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On a Variety of Minimal Surfaces Invariant

under a Screw Motion

By Katsuhiro Moriya

Abstract. In this paper, we will prove that a certain class of
branched multi-valued minimal surfaces invariant under a translation
or a screw motion becomes a real analytic variety via their Weierstrass
data. We also prove that the class contains complex analytic variety
and give a lower bound of its dimension.

1. Introduction

The purpose of this paper is to discuss the possibility to deform minimal

surfaces invariant under a translation or a screw motion.

A moduli space of branched complete minimal surfaces of finite total

curvature in R
n is studied by J. Pérez and A. Ros [10, 11], A. Ros [13], X. Mo

[15], R. Kusner and N. Schmitt [5], and G. P. Pirola [12] in the case of R
3

and by K. Moriya [7] in the case of R
4. In [8, 9] there are explicit examples

of moduli spaces of Weierstrass data for branched complete minimal annuli

of finite total curvature in R
3 or R

3/T , where T = T (v) is the discrete

group of isometries generated by a translation by v. In [10], [11], and [9], a

geometric structure of a moduli space is discussed, too.

In this paper, we will advance the study of the moduli space of minimal

surfaces in R
3 to that in a flat 3-space R

3/S by a modified Weierstrass

representation, where S is a screw motion.

We will call a group S = S(u, v) a screw motion if it is the discrete group

of isometries generated by a transformation s(u, v): R3 → R
3 defined by

s(u, v)(x1, x2, x3) = (x1, x2, x3)
tR(u) + (0, 0, v),(1.1)

R(u) =


 cosu − sinu 0

sinu cosu 0

0 0 1


 ,(1.2)
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where u ≥ 0 and v �= 0. In the case where u = 0, s(0, v) is the nontrivial

translation t(v): R3 → R
3 by (0, 0, v) ∈ R

3. Hence we may see S(0, v) =

T (0, 0, v).

It is known that a flat, noncompact, nonsimply-connected three-manifold

is finitely covered by T × R or R
3/S, where T is a flat torus (cf. [14]).

Surfaces invariant under a screw motion are considered as surfaces in a flat

3-space of the latter case.

If a branched conformal minimal surface f :M → R
3/S is complete and

of finite total curvature, then M is compactified conformally, that is, M

becomes biholomorphic to a compact Riemann surface M̄ with finitely many

puncture points removed. We investigate only the case where M̄ is CP 1.

We will consider the following diagram:

M̃
f̃−−−→ R

3

π

� �Π

M −−−→
f

R
3/S,

where π: M̃ → M is a universal covering, Π is the natural projection, and

f̃ : M̃ → R
3 is a branched conformal minimal surface such that Π ◦ f̃ is

well-defined. The above diagram becomes commutative if and only if f is

well-defined. We will define a multi-valued minimal surface f̌ :M → R
3

by f̌ := f̃ ◦ π−1. We can identify f̃ with f̌ . We will discuss a class {f̌} of

branched multi-valued complete minimal surfaces. We will use a Weierstrass

representation studied by H. Karcher [4], M. Callahan, D. Hoffman, and

H. Karcher [1] and W. H. Meeks III and H. Rosenberg [6] and prove that a

set of Weierstrass data corresponding to a class {f̌} becomes a real analytic

variety and contains a complex analytic variety.

In Section 2, we will give a definition of a certain class of multi-valued

functions. In Section 3, we will describe a representation formula for min-

imal surfaces invariant under a screw motion and specify the classes of

Weierstrass data corresponding to a certain class of multi-valued minimal

surfaces {f :M → R
3/S}, denoted by U and a certain class of minimal sur-

faces {f :M → R
3/T}, denoted by W. We will prove that if U and W are

not empty, then they become real analytic varieties and, moreover, U with

rational number u and W contain a complex analytic variety in Section 4.
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Finally, we explain about U and W containing the Scherk’s saddle tower

and helicoidal saddle tower in Section 5.

The author would like to thank Y. Ohnita for his encouragement and

the referee for informing him the reference [14].

2. A Multi-valued Function and a Meromorphic 1-form

In this section, we will give some definitions of a class of functions which

play an important roll in this paper.

Fix a point z0 on a compact Riemann surface M̄ . Let A(z0) be the set

{(G, c)} of pairs consisting of a nonzero complex number c and a meromor-

phic 1-form G on M̄ such that any pole of G is of order −1 and different

from z0 and the residue of G is a real number at any point. Let B(z0) be

the set of multi-valued functions {ǧ} obtained by

(2.1) ǧ(z) = c exp

∫ z

z0

G,

where (G, c) ∈ A(z0). By the above relation, we can see that there exists

a bijective correspondence between A(z0) and B(z0). We will extend the

definition of the divisor on M̄ as follows:

Definition 2.1. For an element ǧ ∈ B(z0) corresponding to (G, c) ∈
A(z0), we will call the multiplicity of ǧ at p ∈ M̄ the residue of G at p and

denote it by multp ǧ.

Definition 2.2. For Ii ∈ R and pi ∈ M̄ , we will call a formal finite

sum
∑
Ii · pi a divisor on M̄ . For a divisor E =

∑
Ii · pi on M̄ , we will call

{pi} the support of E and denote by suppE. If any Ii is positive, then we

call E positive.

Definition 2.3. For ǧ ∈ B(z0), we will define the divisor (ǧ) of ǧ by

(2.2) (ǧ) :=
∑
p∈M̄

(multp ǧ) · p.

When we write (ǧ) by the difference of two positive divisors (ǧ)0 and (ǧ)∞
so that (ǧ) = (ǧ)0 − (ǧ)∞, we will call (ǧ)0 the zero divisor of ǧ and (ǧ)∞
the polar divisor.
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3. A Representation Formula

In this section, we will describe the representation formula for minimal

surfaces in R
3/S used in this paper, where S = S(u, v) (cf. M. Callahan,

D. Hoffman, and H. Karcher [1] and W. H. Meeks III and H. Rosenberg

[6]).

Let f :M → R
3/S be a branched minimal surface. Then we can obtain

a multi-valued meromorphic function ǧ and a holomorphic 1-form ω̌ cor-

responding to the multi-valued minimal surface f̌ = (f̌1, f̌2, f̌3) by usual

Weierstrass representation (cf. [2]):

(3.1) ǧ =
Ψ̌3

Ψ̌1 −
√
−1Ψ̌2

, η̌ = Ψ̌3,

where Ψ̌i = (∂f̌i/∂ž)dž, i = 1, 2, 3 and ž is a local holomorphic coordinate

on M . We will note that the function ǧ is the stereographic projection of

the normal Gauss map of f̌ and η̌ = df̌3 +
√
−1df̌∗3 , where f̌∗3 is a local

conjugate harmonic function of f̌3. Therefore if we define a meromorphic or

holomorphic 1-form onM by g := d log ǧ or η := df̌3+
√
−1df̌∗3 respectively,

both of them are well-defined.

For c and c′ ∈ C
∗ = C−{0}, we will denote by c ∼ c′ if c = exp[

√
−1nu]c′

for some n ∈ Z. Let [c] ∈ C
∗/ ∼ be the equivalent class which c belongs to.

Then [ǧ(z)] is well-defined. Hence, if we fix a suitable z0 ∈M , then we can

obtain a pair (g, η, [c]) from f , where [c] = [ǧ(z0)].

Definition 3.1. We will call the pair (g, η, [c]) the Weierstrass data

of f .

We can prove that a meromorphic 1-form g and a holomorphic 1-form η

on M become meromorphic or holomorphic 1-forms on a certain compact

Riemann surface M̄ in a similar way as in the case of unbranched minimal

surfaces (cf. W. H. Meeks III and H. Rosenberg [6, Theorem 7]):

Lemma 3.2. For a branched complete conformal minimal surface

f :M → R
3/S of finite total curvature, there exists a holomorphic compact-

ification M̄ of M . Two 1-forms g and η are considered as meromorphic or

holomorphic 1-forms on M̄ .
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We may see that the set M̄ \M is a finite set and consists of puncture

points defined in Definition 3.6. We can prove the following lemma:

Lemma 3.3. Any pole of g is simple and the residue of g at any point

on M̄ is a real number.

Proof. Since ǧ is locally a meromorphic function on M , any pole of

g on M is simple and any residue of g at any point on M is a real number.

Hence, we will prove that the residue of g at any puncture point is simple

and a real number.

Let A be an end, or a neighborhood of a puncture point. We may assume

that A is a punctured disk D∗ := {z ∈ C | 0 < |z| ≤ 1} centered at origin

and 0 is the puncture point.

Let γ be a simple closed curve around 0 whose orientation is counter-

clockwise. Since
∫
γ g is equal to

√
−1 times the rotational angle of ǧ along

γ, we can see that there exist two kinds of ends. One is the end such that

(3.2)

∫
γ
g = 2nπ

√
−1,

where n ∈ Z. Another is the end such that

(3.3)

∫
γ
g = (u0 + 2nπ)

√
−1,

where n ∈ Z and |u0| = u, u0 ∈ R. Hence, if g has a pole at a puncture

point, then it has a simple pole at the puncture point whose residue is a

real number. �

We will denote by (f, M̄ ,R3/S) a branched complete conformal min-

imal surface of finite total curvature f :M → R
3/S such that M̄ is the

compactified Riemann surface from M .

Definition 3.4. We will define the divisor (Ψ̌) of Ψ̌ = (Ψ̌1, Ψ̌2, Ψ̌3)

on M by

(3.4) (Ψ̌) := −(ǧ)0 − (ǧ)∞ + (η).
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Remark 3.5. In [8] and [9], a branched complete conformal minimal

surface f :M → R
3 or R

3/T of finite total curvature was considered. In this

case, we can see that ǧ, η̌ and Ψ̌i, i = 1, 2, 3, are well-defined on M̄ . The

divisor (Ψ̌) is defined by

(3.5) (Ψ̌) =
∑
p∈M̄

(
min

i=1,2,3
multp Ψ̌i

)
· p.

Then we may see that the relation (3.4) holds.

Assume that the following relation holds:

(3.6) (Ψ̌) =
s∑

j=1

Bj · bj −
r∑

i=1

Pi · pi,

where Bj , j = 1, . . . , s and Pi, i = 1, . . . , r are positive numbers.

Definition 3.6. We call a point bj a branch point of order Bj . We

call a point pi a puncture point of order Pi.

In the following, we will denote by M(g, η) the Riemann surface M =

M̄ − {p1, . . . , pr}, where {p1, . . . , pr} is the set of puncture points. From

the above discussion, we can assume that

(3.7) (g)∞ =

r1+r2∑
i=1

pi +
a∑

k=1

qk,

Res(pi; g) = ui/2π +mi, i = 1, . . . , r1,

Res(pi; g) = ni, i = r1 + 1, . . . , r2,(3.8)

Res(qk; g) = Qk, k = 1, . . . , a,

(η) =
s∑

j=1

Bj · bj +
a∑

k=1

|Qk| · qk −
r1∑
i=1

(Pi − |ui/2π +mi|) · pi(3.9)

−
r1+r2∑
i=r1+1

(Pi − |ni|) · pi −
r1+r2+r3∑
i=r1+r2+1

Pi · pi,
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where r1 + r2 + r3 = r, ni,mi, Qk ∈ Z, ui = ±u, {bj ; pi} are s + r distinct

points, {pi; qk} are r + a distinct points, and z0 �∈ {pi; qk}.

Definition 3.7. We will call the conditions (3.6), (3.7), (3.8), and

(3.9) the divisor conditions.

Let the genus of M̄ be equal to e. Then we may see the relations

(3.10)

r1∑
i=1

(ui/2π +mi) +

r1+r2∑
i=r1+1

ni +
a∑

k=1

Qk = 0,

s∑
j=1

Bj +
a∑

k=1

|Qk| −
r1∑
i=1

(Pi − |ui/2π +mi|)(3.11)

−
r1+r2∑
i=r1+1

(Pi − |ni|) −
r1+r2+r3∑
i=r1+r2+1

Pi = 2e− 2

hold since the sum of all the residues of a meromorphic 1-form on a compact

Riemann surface is 0 and the degree of a meromorphic 1-form on a compact

Riemann surface of genus e is 2e− 2.

We will denote by C = C(M̄) the set of all simple closed curves in M̄

where the orientations are counterclockwise and M = M(M̄) the set of all

meromorphic 1-forms on M̄ . Let us define a map τ : C ×M → C by

(3.12) τ(γ, η) =

∫
γ
η.

We may see that τ is well-defined on a generic subset of C ×M.

Let δ: [0, 1] → M(g, η) be a simple closed curve. Then we may see that

Re τ(δ, η) = f̃3(δ̃(1))−f̃3(δ̃(0)), where δ̃ is a lift of δ to M̃ . Let αi be a simple

closed curve around pi, i = 1, . . . , r whose orientation is counterclockwise.

Then

(3.13) Re τ(αi, η) =

{
vi, i = 1, . . . , r1,

0, i = r1 + 1, . . . , r3,

where |vi| = v.



318 Katsuhiro Moriya

Definition 3.8. We will call the condition (3.13) the period condition.

Conversely, if M̄ = CP 1 and if the pair (g, η, [c]) satisfies the conditions

(3.7), (3.8), (3.9), and (3.13), then we can obtain a branched multi-valued

complete conformal minimal surface f̌ :M(g, η) → R
3 by integration:

f̌(z) = Re

∫ z

z1

Ψ̌,(3.14)

Ψ̌ =

(
1

ǧ
− ǧ,

√
−1

(
1

ǧ
+ ǧ

)
, 2

)
η

2
,(3.15)

ǧ(z) = c exp

∫ z

z0

g,(3.16)

where z is a local coordinate of M(g, η) and c ∈ [c]. If we choose an-

other base point z1 of integral, then the image of the immersion shifts by a

translation in R
3.

When u = 0, that is S = T = T (0, 0, v), the following relation also holds:

(3.17) Re

∫
αi

Ψ1 = Re

∫
αi

Ψ2 = 0, i = 1, . . . , r.

If the pair (g, η, [c]) satisfies the conditions (3.7), (3.8), (3.9), (3.13), and

(3.17), then we obtain a branched complete minimal surface (f,CP 1,R3/T )

by integration (3.14), (3.15), and (3.16).

We will denote by I = I(s, r1, r2, r3, a) the pair (Bj ;Pi;ui;mi;ni;Qk)

which appeared in the divisor conditions. Fix M̄ = CP 1, I, and z0 ∈ CP 1.

Let U = U(I, z0) be the set {(g, η, [c])} of pairs satisfying the conditions

(3.7), (3.8), (3.9), and (3.13). Let W = W(I, z0) be the set {(g, η, c)} of

pairs satisfying the conditions (3.7), (3.8), (3.9), (3.13), and (3.17). Let

A = A(I, z0) the set of minimal surfaces (f,CP 1,R3/T ) corresponding to

elements of W and Ã = Ã(I, z0) the set of multi-valued minimal surfaces

f̌ :M → R
3 corresponding to elements of U . For F and G ∈ A, let F ∼ G

means F = G+b for some b ∈ R
3. From the discussion above, the following

holds:

Lemma 3.9. There exists a bijective correspondence between (1) A/ ∼
and W, and (2) Ã/ ∼ and U .
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4. A Variety of Weierstrass Data

In this section, we will show the set U and W become varieties.

Theorem 4.1. If U is nonempty, then it becomes a real analytic vari-

ety. If u is a rational number, then U contains a complex analytic subvariety

of dimension not less than s+ a+ 3.

Proof. Let R = R(I) be the set {(g, η)} of pairs of meromorphic 1-

forms satisfying the conditions (3.7), (3.8), and (3.9). Then we can see that

the set U is a subset of R× (C∗/ ∼). Let D = D(I) be the set {(D1, D2)}
of pairs of divisors on CP 1 satisfying the following conditions:

(4.1) D1 =

r1+r2∑
i=1

pi +
a∑

k=1

qk,

D2 =
s∑

j=1

Bj · bj +
a∑

k=1

|Qk| · qk −
r1∑
i=1

(Pi − |ui/2π +mi|) · pi(4.2)

−
r1+r2∑
i=r1+1

(Pi − |ni|) · pi −
r1+r2+r3∑
i=r1+r2+1

Pi · pi,

where z0 �∈ {pi; qk}, {bj ; pi} are s+r distinct points, and {pi; qk} are r+a dis-

tinct points. These are the conditions (3.7) and (3.9) with g and η replaced

by D1 and D2 respectively. Then there exists a bijective correspondence

between R and D × C
∗. The bijective correspondence is given as follows:

(g, η) �→ ((g)∞, (η), η/η0)),(4.3)

(D1, D2, c1) �→ (g0, c1η0),(4.4)

where

(4.5) g0 =

(
r1∑
i=1

ui/2π +mi

z − pi
+

r1+r2∑
i=r1+1

ni
z − pi

+
a∑

k=1

Qk

z − qk

)
dz,
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η0 =
s∏

j=1

(z − bj)Bj

a∏
k=1

(z − qk)|Qk|
r1∏
i=1

(z − pi)−Pi+|ni|(4.6)

×
r1+r2∏
i=r1+1

(z − pi)−Pi+|ui/2π+mi|
r1+r2+r3∏
i=r2+1

(z − pi)−Pidz,

and z is the standard holomorphic coordinate on C.

The set D is considered as the set D′ of pairs (E1, E2, E3) of divisors on

CP 1 satisfying the following conditions:

(4.7) E1 =
s∑

j=1

bj , E2 =

r1+r2+r3∑
i=1

pi, E3 =
a∑

k=1

qk,

where z0 �∈ {pi; qk}, {bj ; pi} are s+ r distinct points, and {pi; qk} are r + a

distinct points. Hence, we can consider D′×C
∗, or R as a complex analytic

variety of dimension s+ r + a+ 1.

The set U consists of all the elements in R × (C∗/ ∼) satisfying the

condition (3.13). We will assume that (ĝ, η̂, [ĉ]) ∈ U and that p̂i, i =

1, . . . , r are corresponding puncture points. Fix a simple closed curves αi
around p̂i such that the orientation of each curve is counterclockwise, that

Re τ(αi, η̂) = vi, i = 1, . . . , r1, and that Re τ(αi, η̂) = 0, i = r1 + 1, . . . , r.

We can see that τ(αi, ·), i = 1, . . . , r, are local holomorphic functions on R.

We may see that the set of solutions to the system of equations Re τ(αi, ·) =

vi, i = 1, . . . , r1 and Re τ(αi, ·) = 0, i = r1 + 1, . . . , r on R× (C∗/ ∼) is a

subset of U . Thus if U is nonempty, then it is a real analytic variety.

Let u be a rational number. We will assume that τ(αi, η̂) = Ri ∈ C,

i = 1, . . . , r. Then, the set V of solutions to the system of equations

τ(αi, ·) = Ri, i = 1, . . . , r on R × (C∗/ ∼) is a subset of U . Since τ(αi, ·)
is holomorphic on a generic subset of R× (C∗/ ∼), V is a complex analytic

variety of U . Thus if u is a rational number and if U is nonempty, then

it contains a complex analytic variety. Since τ(·, η):H1(M(g, η),Z) → C is

homomorphism and αi, i = 1, . . . , r − 1 become a basis of H1(M(g, η),Z),

we can see that there exist integers ei ∈ Z, i = 1, . . . , r such that

(4.8)

r∑
i=1

eiτ(αi, ·) = 0.
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Hence the dimension of V is not less than s+ a+ 3. �

Theorem 4.2. If W is nonempty, then it becomes a real analytic va-

riety and contains a complex analytic subvariety of dimension not less than

s+ a+ 5 − 2r.

Proof. The set W is considered as a subset of R×C
∗ consisted of the

elements satisfying the conditions (3.13) and (3.17). The functions
∫
αi

Ψk,

i = 1, . . . , r, k = 1, 2 are local holomorphic functions on R. Hence if W is

nonempty, then it is a real analytic variety of R×C
∗. In a similar fashion as

above, we can prove that if W is nonempty, it contains a complex analytic

subvariety of dimension not less than s+ a+ 5 − 2r. �

5. Examples

In this section, we apply the discussion of the previous section and com-

pare with the possibility of deformations of the Scherk’s saddle tower and

helicoidal saddle tower.

Example 5.1. The Weierstrass data (g0, η0, [c0]) for a helicoidal saddle

tower in R
3/S(u, 1) which appeared in [4] is given as follows:

g0 =
dz

z
+

udz

z +R
+

udz

z −R
− udz

z +
√
−1/R

− udz

z −
√
−1/R

,

(5.1)

(5.2) η0 =
1

2

(
z
√
−1

(z +R)(z −R)(z +
√
−1/R)(z −

√
−1/R)

)
dz,

(5.3) [c0] = [exp[π
√
−1/4]],

where R is a real number depending on u. Hence, (g0, h0, [c0]) ∈ U(I, z0),

where I = I(0, 0, 4, 0, 2). Thus, U(I, z0) is nonempty and contains a com-

plex analytic variety of dimension not less than 5.
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Example 5.2. If u = 0 in (5.1), (5.2), and (5.3), then the pair (g0, η0,

[c0]) becomes a Weierstrass data for a Scherk’s saddle tower. Hence,

W(I, z0) is nonempty and contains a complex variety with dimension not

less than −1, which is not useful.

Remark 5.3. In [3], we can see a family of one real parameter which

contains a Scherk’s saddle tower.

Remark 5.4. I take this occasion to correct errors in my paper [7]. I

would like to thank R. Miyaoka for her comment about this correction.

The statement of Theorem 1.2 in p. 122 should be modified by “If

FD(Mg,Ω, Bk,r, α, β) is nonempty, then it has the structure of a real an-

alytic variety. If the nullity of the Jacobian of the map (Reλai ) defined

in p. 132 at a point in FD is 0, then the dimension of FD is at least

2[(k + 2α+ 2β + 5) − {(7 − l)g + r}]”.

The first line in p. 133 of the proof of Theorem 1.2 should be replaced

by “Hence, FD is a real analytic subvariety of AD. If the nullity of the

Jacobian of the map (Reλai ) at a point in FD is 0, then the dimension of

FD is at least 2[(k + 2α+ 2β + 5) − {(7 − l)g + r}]”.
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