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Chapter 1

Introduction

With mathematical modeling and computer simulation, we are now able to solve
problems in many fields such as weather and pollution forecasts, underwater mea-
suring, semiconductor device simuiation and so on. When dealing with these prob-
lems, we are often required to solve partial differential equations(PDEs). Because
it is usually very difficult to solve such problems mathematically, numerical algo-
rithms or schemes become quite indispensable to obtain acceptable approximate
solutions. Nowadays, many methods have been developed, such as finite element
method(FEM), the finite difference method(FDM), the finite volume method(FVM)
and so on (cf.P.Knabner [30] for an overview and basic introduction). Among these
methods, the finite element method is a popular one, and has been integrated
into many computer aided engineering(CAE) systems. The popularity of FEM is
proberbly due to its sound mathematical foundations such as a priori and a poste-
riori error estimations as well as its practicality. The focus of this work is on error
analysis of the finite element methods.

There is a large number of literatures on FEM, for example, both textbooks of
C. Johnson [24] and P.G. Ciarlet [15] have lists of numerous references in this area.
Simply speaking, the finite element method is a kind of Galerkin’s method, in which
a variational form of the given PDE is solved in a finite dimensional space. The
obtained solution uy, as an approximation of the exact one u, is usually different
from u. To assure the reliability and efficiency of the computations, it is important
to estimate the error u — uy in some suitable norms. For this purpose, a priori
and a posteriori error estimation theories for FEM have been developed to estimate
and further to control the approximation errors. A priori error estimate is based
on the exact but unknown solution together with given data to predict the final
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computation error, while a posteriori one also utilizes the knowledge of the obtained
computational result uy. In either case, there appear a number of positive con-
stants besides the standard discretization parameter i and norms, but it has been
proved very difficult to evaluate such constants explicitly. For quantitative purposes,
however, it is essential to evaluate or bound these constants as accurately as pos-
sible, because sharper estimates enable more efficient finite element computations.
Therefore such evaluations have become progressively and increasingly important
and have specifically been attempted for adaptive finite element calculations relying
on a posteriori error estimates. At the beginning of Chapter 2, we explain in detail
how to derive these constants and demonstrate their role in the error estimation.

The need of explicit evaluation of the constants mentioned above also comes
from mathematical prdofs based on numerical verifictions. As is well known now,
we can monitor the round-off error of floating point computation in the computer
by the interval analysis [41, 42, 19]. Utilizing theories of verified computations, such
as known as Nakao’s theory [38], Nakao gave mathematical proofs of existence of
the solutions for various elliptic problems (cf. [37, 52] and the references therein).
However, there are also various error constants to be evaluated for quantitative
error estimates. The accurate estimation of these constants has great effects on the
success of the interval computation.

Evaluation of the error constants has been proved to be very difficult. Some
people tried to give rough bounds by the path integration method [48, 40], or by
the interpolation remainder theory [21, 10, 9, 44]. In [4, 47], the finite element
method was used to provide approximate evaluations without estimation for the
approximation error. The interval computing was also employed to provide quite
satisfactory enclosing a certain constant [36, 39], where the computation was done

with quite complex procedures.

As we will see, interpolation error on narrow element is related to the dependency
of constant on the geometric shape of the element. Babuska and Aziz considered the
case. of triangular element and proposed the ”maximum angle condition” [6], which
states that, if the maximum interior angle is fixed, the H' norm of Lagrange in-
terpolation error is bounded even the smallest interior angle approaches zero. In
the 3D case, the maximum angle condition for nodal interpolation on tetrahedron
element was also discussed in [1, 31}, where it was shown that the error in H* norm
“cannot be bounded under the ”"maximum angle condition”, so that some other kinds
of interpolations rather than Lagrange one may be recommended.



Outline of our research

\

In the following chapters, we will study various error constants appearing in
the error estimates of conforming and nonconforming linear triangular FEMs. The
obtained constant values or upper bounds will be used to give quantitative error
estimates for the finite element solutions.

In Chapter 2, we will derive some fundamental estimates for the interpolation
error constants appearing in the conforming linear triangluar finite elements. For
each constant, we characterize them by appropriate Rayleigh quotient over a spec-
ified linear space, and then study the properties of the constant, such as the con-
tinuity, monotonicity, asymptotic behaviours when one edge tends to zero, and so
on. In this work, we again verify the "maximum angle condition” by analyzing the
dependency of constants on geometric parameters of the element.

We will also try to determine the concrete values of constants. In the case of
isosceles right triangle, we 'successfuﬁy determine several constants, including the
Babuska-Aziz constant [28]. By showing these constants to be related with the root
of some transcendental functions, we can evaluate the constants with arbitrary pre-
cision. For some other constants, we also find reasonable upper bounds. Thus it
becomes possible to perform quantitative interpolation error estimation and conse-
quently computable error evaluation of finite element solution.

In Chapter 3, we present quantitative error estimates for the linear noncon-
forming finite element. More specifically, we introduce the Fortin interpolation and
another edge-wise interpolation, and then study the error constants appearing there.
Although we cannot determine the concrete values for these constants even in the
case of special triangles, we are able to give upper bounds for them by utilizing the
methods established in Chapter 2. The research implies that the maximum angle
condition is also important in the linear nonconforming FEM. Some results in tri-
angular element are also extended to the 3D case.

In Chapter 4, we consider eigenvalue problems of the Laplace operator and pro-
pose a posteriori estimation method to evaluate the constants which are associated
to second order ODE’s. As we will see, search for concrete values of the error con-
stants usually results in solving some eigenvalue problems for operator —A or A2, :
where various constraint conditions are imposed on the associated function spaces,
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for example, vanishing of integration over the domain. Due to such constraints, the
eigenfunctions will be subject to nonhomogeneous Dirichlet or Neumann bounding
conditons and hence the eigenvalue is very difficult to obtain. We solve one of these
problems by constructing an auxiliary function to make the boundary condition
homogeneous, adopting the ideas of Nakao in [36, 39].

~ As an application of our proposed method, we also consider the eigenvalue prob-
lem of Laplacian over disk with the homogeneous Dirichlet condition, and give quan-
titative upper and lower bounds for the minimum eigenvalue. '

In Chapter 5, we give a hypercircle-based a posteriori error estimates method
for the FEM solutions of Poisson’s equation, where the linear conforming FEM and
nonconforming one are used tbgether. Once the verified computation becomes truly
reliable, the method is expected to give mathematically correct error estimate. It
should be pointed out that our proposed method can even be applied to singularity
problem, for example, Poisson’s equation with homogeneous Dirichelt boundary
condition on the L-shaped domain. The computational results demonstrate the
validity of this method in such a case.



Chapter 2

Conforming P; triangular finite
element

2.1 Motivation of research on error constants

‘Where do the error constants come from and why do we consider them?

As an answer to this question, we would like to explain the motivation of our
research on the error constants and also demonstrate the important role of error
constants especially in error analysis for finite element method (FEM).

2.1.1 Conforming P, finite elethent for model problem

We start with Poisson’s equation as a model problem, and will apply the con-
forming P; finite element to find approximation of the solution.

Let Q@ C R? be a polygonal domain with the boundary T'. Given f € Ly(Q),
there exists a unique solution u € H'({2) that, in the sense of distribution, satisfies
the following Poisson’s equation with homogeneous Dirichlet boundary condition

—Au=finQ, u=0onT. (2.1.1)

Thus, the function u € H}(£2) is the unique solution of the varistional problem,
| (Vu, Vo) = (f,0), Vo€ HY(Q). (2.1.2)
For this well-posed problemv, we bcan define an operator G by G : f € Ly(Q) — u €

H}(S). Here we also assume that the problem is a regular one (cf. Chapter 3.2 of
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[15]), that is, the solution u € H*(Q)NHy () and there exists a positive constant C’
such that ||u|| g2y < C'||fllr2. As is known, if the domain €2 is a convex polygonal
one, the problem in (2.1.1) is a regular one, where the constant C’ can be taken as
the unity. : ‘

In most cases, due to the complexity of the domain  and the given data f,
we cannot obtain the explicit solution for the given problem. However, we can ap-
proximate the solution in finite dimensional spaces by utilizing the corresponding
variational forms, where the theories of finite element methods ensure the validity
and reliability of the computation. In this chapter, we will focus on the conforming
P, FEM and then in the next chapter, the case of nonconforming P; FEM.

To apply the triangular P; FEM to the problem above, let us consider a regular
family of triangulations {7"};s0 of Q, ( cf.[15] for the terminology regular ) and
then construct the finite element space V), - C Hg(Q) for each T P

= {v e C(Q)| v is linear on each K € T";v =0 on 0. }, (2.1.3)

co’n f

‘where C(€)) denotes all the continuous function over Q(:= closure of Q). Thus the
finite element approximation wuy € Von ¢ of the above u € H(9) is now uniquely
determined by imitating (2.1.2) in V2, £

(Vuh,, Vvh) = (f ’Uh), Yoy € Vonf (2.1.4)
- Within this section, we will also abbreviate V" 7 as V" if there is no fear of confusion.

Note that V" may present other kind of spaces under various situations.

2.1.2 A priori error estimates

| Letting 1 and uy, be theose defined above, an important fact in the error analysis
of the Ritz-Galerkin FEM is the following best approximation property:

|u — upli,0 = min |Ju— w10, (2.1.5)
’U]-,,EV"‘

where | |1 o is the standard H' semi-norm for functions over domain Q. Another im-
portant one is the Ly-error estimate based on the Aubin-Nitsche trick: (See Theorem
3.2.4 of [15])

G \
lu— o < Ju—tnhn sup  inf 1CI=Urha (2.16)

g€ L2 ()\{0} vhEV" lglle
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Let IT} be a nodal value interpolation operator that maps a function v € H*(Q)N
H}(Q) — C(Q) to VI, that is

(IT} ) (p;) = u(p;) for each vertex p; of Ty, . (2.1.7)
From (2.1.5), an error estimate based on the interpolation function T} u is given by
lu—uplo < |u—Thulye < Chlulae < CC'| flla, (2.1.8)

where C is a constant independent of u and h. Also, taking v, = II} (Gg) in (2.1.6),

we have |
sup Gg ~ H}‘GQII’Q < sup th[—(—;@ < CCh.
9EL2(\{0} lgle 7 gera@nver  llglle
Hénee, by adopting (2.1.6) and (2.1.8), we have
lu — unlla < CC'hlu — uplra < (CCR?||flla - (2.1.9)

From the analysis above, we can see that the boundedness of the constants C
and C’ ensures a priori error estimates for the FEM solution. However, the values of
these constants are usually very difficult to obtain. The main objective of this dis-
sertation is to give concrete values or upper bounds for various constants appearing
in FEM error analysis and further to make quantitative error estimation for FEM
solutions. As these constants are closely related to error estimates, we call them
”error constants”.

Before further discussing the error constants, we also recall one kind of a poste-
riori estimate for FEM to show the role of the error constants.

2.1.3 A postériori error estimates

A posteriori error estimation is also feasible and effective in various situations
such as adaptive FEM computation. Here, as a demonstration, we explain a special
and rather classical a posteriori error estimate method briefly to show the indis-
pensability of the interpolation function together with the error constants. Detailed
analysis can be found in the subsequent sections.
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Let ¢ be an arbitrary vector function taken from

H(div; Q) := {q € Ly(Q)?| divg € Ly(Q)}. (2.1.10)
Using the Green theorem, we have,

w—unlia = (V(u—un), V(u—1up))a = (u—un—Au)o — (V(u—up), Vup)a
= (u—un fla+ (V(u—un),¢— Vur - o
= (u—up, f+div )+ (V(u—w),q — Vup)o |
< lu—uplla - [If +divglla + [u— uali0 - lg = Vurlla -

Applying the former part of ‘(2.1.9), we have
]u - uhh’g'z < CCIth + div qHQ +- “(] — Vuh,“g . (2111)

The estimate above becomes an a posteriori one if ¢ is specified appropriately.
The most elegant but quite a restrictive choice is based on the hyper-circle method
[29], where ¢ is chosen so that f+ div ¢ = 0 and hence the the use of CC’ becomes
~unnecessary. More common and practical approach is to obtain ¢ by post-processing
of uy, for example, by averaging or smoothing Vuy, so as to belong to H(div; ). To
make this approach effective, it is necessary that ||¢— Vuy||q = O(h) and preferably
|f + div gllo = o(h). A kind of a posteriori Ly-error estimate is also obtainable by
using (2.1.9),

llu — uplla < (CC'R)?||f + div qllq + CC'hllg — Vup|la - (2.1.12)

Once again, we observe the importance of the concrete values of the error con-
stants. In the following section, we will introduce necessary constants and develop
methodology to give sharp estimates.

2.2 Interpolation functions and error constants

We have demonstrated the importance of the interpolation error constants in the
error estimation for the finite element methods. From this section, we will investi-
gate several error constants related to triangular finite elements.

First of all, we give the necessary notations and define the error constants. Let
h, « and € be positive constants such that

h>00<a<l, (% eosI S <O <. (2.2.1)



We denote by T, g, the triangle AOAB with O(0,0), A(h,0), B(ah cosf, ahsin6)
as three vertexes. The conditions in (2.2.1) imply that AB is the edge of maximum
length, while OA is the medium edge and OB the shortest one. Notice that the
notation A is mostly used as the largest edge length in standard textbooks such
as [15], but our usage of h as the medium one may be convenient for the present
purposes. A point in T, g or over its closure is designated by =z = (z1, ), and
three edges e, e; and eg of Ti, 95 are defined as

€1 = 014762 = OB,G:; =0C.

Thus each triangle can be configured with three parameter «, ¢ and h by an ap-
propriate congruent transformation. Like the usage in [6], we will use abbreviated
notations Thp = Thp1, To = Torm and T =Ty (Fig 2.2). |

B(ah cos 8, ahsin 6)

To0.n
ah

A(h,0)

o~ 1

Figure 2.1: Triangular element 7, ¢,

Before further considering the constants, let us introduce several function spaces.
On domain T, ¢, we use the popular Hilbert space Ly(Ty.0,,), where the norm is de-
noted by |||/ ,(z. 4.)s OF |||z, ., if there is no fear of confusion. When we need to use
the Ly space and its norm for other domains such as €, we will use notations such as
Ly(©) and || - ||q- The spaces H (T, 1) and H?(T, ) are respectively the first and
the second-order Sobolev spaces for real square integrable functions over Topon [2].
The symbols du /0z;, O;u and u,, will all denote the partial derivative of function u
with respect the variable z;. The standard semi-norms for H(T, won) and H 2(’IL,M)
are represented by |- |1 = (37_, [|0v/0z;||)/? and |v], = (szzl 10%v/0z;0m;||%)"/
respectively. Similarly we also use |- |1 o and | - |20

v

Let us define the following closed linear subspaces of H'(T, 9.1) or H*(Th ) for
functions over Tq g 4:



B(aﬁ cosf, ahsin 6) B(acosf, asinf)

0 A(1,0) o A(1,0)
Figure 2.2: Notations for triangles
Vf}@,h ={ve H (T4 / v(z)dx =0}, (2.2.2)
Ta,0.n
Vi = {v € H (Togn)| / o(s)ds =0} (i=1,2,3), (2.2.3)
Vign ={ve H Tyop)| v(0) = v(A) = v(B) =0}, (2.2.4)

where ds is the line element. For other domains like §2, we will also use spaces such
as H'(Q) and H?(Q) later. For the above spaces, we will again use abbreviated
notations Vi, = Viy,, Vo=V ,and Vi=V{(0<i<4)

The spaces above are introduced for the purpose of giving error estimate of
conforming P; FEM. There will appear several other spaces introduced in the next
chapter.

In the following, let us consider the usual Fy interpolation operator IIJ, ; , and
Py one II}, 4, for functions on Ty [12, 15].

Interpolation operators

Averaged interpolation function: For each v € H' (T, ) (orevenv € Lo(Tapn)),
ITY, ;v is a constant function well-defined by

L8k

)@ = [ o)y / [ oy (wetan. @29
Ta,O,h JT,



Nodal Lagrange interpolation function: For each v € H*(T,g4), Hclx’e‘h'v is a
linear polynomial function such that

(% ¢ pv)(7) = v(z) for z = O, A, B. | (2.2.6)

To give error estimates for these interpolation operators, 1t is natural to evaluate
positive constants defined by

viT '
Ci(a,0,h) =  sup LCIEPY (i=0,1,2,3), (2.2.7)
veVi 4 \{0} [‘Ull,Ta,e,h

Cyla,0,h) = sup M , (2.2.8)

- wev th \{0} [0’27}”)71

Cred,h) =  sup  AMTeon (2.2.9)
veVE )\ {0} iUIiZ,Ta?o,h
The existence of these positive constants follows from the Rellich compactness the-
orem and the ”sup” here can be actually replaced by "max”. Due to the prop-
erties to become clear soon, such constants, together with some related ones, are
often called wnterpolation error constants. We will again use abbreviated notations
Ci(a, 0) = Ci(a,0,1), Ci(a) = Cy(a, 7/2) and C; = C;(1) for 0 < i < 5.

By a simple scale change, we find that Cj(e, 8, h) = hCi(,0) (i = 0,1,2,3,4)
and Cs(a,0,h) = h*Cs(«,0). These relations and constants are used to derive
popular interpolation error estimates for I}, 5, (i = 0,1) applied to functions on
Ty on [15, 30, 12]: |

v — Hgﬂ?hv{[ < Co(a, O)h|v], Yve H (Typp), (2.2.10)
v =11, g v < Caley, O)Rlvle, Yo € HX(Topn) (2.2.11)
v =TI g pvlls < Cs(a, 0)hlvls, Vv € H*(Toep), (2.2.12)

where we have used the facts that v — IIJ y v € V2, for v € H'(Topp) and
v =TI, v € Viiy, for ve H*(Thp).

Moreover, in the present coordinate system ( Figure 2.1), we have, for the partial
derivative d1v(= 0v/0z1) of v € H*(Tpo1),

101 (v — 11}, g )| < Cilex, O)R |B1v]; (2.2.13)

since 0y (v — 11}, 5, v) € V4, On the other hand, we can give an interpolation
estimate in terms of Cy(a, 6):

Blv —TIL ,,0)/98|| < Caler, 0)h|80/08, , C (2214)
«,0,h 1
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where d(v —II o, v)/08 denotes the directional derivative of v — II% 5, v in the
direction 3 := (cos#,sin ), that is, V(v — IT, 5 v) - (cos B, sin 3). |

The above two estimates (2.2.13) and (2.2.14) are in a sense sharper than (2.2.11)
as noted in [12]. '

Remark 2.2.1. We can also consider anisotropic error estimates such as

2 1/2 ;
v =TI g 401, 0, < B (Z Cij @:jvllg:ra,e,h) : (2.2.15)

7,j=1

where the constants c¢;;’s (1 < i,j < 2) can be different from each other to give
better error estimates. Notice that we are here considering the special cases where
¢i; = Cyla, 8) for all i and j. Such kind of error estimates can be used to control
anisotropic elements in adaptive FEM [20, 18]. However, we will not include such
topics here.

Remark 2.2.2. The constants Ci(1,7/2,1) = Co(1,7/2,1) are first introduced
by I.Babuska and A.K.Aziz [6] to give an upper bound for Cy4(1,7/2,1), that is
Cy(1,7/2,1) < C1(1,7/2,1) = Co(1,7/2,1). In the following sections, we will also
show that Cy(aor) < max{Cl(oa), Co(a)} for oo > 0. Thus the estimates for C1(«) and
Co(a) can be used to give upper bound for Cy(a). Relations between Cy(a,8) and
Ci(a,0)(1=1,2,3) will be discussed in Section 2.4.2. One of the merits of considering
Ci(a,0) (i = 1,2,3) is that the estimates for these constants are much easier than
the one for Cy(c,8). ‘ '

Thus we can give quantitative interpolation estimates, provided that we succeed
in evaluating or bounding the constant C;(«, 8)’s explicitly. So we will try to bound
these constants by fairly simple functions of o and 6. Notice here that each of such
constants can be characterized by minimization of a kind of Rayleigh quotient. Then
it is equivalent to finding the minimum eigenvalue of a certain eigenvalue problem
expressed by a weak formulation, which is further expressed by a partial differential
equation with some auxiliary conditions.

More specifically, we can characterize the constants C;j(«, 6)’s by minimization

12



of Rayleigh’s quotients Ra oS

. i vt r,
¢; 2(0’79) inf R(,)g('v); R()( ) = 1T 0

(i=0,1,2,3),  (2.2.16)

vevi (o) lvliz,,
C7%a,0)= inf RY R (v ————-—9 2.2.17
Pled)= it RS0 RO = et (22.17)
5 5 | 'fg-r .
C:i%(a,0)= inf R () RS) (v) = —==2 2.2.18
5 ( ) 'UGV(_:},(;\{O} a.,H() .0 ) H/U”%"a'ol ( )

where all the notations and functions are for T, . Here we also introduce several
quantities \;(«, 6)’s by '

N, 0) == C73(a, é) (0<i<5), (2.2.19)

which will often appear in the forms of eigeﬁvaiue problems (see below).

By the standard compactness arguments, each infimum above is actually a min-
imum and is the smallest eigenvalue of a certain eigenvalue problem. For example,
the eigenvalue problem associated with Cy(a, ) is to find A € R and u € V), \ {0}
that satisfy

' (Vu, Vo), , = Au,v)r,,, Vo€ Voo (2.2.20)
Here (-, )1, , denotes the inner products of both Ly(T% ¢) and Lo (T, 0)%. The present
eigenvalue problem is also expressed by a partial differential equation with a linear
constraint for V9 o and a boundary condition [36, 39]. ‘

—Au=Auin Tyy, / u(z)dz = 0, R _ =0on d7,,, (2.2.21)
T, on
where ;,5% denotes the outward normal derivative to the boundary 07,4. The
above boundary condition is the homogeneous Neumann one, and the desired value
Co(a,0)~? is just the second eigenvalue for the same PDE problem without the linear
constraint. \
For Cy(a, 0), it is characterized in essentially the same fashion as (2.2.20), if the

associated space V0, is replaced Wlth L wot find A € R andu € V] 4\ {0} that satisfy
(Vu, W)Ta‘e = Mu, V)1, 4 Y€ 'VQ{(;. (2.2.22)
On the other hand, the equations corresponding to (2.2.21) become [36, 39]:

) ! ou 0 on edges OB and AB,
,_Au = AuinTag, /0 (21, 0)dz1 =0, on { ¢ onedge OA,
(2.2.23)
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where ¢ denotes an unknown constant to be decided simultaneously with v and .
The other constants are characterized similarly. For example, the eigenvalue
problem associated to Cy(a, 6) is to find A € R and u € Vig \ {0} that satisfy
2

> (Oyu, Ov)r,, = MVu, Vo)r,,, Yo € Viy. (2.2.24)

ij=1
But the partial differential equation related to the above and also that to Cs(c, 6)
are the ones of fourth order with special linear constraints and boundary conditions,
and are more difficult to deal with than the second order equations such as in (2.2.21)
and (2.2.23), cf.[4, 44}. Since T, ¢ is a triangle, it is difficult to solve such eigenvalue
problems explicitly even in the case of second order equations, except in some rare -
cases to be shown later.

2.3 Dependence of constants on geometric param-
eters

The classical method to estimate the interpolation error is to consider the inter-
polation on a reference element, e.g., the isosceles right triangle, and then introduce
appropriate affine coordinate transformations between the given elements and the
reference one (cf. Chapter 3 of [15]), where only the convergence orders have been
usually assured with many unknown constants. Here we will follow essentially the
same technique as above to consider the dependence of the constants on geometric
parameters, and then give concrete estimates for C;(«, 0)’s by using the ones on the
reference triangular element.

2.3.1 Relation between C;(a)’s (i =1,2) and Cy(a)
In this section, we simply extend the result of [6] to show the role of C;(«) (i = 1,2, 3)
in estimating Cy(a).
Lemma 2.3.1. For o > 0, it holds that

Cy(a) < max{Cy(a), Cy(a)} . (2.3.1)
Proof. From the definition, | |

Cy(@) = inf |v|3 _ |0v/0x,|3 + |0v/0,|?

veVa(0) [0]2  wevi(oy [|Ov/0z, |2 + ||0v/0z,|

14



™

We can see that 0v/dz; € V! (i = 1,2) for v € V2, so that

|0v/ 0|17, > Ci(a)™H|0v/Bx4|, (i =1,2).

Then,
—21] « ) o, 2 N—2| = y 2
Cile)? > i Ci(a) Hd%/d’ﬁtll2 + C,z(a), ?@/&fzﬂ
veVA\{0} |0v/0x1]|? + ||Ov/Ox2
> min{Ci(a)7?, Cy(a)?}.
Now we obtain the desired result. O

As shown in the above proof, neglecting the curl-free condition for v € V, that
is, 01(0av) — 02 (01v) = 0 required for v € V2, leads to an upper bound for Cy(ar). As
we will see in the later computational results in Figure 2.3, the constants C; () and
Cs(x) give reasonable upper bound for Cy(a). Moreover, the orders of derivative in
the PDEs corresponding to C1(«) and Cy(cr) are lower than that for Cy(a), which
fact makes C1(«) and Cy(cv) easier to deal with. Therefore, we will pay more efforts
on these two constants instead of the primary one Cy(«) [36, 39].

The method used in Lemma 2.3.1 can also be extended to general cases to give
estimate for Cy(a, ) by utilizing C;(e, 8) (i = 1,2, 3), cf. Section 2.4.2.

2.3.2 Dependence of constants on o

Monotonicity of constants C;(a) in o

In the case of o = /2, we can easily prove the monotonicity of C;(a), (0 < i <
5:;4 # 4) , as will be shown below. However, it appears to be difficult to show the
monotonicity of Cy(e), although our numerical results suggest that it holds even in
this case. In general case where 6 # %, it would be much more difficult or even
impossible to show the monotonicity of C;(«, §) even when one of o and 6 is fixed.

Before going into further ‘discussion, let us introduce new Rayleigh quotients
R for u € HY(T) or u € H*T), where T =T} /91 '

15



drullz + a2 dul|F

RY(y) = Tl fori=0,1,2,3, (2.3.2)
‘Wr
A Onull + 2a72||01pul|% + a4 Oagul|? :
B () =10z L T for i = 4 2.3.3
(27 (u) “8111,!‘,3—1—@"2”6211,”% or 1 3 ( )
RO (u) = [0uullf + 2072 01ul] + o] Oxulf?

fori=5. (2.3.4)
JullF o
Lemma 2.3.2. Fora >0, Ci(a)’s (1 = 0,1,2,3,5;i +# 4) are strictly monotonically
increasing with respect to «.

Proof. We only show the proof for Cj(«), while the other ones can be done in
analogous ways. Let us consider the transformation between = = (x1,75) € T
and § = (§1,§2) € T by & = 21,& = zo/a and let 4(&1,&) = u(xy, o) for the
corresponding ¢ and x. Using the Rayleigh quotient in equation (2.3.2), we have
RY (0) = Ry (u). Also, notice that 1:2&1)(11) is strictly monotonically decréasing in
o for fixed @ if O, 0 # 0. ‘

As RY (u) = RY (@) and from the definition of A;(«) in (2.2.19), we can see that

M(a)= inf RO(o), (2.3.5)
where "inf” is actually "min”. For each «, let a8 € V1 be the minimizing function

corresponding to Aj(a). We can see that 852&8 ) # 0 although we omit the details
(cf. Sec.2.5). Hence, for given 0 < oy < s, we have

A(an) = RQI (tay) > Raz (fay) = [:‘)m (Gay) = Aa(e2) (2.3.6)

where the second inequality follows from the definition of minimizing function 4, .
Now, we have proved that C}(«) = ,\1(@)—1/ 2 is strictly monotonically increasing as
« increases, and the proof is completed. O

Remark 2.3.1. Summarizing the results in Lemma 2.3.1 and 2.5.2, we have
Cila) < max{Cy(«),Ca(a)} < Cy = Cy fora <1,

which fact makes it possible to give an upper bound for Cy(c), provided that the
values of Cy(a) and Cy(cx), or even the single value of Cy = Cy, are available.

16



Continuity of constants in o

For all o € (0,00), we will show that C;(a)’s (0 <4 < 5) are continuous with
respect to a.. The proof for each constant adopts essentially the same technique. -

Lemma 2.3.3. For a > 0, Ci(e)’s (0 < i < 5) are continuous with respect to c.

Proof. We describe the proof only for Cy(e), while it is easier to prove in other cases
since the associated C;(a)’s are monotone. Let us recall the Rayleigh quotient in
equation(2.3.3), and the constant A\s(«) introduced by (2.2.19):

1

= = inf R4 (v). | 2.3. |
) Ci(al ~ wevithvoy Rav) (23.7)

Within the present proof, we will denote the denominator of RS (v) by by (v) and the
numerator by aq(v), that is, Rff)(v) = ao(v)/ba(v). Let v, € V*\ {0} be one of the
minimization function corresponding to A4(«), for which we assume that b, (v,) = 1.
For a fixed a > 0, let I, := [a —¢,a+¢€] C (0, 00) for sufficiently small € > 0. As
we can see that Ay(a) is uniformly bounded for 3 € I,, both A4 := limsupg_,, A4(3)
and )\, := liminfg ,,A\4(8) exist. , '
To show the continuity of \y(3) at 5 = «, we need to prove that

A(a) = liminfs ., Ag(B) = limsupg_,A4(f) . (2.3.8)
In fact, as \, < My, it is sufficient to show
(limsupg_,As(B8) =) As < Mg(@) < Ay (= liminfa_oAg(5)) . (2.3.9)

From the definitions of lim inf and lim sup, there exist a sequence {3;}$2, such that
B; — o« and \(B;) — A4, and also another one {3}2°, such that 3; — « and
M(B;) — Mg as i — oo0.

Firstly, we will show that

As < M) (2.3.10)

which is true by noticing the relation )\4(//31') < Rﬁf )(U(,;), and the fact that R,&»(”a) -
R, (v,) and )\4(,(3’1:) — Ny as i — 00, ‘

Secondly, we will show

M) < Ay (2.3.11)

for which we give the proof as below.
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1) |lvgllm2(r) are uniformly bounded for all 3 € I,:

Firstly, there exist positive constants k;(I,) (i = 1,2, 3,4), such that
kl(fa)lvig,l’ < aq(v) < kQ(]a)]Ug,T )

ks(La)[v]ip < ba(v) < ks(La) vl -

Considering the boundedness of {A4(8)} on I, and the assumption b, (vs) = 1,
we find that {az(vs)} and {bs(vs)} are uniformly bounded on I,, so that
{|vglr} are uniformly bounded. Secondly, noting that |ju|jz < Cs|u|sr for
u € V* (cf. 2.2.7), we have that {||vg|lr} is uniformly bounded. Therefore,
{Ilvgllaz} is uniformly bounded for all vg with 8 € I,.

2) Since {vg,} are uniformly bounded in H?(T'), we can apply the compactness
theorem in the Sobolev space (Rellich’s theorem) to show that there exist vg(#
0) € H*(T) and a sub-sequence of {vg,}, still using the same notation, such
thoa.t vg, — vo in H*(T) and vg, — v in H! (T) as i — 0o. Moreover, we have
e = 5o (1< k,j < 2) in Ly(T) and 32 — 22 (j = 1,2) in Ly(T).
Here, ”—" and ”—” respectively denote the Strong and weak conv ergence in

normed spaces.

3) limy .o ag,(vg,) > aa(vs,) and lim; o by, (vg,) = ba(ve) = 1:

The latter equality is easier to show. For the former inequality, we use the
weakly lower semi-continuity of Hilbertian norms: for {w;}2, such that w; —
wo in Ly(T), we have ||wol|pyry < liminf; o ||wi]|7. Then

. 8 Vg, 8 ’Ug 1 d Vg,
}L 3. (v, —_ 1 I i /
lim a5 (vs) = lim {n I+ 57+ 5| G

; 2 2 '

> h?.l,mf [| Hz + hmilf ||ad ng Ik

o?
-E—hmmf 84H U ]]T
0% 1y 8 Vg 1, 0%y

> ==l —

2 IGR I+ o+ 2ol g

= au(vg) .

A

Thus we have M(a) = RY (vq) < RY (vo) < lim; o0 Rgi) (vg,) = Ay

18



Now, both (‘7 3.10) and (2. 3, 11) are proved, so that (2.3.8) holds. Therefore the
continuity of Cy(«) is assured. (]

Remark: Here we only consider the continuity of constants on parameter « in the
case where § = 7/2. Actually, by extending the technique used here, we can prove
that all these constants are continuous in two parameters and 6 for o € (0,1] and

0€lfm).

We summarize the results above as follows.

Theorem 2.3.1. In the case of h = 1 and 6 = /2, Ciy(a)’s (0 < i < 5) are
continuous and positive-valued functions of @ € (0,400) (a > 1 is also considered
here). Except for i = 4, they are strictly monotonically increasing with respect to o.
In particular, ‘

Cila) <C;, Vae(0,1] (0<i<bji#4). ‘ (2.3.12)

Furthermore, Cy(ct) has the property
Cy(a) < max{Ci(a), Cy(a)} < Cy = Cy for a € (0,1] . (2.3.13)

Here we see that each C;(«) (0 < ¢ < 5;4 # 4) is bounded from above by C;, and
Cy() is so by Cy = C,. Fortunately, since the value of Co(= 1/7) and C; = Cs will
be available (to be shown in the next chapter), we can give rough but correct upper
bounds for C;(a)'s (1 =0, 1,2, 3).

~In Figure 2.3, we show the numerical results for C;(a), Cy(a) and Cyla) to
check the validity of the present theorem. As may be seen from the figure, Cy(«)
is actually bounded from above by max{C1 (), Co(a)} for every a < 1. Moreover
their monotonicity is seen to hold, although such a property is not yet proved for
- Cy(a). It is also interesting that Cy is numerically close to C; = C5 at o = 1.

2.3.3 Dependence of constants on 6

Since various properties of error constants in the case of a = 7/2 become clearer
now, we now try to estimate C;(a, ) by C;(«) for each fixed o. There are also
some other ways to estimate C;(c, #)’s by considering the coordinate transformation
between, for example, T, g and T} r/2, which will be studied in the next section.

For fixed value of parameter «, we can estimate Cj(c, ) by C;i(a) as follows.
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Figure 2.3: Numerical results for C;(a), Cy(a) and Cy(a)

Theorem 2.3.2. For each o € (0,1] and 6 € [n/3,7), the following relations hold:

Here,

6i(0) = /14| cosb| (i =0,1,2,3), ¢4(0) = %ﬁ ¢5(0) =14+ |cosb|;
— | cos
(2.3.15)

‘ ,‘ _ 1—|cos|
Vi(0) = /1 —]cosf] (i=0,1,2,3), Y4(0) = ———==, ¥5(0) =1 — | cos| .
' V1+]|cosf| ,
, (2.3.16)

Proof. Given the triangle T, g, we define the affine transformation between z =
(z1,29) € T p and & = (£1,&) € T, by (cf. Figure 2.4):

‘61 = L1 — cot 91?2, 62 == —SKZH . (2317)
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B(cxcos@,asine),/’

Ta,G and Ta,vr/z

G

~
5 A(1,0)

Figure 2.4: Transformation between T, 5 and Tam—‘/g

above in the matrix form is given by

51 - ) ) L (1 —cotd
(52 =T . “lthT“‘(tlJ)i,jzl,2 0 1/sinf )

To investigate the relation between the derivatives of the two functions @(y, &)
and u(zy,xs), we are required to consider the eigenvalue problem of the matrices
related to the transformation (2.3.17). Firstly we give the Jacobian of this transfor-
mation,

8(1:1: x?)

9(&1, &)

The derivatives of © and @ are related with each other as

Uy | _ ot 'Z:lfg-l ’ Uzizy Umazp ) _ gt 2:55151 "}Eléz T, (23.19)
Ugy Ugy ) Ugomy  Uzomg Ugae;  Uge,
where we use the notations such as u,, to denote the partial derivative du/dz; and
denote by 7 the transpose of the matrix 7.

= sinf . (2.3.18)

Noticing that semi-norm |ulr, , can be presented by |ul3 . , = [|3°3]

T, , Where 3
is a vector function defined by 3 = (Uzyz;, Usy zp, V2Usya, ). We consider the following
equations

Uzyzy t%l o t%l » \/—(2 t1ta aflfl t ﬁfl&
. 2 ) N
Uzozo = t%g ' 159 \/§ t1atoo Ugags =1L Ugr&,
V2 Uy, V2tutis V2 tatasy tiites + tiata V2 Ugyé. V2 Ugye;
Hence, | \

{ Amin(TT)(F, + 4Z,) < (w3, +u2,) < Amax(TTY) (0, + 4Z,)
Amin(LLY) 301 jco Ue; < Xrcijn Uiy < Amax(LL) Yoy jn U,
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where A and A4, denote respectively the minimum and maximum eigenvalues
for the corresponding matrices: '

1 1 —cos 6
t .
T = sin? 6 ( —cos @ 1 ) ’

1 cos?  —+/2cos?6
LIt = — v cos? 6 1 —+/2cos 0
st —v2c0s20 —/2cosf 1+ cos?b

1

As we can find that the eigenvalues of TT* are (1 & |cos])/sin*6 , and those of
LTL are (1 —cos?6)~! and (1 % |cosd|)~2, we have

(1—cosO|)(ag +aZ,)/sin*0 < (u2 +u) < (1+] cos 0|)(aZ, +aZ,)/sin* 0,
ZISi,j§2(a§i§j)2/(l + [3039])2 < ElSi,jSZ(u’iBimy‘)Q < 219,3'52(@&@)2/(1 - {COSQDQ .
Adopting the Jacobian in (2.3.18) and the 'irleq11alities above, we have

(1—|cosh|)/sind |3, ]Ui%jw (14 |cosf|)/sind |3 5,
sin@/(1 —|cosf])? a3, lulnge ~ sin€/(1 4+ |cosf|)? i@[gn ’

which finally leads to

1 —]cos#| Ca(a) < Ca(a, ) < 1+ |cosf

Similarly, we can obtain the estimates for the other constants.

Remark 2.3.2. The results for the dependence of constants on 6 are consistent
with the well known maximum interior angle condition. That is, given a triangu-
lar element with bounded diameter, the smallest interior angle can tend to 0 while
the 11}, o, interpolation error in H' norm is bounded if the mazimum interior an-
gle is bounded above from 7. Babuska and Aziz proposed this condition in [6] by
considering the transformation between Ty g and Thsino /2 (See Figure 2.5 ).
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B(acos,asin§) B'(0,asinf)

Ta,ﬁ’ and Ta sin 6,7/2

g

0\ A(1,0)

Figure 2.5: Transformation between T, ¢ and Tt sing,x/2

Remark 2.3.3. If the values of Cy, Cy = Cy and Cs are available, we can then give
quantitative error estimates for the interpolation operators II3, 5, and I g5

Hg,@,lz s HU - Hg,e,hv“Ta,e,h < COQJ)O(g)h Ivll,-’[’a,f),h; Vv e H! (Taﬂ,h)7
ng,t‘),h : ]Q’ - H(lx,f?,hv]l,Ta.a,h < Cl¢4(9)h ’IU]ZTQ,Q,h; Vve H2(Ta,9,h) (2'3'20>

HU - H}X,Q,hU”Ta,O‘h < 05¢5(9)h‘2 ]U{’Z,Ta,o,h; VQ)EH%TQ’Q‘J‘)'

In the following sections, we will determine the concrete values of Cy and C; =
Cs, while for Cs, we had a known rough upper bound as Cs < 0.361 [21].

2.3.4 Natterer’s estimate for Cy(c, 6)

To consider the dependence of the constants on geometric parameters, an intu-
itive idea is to consider the affine transformation between T, and Tj r/5. Such a
method was in fact applied to give estimate for Cy(c,d) by F. Natterer [40]. Here
we will apply this method to all the constants mentioned above, where the result of
Natterer, expressed in our notations, is also included as a special case.

To this end, let us introduce the following simple affine transformation ¢ =
Qo po(x) between x = (21, 22) € T, and n = {£;, 52}‘6 T =Ty ,/5 (See Fig 2.6):

& =21 — x9c0t0 or 1 =& +& acosb
& = 29 /(asing) Ty =& asind

In an analogous way as in the proof of Theorem 2.3.2, we can deduce the estimates
as follows. For detailed proof, refer to Theorem 1 of [34].

(2.3.21)

Theorem 2.3.3. For a € (0,+00) and 6 € (0,7), Ci(e,0)’s are bounded as
| Vi, 0)C; < Cila, 0) < ¢i(a, 0)C; (0<i<5), (2.3.22)
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B'(0,1)

. 7’
B(acos 6, asing),”

To,6 and Tt r/2

A(1,0)

Figure 2.6: Transformation between T, ¢ and T} /o

where C; = C3(1,%) (0<i < 5),

(o ) = v_(a,0), . ol Y vo(e,6) _ v_(a,0)

L’)z( 39) 9 (O << 3)) ¢4(69) m“e—)ﬂ Wb(a’ 9) "9 3
| | (2.3.23)

o va(en0) , A _ vi(a, ) oy ve(ay0)

¢i(a, 0) = —+'2—(0 <1< 3), ¢ga(e.0) = —mﬁ»ﬁ’)a(aa@) - 5
| (2.3.24)

with

vo=1+0a"—V1+2a%cos20+a?, vy =14 a® +V1+ 202 cos20 + ot. (2.3.25)

It should be noticed that the upper bound for Cy(a,6) above is just the same
one as Natterer’s result [40], although the notation here is different from his.

Remark 2.3.4. We can see that, except for i = 4, the upper bounds given for
the constants are uniformly bounded as may be seen in Theorem 2.3.3. On the
other hand, the upper bound for Cy(«, 8) is not so, which will lead to the minimum
angle condition [15]: the minimum angle of T,y is bounded above from below by a
certain positive constant. This may be seen by using the identity v_(«, 0)vy(a, 8) =
402 sin 0 and rewriting the upper bound inequality as

Cala, 0) < — (’4(0"9))%. (2.3.26)

asin @ 2

Namely, we can see, for each fixed # € (0, 7), the right hand side diverges to +oo
as & — +0 or the minimum angle of the triangle tends to +0, which does not reflect
the essential maximum angle condition. Hence, the above estimate for Cy(a, 6) is
weaker than the one in (3.2.15).
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2.4 Estimation of the error constants

2.4.1 Exact value determination of particular constants

Up to now, we have analyzed the dependence of the constants on the geometric
parameters. Here we will further consider determination of the exact values of the
constants, which provides usually very difficult problems to solve. However, for sev-
eral constants, we can use the symmetry method to give the concrete values of the
constants in the case T3 ,/o.

Firstly, we summarize the results to be proved in this section.

Theorem 2.4.1. As for the constants C; = C;(1,7/2)’s (0 <1 < 3), we have that
1 ) Cg =1 / 7. '
2) Cy and Cy satisfy Cy = Cy and are given as the mazimum positive solution of
the transcendental equation for yu:
1 1
—+tan— =0. (2.4.1)
17 7
The concrete value of Cy can be obtained numerically with verification. For example,
we have the estimation as

0.49282 < Cy < 0.49293 . (2.4.2)

3) Cs = C1/v/2 and 0.34847 < Cj < 0.34856 .

Remark 2.4.1. Simple numerical algorithm without verification, such as the New-
ton method, gives Cy = 0.49291245 - - and C3 = 0.34854173---. The present tran-
scendental equation can be commonly seen in vibration analysis of strings with spe-
ctal boundary conditions [{3]. The constant C plays an important role in various
situations and is called the Babuska-Aziz constant in [27, 28].

Remark 2.4.2. At present, Ci(= C3) is a nice upper bound of Cy as we will see

in Sections 2.4.2. Numerically Cy ~ 0.489 as was reported in [4, 45, 47]. As for

Cs, estimate Cs < 0.361 is a correct but probably rough one given in [21], while an

exact lower bound estimation is Cs > [(15 + /193)/1440]"/2 = 0.1416 - - -, which is

derived by the Ritz-Galerkin method using x1 + To — 2 — 23 and 172 as the basis

of the trial space employed in [36]. Our own numerical computations suggest that
Cs ~ 0.168.



In the followiﬁg, we will first demonstrate the method of symmetry by determin-
ing the value of Cp, which is actually already known, cf.[37]. Then, we show the
proof for other constants.

Determination of ()

As explained in the preview section, Ay = C;? is the minimum eigenvalue of the
following eigenvalue problem: Find A > 0 and u € VO \ {0} such that

(Vu, Vo) = Au,v), YveV°. (2.4.3)

Within the following proof, instead of the notation (z1,z;), we will denote a
point in 2-dimensional domains by (z,y). Let us modify the problem above to be
the one over extended domain Q = (0,1)?, a unit square. For each u in V°, we can
define an extended function @ over 2 by reflection along = + y = 1, that is, '

(0.1)

x+y=1 iz, y) = u(z,y) Cif (z,y) €T, 1 (2.4.4)
)= w(l—y,1—2z) if (z,y) € Q\T,

(0,0) (1,0)

where T' is the original triangle domain already defined. We should be aware that
@ also belongs to H(Q). ‘
Define also a space VO by

%
=
%

S

V0= {6 e H'(Q) / 0(x, y)dedy = 0}, (2.
Q

then V0 can be expressed as a direct sum:
50 _ {70 {70
V - ‘/s D ‘/;z 3

where

VSO = the set of functions in V° that are symmetric with respect to z +y =1,
V9 = the set of functions in V? that are antisymmetric with respect to z +y = 1.

" Moreover, V0 and V2 are orthogonal to each other in both Ly(Q) and H* (). As a
result, V. and V, are orthogonal with respect to the bi-linear forms (V-,V-)q. We
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can see the extension of eigenfunction of eigenvalue problem in (2.4.3) is also the
one of the eigenvalue problem: Find A > 0 and @ € V°\ {0} such that

(Vii, Vo) = A(@,0), Yoe VO (2.4.6)

On the other hand, the restriction of a symmetric eigenfunction 4 is also the
one of (2.4.3). Therefore, it is sufficient to consider only the eigenvalue problem of
(2.4.6). . v

As is well known, a complete system of functions for H*(Q) is given by the
totality of eigenfunctions of (2.4.6) with V0 replaced with the whole H(():

Omn(z,y) = cosmmzcosnry (m,n >0).

Since we are interested in symmetric eigenfunctions only, we should make a com-
plete system of symmetric functions in H*(§2) from the above: for m > n;m,n =
0,1,2,3,---, ’

Omun(2,y) = cosmmz cosnmy + cosmn(l —y) cosnm(l — ) .

The functions above are orthogonal in L,(€2), and also orthogonal with respect to
the bi-linear form (V-, V-)q (and in H 1(£2)). A fact to be pointed out is that, except
for wop = 2, all pn,,’s for m > n belong to VSO and are eigenfunctions of (2.4.6).
Thus the desired eigenvalue Ay is 7%, which is just the one associated to ;9. Hence,
we obtain Cy = 1/y/Ag = 1/7.

Determination of ¢} = (,

Recall the corresponding eigenvalue problem for A; = Cy % in the variational
form: find u € V1 \ {0} and X\ > 0 such that

(Vu, Vo)r = Ay, v)r Vo e VL. (2.4.7)

By adopting similar techniques used for Cy, we prove the second part of Theorem
2.4.1 in 5 steps:

Proof. 1) In an analogous way, we consider the extended domam Q= (0,1)? and
introduce a new space V2 on Q = (0,1)? by

1

Vi) ={ve Hl(ﬂ)f v(x,0)dzr = /1 v(1,y)dy =0} . (2.4.8)
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In the same way as in (2.4.5), we decompose V! into V! = V! @ V2, where V! is
the subspace of symmetric functions and f{} the one of antisymmetric functions. As
before, 131 and f/;l are orthogonal to each other with respect to the inner products
of both Ly(€2) and H(9).

Let {\,u} € RxV1\{0} be one of eigenpairs of (2.4.7), and define the symmetric
extension u over ) by reflection with respect to z +y = 1, c.f. (2.4.4). Then {X, 4}
is an eigenpair of the eigenvalue problem over Q: Find A > 0 and @ € V() \ {0}
such that

(Va, Vo) = A4, 0), VoeViQ). (2.4.9)

Conversely, suppose % is one of symmetric eigenfunctions for problem (2.4.9),
then the restriction of 4 to T" is the also the one for (2.4.7). Consequently, for the
present purposes, it suffices to deal with the eigenvalue problem in VHQ): Find
A> 0 and @ € V}Q)\ {0} such that \

(Va, Vo) = M@, 0), YoeVHQ). (2.4.10)

2) We use the complete system of functions {¢,, ,} (m > n;m,n = 0,1,2,...) defined
by :

b (,y) = cosmmz cosnmy + (—1)™ " cosnmz cosmmy,m >n > 0.
. 3 ) )

A function ¢ € V() expréssed by

oo

Z mn’#mn am,nER)

2nz0

must satisfy

1 . . -
/ (z,0)dz = / Z A Wmn(z,0)dz = 0 and /([C!2 + | Do|*)dzdy < oo .
0 Q -

m,n>0

Hence,

O o0
2a00 + Z(—,l)ma,n,o =0 and Z (14+m? + n?)az, , < 0.

m=1 m>n>0

We can show the sum of the series Y °_ (—1)™a,, ¢ is absolutely convergent under
the condition imposed above on the coefficients. Eliminating ag o by the above equa-

. ~ 2> . ' A j [o.9]
tion, every 9 € V! is expressed by 0 = Y27 @y 0[thmo— (= 1)+ s i G, Py -

'ml
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Clearly, ¥ s for m > n > 1 are eigenfunctions of (2.4.9) with completely homo-
geneous Neumann’s boundary condition, and the minimum of the associated eigen-
values is 272

3) Let W1 be the closure of linear combinations of ¥, o — (—1)™(m > 1) and W,
the closure of linear combinations of Ymn(m > n > 1). We have Vsl =W, & Ws.
Here, W1 and W, are orthogonal to each other in both Ly(2) and H*(Q). Since all
the eigenfunctions and associated eigenvalues of W, are known and the smallest one
to be 272, we just need to consider the eigenValues in Wyt if its minimum is smaller
than 272 it is just the one we need.

4) Let us now solve the eigenvalue problem restricted to Wi by expressing @& €
W1\ {0} by |

X0 o0
U= Z QP With Z a2, < oo, where ¢, = Ymo — (—1)™. (2.4.11)
m=1 m=1 '

Noting that 4 has the form & = >, a,, (cosmmz + (—1)™ cosmn(y) + (—=1)™), it
- must be of the form, for an unknown single variable function g = g(¢),

o0
m=1

Wz,y)=g(z)+9(1—y).

Substituting the expression above into (2.4.9), we have

1

—g"(t) = Ag(t)(0 <t < 1), ¢'(0) = 0, g(1) +/0 g(t)dt=0.

Solving the eigenvalue problem above, we have that the eigenfunction associated
with the smallest eigenvalue is g(t) = cos(\/xlt), where \; is the first positive root
of

\/X;Ftarlx/:\_=0.

Clearly, A; lies in the interval (7?/4,7%) and is the unique solution there. Since
A1 < 272, it is exactly the desired eigenvalue of eigenvalue problem in (2.4.10).
Moreover, an eigenfunction associated to A; is 4(z,y) = cos v A1z +cos v A2 (1 —y) .

5) To obtain the concrete value of v/ Ay, we are just required to find the first positive

root of - " .
: e (_1)m(m + 1 t 7
,) = COST [s - 3 t > )
f(t) :=cost+t " sint =2 E Gm T 1)1 (t > 0)

m=0
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Moreover, the series above is an alternating one, and for a fixed ¢ and sufficiently
large m, the absolute values of its terms converge monotonically to 0 as m — oo.
Thus we can use its truncated finite series to give both lower and upper bounds for
f(t). Let us define f, by

m T?’I + 1){.2171
=2 .
Z 2m +1)!

m=0

It is to be noted here that, as least in principle, all the computations can be per-
formed in the finite-digit binary arithmetic without rounding errors, provided ¢ is
a rational number. For example, by taking n = 4,5, we can bound #, = /A
as 2.0287 < tp < 2.0291, since f(2.0291) < f4(2.2091) < 0 and f(2.2087) >
15(2.2087) > 0. O

Remark: Here we show another way to derive the determination equation for Cj.
Substituting (2.4.11) into (2.4.9) and letting s be each 1,,, we have the equations
for coefficients a,,’s:

(m*n® — Na, = A(—l)"?i(—ﬂ)”an (meN),

where we can show Y (—1)"a, # 0, A # m?x? and a,, # 0 (Ym € N). So

(=1)"ap = (m*n® — A)_IAZ(—I)"% (m € N)

and
Y (=DMap = > (mr? = NN (~1)"a, .
m=1 m=1 n=1

Hence

— A & 1
= Z mAm? — A —mzzlmz(ﬂ/\/x)z -

m=1

Notice here the Fourier expansion of cosax on [—, 7]:

‘ . oo
sin am n 20
cos ax = 1/2—E—E (=1)"———cosnz | ,
T a?—n

n=1
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where a is a non-integer real number. Letting x = 7 above, we have
oo

Z 1 1 7
(m/a)2—1 2 2tanma

m=1

Further, substituting a = v/A/7 into equation above, we obtain (2.4.1).
Determination of Cs

The method for determining C5 determining is essentially the same as used for
Cp and C; = Cy. Here we show the outline of the proof in three steps.

1) The eigenvalue problem associated to Cj is given by: Find {\,u} € R x V3\
{0} such that
(Vu, Vu)p. = Mu,v)r (Vv e V?). (2.4.12)

Here, T is the unit right isosceles triangle T} r /21, V3 = Vfr /o I8 defined in (2.2.3),
and the inner products are those for 7. Notice that we are interested only in the
minimum eigenvalue and the associated eigenfunctions.

Let us divide T into two congruent parts by the line x; = x5, which is also the
line of symmetry for 7. Moreover, one of the congruent parts is denoted by T

T:{x:{xl,xg} ET;J)l >$2}.

The eigenfunction u # 0 can be uniquely decomposed into the symmetric part u,
and the antisymmetric one u,: ,
U= Ug + Ug,

where the symmetry and antisymmetry are those with respect to z; = z5. Due
~to the orthogonality of u, and u, for the bi-linear forms (-, )z and (V-,V)r, the
functions u, and u, can be dealt with separately: u, and u, both belong to V3 and
satisfy (2.4.12) for the minimum eigenvalue A.
2) We first consider the case where u, # 0. In this case, the restriction 4 of u,
to T is not zero and satisfies the following eigenvalue problem related to T

@€ V3\{0}; (Vi Vi); = N@, 0)7 (Vo e V), (2.4.13)

where A is identical to the former one, the inner products are the Ly ones for T, and
V3 is defined by

o

Vs = (0 € HY(T): / To(1 - s, s)ds =0 1. (2.4.14)
0
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Now we can see that this is essentially the same problem as the eigenvalue problem
for Cy(1,7/2,1/+/2), since T'is congruent to T} w013 1t is also fairly easy to see
that the eigenpair for the minimum eigenvalue of (2.4.13) satisfies (2.4.12), if the
eigenfunction is extended to whole T symmetrically with respect to z; = z,. Thus
@ is an eigenfunction for the minimum eigenvalue of (2.4.12) in the present case.
Then we find that C3 = C;/v/2, since Ci(a,8,1/v/2) = Ci(a,0)/v2. Of course,
this conclusion is derived under the assumption ug # 0. ‘ '

3) Secondly, we consider the case where u, # 0. Due to the antisymmetry,
the trace of u, to the line of symmetry x; = =z, inside T is just 0. Moreover,
any antisymmetric function in H'(T) automatically satisfies the line integration
condition imposed on V3. Thus the restriction u! of u, to T is not zero and is an
eigenfunction of the eigenvalue problem:

ul € VI {0}; (Vul, Vol = Al ohp  (Vof e V1), (2.4.15)
where A is identical to the former one, and V7 is defined by |

4 1
Vi={vl e HY (TH;vi(s,5) =0 (0<s< 5) }.

If we consider the reflection with respect to the line z; = 1/2, (2.4.15) becomes the
problem of the same form if we replace V1 by

AN 1
V* = {v* € HY(T); v*(1 -85 =00<s< 5)}

~ Clearly, the eigenvalues remain the same under such a transformation. Since V* C
V3, the minimum eigenvalue of (2.4.15) cannot be smaller than that of (2.4.13), as
can be seen by considering the characterization of the minimum eigenvalue by the
Rayleigh quotient. Thus it is sufficient to consider only the case where u, # 0, and
the proof is conlpleté.

2.4.2 Estimating Cy(a,0) by C;(a,0)’s (1 =1,2,3)

In section 2.3.1, we extend the method of Babuska-Aziz to deduce an upper
bound for Cy(e). Here we will further consider the problem of estimating Cy(«, )
by using C;(a,0)’s (i = 1,2, 3). ‘

Firstly, let us observe the characterization of Cy(«, ) again:

ulir,, lo1ul%, , + l10sull,,

Cyle,0)* = sup —2f :
’ ueV2 \{0} 1“1%,’11@,0 ueVi \{0} lal'u@,’ra,g + ’8214%,%,9

32



The key idea for estimating Cy(c, 6) is to relax the curl-free condition djpu = dyu
by weaker ones, e.g. fm Vu-t;ds =0 for i = 1,2, 3, where t; denotes the unit vector
along the direction of the edges ¢; in clockwise, that is

(1 —cosf, —sinb)

i =(—1,0), to= coé@,sinﬂ, t3 =
1= ) 2= ( ) ’ 2(1 — cos @)

Let us introduce two constants Cyye10)(cv, 0, h) and Ciy 103y (v, 0, h) by

Jull® + [lvll®

Craeron(a,0,h)? = sup (2.4.16)

et wv € HY(Tap )\ 0 TVUIE+ [V

(u,v)t; € Vi (i =1,2,3)
and
[l + [lv]?
Ciaeroy(a,0,h)? = sup ‘ . (2.4.17
ez e gy TVUP+ Vel )
(u,v) -t € Vi, (i=1,2)
Denote C;(«,8,1) by C;(e,8) for i = {4,e12},{4,e123}. Then we find

C4(Oé, 0) S 0{4’8123}(04, 9) S 0{4,612} (OJ, 0) . (2418)

Firstly, we will utilize the second inequality in (2.4.18) to give an explicit upper
bounds for Cy(e,8) by using Ci(a,8) and Cy(e,6). One thing to be pointed out
is that the values of C1(a,0) and Cy(a, ) can be well evaluated with a posteriori
estimates, as we will discuss in Chapter 3.

Theorem 2.4.2. Given a triangle Tq;g for a € (0,1] and 6 € (0,7), we can give
an upper bound for Cy(a,0) in terms of C1(a,0) and Cy(a,8) as below: (We write
Ci(a,8), Cy(a, 0) as c1, ¢y for purpose of abbreviation.)

‘ 1/ _‘ ‘ 1/2
Cy(a,0) < o <(';) + ¢35+ 2c1¢y cos? O + (cp + cz)\/(cl — ) + 4eycy cos? 0)

V2 sin : S

| (2.4.19)
Proof. For any w € H 2(T;1,’9), let v ;= diw and v := dyw and introduce a new

quantity 9 ;= ucosf +vsin@ € H'(Tyyp). Clearly, u € V5. By noticing that

/(-u,,v)-tzds:/~'ucoséi+vsin€ds:(),

€2
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we have [ 0 =0, which means o € V2,.

Considering the definitions of C (e, 8) and Cy(a, #), such results are clear:
lull < Ci(a, ) Vull, o]l < Cafe, V]| (2.4.20)
Asv = (0 —ucosf)/sinb, we have |
I? = sin™20]]0 — ucosd|?
= sin™? 6 ([|6]* + cos® O||u|* — 2 cos (3, w))
< sin™20 (|[8]% + cos? Olul)® + 2| cos ][] ul) -

o

So we obtain:

lul|® + |Jv]|* < sin™26 ([ull® + 19]1* + 2| cos 6] |3 ull) - (2.4.21)
Similarly, we have
HVuHQ +[|Vo|* > sin 26 (||[Vul]® + || VD] — 2| cos 6] |V] || Vul]) . (2.4.22)

Considering (2.4.18), we find

L Jull® + [Jv]|*
Ca, 0)* < Cpyerny (@, 0)* < “V[u;;z + E:VUIP '

Now, considering the inequalities (2.4.20) and those of (2.4.21) and (2.4.22), we have
sin” 0 (JJul] + [[6]|* + 2| cos 0] 5] [|ull)
= sin 0 (Va2 + (VO[22 cos ][ Vo] [ Vul])
cillVul® + GlIVO[® + 2c1c] cos 0] | V]| [|Vul]
- IVl + [[VO][2 = 2| cos 0] | Vo]| [|Vul|
et Ae
etBe’

~ where e is the vector (IVu|l, [|V©]))t, and A and B are the matrices defined by

2 . ;
_ s 109 | cos O . 1 —| cos |
A= ( 109 | cos ) 3 ) ’ B'_ ( —| cos 6] 1 '

The generalized eigenvalue problem Az = ABz has the maximum eigenvalue as
1
25sin? g

So, for arbitrary vector e # 0,

6'4_(01, 9)2

maxr

(c? + ¢34 2cos? fcycy + (1 + 02)\/(01 — 62)2 + 4 cos? 90162) )

et Ae
@tBe — )\Tnaﬁ .

Thus, we obtain one upper bound for Cy(«, 0), which is just the one in (2.4.19). O
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Remark 2.4.3. We can get the same estimation of Cy(c, 0) as the one in (2.4.19)
in another way. From equation (2.4.21), we have '

sin®O(Jull® + [vl*) < GIIVull + 2¢ie5 cos ]| Vul[| Vo] + 6]
= }||Vul]?* + 2c1¢2] cos 8] | Vul| || cos 0V u + sin V||
+c3| cos OV u + sin OV v|| ’
(¢} + 2c1¢3 08”0 + ¢ cos® 0) || Vu||? + ¢ sin® 0] Vo |?
+2(c1c0 + ¢3) sin 6 | cos 0||| V||| Vo

= é'Ae,

IA

where é = (||Vull, ||Vv|)t, and A is defined by

i 3 4+ 2c1c9 0082 0 + cos? Oc2  (crep + c2) sind | cos )|
- (c1¢2 + ¢3) sind | cos b c2sin® 6

which has the mazimum eigenvalue Apqp as

1 b ©
Amaz = B (c% + ¢ + 2cos” cica + (e1 + cz)\/(cl — ¢y)” + 4 cos? 96102) :

Hence ,
Jull> + [[vl* < sin™ 0 Apas (||[Vul]” + [ Vol?)

which finally leads to the estimate in (2.4.19).

Remark 2.4.4. In the proof above, the intermediate problem of Ciye10)(c, 0) gives
an estimate for Cy(a,8) as in (2.4.19). Another possibility is to apply the constant
Cla,er23y (v, 0) to deduce a new estimate, which is very interesting but not done yet.

An important thing to be pointed out is that, through the deduction of (2.4.19),
there may be over and under estimates in the inequalities (2.4.21) and (2.4.22).
Therefore, to have better estimates, we may evaluate the constants Ciye12y(cr, 0) and
Cla,erzsy (v, 0) directly. This is not difficult since the derivatives of functions associ-
ated to the constants are only of second order. The piecewise linear finite element
space can be used to construct conforming subspaces of H'(Q)? with the correspond-
ing constraint conditions satisfied. Also, it may be possible to give a posteriori error
estimates for the finite element solutions, which will be left for our future research.
For the moment, we have only executed numerical computations.
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+ T Cy(a,27/3)
— , ----Cy(a,27/3)
0.4 o Clyerzsy(a,2m/3)
+ 0{4,812}(0’ 271'/3)
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Figure 2.7: Upper bounds for Cy(w, 27/3)
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Figure 2.8: Upper bounds for Cy(a, 7/2)
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In Figure 2.7, we show the estimate of (2.4.19), which we denote as Cula, 0),
and the numerical evaluation of Cye12y(cx,0) in the case of 0 = 2w /3. We can see
that Cye103) (v, 21/3) gives quite good upper bound for Cy(a, 27 /3). Although the
gap between Cyy 123y (r, 27/3) and Cy(cr, 2m/3) is very small, we cannot expect it to
be zero. :

As a complement, we also show the computational results for = 7/2 in Figure
2.8. Again both Cyer2y and Claerasy give upper bound for Cy(a). Now it is clear to
see the difference between Cy(1,7/2) and Ciy 103 (1, 7/ 2), although here only the ap-
- prozimate values are available. Also, we can find that the numerical values of Cy(c)
agrees with Cyy c19y(a). We can easily show that Cryeny(e) = max{Ci(a), Ca(a)},
but are not yet able to prove that max{Ci(a), Ca(a)} = Ca(a) or Cy(a) > Cy(a) for
a < 1.

2.5 Asymptotic behaviour of error constants on
slender triangular domain |

2.5.1 Preliminary and main results

We will now analyze the asymptotic behaviors of the constants Ci(a)s (0<i <
5) as o — +0 by adopting various techniques developed e.g. in [33]. In particular,
the right limit values C;(+0)’s are given by zeros of certain transcendental equa-
tions (derived from eigenvalue problems of ordinary differential equations, ODE’s)
in terms of the hyper-geometric functions [51]. For example, Cy(+0)7? is equal to
the first positive zero of the Bessel function Jy(z). Moreover, these right limits
‘give lower bounds for respective C;(a)’s, including the non-trivial case i = 4. Such
results can be of use for understanding and analyzing the so called ”anisotropic
triangulations” discussed e.g. in [1, 8, 20]. _

We first introduce several function spaces, which play important role in the
following discussion. v

ViZ = v e V¥ 00)02, =0} (0<i<4), (2.5.2)

which are actually identified with the spaces of functions dependent only on the -
variable z; as we will see later. Let us introduce bilinear forms a(Z") (+,-)sfori=1,2:

7w 0) = <%’%‘) . Vuve H(T), (2.5.3)
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———§> . Yu,ve HYT). (2.5.4)
1/ T

Although these are defined over the whole H! and H? spaces for convenience, the
partial derivatives above can be actually replaced with the ordinary ones when they
are considered over the respective H¥ and H>Z spaces.
~As a characterization of the above H“Z(T), let us state a fundamental lemma
to be used for our analysis. Its proof is omitted here since it can be performed by
- slightly modifying that for Theorem 3.1.4 of [23]. Of course, we can-draw the same 4
conclusions for other spaces mentioned in (2.5.1) and (2.5.2).

Lemma 2.5.1. Any v € H2(T) can be identified with a function v* of single
variable xy:
v(z1, ) = v (1) for a.e. x = {zy, 2} €T. ' (2.5.5)

Remark 2.5.1. The present lemma does not necessarily hold for general domains.
In the 2-dimensional case where we are considering here, it holds for a domain
Q C R? which is "connected in xy direction” in the sense that for any two points x
and x' in Q@ with a common x1 component, the segment connecting these points is
contained in €.

We first quoted the main results below, while the proof is given in the following
sub-sections.

Theorem 2.5.1. For each i (0 < i < 5), Cy(+0) = lim, .o Ci(a) erists and
18 positive. Moreover, they are the lower limits of the respective constants, i.e.,
Ci(4+0) = infos0 Ci(a) for 0 < i < 5. They are characterized by C;(+0) = 1/vV/A®
for 0 <i <5, where A\ ’s are the minimum eigenvalues of the following eigenvalue
problems.

a (u,v) = Mu, v)p; Vo € V2, (2.5.6)
i=4: Find A= X% e R and u € V% \ {0} such that -
| ag‘)) (u,v) = )\ag) (u,v)p; Yo € VA2, | / (2.5.7)
i=>5: Find A =\® € R and u € V4% \ {0} such that
a(/2) (u,v) = Mu,v)p; Vo € VHZ | - (25.8)

38



These eigenvalue problems are also expressed by those for the following 2rd- or 4th-
order ordinary differential equations for u = u(s) over the interval [0,1].

1=10:

—[(1=s)u'(s)] = AP (1—s)u(s) (0<s<1), /o (1=s)u(s)ds =u'(0) =0, (2.5.9)

1=1:
(1= (8) = AV (1-s)u(s)+C (0 <s < 1), /0 u(s)ds = w/(0) = 0, (2.5.10)

t=2:

—[(1 = 8)u(s)] = X1 = s)u(s) (0<s<1), u(0)=0, | (2.5.11)

i =3: essentially the same as fori=1;
: 1
—[(1=s)u'(s)) = A\ (1 =s)u(s)+C (0<s< 1), / u(s)ds ='(0) =0, (2.5.12)
0 ‘

1 =4: actually reduces to the casei=1;

(1= s)u"(s)] = =AD[(1 = s)d'(s)] (0<s < 1), u(0) = u(1) = u"(0) =0,
2.5.13)
t=25:

(1= s)u"(s)]) = A1 = s)u(s) (0<s<1), u0)=u(l)=u"(0)=0.
_ (2.5.14)
Here, C' is an unknown constant to be determined simultaneously with u and \(i =
1,3).

Recall that the triangle 7" here is still referred as a unit isosceles right triangle.
Let us also recall the definition of Rayleigh quotients 1328)’3 defined in equations
(2.3.2), (2.3.3), (2.3.4), and introduce new quantities \;(a)’s by

(@) =Ci(e)? = inf RO <i<5). 2.5.15
Ai(a) = Ci(a) 406‘1/1;1\{0}]%? (v) (0<i<5) (2.5.15)

Uniform boundedness of \;(a)’s: One of the common important properties for
these constants is that A;(«)’s are uniformly bounded for o € (0, 00), because for a
fixed w € V™4 with w # 0 and d,w = 0,

M) < RO(w)y=C% (0<i<5), (2.5.16)
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where the right-hand sides are constants independent of « for a fixed w.

For i # 4, the proofs for the determination of \; (+0)’s are similar, so we will
only show Lhe one for A\g(+0) as an example. For ¢ = 4, the proof is more complex
and will be given separately.

Before giving the details of the proof, we show in Table 2.1 the numerical results
for Ci(+0)’s (0 < i <5).

Table 2.1: Numerical values of C;(+0)’s (0 < i < 5)

T 0 134 2 5
Ci(10) | 0.26098 | 0.32454 | 0.41583 | 0.10790

2.5.2 Determination of \;(+0)’s (0 < i < 5;i # 4)

Here we only discuss Ao(+0). Let u, € V° be the minimizing function in (2.5.15)
corresponding to Ag(«) and assume that |Jus|| = 1.
Define Ay to be the infimum of the following infimum problem:
3 [01ul®

No= inf ‘ 2.5.17
R N (25.17)

where V%% is defined in (2.5.2).

Theorem 2.5.2. Let A\o(«) be deﬁned as above. Then the limit )\0(+0) = lim,—, 10 Ao )
exists and is given by Xo(+0) = Ag.

Proof. 1) First, it is easy to see the existence of Ao(+0) = lim, 9 Ag(@) by consid-
ering two facts that A\y(«) is monotonically increasing as a decreases to +0, and that
Ao(e) is uniformly bounded for all o € (0,1], as we have already shown. Actually
we have Ao(a) < Ao for Ag in (2.5.17).

Since [Jugllz2r) = 1, we have Xo(@) = [|Q1ual® + Z]|02ual?, so that [|01ual|
and a?||0yue|| are uniformly bounded for a € (0,1]. Thus, ||us| g1 is uniformly
bounded. From Rellich’s theorem, there exists a sequence {uq, }52; with o — +0
and ug € HY(T) such that
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{ U, = ug in HY(T), (2.5.18)

Ug, — U in L¥(T),

where >—’ (‘and '—’ ) denotes the weak ( and respectively the strong ) convergence
of the sequence in the corresponding spaces. As {ua,, A(c;)} satisfies ||Oytta,||* <
a?Xo(a;) < afj\o,'we have lim;_. [|Opuq,|| = 0. Since dyuy, — Gyug in Lo(T), we
have dyug = 0, so that uy € V2. Moreover, we can see lim; .o ||ta, || = |Juoll = 1,
so that ug # 0.

2) Asuyg € V02 and lull=1, we have from the definition of Ay that
Ao < |18rug))? .
Also, considering the weak convergence of {ug,} in H'(T), we get

lvuol? < liminf ||9yug, |
11—

IA

. - 1 P
2£n;(!§01uaz “2 + E ”82/“04‘7: “2)

= Ao(+0).

Hence,
Ao < Ao(40) . (2.5.19)

On the other hand, since

— : H(0) : H(0) (., ;
/ Ao = UEVl(gf\{g} R, (v) > veé'%{{o} R, ( v) = Ao(@)

and considering the convergence of {Xo(as)}, we get

Ao > lim Ag(ay) = Ag(+0) . (2.5.20)

100 '

From the inequalities (2.5.19) and (2.5.20), we can now conclude that

~

Ao(—*—O) - )\0 .
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2.5.3 Determination of \y(+0)
Recall that ;

‘ —_ i R(4) (4

A(e) : vty T (v),

where Rgi)(v) can be expressed by

RO ) = [10nvll7 + 2072 ]|0120]7 + o~ *||9a2v |7 _. Ga(v,v)
: 1610]17 + o~ 2(|0y0]17 ba(v, )

In the following proof, we will omit the subscript of As(a) as A(«). Also, assume
one of the minimizing functions for A(a) to be denoted by u, and by (ug, ug) = 1.

Theorem 2.5.3. The limit A\(+0) := lim,_, 1o A() exists. Moreover, \(+0) is the
smallest eigenvalue of the eigenvalue problem for A > 0 and u € V4% \ {0}:

(811’&, 81110) = )\(81’&, 81’1/)), Yw € V4"Z y (2521)
where V&% is defined in(2.5.2).

Proof. As we have shown, A(a) is continuous and uniformly bounded in o > 0. Thus
both liminf, 1o A(er) and limsup,_, .o A(«) exist, and what we must prove is:

lim inf A(a) = limsup A(«) .
a—+0 a—+0

That is, we will show that {\(a)}as0 has a unique accumulation point as o — +0.

From the definition of A(a) and u,, the eigenpair (uq, A(a)) satisfies:

' 2 1
(011U, On1W) T + ‘a/—z(amua: Oppw)r + Eg(azzua, Osow)7

. 1 ) )
= Aa) ((81110, Oyw)r + E(azua, dgw)T) for Vw € V3. (2.5.22)

The proof is performed by the following several steps.
1. As M«) is uniformly bounded for all o € (0,1], we can find a sequence {a;}2,
and A* such that o; — +0, A(a;) — A" as ¢ — oo. We will show that the value

of A\* is independent of the choice of {a;}.
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2. Since by (Ua, tla) = 1 and A(«) is uniformly bounded, both |u, |» 7 and U |17
are uniformly bounded. Cousidering the inequality that ||ju||z2) < Cslular
for u € V4, cf.(2.2.9), we have ||uq||1,(r) are uniformly bounded. Hence, {uy}
are uniformly bounded in H*(T') for & > 0. By the compact theorem in Hilbert
space, we can find a sub-sequence of {c;}32,, still using the same notation, and
ug € H*(T) such that

Ui — Ug weakly in H%(T) ,
Uo; — Up strongly in HY(T) .

Considering the limit for by, (Uy,, Uq, )=1, we find uy € V* satisfies:

Doug = 0, i.e., ug € VHZ .

As there are two possible cases: ug = 0 and wug # 0, we will discuss each case
as follows.

3. (Case: ug # 0) In (2.5.22), let the test function w be chosen from V44(T) and
a be {a;}, then it holds that

(On1Uay, Onw)r = Mai) (01Ua,, O1v)T 5 Yo € V4’Z(T) :
Taking the limit for ¢ — oo, we have

(1w, Ow)r = X (Orug, Oyw)r;  Yw € VH4(T) . (2.5.23)

Thus, {ug, \*} € {V4?\{0}} xR is an eigenpair of eigenvalue problem defined

by (2.5.23). It is easy to see that \* is actually the smallest eigenvalue by using
the arguments similar to those in the preceding subsection.

4. (Case: ug =0)

Define v, = Jyuy /e, then we can see that v, € V?(C HYT)). As ug = 0
and by, (Ua;, Ua;) = 1, we have ||v,,]| — 1 as i — oco. Further, considering the
boundedness of ay, (Uq,, Ua;) = Alay), we find {v,, } are also uniformly bounded
in HY(T). In the same way as before, we find that there exists a sub-sequence
of {vg, }, still using the same notation, and vy € H(T) such that

v = v in HY(T),
{ Va; — Vg In L2(T) o (2.5.24)



. s 9 .
Since [|0yvq, || < @ aq, (ta,, ta,) and the 02aq, (Ua,, te,) tends to 0 as i — oo,
we can deduce that 0yvg = 0. Further by Lemma (2.5.1), vy can be identified
with a function v of single varible z;.

Multiply each side of (2.5.22) by «, and choose the test function w € V4 such
that Opw = 0, then we get:

(011Ua, O11w) 1 + 2(D12ua/a, Opw)
= Ma) ((O1ta, Orw)r + (B2t /v, Oyw)r) . (2.5.25)

Substituting ve, = Oauq, /e, in the equation above and letting ¢ — oo, we find
A* and uf satisfy '
2(81'03, 812’11))*[ = /\*(Ug, (9211))’1‘ . (2526)

For each v € C§°(0,1), take w(zy, z2) := v(z1)ze. Then
20105, 01v)r = X (v3,v)7 (2.5.27)

that is,

1 j, *f d : 1
2 / (1 —‘xl)i(}(ﬂ)— ! dzy = )\*/ (1 = z)vg(z1)v(zi)dz, Yo € C5(0,1).
0 0

. d,xl 5;3:
(2.5.28)
Finally, we can conclude that v§ together with \* satisfies
—((1 = 8)u/(s)) = 2u(s)(1 — s) for s € (0,1),
{ w(0) = 0. (2.5.29)

As X* > 0, the solution of the above is of the form, with arbitrary constants
’ Cq and Co,

vy(s) = a1y (\/%‘*(1 - 5)) + Yy (@(1 - 5)) , (2.5.30)

where Jy(s) and Yy(s) are the 0-th order Bessel functions of the frist and second
kinds, respectively. As is well known, Jy(s) is sufficiently smooth, while Yg(s)
is of the form Yj(s) = c3log s+ r(s) for s > 0, where c3 # 0 is a constant and
r(s) a sufficiently smooth remainder term [51]. To make v has the extension
over T belong to V*Z c H'(T), the constant cs must be zero. Also to satisfy
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the boundary condition, 1/A*/2 needs to be the positive zero of Jy(s). In
fact, Jo(s) has countably many positive zeros without any accumulation points
except +oo. Denoting the smallest positive zero by vy > 0, we have

A* > 242, (2.5.31)

We can show that vy > 2.25, so that A* > 10. Also, considering the function
ii(z1, z5) = sin 7z, we have R (@) = 72, hence
A= lim R (u,,) < lim RY(3) = 72 < 10. (2.5.32)
100 1—00 *

The two equations (2.5.31) and (2.5.32) lead to a contradiction. Hence the
case that ug = 0 does not occur.

Now, we can conclude that A* is the minimum eigenvalue of (2.5.23) (or
(2.5.21)) and is independent of the selected sequence {a;}.

(]

2.6 Numerical results

We performed floating-point number computations to see the actual dependence
of various error constants on « and 6.

2.6.1 Computational methods

To obtain approximate values of error constants, we can utilize the FEM quite
effectively. In particular we used the most popular P, triangular finite element for
numerical computations of C;(a,#)’s for 0 < i < 3 by preparing appropriate trian-
gulations of T, 9. For Cy(w,8) and Cs(a, 8), it is natural to use various triangular
finite elements for Kirchhoff plate bending problems, since the associated partial
differential equations are of 4th order as is noted in Section 2.2. In our actual com-
putations, we used the discrete Kirchhoff triangular element presented in [26]. On
the other hand, we can also use the Siganevich approach for computation of Cy(«, 9),
which also adopts the P; element and a kind of penalty method for a system of 2-nd
order partial differential equations similar to the incompressible Stoke system [47]. .
This method works well if the penalty parameter is carefully chosen. |

In every case, we have a matrix eigenvalue problem as the discretization of the
original eigenvalue problem described by a weak form. More specifically, it is a
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generalized matrix eigenvalue problem with respect to unknown eigenvectors of nodal
values of approximate eigenfunctions, and it can be solved for example by the inverse
iteration method and the subspace iteration method [13]. A difficulty in deriving
such matrix eigenvalue problems come from linear constraint conditions imposed on
the spaces chﬂ for ¢ = 0,1,2,3. Similar constraint conditions are also necessary
to deal with, if we compute Cy(a,8) by the method of Siganevich [47]. On the
other hand, we do not have such a difficulty in computing Cy(«, ) and Cs(a, 6) by
Kirchhoff elements, where the linear constraints v(O) = v(A) = v(B) = 0 for Vi
can be handled as homogeneous "nodal” conditions.

One possible method for removing the constraints is to construct new function
bases that satisfy the constraint conditions, but then we have the final matrix that
is not sparse. Another method is to use the Lagrange multiplier method, which
does not essentially destroy the global sparseness of the matrices. We tested both
approaches and obtained reasonable results. Various iteration methods may be also
available for the same purposes.

The numerical results below are obtained by the double or quadruple precision
arithmetic, and we do not employ the interval analysis. But their accuracy ap-
pears to be reasonable at least in graphical level, since finer mesh computations
give essentially the same graphs. We hope that the effective verification methods
will be established in near future, so that the numerical results can be of strictly
mathematical significance.

2.6.2 Numerical results for error constants

Here, we first show some results for C;(«)’s (0 < i < 5) by the P; conforming
finite element and the Kirchhoff triangular element in [26] with the uniform trian-
gulation of the domain T,. In such calculations, T, is subdivided into a number of
small triangles congruent to T, /2, with e.g. h = 1/20. The penalty method in [47]
is also tested to calculate Cy(a) approximately.

Figure 2.9 consists of two parts and illustrates the graphs of approximate C;(a)’s
(0 < i < 5) versus « € (0,1]. Exact values of Cy and C; = (C, together with an
approximate value of Cy are also included as horizontal lines in graphs. At o = 1,
the approximate values coincide well with the available exact ones in Theorem 2.4.1,
and we can numerically see that C; = (C3) is a nice upper bound of C;. For
general «, the monotonically increasing behaviors theoretically predicted for C;(«a)’s
(1 =10,1,2,3,5 ) as well as the relation Cy(e) < min{C(c),Cy(cr)} are also well
observable in the graphs. The present numerical results suggest that Cy(cv) is also
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monotonically increasing, but we have not succeeded in proving such a conjecture.
, Mbreover, when o ~ 0, the numerical results agree well with the exact right limits
given in Table 2.1 based on the asymptotic analysis. -

For Cy(c), we tested two methods, that is, the P, conforming triangular finite
element with the penalty method and the Kirchhoff triangluar finite elemnt . These
two methods turned out to give almost the same results if the meshes are relatively

~ fine and the penalty parameter is appropriately chosen. The graph for Cy(a) in
Figure 2.9 is actually obtained by the Kirchhoff element, but is indistinguishable in
graphical level from the one by the penalty method.

Figure 2.10 and 2.11 illustrate numerically obtained contour lines for C;(«, #)’s in
the a— 6 polar coordinates, where the abscissa denotes o cos 6, and the ordinate does
asin§. The unit circle @ = 1 is also shown by a dotted curve. The minimum required
range for o and 6 is specified by equation (2.2.1), but the contour lines are shown
for wider ranges, so that we can easily see global behaviors of error constants. These
results can be also useful for practical adaptive computations to specify constants
in error indicators approximately. Of course, for strict mathematical analysis like -
numerical verification, we need correct upper bounds to error constants. The contour
lines are sometimes cut off in the portions where the expected accuracy may be
insufficient. For example, when o & 0 or |[§ —7/2| & 7/2, it requires extraordinarily
fine meshes to retain sufficient accuracy. The behavior of Cy(«, 8) appears to be the
most complicated among all the constants, and the necessity of the maximum angle
condition can be visually recognized. The other constants seem to be uniformly
bounded over the unit disk o < 1. '
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Chapter 3

Non-conforming P, trlangular
finite element

As a well-known alternative to the conforming linear (P;) triangular finite ele-
ment for approximation of the first-order Sobolev space (H'), the nonconforming
Py element is considered a classical discontinuous Galerkin finite element [16] and
has various interésting. properties from both theoretical and practical standpoints
[15, 49]. In particular, its a priori error analysis was performed in fairly early stage
of mathematical analysis of FEM, and recently a posteriori error analysis is rapidly
developing as well. There are also various error constants to be evaluated quantita-
tively [3, 7, 13, 15] in order to give accurate error estimation of such nonconforming
FEM.

Based on the research for the ones related to conforming P, FEM, we investigate
several error constants required in the error analysis for nonconforming P, FEM,
Thus quantitative a priori error estimates for the nonconforming P; FEM solutions
become available. A kind of a posteriori error estimate is introduced in -Chapter 5,
which adopts the conforming FEM solution as well as the nonconforming one. At
the end of this chapter, we illustrate the validity of error estimation by numerical
results.

3.1 A priori error estimation

We here summarize a priori error estimation for the nonconforming P; triangular
FEM. Let  be a bounded convex polygonal domain in R? with boundary 052, and
recall the Poisson oqudmon in a weak form with the homogeneous Dirichlet boundary
condition:
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(Va, Vo) = (f,0), Voe HY(Q). (3.1.1)

As we mentioned in Chapter 2, the notations Ly(f2) and H(Q) are the usual
Hilbertian Sobolev spaces associated to €2, V is the gradient operator, and (-, -)
stands for the inner products for both Ly(2) and Ly(Q)2. It is well known that the
solution exists uniquely in Hg(f2) and also belongs to H?(Q).

Let {7"}150 be a regular family of triangulations of Q, to which we associate a
family of nonconforming P, finite element spaces {V/"},~0. Each Vnhc is constructed
as below [15, 49]:

V" :={ piecewise linear functions over 7" with continuity at midpoints of interior

edges and zero values at midpoints on boundary edges } . (3.1.2)

Notice that the homogeneous Dirichlet condition is not exactly satisfied. If there is
no ambiguity, within the current chapter, we will often omit the subscript of V% as
%4

Then the finite element solution u, € V" is determined by, for a given f € Ly(€2),
(vhu‘h: V},,‘Uh) = (fa Uh.)a \V/’Uh € Vvh ) » (313>

where V; is the "nonconforming” or discrete gradient operator defined by the
element-wise relations (V,v)|x 1= V(v|k) for any v € V" + H}(Q) and any K € T".

Eq.(3.1.3) is formally of the same form as in the conforming case, so that, for
error analysis, it is natural to consider an appropriate interpolation operator IT} from
HL() (or its intersection with some other spaces) to V". However, the situation is
not so simple. That is, using the Green formula, we have

(V}ﬂ/h, vh%) (Vu Vhbh Z / l‘h—laKd"’ V’Uh S Vh, (3.1.4)
Kerh V9K '
where 3= 94|k denotes the trace of the derivative of u in the outward normal direction

of 0K, dlld dvy does the infinitesimal element of K. Because of the line integral
term above, we cannot appreciate the best approximation property that holds in the
‘conforming case, e.g., equation (2.1.5). The conventional efforts of error analysis
have been focused on the estimation of such a term.

Before going into the details of analysis, let us quote Lemma 6 of [25], which is
a refined and specialized form of Strang’s second lemma for general nonconforming
FEM [15].
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Lemma 3.1.1. Let u € Hy(Q) and uy, the solutions of (3.1.1) and (3.1.3), respec-
twely. Then it holds that
2

. (3.1.5)

' . Vu, Viw) — (f,
[Vu—Vpu,|? = inf |[Vu—Vau|*+| sup (Vu, Viwn) — (£, wn)
vpEVH wp €VH\{0} ”vh’wh “

Remark 3.1.1. The present estimate is essentially the same as the original one by
Strang, which is based on the triangle inequality. However, the above is better for
quantitative purposes because of the equality form and the smallness of the coeffi-
. cients.

Proof. We sketch the prdof since the Strang lemma of this equality form is not
necessarily widely known. Define 4, € V" by

(V},ﬂh, thh) = (VU Vh”Uh), Y, € Vh . (31())
The present 1, exists uniquely in V*, and satisfies the best approximation property

|V = Vaiial) = in€ [V~ Vawnl (3.1.7)
v, €V .

as well as a kind of Pythagorean equality

HVU - thhHZ = HVu - Vh'&hilz + th(ﬂh - u.h)||2 . (3.1.8)

Here the last term above can be rewritten by

) U h T UR ), ’h v , v y — , 3
V(i —up)|| = sup (Va(un — up), Vaws) = sup (Vu huh). (f, ws)
wh,EVh\{O} “Vh”ll}h” whevh\{ﬁ} ’ thwhﬂ
(3.1.9)
From the last three equalities, we obtain (3.1.5). ‘ 0O

We introduce the lowest-order Raviart-Thomas triangular H(div) finite element
space W" associated to each 7" [14, 29]:

W™(T") := { Each ¢, € W" is piecewise vector function such that on each K € 7%,
qn = (ag + cxx1,bi + cxxs). Moreover, the normal component of g

is constant and continuous along each inter-element edge of 7" }.
‘ (3.1.10)

For g, € W" and v), € V", because the integral of v, over each edge on 0 vanishes,
we can derive by Green formula that

(qh, Vivn) + (div gu, vs) = 0.
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Hence

(Vaun — Vu, Viop) = (gn — Vu, Vi) + (div g, + vR); Vg, € W Y, € VP
(3.1.11)
Thus, from (3.1.5) we have

IVu—Vyup|* = inf [|[Vu—Vyus|+| sup (@ = Vo, Viwn) + (div gy + £, un)
v €VH w,eVH\{0} ”Vh’ll)h]]

(3.1.12)
Using the Fortin operator IIf : H(div; ) N Hz+3(0)2 — W > 0) (to be given
later or cf. [14] ) and the orthogonal projection one Qy, : Ly(2) — X" := space of
step functions over 7", we obtain a priori error estimate:

]]Vu—vhuhH2 < || Vu—VpILul*+ ||| Vu — TIE V|| + (f = Onf wn — Quu

2

sup :
wh €V {0} IV rws||

‘ (3.1.13)

Here v, in (3.1.12) is replace by Il,u, where IT, is a kind of interpolation to be

specified later which maps u € H() into V", Also g, is taken as [1£'Vu, for which
will show that div g, = div [If'Vu = —Q, f [14].

We can obtain a more concrete error estimate in terms of the mesh parameter

hi > 0 (h will be used in a different meaning later) by deriving estimates such as,
for v € Hy(Q2) N H*(Q) and g € H'(Q) + V7,

lo = Tpol| < yohZlvl, Vo = VIl < yahafolz

. t (3.1.14)
[V =11, Viol| < yohulvle, [lg — Qrgll < 13k Vigl -
Then we obtain, for the solution u € H}(2) N H*(Q),

hod7iluli + (elulz + sl FID2}Y2 for f e Lo(Q),
/ a < 2 Y iy ! o4 5)
IVu — Vyu| < { he{ V2 [ul2 + (yalulz + 72ha| F11)2}Y2 for f e HY(S), (3.1.15)

where the term |u|; can be bounded as |u|, < || f|| for the present €2.

We can also use Nitsche’s trick to evaluate a priori Ly error of uy [15, 30]. That
is, let us define ¢ € H}(Q)(NH?(Q)) for € := u — uy, by '

(Vo) Vu) = (", v), Vv e H} ().

Then we have the following lemma.
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Lemma 3.1.2. It holds for the above e = u — uy, that

€7 = (@ = Vavn, Vae") + (Vi = Vib, Vu = ga) + (& = vy, div g + )
+(d1V(jh + eh; 8h>* V/Uh, € Vha vq}m qh S M/h . : ]

Proof. As in the derivation of (3.1.11), we have for the above 9, e", v; and §, that
((jh, Vheh) -+ (divcjh, 6h) = (), (thh,‘qh) -+ ('Uh, div qh) = (J, (V?,/), qh) + (’t,/), div qh) = (.

On the other hand, since v and uy, are the solutions of (3.1.1) and (3.1.3), respec-
tively, we find that

(Vb Vu) = (¢, f),  (Vivn, Vae") = (Vion, Vu — Viug) = (Vion, Vi) — (vs, f) .

From the above equalities and ||e"]|? = (e*, e"), we can obtain the desired identity.

]

Substituting vy, = Iy, g = Hf Vu and g, = IIf Vi into the equation (3.1.16),
we obtain

e = (I Vi — Vi + Voo — ViIlng, Vie™) + (VI — Vb, Vau — T V) +
(% —Int, f = Qnf) + (" — Qne", " — Qne"), (3.1.16)
where we utilize the relations such that div ¢, = div [If' Vu = —Qy f and div g, =

div ITIf Vi) = —Qpe”. Then we have, by (3.1.14) as well as the relations |uly < ||f]|
and []s < [le"],

le"* < [(v + 92 Vie® | + (o + 1r) BEIFIT €M+ 3R2 Ve, (3.1.17)

where the term yh?||f|| can be replaced with Yoysh3|fly if f € HY(S)). This may
~ be considered a quadratic inequality for ||e”||, and solving it gives an expected order
estimate ||u — up|| = ||e"]] = O(h?):

h |
"] < - (Ay + 4/ 43 + 442); (3.1.18)

where A1 = (71 + %) || Vae || + (v + 1) bl FII, Az i= 2| Vre|2.
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3.2 Error constants for nonconforming FEM

To analyze the error constants in (3.1.14), let us consider their element-wise
counterparts. First we configure the triangular element in the same way of section
2.2. Here we recall the definition of the geometric parameters: h, « and @ are
positive constants such that ' ’

h>0, 0<a<l, (=<)cos'=<O<r. (3.2.1)

ovM
| 0

Each triangle T, o5 has three vertices O(0,0), A(h,0) and B(ahcosf,ahsinf) and
three edges e;’s (1 = 1,2,3) defined by {es, ez, e3} = {OA, OB, AB} (Figure 3.2).
Hence h = OA still denotes the medium edge length. The abbreviation of notations
will be the same as the one in last chapter, e.g., Tp9 = Ty 0,1, To = T,z and T = T7.
Also we will use the notations || - || and | - |¢ as the norm and standard semi-norms
for functions over T, g 5, where the subscript of domain is often omitted.

B(ahcosf,ahsinf)

A(h,0)

Figure 3.1: Triangular element T, ¢

In addition to the linear spaces V,,,, i € {D 1,2,3,4} defined in Section 2.2, we
introduce several new closed linear spaces for functions over Ty g 5:

s {veHI(TaM)l / o(s)ds = / o(s)ds=0),  (322)
A = {ve H (Tuon) | / (s)ds=0, (i=1,2,3)}, (3.2.3)
Vf(,"h = {v€ HToon)| f =0, (i=123)}. (3.24)

The abbreviations for notations o are also used here, e.g., V{l 7= Voﬁ,zl},
V{1 2% = =V, {] 2 VL2 = ‘/,1{1,2} etc. For the purpose of error analysis for nonconform-

. . . 1n .
ing FEM, we deﬁne nonconforming Py interpolation operator 117 , for functions on
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Twon (13, 15]: For v e HY (T, 04), HL’?),W is a linear function such that

/ (I3 pv)(s)ds = / v(s)ds (i=1,2,3). (3.2.5)

€4 €4

For simplicity, we will often use IT'" instead of Hi”Z’ 5, Where the subscript is omitted. -

In the same way as we define C;(c,0,h) (0 < i < 5), let us consider several
other positive constants for the purpose of estimating the interpolation operator
mentioned above,

il . v
Cyla,0,h)= sup ””ﬂ (J ={1,2},{1,2,3}), (3.2.6)
veVy,  \{0} '/UllaTci,e,h
o o [V, T, 0 o lvllr,, .
any(0,0,h)= sup ——=== Cpay(a,0,h) = sup . (3.2.7)
veVie \{0} vl Ton vV \{0} vl2,7,

We will again use abbreviated notations C(«, 0) = Cy(a, 0, 1), Cj(a) = Cy(a, 7/2),
Cy = Cy(1) and also Cj 9 = Cy(a,8) for every possible subscript J.

By a simple scale change, we can easily find that C,(a,0,h) = hCy(a, ) (J #
{5,n}) and Cs (e, 0,h) = h*C5,.3(e,0). Now, by noting v — Hi’z’hv € Vi’gfh
for v € H*(T,04), we can easily have the popular interpolation error estimates on

Ta‘,g?hi [1& 15] .

v — Hizhlll < Cumy(a,0)hlv]y, Vv e HQ(Tayg}h) , 2.
o = TI5 40l < Cismy (e, O)R |02, Yo € H*(Topn) - -~ (3.29)

‘Below, we show some fundamental properties of the constants.
Lemma 3.2.1. For the constant Cy(e, ), we have

Clmy(a,0) < Co(a, 0), Crsmy(,0) < Cola, 0)Cpipgy(a,8) < Cola, )Cpioy (e, 0) .
B (3.2.10)

Proof. To show the former of (3.2.10), we notice that function in V(i’;‘ has the zero
integral on each edge, and then apply the Gauss formula to obtain

ov

Tae Oz

dr=0forveVyy (i=1,2). (3.2.11)
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Hence we can easily obtain Ciy, ,,}(a 0) < Co(a, ) by notmg the definition of
Co(a,8). To derive the latter of (3.2.10), we notice that

v | . e
C‘L&n}(‘%@ = Ssup H “TQ’G (3.2.12)
’UEV;’;\{O} 1'1/’[2mi9 '
v ' )]
< sup M sup —[ R (3.2.13)
vevyh ”\{0} v |1 Tao  veviy\{0} ’012 To,0
= 0{4,77} (a, 9) O{}_,g,g}(&, (9) . (3214)

By further noticing that Cy1 23y (a, 0) < Cpy23(av, 0), we prove the latter of (3.2.10).
Also notice that an estimate possibly rougher than the latter of equation (3.2.10)
is Opsny (@, 0) < Co(a,0) ming—y 2.3 Cy(ev, 0) by utilizing the relation Cpi3y(cr,8) <
ll’linizl,z,g C,L (OJ) 9) . ‘

' O

~ Thus we can give quantitative interpolation estimates (3.2.8) and (3.2.9), if we
succeed in evaluating or bounding the constants Cj(a,f)’s explicitly for all possi-
ble J. Among them, Cy(c, ) and 0{1,2} (a, 0) are important as may be seen from
(3.2.10). Just as we did in Chapter 2, we execute analogous analysis to show the
following properties for the newly introduced constants:

Lemma 3.2.2. The constants C;(c)’s (J = {1,2},{1,2,3},{4,n},{5,n}) are con-
tinuous with respect to variable a. Moreover, except for 0{4,n,}(0z), these constants
are strictly monotom’cally‘z'ncrea,sing with respect to a. (Numerical computations
suggest that the constant Cy, ny (@) to be monotonically increasing on «, while it has

not been proved yet.) The dependence of these constants on o and 0 is given as
follows:

¢’J<9)CJ(CE) < CJ(O‘; 0) < ¢J(9>C](a'> (‘] = {1’ 2}’ {la 2’ 3}7 {47 n} {55 TL}) )
| (3.2.15)
where

( ¢J(9)—\/1+]cos l, ©;0)=+1-]cosf (J={1,2},{1,2,3}),
brany(0) = 1+[cos€l /7/1—|coséb,
Yiany(0) = (1 — | cosb])/y/1+ | cosb),

{ P53 (0) =1+ [cosb], sny(0) =1~ ]|cosd].
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As a result, the interpolation by the nonconforming P; triangle is robust to the
distortion of T, 4. This fact does not necessarily imply the robustness of the final
error estimates for u — uy, since analysis of the Fortin interpolation has not been
performed yet.

Remark 3.2.1. Instead of Ha o.ns U 1S also possible to consider an interpolation op-

erator using the function values at midpoints of edges. Such an operator is definable

 for continuous functions over Togp, but not so for general functions in H(Twes).
y pran A oo y ‘ > " 1n

Moreover, its analysis would be different from the one for I .

Determination of C{y 9

From the preceding observations, we can give explicit upper bounds of various in-
terpolation constants associated to the nonconforming P; element, provided that the
value of Cfy 0y is determined. This becomes indeed possible by adopting essentially
the same idea and techniques to determine Cy and C;(= Cy):

Theorem 3.2.1. Cy 9y = Cp93(1,7/2,1) is equal to the mazimum posmve solution
~ of the transcendental equation for w:
— +tan— = 0. 3.2.16
o + tan o (: )
The above implies that Caoy = %C (= Cg), and hence is bounded as, with numer-
ical verification,
0.24641 < Cpoy <0.24647 . (3.2.17)

Remark 3.2.1. Thus 1/4 s a %mple but nice upper bound. Numerically, we have
Cp,2y = 0. 2464562258 - -

Proof. By the use of the technique for determination of Cy and C; = Cy in [27, 29],
we obtain the following equation for u:

1 1 1
1+ —sin——cos— =0, (3.2.18)
20 p p ,
whose maximum positive solution is the desired C; 9. By the double-angle formu-

las, the above is transformed into

1 1 1 1 ‘
(2sin — + — cos ——)sm—~— =0. (3.2.19)
2 W 20 21
It is now easy to derive (3.2.16), and also to draw other conclusions by using the

results in [27, 29)]. ' O



3.3 Analysis of Fortin’s interpolation

This section is devoted to analysis of the Fortin interpolation operator IT%,
for each T, [14]. First, let us introduce the following transformation between
= {x1,22} € Tpp and & = {&1,29}:

T1 =x18in0 — xyc0860, Ty = x1c080 4+ 298in0 . (3.3.1)
For each ¢ = {1, 2} € H(div; T,), we also consider the (contravariant) expression
q= { q1, @2}3 ,

G =q8inf — gocosf, Go=qicosf+ qsind, (3.3.2)
for which we loosely use both z and # as variables. The Raviart-Thomas type
approximate function ¢, = {qn1,qr2} are given, together with the expression for
Gn = {qn1, dna}, by

qr1 = Q1 + a3y g1 = a15inf — agcosd + azdy (3.3.3)
" Gre = g + a3y Qno = a1 0080 + o sinf + a3y e

The Fortin interpolation ¢;; = {g;,, ¢io} = 117 yq for ¢ € H(div; T, L0 VH (T, )28 >
0) is of the form in (3.3.3) and characterlzed by the conditions:

7

/ (Ghs — q2)ds = / (Gr1 — / div(g; — q) d = 0, (3.3.4)
€1 [} a 6

where ¢ for ¢ and §;; for gy, are defined in (3.3.2),(3.3.3), respectively.
Let us now introduce another interpolation fo 0 }q = qh {th qh2} for the same
g, which is a constant vector function that satisfies only the former two conditions

of (3.3.4). Then we can have the L, estimate:

1/2
div q
lg—TE,q) < Jlg - 187 ‘H_“—li“—[el_!(/ Iz Fda;) (3.3.5)

14+ acosb + o?
= g meP g+ S g (a9

Here we introduce another quantity Cp; for later purpose,

14+ acosf + o? .
CF‘,](Q'; 9) = \/ o1 . (33()

To bound ||g— H{1 q|l, let us evaluate |G, — g}, || and ||g2— g, || by using Cy(a, §)
and Cs(a, ) and there is 1o difficulty to get the following theorem.

60



Theorem 3.3.1. It holds for ¢ = {q1,q2} € H' (T, p)? that

T < C];‘,Q(af, 9)[(]'1,'[}%9 5 (338)

8 —

1,2
lg — g

1/2
Crala,f) = {c% + ¢ + 2c1c5c082 0 + (¢ + cz)\/cf + 3 + 2¢;¢y cos 29} ,

(3.3.9)

1
V2sin 6

where c; presents C;(a,0) (i = 1,2) for the purpose of abbreviation.

Remark 3.3.1. From (3.5.6) and (3.3.8), it is easy to derive the following estimate
for the Fortin interpolation operator I, , :

lg = 115 0 44lI7. 6 < Cra(; 0) hlldivllzr, , , + Crale, O)hlglir,,, . Vg € H (Tapn)*.

; (3.3.10)
Because of the factor sinf in (3.3.9), the mazimum angle condition [1, 6, 29] works
Jor estimate (3.3.8), and consequently for (3.3.10). On the other hand, the estimates
for T10, 4, and Hi’fé,h are free from such conditions as may be seen from (3.2.10) and
the comments there.

3.4 Summary of a priori error estimate

So far, we have introduced and analyzed local interpolation operators IT), ; ,, H;’fg, b
and IS, . For each K € T", we can find an appropriate T, 9, congruent to K un-
der an appropriate mapping W : K = T, 95. Then it is natural to define the Py
nonconforming interpolation operator TI7¢ : H () = V* by

;) |k = (Hi7,7é7h,(vlk' o U)o Uk o (3.4.1)

for v € H}(Q) and K € T". Similarly, the orthogonal projection operator Q :
Ly(Q) = X" is related to IIJ ,,, while the global Fortin operator IT¥ is defined
through 117, ,. Concretely, function W is the Piola transformation for 2D convari-
ant vector fields [5].

We define {a, 0k, hix} by the parameters {a, 6, h} for each K € T". Also, we
introduce the global parameters

h, = max hg, C‘f} = max Cj(ag,f0k) for all index J .
KeTh KeTh
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Let us recall the interpolation operators mentioned in (3.1.13) and (3.1.14). By
taking II, to be II}¢, we have the interpolation estimates in (3.1.14) as, for u €
H}(Q) N H3(), '
lu—Tgeull < CER2Juls < CFCP 12 ula,
|Vu — VI Clh,July < Clhyluls,

IVu~TEVul| < Chyhal|dul + Clohulula.

A

IA

and for g € HY(Q) + V",

lg — Qugll < C3h.[[Vgl -
Substituting the constants above into (3.1.15), we now obtain the computable a
priori error estimate as follows: given data f € Ly(Q2), we have

2, \ 2172
V0 - Vaunll < b { Ol + (Chalule + (€5 + ChOIANT} " (342

If f belongs to H'(Q) as well, then

2] /2
IV = Fyunl < b { 'l + (Challa + Ol Sl |- (249

Similarly, we can derive a computable estimate for ||u — us||q in explicit form,
which is omitted here.

Remark 3.4.1. As we will see in the following chapters, relations such as (5.2.7),
(5.2.10) and (5.2.12) may suggest the possibility of finding interpolations for Vu in
W other than the one by the Fortin operator, which are free from the mazimum
angle condition [6]. However, V,(Ilyu + ay), for ezample, is not shown to belong
to W, because we cannot prove the inter-element continuity of normal components
unlike Vi, Qur numerical results show that the mazximum angle condition is
probably essential for the nonconforming Py triangle. See also [1] for related topics.

3.5 Asymptotic ahalysis of constants on narrow
element | |

In this section, we will investigate the behaviours of the constants Cy; .3 (c)’s,
(¢ = 4,5), when the shortest edge of triangle tends to be zero. The method to
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be used is almost the same as those for the constants appearing in the case of the
conforming FEM. ‘ ,

As is well known, the constants Cy ) (c, @) and Cys ny(a, 0) can be characterized
by the following variational problems:

Aany(a,8) = (1/(7{47,,;}(05,9))2: Find u(#£ 0) € V(i’;z, and minimal A\ > 0 such

that
. 2 '
> " (Oiu, 05v)r = M(Vu, Vo)r, Vv € Vg ~(35.1)

hy=1

Ay, 8) = (1/Cpm (e, 9))2: Find u(s#£ 0) € V;’g" and minimal A > 0 such

that
2

Z (3@‘“, 8”’0)1- = )\(u, ’U)T, Yu € Vj’; . (352)

The existence of these OJ(“‘O)‘ = limg—40 Cy(e) (J = {4,n}, {5,n}) is easy to

see by considering the boundedness of the constants over (0, 1] and the compactness

theories such as Rellich’s theorem. Let us introduce two new quantities Agy »3(40) :=
C@%,L}(—{—O) and A5 .3 (+0) :== C’{S%n}(+0) and also a subspace of V{1:23}

Wn(T) = {v € V*"|0v = 0} . (3.5.3)

~ From the Lemma 2.5.1, we see the function u(z1,z2) € W™(T') can be identified
with a single variable one (z;). In the following, the symbol u(z) € W™(T) is just
u(z) = u(z1, 23) = W(xz;), u(z) := di(z;)/dz; and v (z) := d*u(z)/d2?.

We can show that these two constants are characterized by the following eigen-
value problems: ’

Problem for Cuny(+0):  Find minimum A > 0 and w € W "e(T)\ {0} such
that '

(On1u, O11v)r = A(Ou, O1v)y, Yo € W(T), (3.5.4)

or :

2@ — 2N@ = —AuD(1 — 2N
{ (w1 1 ) )\,( (1—z)" +C, (35.5)
w(0) = [ u(t)dt =u?(0) = u®P(1) =0,

where C' is an unknown constant to be determined. By using the hyper-geometric
functions, the general solution of the ordinary differential equation here can be
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presented by

33 M1 —2)?
u(z) = a+c(l—z)* oF3(1,1 31314~ ( 1 ) )
1 5 3 5 A1—2x)%)
) — (1 — 299 2.
+C3 ((1 .IC) 12(1 -’I:) 2F3(]-7 2?2) 19! 4 )
1 3 5 A1-—1z)? .

with proper selection of ¢;’s , C' and A to make u satisfy the conditions in (3.5.5).
Numerical computations show that

Ay (+0) ~ 14.682,  Cyanp(+0) & 0.26098 . (3.5.7)

By taking u := 2(x—2/3), we can easily obtain an upper bound for Ay, (+0) as 18.

Problem for Cfs,,)(+0): Find minimum A > 0 and uw € W™¢(T')\ {0} such that

(811%0, 811’0)7‘ = )\(U, U)T, Vv € M/rnc(T) s (358)
or
w1 - 2)® = 1 -2)u+C
(3.5.9)
u(0) = [ u(t)dt = u@(0) = u®(1) = 0.
- The general solution in the form of hyper-geometric form is
L, 133 AM1-2a) 3.5 AM1-ux)*
u(r) = cofi(; 211 %56 )+ e (1—z) oF3(; YT T o )
556 A1—z)
— 2 o
+c3 (1 x) 0F5(7474a4a 256 )
A . 337 Ml—-2)* '
toXoap Rl 2 3 T A - (3.5.10)

with proper selection of ¢;’s and A to make u satisfy the conditions of Eq.(3.5.9).
Also numerical computations show that

Ay (+0) = 428.31,  Cis ) (+0) = 0.048319 . (3.5.11)
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- Sketch of determining )\{4,5}(-{—0)

The process of determining A4 ,,;(+0) is analogous to the one in Theorem 2.5.3.
Here we only show the sketch. Before going into further discussion, let us recall
the Rayleigh quotient defined by equation (2.3.3) for function v € V4" over T(=
Tl,ﬁ/Q,]):

BB () = da(v) _ [[0n0]l7 + 2072 0190]17 + o || 820 |7 (3.5.12)
¢ ba(v) 101017 + 02| 0av]7 ’
and Agy ) can be presented in the following form:
Aam (@)= inf RW(@). 3.5.13
{4}

veV4m\{0}

3

On considering a special function @(z;, z2) = sin(27z1) € V4™, we can easily show
- 1 9 y

that -
or _ (3.5.14)
@l

~

Ay (@) = RO (u,) <

What we aim to show is that Agy,)(«) has a limit when o — +0:

Afany(40) = lim i%f Aany (o) = limsup Mgy (o) - (3.5.15)
Qn— a0
For any convergent sequence Ayy,)(an) — A* as a,, — 40, (0 < a, < 1), we will
prove that the limit A* here is independent of the choice of {ay,}.

For any Agany(c), let u,, € V4™ be one of the corresponding eigenfunctions,
that is, |
Mg (@n) = B (ua,) -
Here we also assume that b, (u4,) = 1. The uniform boundedness ||u,, |27 is
clear since A,y is uniformly bounded. By the compactness theories in Sobolev
spaces and the same technique adopted in Theorem 2.5.3, we find there exists a
sub-sequence of u,,,, which we still denote by wu,,,, that satisfies, when «,, — +0,

U, — Uy weakly in H*(T,),
U, — Ug strongly in HY(T,,) .

Since the limit uy may be zero, we should discuss the following two cases separately.
lim |Jua,llor =0, or lim |lug,|lor #0. - (3.5.16)
an—+0 an—-+0 .
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The former finally leads to the eigenvalue problem in equation (3.5.5), for which
we omit the proof here. For the second case, we define a new sequence {v,} =
{o;' D2, }, and will show that {v,} weakly convergences to v € W"¢(T), which is
the eigenfunction corresponding to one of the eigenvalues of:

{ ~W(@)(1—2))V =2 u(x) (1-2) for z € (0, 1),

fol(l - :B)v(x)dj: =0, vW(0)=0. (3.5.17)

By numerical computations, we can show the problem above has the minimal eigen-
value A & 2 x 3.83172 > 18. Hence we see the solution of this problem is not
the required eigenfunction since Agyn3(cy,) < 18. One thing to be pointed out is
that here the computations are executed by floating-point arithmetic. To give strict
conclusion, we still need the verified computation technique to guarantee the com-
putational results.

In the following, we show how to deduce the eigenvalue problem (3.5.17) from
the assumption HUOHZ,T = (0, which is an‘alogous‘to the 4th part of Theorem 2.5.3,
or (4.3.2) in our paper [28]. ' \

Let wy, = o 'Oy, (n=1,2,...). Then w, € H(T) satisfies

/ wy, dridrs =0, form=1,2,...
T

Moreover,w
|1011%a, |5 + 2[|c")171)n1]% + a;2]](3211)n1]2 = Aany(om) (n=1,2,...).

As Mgy (an) is uniformly bounded, {w,} is bounded in H*(T) and dw,/dzs — 0
(n — o0). Thus, by choosing a sub-sequence of {w,} and denoting it by the same
notation for simplicity, we can show the existence of wy € H'(T) such that, for
n — 00,

w, — wo weakly in H'(T) and strongly in L*(T).

It is obvious that dwg/Ozs = 0 a.e. on T, then we can identify wy by a function
depending on only variable 1, which we still denote by wo(x1). Also, wq still satisfies

/ Wo d.’)i'ldl'g =0.
T

Let v* be an arbitrary function of variable z; such that v* € C*([0, 1]). Notice that
such v* can be extended to the one over domain 7', which is only depending on the
variable x;. For simplicity, we denote the extended one by the same symbol v*.
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For the aforementioned v* € C*°([0, 1]), define another function Pyv* of z; by

fo (1= s)vr(s)ds
fo (1- s)ds
‘We take v(z1, ) := (Pyv*) (z1) - 22 + g(z1), where g(z1) is selected to satisfy

fo (z1)dz; = 0 and fo (Pv*) (0) - 3 + g(0)] dzo = 0. Hence, the function v be-
longs to V{123} that is,

(Poo) (21) = v*(zy) — (3.5.18)

/'uds=0 (i=1,2,3).

Considering the variational equation for w, together with the test function v
‘given above, we have

Pu,, 0%, ow, G(Pw*)
(81 ’Bx%)T’+2 (8171’~ Oz )r

o Ou, Ov
= Aany(om)]a (&r1 arl)T"f'(melU> r]. (3.5.19)

Taking the limit of the equation (3.5.19) and noticing that 9; (Pyv*) = d1v*, we
find that wy in H(T) satisfies

871/0 ov*

= A (wg, Pv*)r .
8’11 dlﬁl) (UJ(), v )T

Now we obtain the following eigenvalue problem:

1 1
dwy dv*
2 1—: = \* 1 — 2wy (Pyv*)dzy: Yo© € C(]0, 1]).
|-G Tdn =3 [ (= aus (A7) do o' € C=(0,1)
From the arbitrariness of v* and the relation fol (Pyv*) (21)(1 — z1)dz; = 0, we can
deduce that

d dwo, . dw ‘
ZE{(I - md_f‘ + M(1 — z)wo(y) = C(1 — z) and %f(()) =0. (3.5.20)

Considering the integration of the former ODE in (3.5.20) over (0, 1),we deduce that
C = 0. So the eigenvalue problem is just the one in equation (3.5.17).
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3.6 Estimate of interpolation constants in 3D case

As an extension of the results which we obtained in 2D case, we here consider
the the nonconforming finite element in 3-dimensional space, for which only partial
results are given. For further investigation, we still need much more efforts.

Let us consider the P; nonconforming tetrahedral element space V" that is de-
fined over the subdivision of domain with tetrahedra. The function in V" is piecewise
linear function whose integrations on inter-element faces are continuous. To approx-
imate the homogeneous Dirichlet boundary conditions, the function in V" is forced
to have vanishing integration on boundary faces. In the following, we will consider
and analyze an important interpolation analogous to the 2D case.

B
fa

f3

Figure 3.2: Tetrahedron element K

Firstly, let us consider the tetrahedral element in 3D space. With ty, ts and ts,
the vectors in R?, we define a tetrahedron K (See Figure 3.2):

K = convex hull of {0,t;,ts,t3} with the boundary omitted. (3.6.1)

To orient the vectors tq,t, and t3, we define the matrix M = (tq,ts, t3) and
require that det(M) > 0. T

Let us denote the the nodes of K by O, A(t1), B(ts) and C(t3), and the faces
fi(OAB), f2(OBC), f3(OAB) and f4(ABC). The Cartesian coordinates of point
in K denoted by z = (z1, 22, x3). |

Introduction of interpolation operator IIj
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On tetrahedron K, which is supposed to be an open set, let H™(K) denote the
Sobolev spaces of functions of L*(K) with distributional derivatives up to the order
- m. The norm of v € H™(K) is written as

[ullgm k) or ||u||m,x and the standard
semi-norm to be |u|gm (k) Or |ty . The L? norm of u, ||u
as [Jullx or [|ul].

12(x), Will be abbrm iated

Given u € H*(K), which may not be continuous on K, we consider the interpo-
lation operator I1%f, which maps u to a linear function IT7%u such that

/(H?{Cu—u)dSz{}forlSiSAl, ' (3.6.2)

where dS is the surface element on f;.

In the application of FEM, the following two kinds of interpolation error esti-
mates are widely used: Given u € H?(K) (C H'(K)), there exist constants C7¢(K)
and C7¢(K), which depend only on the geometry of K, such that,

Ju = Hgulx < CF°(K) [ulox (3.6.3)
|u = ITuly i < CT(K) ulox - (3.6.4)

The existence of these two constants are easy to prove. For simplicity, we will usu-
ally write CP°(K) as CP'°.

Let us introduce a’subspa,ce of Sobolev space H?(K):

V3¥(K) = {v € H*(K)| v has the zero integration on each face.} . (3.6.5)
It is easy to check that v — II%u € Vi**(K) and |u — I¥u|o x = |ulzx. We then

characterize the optimal constants above by the Rayleigh quotients:

ney2 . __ ne _ . i I2K )
(/0 =X = nf (3.6.6)

2
(1/C79)? 1= X = inf Lﬁ— - (3.6.7)

weVne(K)\{0} [u[l K

In addition, we consider the average interpolation I1%: for v € HY(K), Il{u is
constant function over K such that

/ (IMgu —u)dz =0. (3.6.8)
K
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Let us introduce the constant C4(K) by

CAK):= sup u — Dgullx (3.6.9)
weH (K)\{0} |ul1,x .
then we have the estimate for interpolation IT4-:
lu — gul|x < CHE)|ulx, ' (3.6.10)

where the optimal constant C#4(K) is a kind of the Poincare constant. Such a
constant plays an important role in bounding the constants C3¢ and C7, as will be
shown below. From the results in [32] and [11], where the latter one [11] corrected
a mistake in the former [32], we have

diam(K)

T

CAK) < , diam(K) = the diameter of K .

To give estimates to the constants CJ¢ and C7¢, we still need another several
constants. Let P be the power set of {1,2,3,4}. Then define, for each index set
IeP\{0},

inf .
we HY(E)\ {0} llull%
fﬁuds =0, Viel

C7AK) =\ = (3.6.11)

Thus, we have constants such as Ci13(K), Cra3y(K), C1,23.41(K) and so on.

Upper bound for constants C7¢(K) and C}¢(K)

Theorem 3.6.1. The following etimates hold:

CP(K) < CAK), (3.6.12)
P(K) < CHK) - min Ci(K) . 3.6.13
Coe(K) < C( )+ Zain, Ci(K) (3.6.13)

Proof. We first consider the inequality (3.6.12). For u € V5(K), since the integration
on each face is zero and by the Green formula, each partial d(‘lwatne Ou/0x; (i =
1,2, 3) satisfies

/ e = / unds=0;, i1=1,23, (3.6.14)
K 0%; i | |

k=1,2,3,4"
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where n; is the i-th component of the unit normal vector on the face f;. Hence,

ou ou
xk < CAK (i=1,2,3). (3.6.15
oz; “K = (K) O, 11,5 (¢ ) 43 ) ( )
which lead to ,
lul1,x < CAK)|ulax - (3.6.16)
For the second inequality, we should consider the following fact:
CSC(K) = sup Hu“K < sup HUHK Sup !/U’LK )

ueVae\{0} ]UIZ,K o ueVe\{0} fU|1,K veVe\{0} [’Ub,f{
As we can easily see

sup WS min C(K),
uevge\{o} lulyx ~ 1eP\{0}

‘together with the inequality in (3.6.12), we can deduce the inequality (3.6.13). O
Remark 3.6.1. In the two dimensional case, we can give concrete values to some
constants by using the so-called ”symmetry techniques”, i.e., the isosceles right trian-
gle can be extended to the unit square by reflection. However, in three dimensional
case, such technique fails completely. So, we are planning to develop numerical
method with a posteriori estimates to obtain the upper and lower bounds for these
constants. ’

Numerical results

In the case where the tetrahedron K is constructed by the convex hull of the
canonical unit vector ey, e; and ez, we evaluate C4(K) by the finite element method
with linear tetrahedral elements, and obtain that

CA(K) ~ 0.262,
which is compatible with the above mentioned theoretical one, that is, C4(K) <

V2/7(= 0.451).

3.7 Numerical results

3.7.1  Evaluation of constants Cy,(a,0) and Cys ) (a, 0)

Firstly, we perform numerical computations to see the actual dependence of
various constants on « and 6 by adopting the conforming P; element and a kind of
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discrete Kirchhoff plate bending element [26], the latter of which is used to deal with
directly the 4-th order partial differential equations corresponding to Cy(c, ) and
Cs(a, ). We obtain numerical results for Cy(a) and Cs(a) (8 = 7/2) together with
their upper bounds. The uniform triangulation of the entire domain T, is adopted,
that is, T, is subdivided into small triangles, all being congruent to To /2, With,
e.g., h =1/20.

031
0.25-
—— Cyny(@)
—— Co(a)
02
0.15 e L ' :
0 0.2 0.4 0.6 0.8 1

—_—

Figure 3.3: Numerically obtained graphs for Cy4n3(o) and its upper bound

Figure 3.3 illustrates the graphs of approximate values of Cyy,}(cr) and Co(er)
- versus « €]0,1], while Figure 3.4 shows similar graphs for C{s .3 (cr) together with
its upper bounds Cy(a)Cpy 23(a) and Co(a)Cpy 231 (c). In both cases, the theoretical
upper bounds give fairly good approximations to the considered constants Cfy ()
and Cfs 3 (). The asymptotic analysis result that Cpypny(+0) = Cp(+0) can also
be oberserved in the Figure 3.3. Meanwhile, the limit Cisny(+0) is different from
Co(+0)C1,231(40) = Co(+0)C1,23(+0), although the numerical values are close to
each other. ‘ | ‘

3.7.2 Computation for a priori error estimates

We test numerically the validity of our a priori error estimate for ||Vu — Vyup||.
That is, we choose Q as the unit square {z = {z1,22};0 < x1,29 < 1} and f as
f(z1,22) = sinmaysinwze. So the solution is u(zy,xs) = —2—71-;2-8111 wxysinwzy. The
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Figure 3.4: Numerically obtained gfaphs for Cys ny(a) and its upper bound

N x N Friedrichs-Keller type uniform triangulations (N € N) is used for computa-
tions. In such situation, all the triangles are congruent to a right isosceles triangle
T1z/21/N, L€, hy = h = 1/N. Moreover, we can use the following values or their
upper bounds for the necessary constants: -

Cl=Cy=1/n, Cfm} =1/4, O@,n} =1/, ng,n} =1/12.

Figure 3.5 illustrates the comparison of the actual ||Vu — Vyuy|| and its a priori
estimate based on our analysis. The difference is still large, but anyway our analysis
appears to give correct upper bounds and order of errors, i.e., O(hy). In Chapter
5, we will consider a kind of hypercircle-based a posteriori estimation, which gives
relatively better error estimate than the current one. '
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Figure 3.5: Numerical results for ||Vu — V,uy|| and their order plots for h
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Chapter 4

Enclosing eigenvalue of Laplacian
and its application to evaluation of
error constants

In the preceding two chapters, we have introduced various constants related to
error estimation of both conforming and nonconforming FEMs. These constants are
characterized by Rayleigh quotients and hence related to eigenvalue problems with
various kinds of constraints. For example, the constant Cy(a, ) is related to the
first positive eigenvalue of —A in the space over T, ¢, where the function has zero
integration over T, g. ‘

As we have already seen, we can give exact values or proper estimates for the
constants only in very rare cases, e.g., Cp, C1 = Cs. It is in fact very difficult to
determine the exact values of constants related to T, 4 of general shape. On the
other hand, we can adopt the FEM to obtain approximate values for such constants
as may be found in, e.g., [4, 44, 29, 47], but their quantitative error estimates for
the approximation are often unavailable.

In this chapter, we will give.quantitative a posteriori estimation for the evaluation
of Ci(a,6)’s (0 < i < 3) by utilizing the piecewise linear FEM and the obtained
- estimates for the constants. The basic idea adopted here can be found in many
texbooks such as that of Schultz[46]. To see the validity of the method in section
4.5, we will consider the evaluation of the minimum eigenvalue of the Laplacian
eigenvalue problems on disk under the homogeneous Dirichlet condition.

At present, our approach gives only approximate or numerical boundings of the
constants, but they can be turned into mathematically correct ones provided that
appropriate numerical verification methods become available. Refer to [41, 38] for
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the interval computation method and the theories required by efficient verified com-
putations.

4.1 Preliminaries

Let Q be a bounded convex polygonal domain, which is in many cases the trian-
gular one T, 4. Let us also consider a closed linear subspace H}(§2) of H'(€2), which
can be finite-dimensional and satisfies

HX(Q) #{0}, 1¢ HYQ), (4.1.1)

where 1'is the constant function of unit value in 2. A typical example of such H}(Q2)
is H}(Q). |

As a generalization of variational form (2.1.2), we consider the problem of finding
u € HY(), for a given f € Ly()), such that

(Vu, V’U)Q = (f, U)Q, Yv € H;(Q) . ~ : (412)
The uniqueness and existence of u in H!(2) are also trivial, so that we can define

an operator G, by

|

Gs: f€Ly()) —uec HAN) determined by (4.1.2) . (4.1.3)

As a generalization of the problem related to (2.2.18), let us also consider a
minimization problem for the Rayleigh quotient:

Re(o) = Ui

NI

The minimum actually exists and is positive under (4.1.1) as may be shown by

Yo € HH )\ {0} . (4.1.4)

the compactness arguments. Moreover, denoting the minimum and the associated
minimizer by A > 0 and u € H}(Q) \ {0}, respectively, they satisfy the following
variational equation:

(Vu, Vo)g = Mu,v)g, Yoe HNQ). (4.1.5)
By using G, in (4.1.3), the present u € H1((2) is shown to satisfy u = AGu.
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To apply the P, FEM to the above two problems, we first introduce a regular
family of triangulations {7"};s¢ of € as we mentioned in Section 2.1, and then
construct the piecewise linear finite element space S* ¢ H'(Q) for each 7" as

S" .= {vy, € C(Q)| vnx is a linear function for each K € T"}. (4.1.6)

For u € H*(Q) (C C(Q)), recall the definition the piecewise linear interpolation
Mue S"in (2.1.7): '

| (T ) (p;) = u(p;) for each vertex p; of 7" . (4.1.7)

We will also use the parameters h = maxkeW h.}(, C} = maxgern Cy(ax, Ox) and

Cé‘ = maxgern Cs(ag, 0k) defined in Section 2.2. Then we have the following
interpolation estimates for the above u as was discussed in Section 2.2:

[u - H,lzu{LQ S Cf hlu.lgﬂj HU - H,ll'll,Hg S Cg h2|u|2,9 . (4.1.8)

To construct approximate problems to (4.1.2) and the minimization of (4.1.5),

let us consider the subspace S™* of S* defined by
Shs .= SN HNQ), (4.1.9)

which we assume to be different from {0}. Of course, various other finite-dimensional
subspaces of H!(Q) are available in place of S™* but the above one is theoretically
simple and also practically favorable in many cases. ‘

Then an approximation to (4.1.2) is to find u, € S™?, for a given f € Ly(Q),
such that ’

(Vun, Vor)a = (fyon)a, Vope ™. (41.10)

The uniqueness and existence of up in S™® are trivial, so that we can define an
operator G" by

GM: f € Ly(Q) — uy, € S™* determined by (4.1.10) . (4.1.11)

Noticing that u = G, f and u, = G"f, we generalize the estimations in (2.1.5)
and (2.1.6) as below: '

Gof = Gliflia= min |G.f —vnlia, (4.1.12)
) vp EShss :
. . Gs - ¢
IGof — G flla < |Gsf — G"fliq  sup  inf [Gsg — vnlre (4.1.13)
o geLs@n\oy vest  lglle
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On the other hand, an approximation problem related to R*(-) is to find the
minimizer in S \ {0}. In this case, the existence of the minimum is again trivial,
and the minimum A" and an associated minimizer u;, € S™* \ {0} satisty the relation
analogous to (4.1.5): h

; (Vuh, Vvh)g = )\h(uh, Uh)g, V’l)h € Shos A (4.1.14)

The following results are easy to derive but will play an essential role in our

approach, cf. e.g. Theorem 8.3 of [46].

Lemma 4.1.1. Let A and A" be respectively defined by A = minyem )\ (03 R°(v) and
N = min,e shav(o3 R5(v), and v € H;(Q) be an minimizer associated to X such that
Nlullo = 1. Then it holds that, for Vv, € S™*\ {0} with ||u — v < 1,

u—nlig

(1= Jlu—wvplla)?’

The following results are also well known and will be used later, cf.[22]

A< AN <A+

(4.1.15)

Lemma 4.1.2. For the present 0 and a given f € Ly(QY), consider the problem of
finding v € HY(Q) such that

(Vu, Vu)g = (f,v)a, Yo HYQ). | (4.1.16)

Such u exists if and only if :
(f,Da=0, (4.1.17)

and is unique up to an additive arbitrary constant function. Moreover, u € H?({2)
with \
lulz,0 < [[Aulla = [|flla . (4.1.18)

Remark 4.1.1. To assure the uniqueness to u, we can for example impose the
condition (u,1)q = 0 on u. The present problem corresponds to the one for the
Poisson equation with the homogeneous Neumann boundary condition:

~Au=finQ, L O (4.1.19)
on
Lemma 4.1.3. Given data f € Ly(Q), the problem of finding w € H}(Q)) such that
(Vu, Vo) = (f,v)q, Yv€ Hi(Q), . (4.1.20)
has a unique solution. Moreover, u € H*(Q) N H3 (Q) with

[ulz.0 < [[Aulla = (| flla - , (4.1.21)
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4.2 A posteriori estimation of Cy(a,0)

We first give a posteriori estimates to Cy(a, ). In this case, Q = T,p and
H(Q) = V2, Let us define an orthogonal projection operator P° : Ly(Tpg) —
L(Z)(Tae) = {g € LQ(T(X,G)Kga 1)Ta,€ = 0} by

f:’[’w g(z)dz - (9, D1as
fTM dz Tl ’

Plg =g - = Vg € Ly(Thp), (4.2.1)

where [T, 9| denotes the measure of T, 9. We can easily show that PY is also an
orthogonal projection operator from H'(T, ) to Vc'gg, defined in (2.2.3), with respect
to the standard inner product of H'(T,4). Notice that the present G,, G* and S*
are now those corresponding to domain 2 = T;, 9. Denote by S%a’ , the finite element
space S" over domain Q = Ty Then we find that 5'7’_2(% , contains the constant
functions and the S™* for the present H(Q) is

Sgl, = P°S . (4.2.2)

From now on, we will omit the subscript T, ¢ for the norms, semi-norms and
inner products related to the domain 75, 4.

Noting that VP% = Vv and (f, P’v) = (P°f,v) for v € H (T,y), equation
(4.1.2) for the present u € V), becomes

(Vu, Vo) = (P° f,0), Vo€ HY(Ths), (4.2.3)

which reduces to (4.1.16) under (4.1.17). Likewise, Eq.(4.1.5) for the present {\, u} €
R x (V24 \ {0}) becomes '

(Vu, V) = AMu,v), Yo € Hy(Twp), (4.2.4)
since Pu = u. By Lemma 4.1.2, the above u belongs to H*(T,,9) NV, with
lulg < Allul]. (4.2.5)

The same way, we denote by A0 the minimum eigenvalue A" in equation (4.1.14),
where S™* is relaced by S™P.

Under the preceding preparations, let us apply Lemma 4.1.1 to estimate A*° in
terms of the one A\Y of (4.1.5) or (4.2.4). The minimizer associated to A is denoted
by u® with the normalization condition ||u®]] = 1. As v, in (4.1.15) can be taken
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arbitrarily, we can choose various candidates from S™°. One possibility is to utilize
the interpolation IT}u (€ Sgﬁg) of u’. Unfortunately, it may be outside of S™0,
but its projection P(IT}u’) can be used thanks to (4.2.2). By taking advantage of
properties of the orthogonal projection (4.2.1), we find that

[u® — PO (Iu%)|, = |u® — T2y, - (4.2.6)

Ju® — PO () || = [[P* (u = ) || < o — TR . (42.7)

Using (4.1.8) and (4.2.5), we can evaluate the above in terms of h, A%, Ch and CL.

Unfortunately, we have not obtained sufficiently accurate theoretical upper bounds

for CI' as was noted in Section 2.4.1. So we should avoid the use of such a constant

from theoretical standpoint.

Another possibility is to use @) := NG"%O, which is surely in S™° and is

suggested by the identity u® = A°G%u°. For this choice, we have

[u® —ap)y < [u’ — P (IGaf) |1 = [u® — TI}uf)y (4.2.8)
| G0 g —

lu® — @D || < Jub —all; sup inf 1G9 —wly (4.2.9)
geLa(Tao\o} nes™  lg]

In this case, we only need the estimate in H! semi-norm (4.1.8), that is , the values
of h, A% and C}. Hence we avoid the use of CE.

Based on the above considerations, we have now the following two a priori error
estimates. '

Lemma 4.2.1. (A priori estimates for N*°) Let \° and A*° be defined as above.
Then if CER2A® < 1,
(aiz>\0)2

0 o 0 « 10
N SN SN+ e (4.2.10)
Similarly, if CPR2N0 < 1, then
hy0\2
AV A0 <0y (GiX) (4.2.11)

(1— Ch*h2r0)2

Remark 4.2.1. In actual application of the above estimates, where the exact value
of CH(Ch resp.) may not be available, we can use an appropriate upper bound
CH(CF resp.). From the considerations in Section 2.4.1 for concrete values of these
constants, (’4.2.‘1 0) would give a better bounding than (4.2.11), if an accurate upper
bound C of C becomes available.
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Let us define two functions related to (4.2.11) and (4.2.10):

, : (Cht)? 1
bo1(t) ==t + e —), 2.
o,1(t) + = Clhmie (0< t< Ogm), (4.2.12)
b (Chop
Yoo(t) =t + ——F—— (0<t< , 4.2.13
02(t) (1- Cf{2h2t)2 ( CZ2hQ) (4:2.13)

where t is the variable, while other quantities are considered just parameters. Since
these two functions are continuous and monotonically increasing on their domains
of definition, they have their inverse functions, 1y I and Yo, 3, to be monotonically
continuous over in (0,00). Then we can easily obtain the following a posteriori
estimates for bounding A\° by numerically obtained A*°,

Theorem 4.2.1. (A posteriori estimates for \° ) Let A%, Xm0, o] and Vo be defined
as above. Then it holds that

j= h,0 0 h, . s
’ZL)(]’%()\ ) S )\ S )\ 0 "’/f Aho < Gélh2 R (4214)
1
P E(AR0) < X0 < ARO gf ARO < : 4.2.15
2 (A7) f o ( )

Proof. From the preceding theorem, we have for example, (0 <)M0 < v5;(\°) <
P01 (AM0) if AP0 < 1/(CPh?). Then (4.2.14) follows immediately by operating g7
to this inequality, while (4.2.15) can be obtained similarly.

[

It is now straightforward to obtain boundings to the constant Cy(c,6). For
example, we have from (4.2.14) that

1
Clh2

1/VA0 < Cola, 8) < 1/4/egi(A0)  if A0 < (4.2.16)
Remark 4.2.2. The method above to give a posteriori estimate for \° can be also
used to give estimates for the classical Dirichlet type eigenvalue problem over the
bounded convex domain 2: Find the smallest A € R and associated u € H} () \ {0}
such that ‘

(Vu, Vo) = Au,v), Yo € Hy(Q). (4.2.17)

For this purpose, we need to define the finite dimensional space S*™ N H(Q) and
adopt the result for the reqularity of solution as in Lemma 4.1.3, while the projection
operator s*mwlar to P° is not necessary since ILu € S" N HY($).
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4.3 A posteriori estimation of C;(«,6)’s (i =1,2,3)

Secondly, we give a posteriori estimates to Ci(«,6)’s (1 = 1,2,3). In current
cases, the notations defined in preliminary have concrete forms: Q = T, 4, H}(Q) =
Vig and S™* = Shi = Sh VI, (i = 1,2,3). Also, let us define an operator
P’ HNTog) — Vi(i € {1,2,3}) by

1

Py =y ———
]e'il e;

vds, Yve H'(T,), (4.3.1)

where |e;| denotes the length of edge e;. Unlike P°, the above operators are not well
defined over Ly(Ti, ¢), but the following relations similar to (4.2.2) still hold:

Shi=pPigh (1<i<3). | (4.3.2)
Let p®'s (i = 1,2, 3) be the three vertexes of friangle 1%, that is,
M =0(0,0), p® = A(1, 0), p® = B(acosh,asinb).
Suggested by 136], we introduce quadratic functions fi’s (1 <@ < 3) of z = (w1, 22)

by
lei]

i@, @) = mm —p@2, - (4.3.3)

where |z — p@| denotes the Euclidean distance between z and p®.
These functions are sufficiently smooth and satisfy

on
Then, for each v € HY(T,4), we find that

= 5@' one;, VZ,] € {1,2,3} .

/ vds = (V f;, Vou) + (Af;,v),

[

so that (4.3.1) can be rewritten by

Py i=vy—

|el_] (V£ Vo) + (Afav)], Yo € HY(Tug).

Similarly to (4.2.3), (4.1.5) for the present u € V ; becomes

(Vu, Vo) = (f,P'v), Yve H' (Thy), (4.3.4)
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which can be rewritten by

By Lemma 4.1.2, we find that u + %fl € H*(T,p) with

e ] 1y
- le:] 2 e

Hence, by using the triangle and Schwarz inequalities, we have

<{ ?ﬂmﬁ Iafil) < 141 { l] il ~[

M (43

juls <

(Ifil2 + IIAsz)} (4.3.7)

Clearly, it holds that

To0| = %siné), led] = 1, ]ea] = o, les] = V1 + a? — 2a cos ¥,

V2 |ei]
ile = —=—|Afill, Afi= 7,
]f|2 2 HAfH f lTa,0|
so that we have, for i € {1,2,3},
!UIz 2+ V2/2)lIfIl - | (4.3.8)

Also, the eigenvalue problem for the present {A,u} € R x (V:,\{0}) (1 <i < 3)
becomes _
(Vu, V) = Au, P'v), Vv e H' (Thy) . (4.3.9)

Thus, we can utilize the results for (4.3.4) by taking f in (4.3.4) as \u in (4.3.9).

The approximation problems corresponding to 4.1.10 and 4.1.14 are also given
by using S™”s (1 < i < 3). Then, just like Lemma 4.1.1 and Theorem 4.2.1 for
Co(a, 8), we have the following results for C;(,6)’s (1 <1 < 3).

Theorem 4.3.1. [ A priori and a posteriori estimates for \M', (i = 1,2,3) | For
each i € {1,2, 3}, let A and A\™* be the smallest eigenvalues of (4.1.5) and (4.1.14)
in the case where HX(Q) = Vi, and S™* = S™ ¢f.(4.3.2). Then, if (MC}h)
with M == 2+ +/2/2, it holds that

(MCpX)?

i < Ah,i < i :
NS AV S X TR RN

(4.3.10)
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and, if AW < 1/(MChR)? < 1,

where
(MCZt)2 4 1 )
Di(t) =1 - Y. 0<t< —F—:1<¢<3), 4.3.12
vilt) + (1- AP(CQ)%%)Z (A/I(?Zh)z ! ’ (4.3.12)

which is continuous and monotonically increasing.

Remark 4.3.1. Because of the factor M ~ 2.7071 - - -, efficiency of (4.3.10) is worse
than that of (4.2.10). In the present case, estimates corresponding to (4.2.11) and
using CI do not appear to be fully effective unlike those in the preceding subsection.
This is attributed to the fact that we cannot at present obtain desirable estimates for
lu— P (Iw) || (Yu € VigN H*(Thy); 1 < < 3), since P* is not definable over
Ly(T,0) and hence we cannot take advantage of the best approzimation property with
respect to the Lo norm.

Remark 4.3.2. In the procedure of obtaining (4.3.8), we find that the coefficient
M = (2 + v/2/2) depends on the selection of f;’s, which reminds us of finding
improved functions for smaller M. We leave this work to future research.

Remark 4.3.3. By using the similar techniques, we may further give a posteriori
estimate for constants such as C15% and C1523} ) where we need a priori estimate
for the eigenvalue problem: Find {A\,u} € R x (V(gg,z,s} \ {0}) such that

(Vu, Vo) = Mu,v), Yvé€ y 123} (Top) -

"To deal with the constraint conditions associated to V1:23} we need to specify the
functions like f;’s in (4.8.8), which is not so obvious. However, such associated
functions may be constructed in the finite element spaces, although we do not discuss
such topics here.

84



4.4 Numerical results for a posteriori estimates
for constants

To show the validity of the a posteriori estimates developed in the previous sec-
tions, we will take the constants Cp = Cy(1,7/2) and C; = C1(1,7/2) as examples

and perform numerical evaluations. With no further efforts, the quantitative esti-

]

mates for other constants C;(cv,6)’s (i = 0,1,2,3) can also be done similarly.

We denote the associated eigenvalues by Ay = C;* and A\; = C7? and show the
_results as below.

N | bounds for Ag by ¥y 1| bounds for A by Y, 3 | bounds for \; by 7
2 15.9890 < A\p < 11.7155 | 6.5550 < Mg < 11.7155 A < 4.30717

3 | 7.8874 < Mg < 10.7213 | 8.1463 < Ay < 10.7213 | 1.9780 < Ay < 4.2102
4 | 8.7512 < Ag < 10.3570 | 8.8616 < Ag < 10.3570 | 2.6006 < Ay, < 4.1713
8 | 9.6055 < \g < 9.9946 | 9.6143 < X\ < 9.9946 | 3.6537 < \; < 4.1304
16 | 9.8054 < A\p < 9.9012 | 9.8060 < A\g < 9.9012 | 3.9982 < A\; < 4.1196
32 | 9.8537 < A\g < 9.8776 | 9.8537 < A\g < 9.8776 | 4.0864 < \; < 4.1168
64 | 9.8656 < Ag < 9.8716 | 9.8656 < Ap < 9.8716 | 4.1085 < A; < 4.1161
(c0) A=72=09.869604... A\~ 4.115858

T In this case, the obtained A\*? is outside the domain of definition for ;.

Table 4.1: A posteriori estimate for Ag and A\

-Table 4.1 gives the boundings for \g based on (4.2.15 ) and (4.2.14) of Theorem
4.2.1 and those for A; based on (4.3.11) of Theorem 4.3.1, where the conforming
P; finite element method is adopted. We tested several meshes, which are uniform
ones composed of small triangles similar to the entire domain T' (See Figure 4.1).
In practiéal computations, the values for the important parameters C} and C} and
h are specified below as ‘

Ch<Ch=05 Cr<Cl=017, h=1/N,

where N is the number of subdivision for the mesh, for example, N = 4 in the
Figure 4.1. Notice that C} = 0.5 is a theoretical upper bound of CJ, but the one

85



CA’;j is a numerically obtained approximate upper bound of C? at present. We tested
(4.2.14) only to see its effectiveness experimentally.

Figure 4.1: 'Iﬁ"iangulatibn of T (N =4)

We can observe that the presenﬁ simple methods can actually bound Cy and Cy
from both above and below. As is expected, (4.2.14) gives better lower bounds than
(4.2.15) for coarser meshes. Table 4.1 also shows that the lower bounds obtained
for C; are in general rougher that those for Cy. This is probably attributed to the
existence of the factor M = 2 + v/2/2. Even in this case, we can obtain reasonable
results by mesh refinement.

4.5 A posteriori estimates for eigenvalue of Lapla-
cian operator over disk

As an application of the approach we constructed in the previous sections, here
we will try to evaluate of the first eigenvalue of Laplacian over the unit disk.

Let A(> 0) be the one characterized by the eigenvalue problem over unit disk Q:
Find minimal X > 0 and u € H*(2) \ {0} such that

—Au=Auin Q, wu=0o0n0dQ. (4.5.1)

As we can show, the eigenvalue A is the square of the first zero of the Bessel function
Jo, which will help us test the precision of the estimation. ,

As the circular boundary cannot be presented by polygon, we use the regular
n-polygonal domain " (Figure 4.2) to approximate the disk, and then consider the
determination of A" of the eigenvalue problem over there: Find minimal \* > 0 and
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Figure 4.2: Circumscribed regular hexagonal polygon Q8 (left) and inscribed one Qf
(right) associated to unit circle

u € H*(Q)\ {0} such that,
—Au=A'uin Q", w=0ono0". (4.5.2)

Here, 2" can be either 27 or 7, which are the inscribed n-polygon and the circum-
scribed one of the unit disk, respectively. , '

By considering the Rayleigh quotient and the extension theory of Sobolev spaces,
we can show that the exact solution of eigenvalue problem (4.5.2) over an inscribed
regular n-polygon €27 of the unit disk can give an upper bound for X in (4.5.1), while
the one on circumscribed polygon Q7 will supply a lower bound. For each polygonal
domain, we can apply the piecewise linear FEM to evaluate the eigenvalues A™.

As for meshes, we first triangulate the right triangle AOAB with OA = 1 and
AB = tanw/n and ZOAB = 7/2 just as we did for T and T, in the preceding
problems by dividing each edges uniformly into N segments. Notice that by a
reflection and rotations, we can immediately obtain whole meshes for Q7, see Figure
4.3. The constants in Theorem 4.2.1 can be taken as '

V3/N ifn=3

~ho__ —
Ci =05, h",_{ 1N  ifn>4"

where o < 1 in all cases.



We solve the problem of (4.5.2) with Q" = QF, and summarize the results in

Table 4.2, from which we can experimentally see the effectiveness of our bounding

method.

n | N bounds for A N bounds for A N bounds for A

31539082 <\ <4.4963 | 10 | 4.2688 < A < 4.4147 | 100 | 4.3853 < )\ < 4.3868
4 1547700 < A < 5.0211 | 10 | 4.8954 < A < 4.9569 | 100 | 4.9344 < ) < 4.9351
51550049 < A < 5.2826 | 10 | 5.1590 < A < 5.2273 | 100 | 5.2075 < )\ < 5.2082
6 | 5151387 <A <5.4323 | 10 | 5.3114 < A < 5.3839 | 100 | 5.3659 < A < 5.3667
71592220 <A< 5.5257 | 10 | 54078 < A < 5.4831 | 100 | 5.4666 < A < 5.4674
8 | 5 |5.2774 < A < 5.5879 | 10 | 5.4727 < X < 5.5498 | 100 | 5.5346 < \ < 5.5354
9 | 553160 <\ <5.6313 | 10 | 5.5185 < A < 5.5969 | 100 | 5.5827 < A < 5.5836
10 | 5 | 5.3440 < A < 5.6628 | 10 | 5.5520 < X < 5.6313 | 100 | 5.6181 < A < 5.6190

Table 4.2: A posteriori estimates for the first eigenvalue X associated to Q7
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Chapter 5

Quantitative a posteriori error
estimates for FEM solutions of
Poisson’s equation

In the past four chapters, we have paid efforts to give quantitative estimates
to various error constants. As we noted at the beginning of this dissertation, the
concrete values or upper bounds will enable quantitative error estimation for the
FEM solutions of PDE problems. In this chapter, by applying the obtained results
for the error constants, we consider a hypercircle-based a posteriori error estima-
tion method for Poisson’s equation, which gives computable estimates for the FEM
solutions. ~

Also, to demonstrate the feasibility of this method, we will examine Poisson’s
equation over L-shaped domain and propose quantitative error estimation for its
FEM solutions.

5.1 Hypercircle-based a posteriori error estimates

We reconsider the problem of Poisson’s equation over a polygonal domain (2,
which may be nonconvex one, with regular familiy of triangulation {77} (h > 0).
For each 7", we consider the lowest-order Raviart-Thomas triangular finite element
space W" C H(div,Q), cf. Eq.(3.1.10) or [14, 29]. In the following, we introduce
the hypercircle-based a posteriori error eStimation 17, 29].

As in Chapter 2, assume u € H}(2) to be the solution of the variational problem
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with f € Ly(Q):

Let u" € H}(9) be the solution of (4.1.16) with f replaced by Q,f, that is,

(Vu, Vo) = (f,v) ,Yv € H3 (). | - (5.1.1)

(Vu", Vo) = (Qrnf,v), Vv H} (D) : (5.1.2)

Notingrthat (f = Qnf,v) = (f — Qnf,v — Qpv) for each v € H}(Q) (C Ly(Q)), we
have that "

IV (u—uM)| < CERIF = Qufll (< CERfLrif fe HY(R) ), (5.1.3)
where
h = \ ; ., i = . 4.
C’O Ir(nef}zg% Colak,0k), h }I{ne%gi hx (5.1.4)

Here, {ag, 0k, hi} are the ones related to the element K as in Section 2.2.
For p, € W (C H(div;Q)) with divps, = Q" f, we find that, for each v € H}(Q),

V0 = pall* = 9 (0 = )+ [V =, |90 = 2 (Vo -+ )l = [ Vo ]

(5.1.5)
The equations above imply that the three points Vu", Vv and pj, in Ly(2)? make
a hypercircle, the first having a right inscribed angle. Here, the vector function py,
is available as a FEM approximation of u, e.g., the Raviart-Thomas mixed FEM
solution. By a proper choice of concrete function v € H(Q) and applying the
hypercircle equalities (5.1.5), we can obtain a posteriori error estimates for (Vu— Dr):

IVu=prlle < [V (w—u")la+lpx = Vu'llo < |V (u=u")]a+[|Vo=pala. (5.16)

Another approximation of u is given by (Vv + pp,)/2 with the error estimate:

1 41 ,
IVu=5(Vo+pu)lla < IV =u"la+5[Vo = palla- (5.1.7)

A typical example of v is the conforming P finite element solution, for example, the
continuous piecewise linear function uy, € Vi defined in (2.1.4). Another example is
obtained by appropriate post-processing, such as nodal averaging or smoothing, of
nonconforming FEM solution such as the uj, € V* characterized in (3.1.3). A cheap
method of constructing a nice v may be also an interesting subject. If we use Vyup,
the one in V" in (3.1.3), instead of the modified one @, € V", we must evaluate
some additional terms. Fortunately, such evaluation can be done explicitly by using
Ch and some positive constants. ' '
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5.2 Nonconforming FEM and Raviaft—Thomas
mixed FEM |

We have already introduced the Raviart-Thomas space W for auxiliary pur-
poses. But it is well known that the present nonconforming FEM is closely related
to the mixed Raviart-Thomas FEM [5, 35]. Here we will summarize the implemen-
tation of such a mixed FEM by slightly modifying the original nonconforming P;
scheme described by Eq.(3.1.3). The original idea in [5, 35] is based on the enrich-
ment by the conforming cubic bubble functions with the L, projection into WP,
but we here adopt nonconforming quadratic bubble ones to make the modification
procedure a little simpler. ‘

Here, we write V" defined in Eq. (3.1.2) as V" for simplicity. Firstly, we replace
f in Eq.(3.1.3) by Qnf. Then uy, is modified to u} € V" defined by

(th;;, Vh'Uh) = (th, ‘Uh) , Yo, € V. (5.2.1)

Secondly, we introduce the space V2 of nonconforming quadratic bubble functions
by defining its basis function ¢x associated to each K € T h as follows: ¢ vanished
outside K and its value at z € K is given by

3
, Lige 1 ) .G
o) = 15 = 35 Y0 =, (522
where | - | is the Euclidean norm of R2, 2% is the barycenter of K, and z®’s for

1 =1,2,3 is the i-th vertex of K. It is easy to see that the line integration of ¢ for
each e of K vanishes:

/ ordy=0. (5.2.3)

Now the enriched nonconforming finite element space V" is defined by the following
direct sum: ' '
Vh=vheVh. (5.2.4)

By Eq.(5.2.3) and the Green formula, we find the following orthogonality relation
for (Vi, Vi): |
(Vivn, ViBh) =0, Yo, € VR V3, € V. (5.2.5)

Then the modified finite element solution @, € V" is defined by
(Vhﬁh, Vhﬁh) = (th 17h), Yy, € ‘:"h . (5.2.6)
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Thanks to Eq.(5.2.4), the present @, can be obtained as the sum:
Up, = uj, + ayp , ' (5.2.7)
where u} € V" is the solution of (5.2.1), and oy, € V2 is deﬁermined by
(Vnan, Vabh) = (Quf, Br),  ¥Bh € VE, (528

Le., completely independent of u;. Moreover, a; can be decided by element-by-
element computations. More specifically, denoting ay|x as ax ¢k |k, Eq.(5.2.8) leads
to .

ax(Vor, Vor)k = (Qnf, ¢x)x, YK €T, (5.2.9)

where (-, -) denotes the inner products of both Lo(K) and Lo(K)2.
Let X" be the piecewise constant function space over triangulation 7° k. Define
{pr, T} € Lo(Q)* x X" by

pr = Vipip, Tp = Qnln - (5.2.10)

By applying the Green formula to Eq.(5.2.6), we can show that p, € W", and also
that the present pair {p,, T} satisfies the determination equations of the lowest-
order Raviart-Thomas mixed FEM:

{ (pfu Qh) + (ﬂh, div Qh) »: 0’ \7’qh e VVIZ’

5.2.11
(dinh,'Eh) = "(th, -ﬁh); v'Tjh S Xh- ( )

By the uniqueness of the solutions, {ps, @} is nothing but the unique solution of
Eq.(5.2.11).

In conclusion, denoting the constant value of Qn f|x by fx (:: [y fdz/meas(K )),
we have for K € 7" and z € K that

1= . " - i
ax = =5 F s in(2) = i (2) +axdx(z) = ui(2) Z [~

pie) = Viti(e) ~ 5Ttz — 29 Te) = 30 — Tl ——le’)l)

(5.2.12)
which coincide with those in [35] and are easy to compute by post-processing.

Now we state the following theorem.
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Theorem 5.2.1. Given data function f € Ly(Q2), suppose u € HE(Q) to be the solu-
tion of (2.1.2) or (4.1.16) and u;, € V. the nonconforming FEM solution of (5.2.1).
We post-process uj, to construct p, € W (C H(div;Q)) as we do in (5.2.12). Then
for any v € Hi(Q), we have :

IVu = Vollo + [|Vu = prlle < [V = palla + Cg 2|Qnf = fllo - (5.2.13)
If f belongs to HY(Q) as well, the estimate can be further improved as

IVu = Vollo + [[Vu = prlla < [[Vo = pulla + (C3)*R?| flia - (5.2.14)

Remark 5.2.1. If we prefer to give an error estimate for nonconforming solution
up, we can have a rough one based on equation (5.2.12),

| 1 .
Ve = Vnunll < [Vu—pill + 51 D Fuoxl (5.2.15)
KeTh .
V2
< IVu —pall + - R IIf] (5.2.16)

Remark 5.2.2. As we can see, the error estimations in Theorem 5.2.1 is based on
the auxiliary problem of modified Poisson’s equation with Qnf. In practical com-
putation, we can omit such pre-processing of f and solve the variational equation
(3.1.3) directly to obtain up. Then after post-processing as we do in (5.2.12) , that
is, on each K € T", '

Pr(x) = Viup(z) — %71{(1 —z%),

we can obtain Py, which may not belong to W" any more. To give an error estimate
for ||Vu — pyl|, we estimate the term p, — pp, = Vyul — Vauy, as

IVrup, — Vug|| < CERIQRS — f]]-

Thus, taking py in equation (5.2.18) as pr, = pp + (pn — Pr), we can deduce an error
estimate as

IVu = pulle < Vo = prlla +3C3hIf = Quflla.  (5.2.17)

Notice that the part ||f — Qunf|| converges to zero faster if f belongs to H'(S2).
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5.3 Numerical results

To confirm the validity of the error estimates in Theorem 5.2.1, we will consider
two computational examples for Poisson’s equation with the homogeneous Dirichlet
boundary condition: one is over the unit square domain and the other the L-shaped
domain.

5.3.1 Poisson’s equation over the unit square

As in Section 3.7, we take f = sin7zysinmzy € H'(Q). We here show only the
estimate (5.2.13) to see its efficiency.

09 i ||Vt — V]| o
- o
-~ 8 priori estimate e
. T e . e e
- a posteriori estimate - e

——— h (log-scale)

Figure 5.1: Numerical results for ||Vu — V,uy|| and its estimates versus h

As the domain is triangulated in the same way as in Section 3.7, we can take the
value of the constant CF as C} = 1/m. The function v in (5.2.13) is taken as the P,
conforming FEM solution defined in (2.1.4). The computational results are shown
in Figure 5.1, where we can see that the a posteriori one gives a better result than
the a priori one.

5.3.2 Poisson’s equation over L-shaped domain

Secondly, we consider the Poisson’s problem on L-shaped domain (see Fig 5.2)
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‘with homogeneous Dirichlet condition:
—Au= fin Q;u =0 on 09,

where f € L*(Q) is given by

f= 8111—2-6 (27"2/3»-%- 1;(r— 1)7"'1/3> ,r<1L f=0,r>1.
Here (r, 0) are the variables in the polar coordinates. Also, the fact that f ¢ H'(Q)
is easy to verify. | :

Since the domain has an interior angle to be obtuse, we know that the solution
belongs to H*(€) but may not belong to H?(Q2), which make both the a priori and
a posteriori error estimates difficult. In current case, we know the exact solution for
the problem is ‘ '

o s 2
u=(r—l)zrz/dsin(é-()),rgl; u=0,r>1.

It is easy to see that u € H'(Q) but u ¢ H*(Q).

(-1,1) (1,1)

©.0) (1,0)

(-1,-1) 0,-1)

Figure 5.2: L-shaped domain

Subdivide the domain by right triangles as in Figure 5.2 and then solve the given

problem by utilizing the conforming finite element space Vc’;n

ing one V. Let u)Y € V! be the one that

nc

f and the nonconform-

(Vhuy , Viow) = (Quf,vn), Vo, € VE(Q), (5.3.1)
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and u§ € VI, + be the one for

con

Vul, Von) = (f,vn); Vuw € V2 (Q). 5.3.2
conf

By post-processing ujy as we deal with u} in (5.2.12), we can also obtain @ and
pr = V4. Then we apply the estimate in (5.2.13) to give an estimate for both
[Vu—Vuf| and ||[Vu— V45|, where the constant Cf can be taken as Cf = Cp =
1/m. We summarize the computational results in Table 5.1.

h || [Vu—Vud|| | [Vus — Vaal | +Cohllf — Qufll = total estimate
1/2. 0.4315 0.4476 -+ 0.2576 = 0.7052
1/4 0.2778 0.3719 +  0.0865 = 0.458%4
1/8 0.1661 0.2064 + 0.0291 = 0.2355
1/16 0.0985 0.1280 + 0.0098 = 0.1378
1/32 0.0587 0.0786 | + 0.0033 = 0.0819

~Table 5.1: A posteriori estimates in the case of L-shaped domain
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Chapter 6

Overview and future work

6.1 Summary of present research

For the well known linear conforming and nonconforming triangular FEMs, we
have studied the corresponding interpolation errors to give quantitative a priori and
a posteriori error estimates for the FEM solutions. ,

In this process, we have given systematic analysis for the error constants that
appear in the 1ntelpolat10n error estimation. For each constant, we have studied the
dependency of the constants on geometric parameters of the element and tried to
determine the concrete values or give suitable upper bounds in special cases. Thus
the quantitative but rough interpolation error estimation becomes available for ar-
bitrary element. Here we summarize the results below.

On triangle Ty 9, for u € HX(Tp 1), v € H (Taps) and g € H(div; Thpn),
IEPPS lo =T gpvll <1/ ¢o(9)h Jul1,
1L lu—1II g puly <1/2 Ga(O)h |uls,
lu =10 g pull <0.36 ¢5(0)R% Juls,
Htl;,z,h : llu ~ I 9hu” < 1/(4m)¢o(0) h? |ul2,
|[Vu — V,IT aull < 1/7do(0) b fuls
Mggn: lg = TIEyqll < Cral, O)hl|div gl| + Cra(, )hldls
where ¢;(6)’s are defined in (3.2.15) and Cp,’s defined in (3.3.7) and (3.3.9).
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Also, the analysis of the dependency of the constants on geometric parameters
ensures the uniform boundedness of C;(«,6)’s (i = 0,1,2,3,5,{4,n}, {5,n}) on ar-
bitrary element with fixed medium edge length. On the contrary, the constants
Cy(a,8) and Cra(a, 0) will tend to oo when the maximum angle tends to 7. There-
fore, when we use either conforming FEM or nonconforming one, we should follow
the "maximum angle condition” in the triangulations of the domain, that is, the
maximum interior angle of the triangle should be bounded above from 7, while the
smallest angle can be close to zero.

To evaluate the constants on arbitrary triangular element, we also developed
an a posteriori estimation method to give computable lower and upper bounds for
the constants. Such method is based on the theories of the eigenvalue problem for
Laplacian. Not limited to triangular domains, the method we developed can also
be used to estimate the minimum positive eigenvalue of Laplacian on more general
domains. One example of convex polygonal domain has been executed to show the
validity of the method.

Combining the explicit error estimates for interpolation and the analysis for
conforming FEM and nonconforming one in Section 2.1.2 and 3.1, we can obtain
computable a priori error estimates, which are summarized in (2.1.8) and (2.1.9) in
the conforming case, and (3.1.15) and (3.1.17) for the nonconforming one. Compared

- with the earlier results of [4, 45] for the conforming FEM, our error bounds is much
shaper since better estimates of the constants are adopted. The a posteriori error
estimate based on the hypercircle method is also developed for the Poisson equation,
which uses both conforming FEM solution and the nonconforming one.

6.2 Future research
The research on evaluating error constants and enclosing eigenvalues is very
interesting and challenging work. Compared with the results obtained in this dis-

sertation, there are much more left to do in the future. Here, let us list up some
possible and meaningful researches in the future.

In the following subsections, we will give a sketch of three topics, that is,
1. evaluation of the second and also n-th eigenvalues of Laplacian,
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2. use of conforming space of vector functions for evaluating eigenvalues of bi-
harmonic operator, '

3. study of error constants in anisotropic element.

6.2.1 Enclosing the second eigenvalue of Laplacian

In the previous chapters, we have developed methods to give quantitative esti-
mates for error constants, which correspond to the first positive eigenvalue of linear
operators. Here, we will consider the problem of estimating the second eigenvalue
of Laplace operator. This work is still under progress and is not completed yet.

Preliminary

Unlike the notation in previous chapters, we here define by T' a general triangle.
The edges of T are denoted by ey, e; and e3. Let us introduce a linear space V(T
or V1

VHT) = {ve HY(T)| / vds=0}.
€1
and the constant C' be defined in term of the Rayleigh quotient: ,

—2 . [ulfery L
C™7=A= inf R(u), where R(u) := ——=——= foru e H(T) \ {0}.
ueVI\{0} [Jull 2(T)

€1

Figure 6.1: Triangle T

Recall that when T is a unit isosceles right triangle and e; is one of the edges of
right interior angle, the constant above reduces to the Babuska-Aziz constant.
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We can also characterize A in the variational form: Find the eigenpair (A, u) €
R x (VHT)\ {0}) with X being the smallest positive eigenvalue such that

(Vu, Vov) = ANu,v), Yo e VHT). (6.2.1)

In this section, we will try to consider the second eigenpair (Ay, u3) of the eigen-
value problem (6.2.1). To distinguish the pairs from each other, we write the first
eigenpair by (A1, u1). Moreover, the eigenfunction u;’s (i = 1,2) are assumed to be
- normalized and orthogonal to each other in L,(T), that is,

lurllzoery = lluallamy =1, (u1,u2) = 0.

Approximation in conforming finite element space

Let S™ be the conforming piecewise linear finite element space over a triangu-
~lation 7" of T, and V" := S* N V1. We consider the eigenvalue problem in V15
Find (A, up) € R x (V3 {0}) such that

(Vuh,, V’Uh) = )\h,(uh, 'Uh), Yoy, € YL (622)

The i-th eigenpair is denoted by (A p, %; ). By the minimum-maximum principle to
be mentioned below, it is easy to see \; < A\, (¢ = 1,2). The estimate for |A; — Ay 4]
was given in Section 4.3 (or cf. [34]).

To approximate the functions u; and u,, we introduce two associated functions
Uy, and Uy p, which are characterized by the following variational equations: for
El,h eV 1,h 7 ’ :
(VU p, Vo) = Mi(ug,vg), Vo, € VB, (6.2.3)

and for Ty, € VA,

(Vﬁg,h,.Vvh) = )\Q(ug, ’L’h),‘ V'U},, e Vb, (624)

By arguments analogous to those in Section 4.3, we find |us|2 7 < M||Aw| L,
(i = 1,2). Further noticing the fact that —Au; = \ju, we have
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Considering the finite element error estimates for the approximation Uy and
Us,p as in (2.1.8) and (2.1.9), we have for each ¢ = 1,2 that

IV (ui=ip)|| < shluglor < KRMX;,  |Jui=T; 4] < 62R%|uslor < K2REMDN;, (6.2.6)

where M = 2+ 1/2/2 is the same one as in Theorem 4.3.1, and x and h are defined
by

k= max Cy(ak,bk), h:= max hg .
KeTh KeTh

Here ak, 0k and hx are parameters related to element K (cf. Section 2.2). Notice
that x can be given concrete upper bounds due to the estimates in Chapter 2.

Minimum-maximum principle

, By the minimum-maximum principle [50], the n-th eigenvalue of the problem
(6.2.1) and (6.2.2) are characterized respectively by

Ap = minmax R(u), A,p =min max R(up), (6.2.7)

Brn ueB, B'n h uheBn h

where B, and B, ;, present any n-dimensional subspaces of V! and V1" respectively,
e, dim|B,| = dim|B, | =n € N. ’

From the assumption that (u1,us)r = 0 and the error estimates in (6.2.6), we
can show that @; and %, are linearly independent if

K2RPMN; < 1/2 (i=1,2). (6.2.8)

Notice that the above condition can be numerically verified by considering the re-
lation that A; < A;p, for ¢ = 1,2, where A, ;,’s are computable. Therefore, with the
condition (6.2.8) satisfied, we can construct one 2-dimensional space By, C VYR by

By = span{@yp, Top} - (6.2.9)

Let us introduce a new quantity \, := max, R(up,). Then we have

uh€B> h

At <A < R('ﬁl,h), Ao < dop < A (6.2.10)
Estimate of second eigenvalue
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As is well known, the value A, can be characterized by the maximum eigenvalue
of the following eigenvalue problem:

(Vyp, Vi) (Vig,, Vi) ) ¥, (T1p,Tr,n) (Tip, Uon) ¢
(Vgp, Viy ) (Vigp, Vie,) 2 (Gop,Urn) (Uon, U ca )’
, (6.2.11)
where (c1, co)? is the eigenvector corresponding to An. The matrix equation above

is in fact an approximation of the one below:

( (Vulbv"m) (sz)vm ) (2> _ A( (ulbul) (ug?uz) ) (2) . (6.2.12)

As each component of matrices in (6.2.12) can be well approximated by the corre-
sponding one in (6.2.11), the eigenvalue M, is expected to be close to Ag.

By considering Eq.(6.2.3) and Eq.(6.2.4), we can transform (6.2.11) into

( (Arug —§h§1,h,§1,h) (Mg “Eh?l,h;?&h) ) ( a1 ) 0. (6.2.13)
(Aate — MpTon, Urp)  (Aota — ApTop, Tap) Co

Hence, we obtain a determination equation for A, as follows:
ad4+bi+ec=0, (6.2.14)

where the coefficients {a, b, ¢} are

a = [Tupll* - [T2pll® = @1, T2)?

b= —Xy(ug, Top) - [T1nll* — Ar(ur, Tip) - [Tenll® + (A (ur, Ton) + Ao(uz, Tap)) - (Tin, Tan)

¢ = MA2(t1,T1p) - (U, Tap) — M A2(u1, o p) - (Ug, Trp) -
Before giving bounds for {a, b, c}, we summarize the estimates for the terms appear-
ing above: for i,j = 1,2, (i # j) '

1-— K;thﬂff/\z < Hﬂz,h]] < 14 Iizhzlj\’[/\i y

1—r2RAEMN; < (us,Tip) < 14 K2R2M;

1(’(14’,@?',},,) S I{Qh-gle[)\j s

](—az’,h;ﬂj,h)l S 1(’(1,1’}, — U4, Uj,h)[ + ‘(U, uj,h)[ S (K,“)hzﬂvazXl —+ H2h2]\/[/\j) + Klzhzﬂf)\j .
(6.2.15)

Hence, we can give estimates for a,b and c as

a€l—e,l+¢],
be (A +A2) — €2, —(Ar+ Ag) + €] ,
cE p\l)\g—ﬁg,)\l)\z'*‘ﬁg] y
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where each ¢ (i = 1,2,3), depending on variables \; and )., is constructed to
be monotonically increasing with respect to each variable if we fix the other one.
Clearly, ), is the maximum solution of Eq.(6.2.14), that is,

- —b+ b —4dac
A= 2a -

(6.2.16)

By using the fact that A\; < Ay and the known estimate for A;, we can obtain an
upper bound for A, as

Mo <) A < (M, 5, M, B Ng) (6.2.17)

where ¢(M, k, A1, h; A2), to be denoted by notation ¢(A;) for simplicity, is selected
to be a monotonically increasing function with respect to Ay and ¢(\y) — Ay as
h — 0. The inequality above is in fact an a priori estimate of \j.

Cbmbining the estimate in (6.2.10) and (6.2.17), we have one computable a
posteriori estimate for \s: N
¢ (A2n) < A2 < Ao | (6.2.18)

provided that the estimate for A1 is known. At present, we have not fully succeeded
in evaluating the error of A\; and its influence to ¢.

Remark 6.2.1. The procedure above aims to give an upper bound for N, by A\
and Ay, where we rely on the quadratic formula (6.2.16) to give an explicit form of
An. However, to evaluate the n-th eigenvalue, the eigenvalues of (6.2.11) are the
zeros of polynomial of degree n, which does not have any explicit formula, forn > 5.
To solve this problem, we are considering other methods by adopting the interval
computations.

Remark 6.2.2. If the computation shows that A1y < Aop and |Aop — Ao| < [Agp —
Aipl, then we have Ay < Ay < Ao Thus Ay is separated from Ay, which means
the multiplicity of the first eigenvalue \; to be 1. Also, by adopting the minimum-
mazimum principle, we may hope to develop a posteriori estimation method to eval-
uate the n-th eigenvalue.

6.2.2 Space of conforming vector functions for estimating
-eigenvalues of biharmonic operator

For the constants such as Cy(a, 0) and Cyyny (v, 0), the corresponding weak forms
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Once the theoretical analysis for the conforming vector function spaces is done, it
may be possible to design a posteriori estimation method to deal with the eigenvalue
problems of biharmonic operator, e.g., those for Cy(a, 6).

6.2.3 Error constants for anisotropic element

An anisotropic element is a finite element that can be very slender in one direc-
tion, and the maximum angle of the triangular element may be close to w. Such
an element is often required in the analysis of the convection-dominated equations,
which appears in the problems of heat transport in water ﬂow, carrier transport
in semiconductors and so on. In view of singular perturbations, these problems
accompany special boundary layers where the solution varies much faster in the
normal direction than in the tangential direction. Therefore, the anisotropic mesh
optimization with the adaptive finite element method is indispensable. We hope to
give sharper a posteriori error estimation and improve mesh optimization, by which
computation time can be greatly saved. ‘

-As we mentioned in Remark 2.2.1, we may give error estimation of the form

5 - 1/2
o =T g pvlim, e, Sh | D eulldyolt,,, |  forve HXT.e),  (6.2.22)
i,j=1 ‘

where ¢;;’s are to be suitably chosen to give sharp estimates for given function v.

A conventional way in error analysis is first to consider the interpolation error
constants on a reference element and then consider an appropriate transformation
between an arbitrary element and the reference one. Therefore, we can find proper
choice of ¢;;’s and decide the element direction according to the a priori estimate
for the given function v [20]. But the optimal estimate cannot be obtained in such
a way. To sharpen the estimate, we need to directly consider the interpolation error
estimate on slender triangle. Moreover, the interpolation function considered there
usually has a priori information, which will lead to the nonlinear constraints for the
corresponding minimization problems. The processing of these nonlinear constraints
may still remain as a challenge.
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have 2nd order derivatives, which make the problems very difficult to solve. As for
this, in section 2.4.2, we have introduced a new constant Clye123) (e, 0), which has
the Rayleigh quotient defined over space of vector fileds. By using the finite di-
mensional space for conforming vector functions, we can get approximate values of
Clae123y (v, 0) (Figure 2.7 and Figure 2.8), which seem to give nice upper bounds for
Cy(@,0). As an alternative to direct estimation of Cy(a, 6), it may be meaningfurl
to evaluate the constant Cy 1) by applying the conforming finite element methods.
Since there are only derivatives up to the first order in the corresponding PDE, it
is desirable to give a posteriori estimates like those for Ci(a, 8) (i = 0,1,2, 3).

The conforming vector function space suggested above is defined on triangle 7, 0,0
by

M" :={w = (u,v) € SM(Tp)? | / w-tds =0,i=1,2,3}, (6.2.19)

where each t; is the normalized vector in the direction of edge e; and Sh(Tav‘@) is the
conforming finite element space composed of the piecewise linear functions. Noticing
that S"(The) C H'(T,4), it is easy to see that M" is a subspace of the following
one: \ ‘

M = {w = (u,v) € H (T, 4)* | /w-tids:o,izl,2,3}.  (6.2.20)

Such finite element space is effective to compute approximate values of Cl4,e123}-
However, the space M" is not included to

Migag = { (81, 8ou) | u € VH(Tho)},

where the curl-free condition djpu — dyu = 0 is required. So we hope to design a
new conforming FE space such that

Mg = {w = (un,v) € S"(Top)? | / w-tids =0 (i=1,2,3) and

82uh = 81'Uh in Ta,g.} . (6221)

The approximation capability of the functions in Mgmd may be doubtful, since

the curl-free constraint requires the same number of algebraic relations as that of
finite elements. But our analysis shows that the vector (8yu, Gyu) seems to be well
approximated by functions in M é‘md if u is smooth enough. Numerical computations
in several cases also demonstrate the validity of such conforming vector function
spaces. However, there are still much efforts needed for systematic analysis.
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