan-
sion o
Ju(z2) =
(2) Zm! I'v+m+1)

with the gamma function I'(z), [M-O-S], 3.1, p.65. Hence we have

momy/—1 o0 t —mo
clr,y)=mol e 2 z™° <§) e (V=1 t2) g, (t)e Vidt.
0

We have to determine the first non-vanishing term p,,(y), or equiva-
2mg+k+1

lently g, (1), satisfying (7.8). Put pp,(y) = ey~ 2 W (y). Then (7.8)
gives the following equation for W (y):

&y 2mo—k+1 vi o1
19 LTy (7)) =
(7.9) VrE 4 Y= \73 —1)Ww=0
It has a solution W (y) = Wk-2mg-1 », (y) with
2 ' 2
e 32k & 1 t K—gtm
Wim(2) = 1—/ et (1 - —> e dt.
F(§ — K+ m) 0 z

It gives a solution of (7.9) which decays rapidly as Re(z) — oo, and such a

solution is unique up to constant multiple, [M-O-S], §7.1, or [W-W], 16.12,

p.340. We have pp,(y) ~ y~ 30+ as 4 — 400, since Wi—zmg-1 v (y) ~
2 ’ 2

e 2y . We can also express pp,(y) by the Laplace transform, [M-
0O-S] §7.5.2, p.316, or [ET] I, §5.20, p.294, (9):

y _ 2mg+l—k
2

[e.e]
Pmo(y) = T'(2mo + 1)_1/ 2O (o + 5 o — 5 2mo + 1 —t)eVdt,
0

where F'(a,b;c;z) = oFi(a,b;c; z) is the Gauss’s hypergeometric function,
and o = 2_“% Note that mg is non-negative.

7.5 THEOREM. Assume that h1 and hs are both positive, and hs = 0
for the character n of N; in particular, H,, is positive definite. Consider the
system of differential equations in Proposition 7.2. Then there is a unique
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solution ¢**(ay,as) = bs"l(al,ag)vo_k’_k, up to a constant multiple, that is
characterized by the following conditions (a) and (b): (a) it is holomorphic
at © = 0, and (b) it decays rapidly, when a1 and ay tend to +oo. The
solution is expressed by the following integral:

__mgryv/—1
e 2 (a1a2

[o¢]
tmo 7 (27 —1(h1a? — hoya?) t
T(2mg + 1) /0 I (2 =1(haay — haa3) ¢)

2—k+2 2—k+2mo—v1 . .
% F( +2m0+1/1’ +2m0 V172m(]—|—1,—t)

% 672ﬂ(h1a%+h2a§)(t+1)dt.

)k+1

bSOl(al, a2) —

Here 2mg = |x(Yy)|Vh1h2 is a non-negative integer, J,(2) is the v-th Bessel
function of the first kind, and F(a,b;c;z) is the Gauss’s hypergeometric
function.

Proor. All of p,,(y) with m = mgy + 2¢ are recursively determined,
once the first non-zero term pp,,(y) is given. The equation (7.9) for W(y)
has 2 dimensional solution space. By Lemma 7.4 the integer mg should
satisfy 4m2 = —x(Y;)?h1ha. Hence (7.1) and (7.2) determine a holonomic
system of rank 4.

We have already seen that the integral in the statement of our theorem
gives a solution of the set of differential equations in Proposition 7.2. We
remark the convergence of the integral. To estimate the integrand as ¢ tend
to +00, we recall the asymptotic behavior of the functions appearing in the
formula; they are F'(a,b;c;t) ~ C1t=%+Cot P+ Ot ¢ 1)+ 0@t " ) ast —

mQ'/r\/—l

too, and Jo, (vV=Iat) = e 2 Iy (at) ~ Cset(2mat) ™2 as t — +oo,
where —Z < arg(zt) < 2F, o = 2m(hia? — hoa3), [M-O-S] p.139; this is the
asymptotic formula for the modified Bessel function I,,(z) of second kind.
Therefore the integrand grows at most ~ C' x t% x e—4mhaa3t o —2m(hiai+haa3)
as t — +oo, where we note hy, ho > 0. This implies that the integral
converges. Then it determines a solution satisfying the condition (a) and
(b).

For the uniqueness, first remark that there are 2 choices of ¢(z,y) with
holomorphic expansion, hence mg < 0, at = 0, which correspond to the
solutions of (7.9). We use one of them in the above. Another solution cor-
responds to the solution Mx—2mq-1 +, (y) of (7.9), [M-O-S], 7.1, p.296. Then

2 2
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y _2mQ+k+1 .
the first non-zero term py,,(y) = ezy 2 Mgi-2mg—1 v, (y) increases as
2 72

~ Cre¥y~F 4 Cyy~(motl) when y — +o0 along the real line, [M-O-S], 7.6.1,
p.317. Multiplying (22 — yz)%e*y = (vVhia1vhaap)F e 2r(hiatthaa3)
we get an asymptotic formula of b(ai,a2) on x = 0 by b(ai,as) ~ Cry +
Coe Yy#=2m0 wwhen y — +o00. Hence it does not satisfy the condition (b). O

Let ®(v)(g9) = (v,¢°%(g))x be the function in C=°-Ind$(x - ), where
v is a vector in the K-type 7 of I(Pi;0,v1). Consider the right U(gc)
module Ry ®(v) in C>°-Ind%(x - 1) generated by ®(v). Then we have
the following theorem.

7.6 THEOREM. The module Ry y®(v) determines the generalized
principal series 1(Py;o,v1) of even type. Hence the principal series has
a unique (up to a constant multiple) non-trivial generalized Whittaker re-
alization with the n and x in Theorem 7.5, whose restriction to a K-type
corresponds to K-finite functions satisfying the properties (a), (b) given
above.

PrOOF. We prove this theorem by the following lemmas.

7.7 LEMMA. The equations (7.1) and (7.2) determine the action of the
A-radial parts of Z(gc), the center of the universal enveloping algebra, on
the function ¢ with the one dimensional K-type T_j _.

PROOF. A set of generators of Z(gc) is given by the Casimir element
in degree 2 and another element Cy in degree 4. Proposition 7.2 explains
the action of the Casimir operator. For Cy, the same argument as given
in [M-O1] Lemma 10.2, tells us that the composition of the following four
operators: P"? o R(VE ), pown 4 R(vj’lk+2,7k)’ P oR(VZ, , ..)

and P“’/"”“”"OR(V;_IC+2 _,) is written as a C-linear sum of the Cj, the Casimir
operator, and a scalar multiplication. Then we can determine the action of
the Cy because (7.2) implies that this composition, indeed, the composition

of the first two, annihilates ¢(ay,ag). O

By this lemma we know that the module Ry (,.)®(v) has the same infin-
itesimal character v as that of I(P1;0,11). Since Ry(g.)®(v) is generated
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by a K-finite vector, and it has an infinitesimal character, it is admissible
of finite length, [W] Theorem 4.2.1.

7.8 LEMMA. The module Ry g ®(v) has the K-type Ty ) with multi-
plicity one.

PrROOF. We want to use Lemma 3.5.3 of Wallach [W]. To apply it we
have to know the right action of U(g)X on Ry ®(v). Hereupon, since
Ry (ge)®(v) = V7, ,, is one dimensional, Proposition 2.1 and Theorem 2.4 of
Shimura [Sh| state that this action is realized by that of Z(gc) which has

been specified by (7.1) and (7.2), Lemma 7.6. O

Considering the family of irreducible admissible modules of Sp(2, R) with
the common infinitesimal character v, we conclude that I(Py;0,v1) is one
of the constituents of Ry (4.)®(v), occurs with multiplicity one. Moreover,
it is contained as a submodule, since the equations (7.1) hold. If v is
generic, then I(Py;0,v) is irreducible, and the K-type 74 =~ Rye.)®(v)
occurring in Ryy(g.)®(v) must coincide with the corner K-type of I(P1;0,v1)
by Lemma 7.7. Hence Ry;(g.)®(v) is isomorphic to the generalized principal
series.

7.9. The generalized principal series of odd type: a system of dif-
ferential equations. In the next place, we study the generalized princi-
pal series I(Pi;o,1v1) = I(Pi;(e, D), 1), k > 0, of odd type, that is,
€(Y2¢;) = —(=1)* . Then the corner K-type 741 of the module is two
dimensional and occurs with multiplicity one. Also we know that the K-
type Tip—1k—2 does not occur in I(Pi;0,v1) by Corollary 6.4. Hence the
map P" o R(v;(i_'ﬂﬂ'—k-q—l,—k)’ which moves the K-types from 7_j41 1 to
T_k+2,—k+1, annihilates the generalized Whittaker functions with the K-
type 7}y = T—k+1,—k for I(Pi;0,v1). Pairing it with an equation given
by the Casimir operator, we set a system of differential equations.

7.10 PROPOSITION. Suppose that hg = 0 and hy and he are both pos-
itive for the character n of Ng. Let ¢(a1,a2) = Zj=0,1 bj(ai, ag)vj_kﬂ’_k
generalized Whittaker function with the K-type T_j41,—k for I(Pi;0,v1) of

odd type. Set

bj(a/ly a2> _ ( /hlal)k+1+j( /h2a2)k+2—je—27r(h1a%+h2a§)cj(al,a2)
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for j =0 and 1. Then cj(ai,a2), j = 0 and 1, must satisfy the following
set of differential equations:

hla%lma%
(7.10) X(Yn)\/ hlhzTCO(al, az)

h 2
g2>01(a1,a2) =0,

+ hlaf ((92 —
hia?
L)eolar,az)

hia?hsa’
T X(n)\/hlhgllT“cl(al,az) =0,

(7.12) {(81 + 82)2 + Q(k‘ + 1)(61 + 32) — 87Th1a%61

— 87Th2a%({‘)2 + 87T(h1a% — hga%)

— 167r(h1a% + hga%) + (k + 1)2 — V%}Co(al, CLQ) = 0,
(7.13) {(81 + 82)2 + 2(]{3 + 1)(61 + 82) — 87Th1a%61

— 87rh2a§(92 - 87r(h1a% - hgag)

— 167T(h1(l% + hza%) +(k+ 1)? — V%}Cl(ala az) = 0.

(711)  hodl (81 +

Here we use the symbol: D = hia? — haa3.

PROOF. The equation P¢*" o R(VY )¢ = 0 yields (7.10) and

XMT—k4+1,—k
(7.11). By the projection formula in Lemma 3.4 and Proposition 5.3, it says

{01 + dmhia? + 52 — R)bo(a) + Sba(a) o 27+
— {S8by(a) + (8 + Amhea? — MU _ k)b, (a) o FT2ETL —
2 D 0 ,

where § = . Then each coefficient should vanish. Rewriting
them for ¢j(a1, az), we get the equations (7.10) and (7.11).
By Proposition 5.6, the action of the Casimir operator on ¢ is given by

x(Yy)hiaihoaso
D

(P + 8/€7Th1a% + 8(k — l)tha% _QM‘S‘ >
2MD}LW%S P+ 8(k — 1)hia? + 8kmhoa3

() <o,
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where
2 2 h2a§ hla% 2,2 4 2,2 4
hia2hoa?
_MAMA3 | 962 2 (k4 1)2 45,

D2

Here we note a relation between the Casimir operator L and the shift op-
erator. Let us put

S+_ = (Peven © R<v;'77’7'7k+2,7k+1)) ° (Peven ° R(v;nﬂlk+1,fk))
Ser = (Peven o R(VJFX‘T], T—k,—k—1 )) o (Peven ° R(V;'Tlﬂ'—lﬁ-l,—k))'

Then they satisfy the relation
R(LX'mT—kH,—k) - 2(k + 1)(k - 2) =54 +5 4.

Now the equation obtained above from the Casimir operator can be written

as
Qi RS (o)) _ gy ((ol0)
gatthacs o Qs bi(a) ) ~ 1 bi(a) )
with

Q1 = (01 — dnhya? + 553 1k — 2) (91 + drhaaf + "5 — k)
+ (02 + dmhgad — M5E — k —1)(9 — Amha} — "5t 4k —1) + 252,

Q2 = (02 — 4mhgal — 351 + k — 2) (9 + 4mhaal — 51 — k)

+ (00 + dmhyad + 1292 — | — 1) (9 — Awhya? + 222 4 |k — 1) + 252

If we take (7.10) and (7.11) into account, it provides us with equations of
the single ¢;j(a1, a2) for j =0 and 1. For example, we obtain that

hm%)

{ (01— sehsa? + M4 o 1)) (5, + 22
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+2

hla% + hga% hla%
D <81 D )

haa3 o hodj 2 2 2
+ (32 - )(32 — 8mhaas — N —|—2k> +25° +k —Vl}co(a) =0

for ¢p(ai,az). On the other hand, (7.10) and (7.11) yield the equations

2
{(02 — 37292 (01 + 110 — 52}y (ag,00) =0,

h h
{(01+3 g‘l)(ar %12) 82V ei (a1, a2) = 0.

By canceling the term 252%¢(a1,az) in the 2 equations for cy(a), we obtain
(7.12). The equation (7.13) for c¢;(a) is obtained in a similar way. O

7.11. A solution with an integral expression in the odd case. We inves-
tigate a formal power series solution of the system of equations in Propo-
sition 7.10. We change the variables a;, as by x and y, the same as in the
even case, 7.3. Then the equations are written as

% —y? d d
(7.14) 1 {—pco(x,y)+<2x%—2md—y+1>cl(5€,y)}—0,
(7.15) $2_y2{(2 4y i+1) (z,y) + p 1 )}—0
. A xd.’L’ xdy Co\Tr, Yy p T,y — Y,
02 02 )
2 Y 2 Y
(7.16) {x 5t ga t g
o 0 Y )
+(k+2)<xa +y8> (@ +9%) 5, — 2oy
k+1)2—
_’_x_Qy_}_M}CO(z’y):O,
4
L, 0P )
1 2y — <
() {e? 022 TV a2 T oz 0y
o 9 , 5 0 )
(2= +y—) - A
(k4 )(x8x+y8y> (@ +9) 5, — 2y

(k+1)2 —v?

— U
—x—2y+ 0 1}61(36,1/):



The Generalized Whittaker Functions for Sp(2,R) 269

Consider formal series solutions ¢;(x,y) = ano_mj pﬁn(y)xm for j = 0 and
— 0

1. We suppose that mé > 0, hence they are holomorphic at the singular
locus x = 0. Then (7.14) and (7.15) provide us with the following recurrence
differential equations,

ma ) e (5)

with
M. — < —(2m+ 1) —X(Yn)\/h1h2>
m —X(Yn)\/ hihsg 2m +1 ’

Now we obtain the following lemma concerning with the terms pino(y) in
the first degree for j =0, 1.

7.12 LEMMA. The numbers m, m$ must coincide with each other for

the first non-vanishing terms. Denote the common one by mo = m) = mj.

Then it should be satisfied that x(Y,)*h1ha = —(2mq + 1)* and mg is an
mnteger.

ProoF. Consider the matrix M,,, for my := min (mg, mcl)) Then it is
easy to obtain the first assertion. Also it should be satisfied that det M,,,, =
0, which produces the second condition. The remark at the beginning of
this section implies that —/—1x(Y;)v/hiha = 2mg + 1 should be an odd
integer. U

Express pl,(y) by a Laplace integral: pl,(y) = I @ (t)e Vidt. Then
(7.18) gives us that

(7.19) —9t <q%—1(t)> = M, <q2%(t)> .

Gm—1(t) 0 (1)

If we look at the first pair (q%o(t), q}no (t)), Lemma 7.12 tells us that it is
written as

v (i) om0 (),
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with a non-zero function @, (t) that does not depend on j. Here we note
that the vector t(l, \/—1) generates the kernel of M,,,. By an inductive
calculation we conclude that

7.13 LEMMA.
t/2 20 ! )
<¢m4w>_{ T Q) (=), fr=2020
1 t - t 2 2£+1m )
ot ) e'(rfmoTéil)Qmo()( J), ifr=20+1>0.

Hence we obtain that
cj(z,y) = mo!(v/=1)72™0
00 —my 4
() Gat) 4 (1Y g @) @)t
0

for 7 =0 and 1. Here the v-th modified Bessel function I,(z) of second
kind is defined by

[M-0-8], 3.1, p.66. O

It remains to determine the @, (t). The equations (7.16) and (7.17)
read

—{Zd—z—{ Cm k2L om 4 1)
= Wgp ~ - 0m ygy —20m+ 1)y
2 2,
v (2m4+k+1) }p’m(y)

for j = 0 and 1. If m = mg, so p?nofl(y) = p?non(?/) = 0, then each
equation above has a solution
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that satisfies p?no (y) ~ y~?m0+2) when y — +oo. They can be expressed
by Laplace integrals, then Q,,(t) is determined. We state now the main
result for I(Py;0,1v1) of odd type.

7.14 THEOREM. Suppose that hs = 0 and hy and ho are both pos-
itive for the character n of Ns. Consider the set of differential equa-
tions given in Proposition 7.10. Then there is a solution ¢*°(ay,as) =
> j—01 b5 Uay,as)v v; LR that is uniquely determined up to a constant
multiple by the conditions (a) and (b): (a) it is holomorphic at x =
2m(hia? — hga3) = 0, and (b) it decays rapidly, when ai,as — +oo. The
functions bjOl(al,ag), j =0 and 1 are given as follows:

mo‘lr\/

(vV-1)e *(Vhaay)F (y/Agag) 2

I‘(2m0 =+ 2)

/ tm0+1 —271' h1a1+h2a2)(t—|—1)

b;OZ(al, ag) =

F(2m0+3+1/1 k 2mo+3—1v1 —k
’ 2

X (Jmo (2V/=1t(h1a? — hoa3))
+ (V=) 7* T 1 (20 =Tt(h1a? — hoal)))dt,

;2mo + 2; —t)

for 57 = 0 and 1. Here mgy is a non-negative integer that satisfies
x(Yy)?hihy = —(2mo + 1)2, J,(2) is the v-th Bessel function of the first
kind, and F(a,b;c; z) is the Gauss’s hypergeometric function.

Proor. This is proved by a similar argument as in the even case. We
mention that the differential equations in Proposition 7.10 determines a
holonomic system of rank 4. [J

7.15 REMARKS. We conjecture that the solution given above presents
a non-trivial generalized Whittaker realization of the principal series
I(Py;0,v1) of odd type, and the dimension of the space of the realizations
whose images satisfy the conditions (a) and (b) above, is equal to one. But
the author can not verify this conjecture. We know that the set of equations
in Proposition 7.10 is necessary to characterize such realizations, but the
author does not know whether all the solution generate the module. The
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problem is to determine the action of U(gc)® on the space of functions
whose values are in a two dimensional K-type. This was known in the even

case, Lemma 7.7.

8. The Mellin Transform of a Generalized Whittaker Function
for the Generalized Principal Series Representation

Andrianov [An] studied L-functions for a Hecke eigen holomorphic Siegel
cusp forms of degree 2. In order to generalize his results to non-holomorphic
forms, it becomes crucial to investigate the generalized Whittaker functions
belonging to the other standard representations than holomorphic discrete
series, and their Mellin transforms. Using an explicit formula of a class 1
generalized Whittaker function obtained by Niwa [Ni], Hori [H] carries out
the steps for the Siegel wave forms. They treat a spherical vector in the
principal series induced from a minimal parabolic subgroup of G. Now we
study the same steps for the generalized principal series I(Py; 0, v1).

To obtain the L-function we consider an integral transform of a Siegel
modular form over a real three dimensional hyperbolic manifold [An]. We
recall the paper [H], which studied the Siegel wave forms of degree two. Let
F(Z) be a Siegel wave form on the Siegel upper half space Hy of degree two,
[H] Definition (1.1). It is, by definition, a class 1 (with the trivial K-type)
function. The integral is given by

EF(S)Z/ / F(X 4+ V=1 vl)v* tdX dv,
0 X12(R)/X12(Z)

where Z = X +v/—1Y € Hy, X1,(R) = {X € My(R) |1 X = X, tr(X) = 0},
and X1,(Z) = X1,(R) N Ma(Z). Consider the Fourier expansion of F,
[H] Section 1: F(Z) = > yeqar(lV, Y)e2VIE(NY) - where M = {n €
M5(Q) | IN = N, semi integral}. Also for a definite N, we consider the
expansion: ap(N,Y) = > s ann(F)Wnn,(Y) by the class 1 generalized
Whittaker functions Wy ,,(Y'), where an,,(F') € C. The the above integral
is also written as

Fer(s) = <Z am1y0(F) + ale,O(F)> /OOO W, o(uls)u®~du,

mS
meN
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[H], Section 4. Here the function Rp(s) can be separated into the local parts
corresponding to the nonarchimedean, or the archimedean, places. The
above integral of the generalized Whittaker function Wi, g(uls) is related
to the gamma factor of the L-function associated with F'(Z), [H], Theorem
(2.1), Sections 5 and 6.

Now we study the same integral transform of the solution obtained for
I(Py;0,v1) in the last section.

8.1 THEOREM. Take the special character ng of Ns by hy = hy = 1 and
hz = 0. Let ¢** (a1, az) = b*(ay, ag)vofk’*lg be the unique solution given in
Theorem 7.5, which represents the generalized Whittaker function with the
corner K-type for I1(Py;0,v1) of even type. Then we obtain the following
formula of the generalized Mellin transform of ¢*°: if mg = 0, then for
Re(s+ 52 £4) >0

T(s+ 551 4+ 200(s + 51 — 1)
(4m)* =20 (s 4 1)

/ bSOl(\/a, \/a)as—%@ _
0 a

This integral vanishes, if mg > 0.

PrOOF. This is obtained by direct calculation. If mg = 0, then the
integral equals

o0 oo 1 da
/ (/ as+k—26—4ﬂa(t+1)_>F(2_k%, H%; 1; —t)dt.
0 0

a
We note that J,,,(0) = 0, if mg # 0. It is calculated as

D(s+k—1/2) [ —s—kt3 2=kt 2=kt ..
DGR U) [ gy ek (e, 2ok

Then a formula [ET] II, §20.2, p. 400 (9), gives the result. O

We also give a formula of the Mellin transform in the case of I(Py;o,11)
of odd type.

8.2 THEOREM. Take the same character ng as in Theorem 8.1. Let

»*°(ay,a2) = Zj:(Ll bjOZ(al,ag)v;k+1’_k be the unique solution given in
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Theorem 7.11 in the case of I(Py;o,v1) of odd type. Then the generalized
Mellin transform of each b;‘)l(al, az) is given as follows: if mg = 0, then for
Re(s+ 551 +4) >0

e d
| veva vae i -
0
If mg > 0, then the integral vanishes.

9. Parameterization of the Discrete Series Representations

Now we study the generalized Whittaker functions for the large discrete
series representations of G = Sp(2,RR). We recall the parameterization of
the discrete series representations of GG, and its K-type decompositions in
this section.

9.1. The Harish-Chandra parameterization of the discrete series rep-
resentations and their K-types. Consider a compact Cartan subgroup of
G =Sp(2,R)

cos 01 0 sin 01 0
0 cos 09 0 sin 6o
exp(h) = | k(0h,02) = —sin 6 0 cos 6y 0 61,0 €R
0 —sin 6y 0 cos

corresponding to the compact Cartan subalgebra f§, Section 2. Then the
characters of this group are given by k(61,62) — exp(v/—1(m16; +mabs)) €
C* with some integers my and ms. The derivations of these characters
determine the weight lattice in hg = Hom(bhc, C).

In Section 2.2 we fixed the set of compact positive roots as I} =
{(1,—=1)}. Then the set of dominant integral weights is given by {(A1, Ag) €
Z2% | Ay > Ay}. Here we pick up all sets of the positive roots with respect
to X ={(1,-1)}:

Sf ={(1,-1),(2,0),(1,1),(0,2)},

21 =11,-1),(2,0),(1,1),(0,-2)},
Si=1{(1,-1),(2,0),(0,-2), (-1,-1)},
v = {1, -1),(=2,0),(0,-2), (-1, -1}

(2,
(=2



The Generalized Whittaker Functions for Sp(2,R) 275

For the index J € {I, II, III, IV} we define E}Lﬂw = X7\ X}, the set
of non-compact positive roots for J. Also we define a subset =Z; of the
dominant weights for each J by 27 = {A = (A1, A2) | (A, 8) > 0, for all g €
E}r} Then it is known that the union of Z;, J = I, II, III, IV, gives a
parameterization of the discrete series of GG, which is called the Harish-
Chandra parameterization.

Let us write my for the discrete series representation of G with the
Harish-Chandra parameter A € =; for one J. Then its K-type decomposi-
tion 7|k is given by the Blattner formula [H-S]. If a K-module 7 occurs

in the restriction, then its highest weight is of the form A + Zﬁezi mga

with mg € Z>o, where A = A — p. + ppc, and p. (resp. ppc) is the half
of the sum of compact positive roots (resp. non-compact positive roots)
in E}L. We call A\ the Blattner parameter of mx. We also use the symbol
my, for the discrete series representation with the Blattner parameter \. Its
minimal K-type 7) occurs with multiplicity one. The Blattner parameter
A associated with a Harish-Chandra parameter A = (A1, Ag) is given by
A= (A1+1,A2+2),if Ais of type I; (A1 +1, Ag), type IT; (A1, Ay — 1), type
III; (A —2,Ay — 1), type IV. A discrete series representation my with the
Harish-Chandra parameter A € Z;7 or Zjyy is called a large discrete series
representation. The Gelfand-Kirillov dimension of a large discrete series
is equal to 4, which is the dimension of the maximal unipotent subgroup
of G. Hence the large discrete series representation has a non-degenerate
Whittaker model for the maximal unipotent subgroup [V1].

10. The Generalized Whittaker Functions for the Large Dis-
crete Series Representations

This section is devoted to a study on a generalized Whittaker function
with the minimal K-type of a large discrete series. We give a system of
differential equations satisfied by the Whittaker function. Then we check
the holonomicity of the system.

10.1. A system of differential equations. Let (w, H;) be a large discrete
series representation of G with the Harish-Chandra parameter (Aj, A2) €
=171 defined in Section 9. Its Blattner parameter, that is the highest weight
of the minimal K-type of 7, is given by (A1, A2) = (A1 + 1, Ag). The min-
imal K-type 7y, x, occurs with multiplicity one in the large discrete series



276 Takuya MIYAZAKI

T = T, The K-type decomposition of 7y, y, tells us that each of the fol-

lowing 3 shift operators: P o R(V;g,n’LA2 T\ ), P’ o R(V;n’nA2 a ),
and P%vn o R(V7 ) annihilates the generalized Whittaker func-

X MT—xg,— A1
tions ¢ with the K-type 7_», —x, = 73, ,, for mx, x,. On the other hand,

Yamashita proved

THEOREM. (Yamashita [Y1]) The system of differential equations in
the above determines the generalized Whittaker functions for the large dis-
crete series representation.

Write d = A; — A2, then the minimal K-type 7y, », is of d+ 1 dimension.
We take the basis {U]-_/\2’_/\1}0§j§d of 7_), —», defined in Lemma 3.1.

10.2 PROPOSITION. Suppose that hs = 0 and both hy and hy are pos-
itive for the character n of Ns. Let ¢(a1,a2) = Z?:o bj(al,ag)vjf’\%*/\l be
the restriction to A of a generalized Whittaker function with the minimal
K-type 73, \, = T—xy,—N, Jor a large discrete series my, x, of G. Then we
have the following system of differential equations for bj(a) = bj(a1,a2),
0<j<d:

. 2 .h2a% .
(10.1; J) (81 + 47rh1a1 + 2]7 —|—] —1- /\1>bj_1(a) + QSbj(a)
hla%

+ (ag + dmhaad — 2(d - )~

—j —1- )\2)bj+1(a) =0

forl<j<d-1,

. . 2 . hQQ% .
(10.2; ) g (81 +4rhia] — (d — 2])7 +5—-1-— )q)bj_l(a)

— (d —2)Sbj(a)

. had
— (d— ) (02 + dmhaad — (d - 2)) 1

=0

—j—1- /\2>bj+1(a)

for0<j<d, and
. 2 .hla% .
(103:5) (0 — 4mhaad = 2150 4 j— 1+ A2 )bj-1(a) — 25b;(a)

+(a dmhia® 4 20d— 2% 1) -
1 mhiat + 2(d — j) D J + A1 )bjyi(a) =0
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for1 <j<d-1.
Here we use the symbols: D = hya3 — hoa3, and S = M.

Proor. The equations (10.1; j), 1 < j < d — 1 are obtained from
the equation P%w" o R(Vj('n,r_A2 _A1)¢(a1,a2) = 0 for ¢, where we use
Proposition 5.3, Lemma 3.5, and Lemma 3.1. The others are from P" o
R(v;n T—Xg,—A1 )¢(a17a2) - O and Pdown o R(v;n T—Xg,—A1 )¢(a17a2) =0.0

In the next place, we study about the holonomicity of the system of
differential equations given above. We need to prepare some lemmas to

check the holonomicity. To simplify our calculations, it is convenient to put

i(a1,a2) = (v hia1)M 77 (v/haas) Aﬁj@*zﬂ(hlaﬁhw"’) j(ar,az),

for 0 < j < d and consider the functions c;(a1, as).

Making (10.1;5) x (d — j) + (10.2;4) and (10.1;5) x j — (10.2;5) for
1 < j < d—1, we have the following system of equations for c;j(a1,as),
0 < j < d, which is equivalent to the original system in Proposition 10.2:

. _hoa? hoa? h a
(10.4)) (01 + 752 )ejma(a) + p=rs2e;(a) — (d = ) 2esi(a) = 0

for1 <j<d,

. hyia? hia? hia?
(10.5:])  j=5tei-1(a) + prstes(a) + (82— (d = )75t Jeje(a) = 0

for0<j<d-1, and

(10.6; J) hla% <82 - 87rh2a% + 2)\2 )cj_l(a)

haa
9
7D

hiah
—Qp% ()+h2a2(81—87rh1a1
hia
+2(d — §) })1—1—2)\2—2)0]-“((1):0

for 1 < j <d— 1, where we put p = x(Y;;)vh1hs.
From these equations we can obtain C(aj, az)-linear relations among the
cj(a).
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10.3 LEMMA. When d = A1 — Ao > 4, we obtain the following d — 3
linear relations over C(ai,az) among cj(ai,az) with 0 < j < d. These are
given by

a? 2 Cl2 2
7)) G-2"9 e @+ oM )

hia? haa?
- hw%((d —Jj+ 2)% - 2j% +2X—2— SWhQG%)Cj_l(a>
h1a2h2a2
+ Zp%cj(a)

hia? ) hoa2
— hoad2 (2(d - g)% g 2)% DV 87rh1a%)cj+1(a)

h2a2 2 ' h2a2 2
+o20 @ - a2 =0

for2<j<d-2.

PrROOF. We use the equations (10.4; j), (10.5; j) to cancel the terms of
differentials 01c;y1(a) and Oacj—1(a) in (10.6; j) for 2 < j <d—2.0

10.4 COROLLARY. Letd > 4 and x(Y;) # 0. Then the above d — 3
linear relations are mutually independent of each other. In particular, if we
pick up arbitrary 4 functions among cj(ai,az2), 0 < j < d, then the others
can be written by the C(ay, ag)-linear sums of them.

ProOOF. For example, take co(a), ¢1(a), cq—1(a) and cg(a) and write
down the linear combinations of the other d — 3 functions by these four
functions in the natural order for c¢;j(a). Considering the coefficient matrix
of the other d — 3 functions in the above, then it is a 7-gonal matrix (for
d > 10 and we can check directly for smaller d cases) and in each coefficient
appear only the terms of the degree, either 2 or 4, with respect to the

. L. h 2)\2
variables a1, as. Here “degree 2” terms mean the terms containing %,

(hzgi) 2, hla%[’;zag, or h;a? as a factor. Also “degree 4”7 terms mean the terms
containing 8whia?hga3. We find that the terms of “degree 4” appears only
in the (7,7 + 1)-th, 1 <i<d—4, or (i,i — 1)-th, 2 < i < d — 3 coefficients
of the matrix. From this observation on the degree we can easily show that

the matrix has non zero determinant. [
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10.5 LEMMA. Letd > 4 and x(Y,) # 0. Then each of 01c;(a), O2cj(a),
0 <j <d, can be written as a C(ay,az)-linear combination of 4 functions
which are arbitrary chosen among {cj(a1,a2), 0 < j < d}.

PROOF. From (10.4; j) with 1 < j < d, and (10.5; j) with 0 < j < d—1
we can describe 01c¢;(a) by a C(a1, ag)-linear combination of ¢;j(a), ¢j+1(a),
and cjqo(a) for 0 <j <d—1:

(10.8; j) Oicj(a) = — (7 +1)=57¢j(a) = p—p=¢j4a(a)

Similarly we have

(10.9; j) Oacj(a) = — (j —1)

for 1 < 5 < d. Therefore, by Corollary 10.4, the assertion in the lemma is
verified for di¢j(a), Oacj(a) with 1 < j < d —1 and for dico(a), dacq(a).

For the remaining ones: 0aco(a) and 0Oicq(a), we use the equations
(10.6; j), j = 1 or d — 1. We see O2cg(a), (resp. 0Oicq(a)) can be ex-
pressed as C(aq,ag)-linear combination of ¢g(a), c1(a),cz2(a), and d1ca(a)
(resp. cq—2(a),cq-1(a),cq(a), and Oscq—2(a)). Then, combining the re-
sult above for dica(a) or dacy—o(a), and Corollary 10.6, we conclude the
lemma. [J

By the lemmas above, we can conclude that, if the integrability condition
is also satisfied, then the equations in 10.2 determine a holonomic system
of rank 4. We now check the integrability condition.

10.6 LEMMA. The system of equations (10.4; j) with 1 < j < d — 1,
(10.5; j) with 0 < j < d, and (10.6; j) with 1 < j < d — 1, satisfies the
integrability condition.

PrROOF. The system of equations is equivalent to the set of (10.7; j)
with 2 < j < d— 2, (10.8; j) with 0 < j < d — 1, (10.9; j) with 1 < j < d,
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and (10.6; j) with j = 1, d — 1. One has to check that these equations
yield the integrability conditions: 0102¢j(a) = 020:1¢j(a) for 0 < j < d, and
also that these conditions add no more equation that is independent of the
system.

The integrability conditions for 1 < j < d — 1 are obtained from (10.8;
j) for 0 < j < d—1and (10.9; j) for 1 < j < d. Applying 92 to (10.8; j),
0 <j<d-1 from the left, we have

hg ag
D

(322" 50) (G4 V)es (@) + pes (@) — (A5~ Ve (@)

8281cj(a) = —

for 0 < 7 < d—1. Then using (10.9; j) for 1 < j < d, we see that the above
formulas are equal to

={(7 +1)(J = Dej-2(a) + p(25 + 1)cj-1(a)
— 20+ D =j+1) = p*)ejla)
h1a2h2a2
— p(2d = 2j + 1)ejpa(a) + (d = j +1)(d — j = Dejpa(a) } =53

for 1 <j <d—1. On the other hand, (10.9; j) with 1 < j < d, and (10.8;
j) with 0 < j < d —1, give the same results for 010a¢;(a) for 1 < j < d—1.
Therefore the conditions are shown to be satisfied with ¢;(a) for 1 < j <
d—1. For ¢p(a) and c4(a) we also use (10.6; j) with j = 1 and d—1. I omit a
detailed computation. We mention finally that the integrability conditions
are compatible with the equations (10.7; j) for 2 < j <d—2. 0

Combining Corollary 10.4, Lemmas 10.5, and 10.6, we conclude the fol-
lowing:

10.7 PROPOSITION. If x(Y;,) # 0, then the system of differential equa-
tions in Proposition 10.2 determines a holonomic system of rank 4.

11. Multiplicity Free Theorem and the Mellin Transforms of
the Generalized Whittaker Functions of a Large Discrete
Series

11.1. In the previous section we have shown that the system of dif-
ferential equations in Proposition 10.2 is holonomic of rank 4. Using the
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integrable conditions, we rewrite the system into an equivalent one to obtain
its solutions. Remind that we have set

)\+ 727rha+ha
(a1, a2) = (vVh1a)M I (Vhaag) e 1 22)Cj(a1>a/2)

for 0 < j <d, and p = x(Y;)Vhiha. Then we have the following equations
for the set of c;(a):

(11.13) (%gal +3)es-1(a) + pejla) — (@ Hessala) = 0

for0<j<d-1,

D 20— (d—))era) = 0

(11.2;]) J ¢j-1(a) + pejla) + (Fal

for1<j<d-1, and

(11.3;§)  hiai(01 + 02 — 8mhaad + 2Xs — 2)c;—1(a)
+ h2a§ (81 + Oy — 87Th1a% +2Xy — 2)cj+1(a) =0
for1 <j<d-1.
The equations (11.3; j) are obtained from (10.4; j), (10.5; j), and (10.6;
j). The equations (11.1; j) and (11.2; j) rewrite (10.4; j) and (10.6; j), and

they also yield
hlafﬁlcj_l(a) — h2a3826j+1(a) =0

for 1 < j <d—1. Combining these and (11.3; j), we get

(11.4;j) {(31 —|—82)2+2(>\2 —2)(81 —1—82) —87rh1a%81
- 87Th2a%(92 - 4()\2 - 1)}cj(a) =0

for 0 < j <d.

11.2. A formal power series solution. We introduce the following pair
of variables
_ 2m(ha} — hga3) _ 2m(hya} + hoa3)
~ 4m2hialhoad V= 4m2hyathoal3
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We consider a holomorphic formal power series solution at {z = 0}, which

is a singular locus of the equations We denote it by cj(a1,a2) = ¢j(z,y) =

> Pm(y)x™ with mgy > 0 for 0 < j < d. The equations (11.1; j) and
-0

(11.2; j) lead to the following recurrence differential equations for pm(y)’sz

(115 ) %(pf;:l( )P W) = (m+ D () + p 0 (9)

—(m+d—5)pi(y)

for1<j<d-1,

(11.6; j) d%(pfn_ll(y) Pl (y)) = m(ph M (y) + ph ()

for1<j<d-1, and

(11.7) 2@1)3,1_1(11) = p pm(y) — (2m + d)p,, (y),

Let mo be the degree in z of the first non-vanishing term of ¢;(x, y); Ph(y) =
0, if m < my, and p_;(y) # 0. Then we obtain a lemma.
0

11.3 LEMMA. The degrees m% coincide with each other for all j, 0 <
j < d. Denote the common value by mg. If mg > 0, then there should be
a relation that p* = —(d +2mg)?. If mg = 0, then it should be that p* =
—(d — 2k)? with 0 < k < [%l] Moreover, if mg > 0 and p = (d + 2mg)y/—1
(resp. —(d+ 2mo)v/—1), then pln, (y) are given by

Pho () = (V=1) Py () (resp. (v=1)"7 Py (3))

with a nonzero function P, (y) that is independent of j.
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PRrROOF. Denote by mg the smallest number in the set of integers
{mé}()gjgd' Let M,, be the matrix

p —(2m +d) 0 O
m+1 p —(m+d-1)
My, = : - - .
m+d—1 ) —(m+1)
O 0 2m+d p

Then the equations (11.5; j) and (11.7) read

(11.8) Mg - (g (1), -+ Do () =10, ,0).

Further if mg # 0, then (11.6; j) for 1 < j < d —1 tell us
(11.9; j) Pha () + Pl () =0, 1<j<d-1

From (11.8) we can conclude that neither p0, (y) nor pf, (y) vanishes, oth-
erwise all p7m0 (y) become zero, which contradicts the definition of mg. So
we obtain that m8 = mg = myg. Then we can also see easily that all the
other mé must be equal to my.

Using the first row of (11.8): pp9,,(y) = (2mo + d)p},,, and (11.9; j) for
j =1, we can write that p), (y) = (d + 2mo)f(y), Pi,(y) = pf(y), and
P2, (y) = —(d + 2my) f (y) with a function f(y) # 0. Then the second row
of (11.8) gives (p? + (d+2mg)?) f(y) = 0. Hence p? = —(d+2mg)?. On the
other hand, if p = (d + 2mg)v/—1 (resp. —(d + 2mg)y/—1), then the vector
L, v=1,...,(V=1),...,(V=D%) (resp. “((V=D)%... (vV=1)44, ...,
1)) generates the one dimensional kernel of M,,. Hence we get Do (y) =
(v/=1)7 Py (y) or (v/=1)9 Py, (y), where P, (y) is independent of j.

We consider the case mg = 0. Then the kernel of the matrix My = M,
becomes non-trivial if and only if p* = —(d — 2k)%, 0 < k < [4]. If one of
these is satisfied, then (11.8) has a non-trivial solution. [J

REMARK. If mg > 0, then p = x(Y;)vhihe can not be equal to zero,
and Proposition 10.7 is applicable to this case.
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11.4. In the next place, we determine the function P,,,(y) appearing
in the above lemma. The equations (11.4; j) give the following equations of
second degree for pi,(y) with general degree m:

(11.10) {(yd%>2+ (2m—A2+2)y%

+4dily Y (m+1)m+1— )xg)}pjm(y) —0

for 0 < j < d. Each of them has a solution

(—1)m*m°m!(m— )\2)' 2 2m-—Ag+l

2 W _ 4
mo!(mo — A2)! v —W,—%(ZJ)’

with a constant CY,. We note that these solutions take finite limits, when
a1 and as tend infinity, and that any solution with this property is given
by a constant multiple of the above. In particular we have

2 2mg—Ag+l
Pro(W) =evy™ 2 W amnn (),

and, when x(Y;) # 0, Cih, = (v=1)” or (v=1)77.

We should determine Cfn for 0 < j < d and all integers m > mg. By the
formula in the last line of [M-O-S] p301, the recurrence relations among the
set (CJ,) are obtained from (11.5; j), (11.6; j), and (11.7) as

20,7y = @m+)Ch !+ p G = (d = O
for 1 < j <d,
(11.11) 209 =5 CI7t 4+ p O3 — (2m + d — §)Cof?
for0<j<d-1.

We note Cgm_l = 0 for all 0 < 5 < d by the definition of mqg. Put ¢, =
t(Cﬂn)OSde. Starting from the vector c¢,,, satisfying (11.11) for m = my,
we can determine recurrently the c,, for m > mg by (11.11). Hence it

yields a formal power series solution (¢j(z,y)) of (11.1; j), (11.2; j), and
(11.3; j), then also a formal solution b;(x,y) = (vhiai)* =7 (v/haaz)*? 7 -
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e‘2w(h1a%+h2ag)cj(m’, y) of the equations in Proposition 10.2. At this moment
we obtain the following:

11.5 THEOREM. Consider the space of solutions for the system of dif-
ferential equations in Proposition 10.2. Then the dimension of the solutions
satisfying the following conditions (a), (b), is less than or equal to one; (a)
they decay rapidly, when a2 and a3 tend to +oo, and (b) they are holomor-
phic at x = 0 in the variable x.

We make the following conjecture:

11.6 CONJECTURE. There exists a unique (up to a constant multi-
ple) non-zero generalized Whittaker realization of a large discrete series
representation with an n € Ns definite, whose restriction to the minimal
K -type corresponds to K-finite functions satisfying the conditions (a), (b)
above. Equivalently, the formal solution defined by the recurrence relations

in (11.11) converges actually on A and determine the solution with proper-
ties (a) and (b).

Convergences of the formal solution are established when (i) p = (4 +
2mp)v/—1 with mg > 0 for d = 4, (ii) p = (5 + 2mp)v/—1 with my > 0 for
d =5, and (iii) p = 0 with mg = 0 for any even d, hence we have

11.7 PROPOSITION. The conjecture 11.6 is true in the cases (i), (ii),
(iii) above.

We will show these cases more precisely bellow.
(i) Consider the large discrete series with d = 4. It exists uniquely, and its
Blattner parameter is given by (A1, A2) = (3,—1). Set p = (4 4 2mp)v/—1

with mg > 0. Then C%lo = (\/—1)J and the general c,, are explicitly
determined by (11.11) as

mo!(m3+(8n+3)mo+8n?+14n+2)
227 (mg+2+n)!n!
V—1mo!(mo+2)(mo+2n+1)
227 (mg+2+n)!n!
_ —mo!(m2+3mo—2n+2)
Cmo+2n = 227 (mo+2+n)n] )
—v/—1mg!(mo+2)(mo+2n+1)
227 (mg+2+n)!n!
mo!(m3+(8n+3)mo+8n?+14n+2)
227 (mo+2+n)!n!
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mo!(mo+2n+2)

22n—1(mg+2+n)!n!
ﬁmo!(mo+2)
227 (mo+2+n)!n!

Cmo+2n+1 = 0 ’

0 ﬁmo!(mo+2)
227 (mo+2+n)!n!
—mo!(m0+2n+2)

22n=1(my+2+4n)in!

where n runs over the all non-negative integers. The proof is given by a
direct inductive calculation, which we omit. We have also that the following
integral formulas express the formal power series solution,

A(Vhia1) 17 (Vhgag) 2 H e 2rhai+haad)

(mo —+ 1)'
x / TViK, (4Vt)Rj(wt)e v dt
0

for 0 < j <4, where

bj(a) =

Ro(2) = 8L (2) —2(4 + w

)ImoJrl(z)
romo+ 2+ )

V() )

4 4(mo+3)

— (mo + 2)(; + 2 Vmo+2(2) },

4 4(mo+3)

Ro(z) = (D) Imgs1(2) + (mo +2) (- - Vg 12(2).

22
()

+ (mo + 2)(3 - Ll(moi;r?)))fmom(z)}’

Ri(2) = 8Ly (2) +2(0 - 280
8 4(TTLO + 3)

— (mo + 2)(; - 5 ) Imo+2(2),

z
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and K,(z) and I,(z) are the modified Bessel functions [M-O-S] p.66. To
obtain these we used the formula (37) in [ET], p.199.
(ii) If d = 5 and p = (5 + 2mg)v/—1 with mg > 0, we obtain that

mo!(m3+(12n+3)mo+16n2+18n+2)
227 (mg+2+n)!n!
\/—71m0!(m3—|—(4n+3)m0+10n+2)
227 (mo+2+n)!n!
—mp!(m2+3mo—2n+2)
_ 227 (mg+2+n)!n!

Cmo+2n = —v/=TImg!(mg+3mo—2n+2) ’
227 (mo+2+n)!n!
mo!(m3—+(4n+3)mo+10n+2)

227 (mo+2+n)!n!
vV=Img!(mZ+(12n+3)mo+16n>+18n+2)
227 (mo+2+n)!n!

mo!(5m2+5(4n+5)mo+16n2+54n+30)
22n+1(mg+3+n)!n!
V=Imo!(3m2+(4n-+15)mo+10n+18)
22n+1 (mg+3+n)!n!
—mol(mg+5mo—2n+6)

. 22n+1 (mg+3+n)In!
Cmo+2n+1 = V=Img!(m&+5mo—2n+6) ’
227+ (mg+3+n)!n!
—mo!(3m3+(4n+15)mg+10n+18)
22n+1(mg+3+n)!n!
—v/=Img!(5m2+5(4n+5)mo—+16n2+54n-+30)
22n+1(mg+3+n)!n!

with non-negative integers n. This yields the similar solution with an inte-
gral expression as in the case of d = 4. For greater d, the author has not
obtained the explicit formula for c,,. Each coeflicient of ¢, may have the
form

a polynomial in n of degree [%EL] (£1)

a constant x o2n (+1)(m0 + [%} +n (il))! nl

for m = mg + 2n, or mg + 2n + 1.

(iii) In the case p = 0 with mg = 0 for any even d, we obtain p. (y) =
pd=1(y) = 0 for all m > 0 from the equations (11.7) by an induction on m.
Also we can obtain that p2¥*1(y) = 0 for 0 < k < g — 1 and m > 0, by

(11.5; j) and (11.6; j), hence cop41(y) = 0 for 0 < k < 4 — 1. Although
this case, indeed x(Y;) = 0, was not treated in Proposition 10.7 (Corollary
10.4 in particular), we can conclude again the holonomicity of the system of

equations in this case under this observation. Then we obtain the following
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formula:
-1 =1
o1 (T)‘ —1 (T)' .
2n 2271(% +n)lnl’ 2n+1 22n+1(% o)l
/—1 /—1
Ot+1 (T)' 1 (T)'
2n 22"(6_714—71)' |7 2n—+1 22n+1(g_|_71+n)| n|7

if ¢ = %l is odd, or

057:2: (%)' (i‘f‘l—l—éln)7 057;2_1: 45%)! |
22n(5 +n)! nl 220+ (L 1 )l !
an(t) = w’ an_,_l(t) —0;
22n(5 4 n)! n!
ogr = LUHLEAN gy MR
22n(5 +n)! n! 2201 (L 4 )l ol

if ¢ = % is even. In the both cases, n runs over all the non-negative integers.
The other C2?¥ for 0 < k < g are given by the equations (11.11). They are
written in an integral formula like in the case (i), thus we obtain that the
conjecture holds in these cases.

At the end of this section, we give a formula of the Mellin transform of
the solution obtained above, which will be used in the next section.

11.8 THEOREM. (The Mellin transform) Take the character n of N
with hg = 0, and hy = he = h positive. Take p = x(Y;)h = (d + 2mg)v/—1
with a positive integer mq. Let ¢(a1,az) = Z?:o b (a)v;AQ’_Al be the formal
power series solution given in 11.4 for the large discrete series representa-
tion mx, x,. We assume that it converges globally on A, Conjecture 11.6,

for the general cases. Then

NG
N[

bj(a2,a2) .
B

—Xo+1 Ap+1

(ha)™2~e>™ Wy, o1 s, (4wha),  if mg =0,
)

2
2
0, otherwise.
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Then its Mellin transform is given by

’

[ by ST 20
o (4mh)T (s + 2=et1)

Al 3=A1—Xy 3

forRe(s+%j:%)>O, where B=4"27""5 "h2.

PRrROOF. This can be obtained using the formula in [M-O-S] p.316, line
3.0

Here we remark that (A; — 1, A2) = (A1, A2) is the Harish-Chandra pa-
rameter of the large discrete series representation with the Blattner param-
eter (A1, A2).

12. The Rankin-Selberg Integral and the Andrianov’s L-
function

12.1. The Andrianov’s L-function was studied by Novodvorsky,
Piatetski-Shapiro, Soudry by representation theoretical methods. We refer
to [PS]. Here, according to an investigation by Sugano [Su|, we present some
applications of our archimedean results. Styles of necessary discussions,
or proofs, are essentially given in [Su]. The only difference between [Su]
and our treatments is concentrated on the objects at the real archimedean
prime. We treat the large discrete series representations and their gener-
alized Whittaker functions, whereas the (anti) holomorphic discrete series
were considered in [Su].

Let Gop = GSp(2) be the symplectic algebraic group of degree 2 over the
rational numbers. So we take B = M3(Q) in the paper [Su]. Let Ky =
[« Kv, Kp = Go(Qp) NGL4(Zy) for p finite prime, and K >~ U(2). Set
Kf = Hp<oo KP‘

Consider the Siegel maximal parabolic subgroup of Go(Q4) and the
unipotent radical Ns(Q4). We define a character n = ng of Ns(Qa) by
n(n(T)) = 7(tr(HT)) for n(T) = (o> .) € Ny(Qa). Here 7 is a character
on Q4 that is trivial on Q such that 7 (z) = e2™V=1T and H = <h%s/2 h}f/Z)
is a primitive positive definite matrix with h, hg € Z. l

Given H, we define the imaginary quadratic field E = Q(v/D) where
D = h3 —4h = dgf%. Let O(f) be the order of E with conductor f. Let
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{1,w} be a Z-basis of O(f). We can embed E into G(Q); for 8 = u+wv €
E, define its image by

L (B) 0
< 0 N(ﬁ)tLHw)—l)GGO(@)

with 01 (8) = (i 7))

Denote by Go(R)* the identity component of Go(R). Let F(g) be a
cusp form on Go(Qa)" = Go(R)"Go(Qa,) of full level. We suppose that
the central character of F(g) is given by an unramified character A = ®,A\,
on Q} such that Ao = 1. A large discrete series representation of Sp(2,R)
with the minimal K-type of odd dimension can be extended to a repre-
sentation of Go(R)™ with trivial central character. We suppose that the
real archimedean part of F' belongs to the minimal K-type 7y, ), of a large
discrete series extended as above, if d = A\{ — Ay is even. Also extend F
to Go(Qa), by a decomposition Gy(Q4) = Go(Q)Go(R)" Ky, trivially on
Go(Q) and Ky. Then we define a function on Go(Q4)

Fylg) = n(n(T)) ™ F(n(T)g)dT.

/Symz (@\Sym2(Qa)

We also take a non-trivial primitive character x on E’ of conductor f,
which is trivial on E* - [, O(f),;, O(f)p = O(f) ®z Zp and Xlgx = A
Then we define the generalized Whittaker function associated with F'(g):

Wi = [ O R @S

Further let hg = 0 for simplicity and F(g) be a normalized Hecke com-
mon eigenfunction, [Su], (2-24) and p.546. Here we make an indispensable
assumption.

ASSUMPTION. We suppose that there exist a suitable pair of n and x

such that the global integral transform W;Zn(g) defined above does not van-
ish.
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We fix a suitable pair x and 7 for the assumption in the following dis-
cussion. For s € C, define a function

tlo 0 s—3/2
Ax.n(F,s):/Xan<<0 12> >t| a4t

with R, = diag(y/|D],2,2,4/|D]), R,p = 14 for the finite primes. A
version of [Su], Theorem 3-1 is described in our case.

12.2 THEOREM. Ifn and x are suitable ones under the assumptions,
we have

F(S+)\1 1+>\2)F(S+)\1 1_%)
(27/[DI)" T(s + 2=525)

L<F78) F
X ———— Wi, (Ry),
L(xX,s+5) X"

(121)  Ayy(F,s) = Cy x

A1+1
with Cy = e™VIPl(27\/[D]) ™2 Wages , (27\/[D])"Y. Here L(F,s) is
2 2
the Andrianov’s L-function, [Su], p.547 (3-4), L(X,s) is the Hecke L-

function for the gréssencharacter X(z) := x(Z) for z € E}} with the canon-
ical involution.

Proor. Calculation at the non-archimedean places is exactly the same
as in [Su]. We only have to replace the function, [Su], p.549, line 1, at the
real place with our formula for the generalized Whittaker function, which
was studied in Section 11. Then the calculation is similar. [J

Define
((F,s) = (2m) 72T (s + 257 + 22)0(s + 2571 — 22)L(F, 5),

and

A1—A2

Byy(Fys) = (2m)*" 735 T(s 4+ M=) L(%, 5 + 1) Ay (B )
= C1 x (V/|D])°C(F,s) x W (Ry),
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2

A1+1
where Cy = (ZW)_%_I(\M ])_lTe”V IPIW a1 5y (2704/|D]) ™! is & non-
2 ) 2

zero constant which does not depend on s.

12.3. FEisenstein series and Rankin-Selberg convolution. Define G an
algebraic group over the rational numbers and its rational subgroup B; by

G1(Q) = {g € GLy(E) | detg € Q*},
n@={('y 5)lree serr}

Also fix compact subgroups at each place as M, = G1(Qp) N GL2(O(f)p),
p < 00, and My, ~ SU(2). We define a representation (7, V5) of My, by
the restriction (TAL)\2|R;,£OwH(Moo)Rn,oo’ Vs s, ) Here we fix an embedding
’L/}H of Gl into GQ

wn((55)= (0 ) (e i) (o )
ey = hs —1 .
Sy

We shall define an Eisenstein series [Su], §3-3, on G1(Q4). Let W =
E & FE be a Q-vector space. Define Vz-valued Schwartz-Bruhat function
¥ on WA? ¥ = H’U<OO Pus by SOOO(t(()? 1)7’)’7,00) = td€_2ﬂt2?(m00)7 t 2 07
Moo € My, and ¢, is the characteristic function of O(f), ® O(f),. For the
above ¢ and g1 € G1(Q4), put

L(91,9) = |detgn 712 [ XOIE/20(0(0. gy,

A

Put

EX(gi,8)= Y LX(yg.s).
YEB1(Q\G1(Q)

Then the proof of [Su], Lemma 3-2 also gives us

(122) By, (Fs) = / EX(g1, 5)F (o (01) Ry
G1(QQ;\G1(Qa)
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The Eisenstein series is meromorphically continued to the s-plane. More-
over it is entire in this case, since d = A; — Ag is strictly positive, [Su], p.559,
and Theorem 3-2. Hence B,.,(F,s), then also ((F,s) are meromorphically
continued to the whole plane, and, moreover, determine entire functions in
s.

Sugano also studies the Fourier transform @ of the Schwartz-Bruhat
function ¢, [Su], Lemma 3-3, then he obtains the functional equation for
C(F,s), [Su], Theorem 3-2. His calculation can be applied to our case in
the same way. Then the result is

12.4 THEOREM. Let ((F,s) be the one defined above. Then it is an
entire function in the variable s. Moreover it has the following functional
equation:

C(F,S) = (_1)A2<(F/7 1- S)'

Here F'(g) = A" (m(g))F(g), and m(g) is the similitude of g € Gy.
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