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Abstract

We give a characterization of a generalized Whittaker model of a de-
generate principal series representation of GL(n,R) as the kernel of some
differential operators. By this characterization, we investigate some exam-
ples on GL(4,R). We obtain the dimensions of the generalized Whittaker
models and give their basis in terms of hypergeometric functions of one
and two variables. We show the multiplicity one of the generalized Whit-
taker models by using the theory of hypergeometric functions.

1 Introduction

Our interest in this paper is generalized Whittaker models of degenerate prin-
cipal representations. There are many studies about them for admissible (non-
degenerate) characters of unipotent radicals of parabolic subgroups (for example
6],[16],{30],[31],[32]). In the case of degenerate principal series representations,
Yamashita gives existence theorem and multiplicity formula for wide classes of
generalized Whittaker models, i.e., generalized Whittaker models for general-
ized Gelfand-Graev representations in [32]. However, their techniques strongly
depend on the admissibility of the characters of the unipotent subgroups. On
the other hand, if we regard the Whittaker models as an analogue of Fourier
coefficients of an automoprhic form at a cusp, we often meet the necessity to con-
sider non-admissible characters. For example, Terras gives an expansion of the
Epstein zeta function in terms of modified Bessel functions [27]. Non-admissible
characters play important roles there. The Epstein zeta function corresponds
to the degenerate principal series representation of GL(n,R) induced from the
character of the maximal parabolic subgroup P, which fixes the unit vector
en = (0,...,0,1) (cf. [17]). Hence the Fourier coefficients given by Terras can
be seen as the generalized Whittaker functions for this representation. It seems,
however, widely open about the problem of the existence and the multiplicity
formula of the generalized Whittaker models for non-admissible characters of
unipotent subgroups. In this paper, we give some examples about this prob-
lems in the case of GL(4,R). As related studies, we should mention about recent
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works of Abe and Oshima obtained independently [1],[21] which give the solu-
tions of such problems in the case of degenerate characters of maximal unipotent
subgroup.

The other purpose of this paper is to give an expression of the generalized
Whittaker function as a hypergeometric function of several variables. Accord-
ing to the recent work of Oshima and Shimeno [23], Whittaker functions can be
seen as the confluent hypergeometric functions obtained from Heckman-Opdam
hypergeometric functions. The similarities of Whittaker functions with spher-
ical functions were already pointed out by Hashizume in [7]. Also there are
various explicit pictures of Whittaker functions as hypergeometric functions of
several variables given by Hirano, Ishii ,Oda and many other researchers (see
[10] for the reference). We show that the generalized Whittaker functions of the
degenerate principal series representations of GL(4, R) are written by modified
Bessel functions and Horn’s hypergeometric function Hiq in this paper. There
is a similar work on SL(3,R) in [12].

Let us explain the contents of this paper. In Section 2 and Section 3, we
give a characterization of a Whittaker model of a degenerate principal series
representation of GL(n,R) as the kernel of a family of differential operators.
More precisely, let G = GL(n,R) and consider an Iwasawa decomposition G =
KAN where K = O(n), A is the group of diagonal matrices with positive real
entries, and N is the group of lower triangular matrices with 1s on diagonal
entries. We take an increasing sequence of positive integers stopped at n, i.e.,

= {ny,...,np} with 0 < n; < my < --- < ny = n. Then let Py be the
parabolic subgroup corresponding to the sequence © and take the Langlands
decomposition Pg = MgAgNg. For a linear mappmg A€ Hom]R(Lle(Ae) C),
we can consider an induced representation C* -Ind$ Po (1Mo ®*®@1p, ). We call -
this representation a degenerate principal series representation. The underlymg
representation space of this is

C*=(G/Pe, ) =
{f €C=(G) | f(gp) = (1me ® € ® 1) (p™ 1)f(g) g€ G,p€ Po}

and the action of G is defined by the left translation. Then we consider an ideal
of U(g) the universal enveloping algebra of gc = gl(n,C) such that Ig()\) =
{X€U(g) | Rxf =0, f € C°(G/Po,\)}. Here Rx is the right derivation
by X € U(g). We consider A as an element of af = Homg(Lie(A),C) and we
assume it is regular and dominant. Under this assumption, the generators of the
ideal Ig(A) is known by Oshima (cf. Theorem 2.7). Let U be a closed subgroup
N and (n, V;;) an irreducible unitary representation of U. We consider the space
CP(U\G) = {f: G — V;°smooth | f(ug) = n(u)f(g),u € U,g € G} where
V;© is the space of smooth vectors in V;,. Let Xg x be the Harish-Chandra
module of C*°(G/Pe, ) and X§ , its dual Harish-Chandra module, i.e., the
space of K-finite vectors of Hom¢(Xg x,C). The generalized Whittaker model
is the image of Xe,\ by the element of Homg, x(Xe,x, Co°(U\G)). Then we
can show the following characterization theorem of the generalized Whittaker
model.

Theorem 1.1 (see Theorem 3.7). Suppose that A € ag is regular and dominant.



We take a nonzero K-fized vector fo in X 1 Then the following mapping
®: Homge,x (X35, C(U\G)) = CP(U\G/K, Io(N))
w — W (fo)(9)

is a linear isomorphism. Here

C(U\G/K, Ie(X)) :
= {f: G = V;° smooth| f(ngk) =n(n)f(g),g€ G,neU, ke K
: and Rx f(g) =0, X € Ig(A\)}.

This theorem is an analogue of the theorem for the generalized Whittaker
models of unitary highest weight modules obtained by Yamashita [33], [34].

From Section 4, we consider examples on degenerate principal series rep-
resentations of GL(4,R) induced from characters of maximal parabolic sub-
groups P; 4 and P> 4 by using above theorem. We determine the dimension of
Homg,k (X§ 5, C;°(U\G)) and the basis of C;°(U\G/K, Ie(})). Let us explain
more detailed settings. As the space Cp°(U\G), we consider the space defined
as follows. ' ’ ‘

1. the group U is a closed subgroup of N and 7 is its unitary character,

2. the unitary induced representation L2 -Indg 7 is an irreducible unitary
 representation of N.

We classify the G-equivalent classes of these C°(U\G) in Section 4.1 (see
Proposition 4.10).

There is a linear isomorphism from the space Cp°(U\G/K) onto C=(U\N x
A) (cf. Lemma 4.11). In Section 4.2, we see how the the action of the Lie algebra
g is written as differential operators on C*°(U\N x A). ' ‘

Our main results are in Section 4.3. In this section, we give the dimensions of
C°(U\G/K, Ie())) and the basis of them as the functions on C®(U\N x A).
These basis can be written in terms of modified Bessel functions and Horn’s
hypergeometric functions Hyg (see Theorem 4.22, Theorem 4.25, Theorem 4.27,
Theorem 4.28, Theorem 4.29, Theorem 4.31). According to these theorems, we
can conclude the following. For the degenerate principal series representation
induced from a character of P; 4, the multiplicity one theorem is true for the
generalized Whittaker models for characters of the closed proper subgroups
of N. On the other hand, for the degenerate principal series representation
induced from a character of P» 4, the multiplicity one theorem is no longer true.
This fact seems to correspond to the result of Terras in [28]. In that paper,
she could determine only the nonsingular terms in the Fourier expansion of
Eisenstein series corresponding to this degenerate principal series representation
(Theorem 1 in [28]). And she could not say anything about degenerate terms
in Fourier expansion. The multiplicities of the generalized Whittaker models
corresponding to these Fourier coefficients seems to be one of the cause of this
phenomenon. _ :

Finally, we give some facts about Horn’s hypergeometric functions in Ap-
pendix.
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2 Spherical degenerate principal series represen-
tations of GL(n,R)

In this section, we study degenerate principal series representations of GL(n,R)
and their annihilators in the enveloping algebra U(gl(n,C)). T.Oshima shows
that the image of a degenerate principal series representation by the Poisson
transform is characterized by the kernel of the annihilator of the degenerate
principal series representation [19]. He also give the explicit generators for its
annihilator [20], [22]. We give a brief review of these results here.

2.1 Spherical degenerate principal series representations
of GL(n,R).

" Let G = GL(n,R), its Lie algebra g = gl(n,R). We take the Iwasawa decom-
position of G as G = KAN, where K = O(n), A is the group of n x n diagonal
matrices with positive real entries and N is the group of lower triangular ma-
trices with 1s on the diagonal entries. Let E;; be the matrix with 1 in the
(4,7)-entry and 0 elsewhere. We introduce a non-degenerate bilinear form on
gc = gl(n,C) = M(n,C) by
(X,Y) =tr(XY) for X,Y € gc.
By this, we identify gc with its dual space g¢. The dual basis {E};} of {E;;} is
given by Ej; = Ej;. For simplicity, we write e; = Ej;.
We consider the Lie algebra

n
a={2aiEii Iai €R, i=l,...,n},
=1

of A, and the root system of (g, a) is
A(g,a) ={e; —e; | 1<i#j<n}
We put a; = e;41 —e; fori=1,...,n—1 and fix a simple system of A(g,a) as
II(g, a)'= {a1,...,an-1}.

~ Then the positive system of A(g, a) associated to II(g, a) is A*(g,a) = {e; —
e; | 1 <j <i<n}. The Lie algebra n of N is written by

n= Z ga

aclt(g,a)

=) REj;

>3



where g, - {X €g|ad(H)X = a(H)X for H € a}. On the other hand, let N
‘be the group of upper triangular matrices with 1s on the diagonal entries. Then
the Lie algebra @ of N is also written by '

A= > g

a€A*(g,a)

= RE;.

i<j

Let © = {n1,...,n.} be a sequence of strictly increasing positive integers
stopped at n, i.e.,, (0 = ng <)n1 < ng < --- < ng(= n). For this O, the
associated standard parabolic subgroup Pg can be defined as follows. Let

L N .
C‘O:{Zak Z Ei|lareR,k=1,...,L}.
) k=1 t=ng_1+1

Let Lg be the centralizer of ag in G, i.e.,

Iy
l2
Log=<1l= . l l; € GL(TL,, - ni_l,]R)
.
and lg its Lie algebra which is the centralizer of ag in g. We put
N = Z RE,' 1
te(i)>te(J)

where
to(v)=iifn;y <v<n;fori=1,...,L. (2.1)

The corresponding analytic subgroup of G is Ng = expneg, i.e.,

No =
Ly,
Noy I,

n = N31 N32 In/3 [ Nij € M(n:,’n,;,R),n; =TN; —Ni—1
Npi Npz Nipg o-o- Iy

Here I, denotes the identity matrix of size m and M(k,/;R) denotes the
space of matrices of size k X | with components in R. We also define ng =
Yio(i)<io(j) REij and Ng = expTg as well.

'1£hen we define the parabolic subgroup Py = LgNep, i.e.,

5
* g2

P(:_-) =4qpP= . . (S GL(TL, R) [ g; € GL(TL, — ni_l,R)
* % e gr



Its Lie algebra is written as pg = i@ P ng.
For (A1, A2, -+ ,Ar) € CF, we define a 1-dimensional representatlon of Po,
A Pg — C* as follows, ;

A(p) = | det(g1)|*| det(gz)[2 --- | det(gL)IAﬂfor pEPo.

We define a sphencal degenerate principal series representation of G, denote by
ToN = *.ind$ o (A). The underlying representation space is

C>(G/Pe; A) ={¢ € C=(G) | d(gp) = A(p)#(9), g9 € G,p € Pe}

where C*°(G) is the space of C°°-functions on G. The action of G on this
space is defined by the left translation, 7o x(9)¢(z) = #(g~'z) for g € G and
¢ € C°(G/Po; ).

We consider the annihilator of C*°(G/Pg; ) in the umversal enveloping
algebra. Let U(g) be the universal enveloping algebra of gc. We can see U(g)
as the ring of left G-invariant differential operators on C*°(G) by the natural
extent ion of the differentiation of the right translation,

Rx(7)(g) = 2 F(gexp(tX))emo.

for X € g, f € C*°(G). The representation of U(g) on C*°(G/Pg;)) is defined
by the differentiation of 7e,y, i.e., for X € g, ¢ € C°(G/Pg;\), o A(X)d(z) =

2 B(exp (—tX)z)|t=o0.
Let Ly and Ry be the left and right translatlons by ge G respectlvely, ie.,

Lyf(zx) = f(g x) and R, f(z) = f(zg) for f € C=(G).
Definition 2.1. We define the annihilator of C>°(G/Pe; ) in U(g) by
AnnU(g)('/r@,A) = {X eUlg) ; ﬂe’A(X)(f)(:I:) =0, forall p € COO(G/PQ;)\)}.
This is a two-sided ideal of U(g).

We consider an antiautomorphism ¢ of U(g) defined by «(XY) = (=Y )(—X)
for X,Y € gc. We denote the differentiation of A by d\: po — C. Although
the proposition below is a well-known fact, we give a proof for the completeness
of the paper.

Proposition 2.2. The anmhzlator of me,x s written as follows,
Y(Anny gy (o)) = (] Ad( Q)Je(dA)
geG

Here
Jo(d\) = ) U(g)(X — dX(X))
Xe€ro

is a left ideal of U(g).
Proof. For X € pg and f € C*°(G/Po; A), we have
d
Rx f(g9) = lef(g -exp tX)|t=o

= %A(exp tX)|e=of(9)-

(2.2)



This implies Rxf = 0 for X € Jo(dA). We recall the equation Lx f(g) =
Rpagg-1y.(x)f(9), X € U(g). Since X € ﬂgec Ad(g)Je(dX) implies Ad(g)X €
Jo(dA), we have :

L.x)f(9) = Raa-1)x f(g) =0,
for X € (N,cq Ad(g)Je(d)). Hence we have the inclusion (), Ad(g)Je(d)) C
t(Anng(g)(Te,2))-
On the other hand, we take X € Anny g (71'9 x), and put X, = Ad(gg)e(X)
for go € G. Then we have

Ry, £(6) = Lyng-1 (R, F)(d0) = By, (Lyog-£) (00)
= Lx (Lgog-1£)(90) = Lx (m0,7(909™~ Yf)(g0) =0

for f € C>(G/Pe; ). By the decomposition g = ne @ po and the Poincaré-
Birkoff-Witt theorem, we have

(2.3)

U(g) =U(me) ® Jo(dA)

where U(fg) is the universal enveloping algebra of fig ®g C. Hence there exist
Y € U(fg) and Z € Jo(dA) such that X, =Y + Z. By the equation (2.2),
we have Rz f(g) =0 for g € G and f € C°(G/Pg; ). Therefore the equation
(2.3) lead us that 0 = Rx, f(g) = Ry f(g). We show Y = 0. Then this means
Xgo € Jo(dA). Therefore we can show the inclusion (,c; Ad(g)Jo(dN) C
((Anny () (7e,1))-

We consider the space of compactly supported C°°-functions on Ng, and
denote it by C°(Ng). For g € NoPe, we take 7i(g) € No and p(g) € P such
that g = 7i(g9)p(g). Then we have an injection

C’?(Ne) — COO(G/PG;)\)
f — {A(p(g))f(ﬁ(g)) ifge ﬁe Po
»O otherwise.

By this injection, we can consider C°(Ng) C C®(G/Po; ). Therefore if we
recall that Ry f(g) =0 for g € G, f € C°(G/Pe; \), we have

Ry f(R) =0 for & € No, f € C=(No).

For any 1 € C*°(Ne) and 7 E.W_@, there exists f € C°(Ng) such that ¢ = f
on some neighbourhood of 7 in Ng. Hence this implies

Ryy(n)=0forn € N@,’lp S Cw(ﬁe)

Therefore Y € U(g) must be 0, because of the fact that U(ne) is identified with
the ring of all left invariant differential operators in No. Hence Xy, € Jo(A)
for any go € G. This complete the proof. O

2.2 The Poisson transform for the degenerate principal
series representation.

For simplicity we write Jo(A) = (,cq Ad(g)Jo(d)). Then we ee that this ideal
Io(A) characterizes the image of the Poisson transform from the degenerate



principal series. To explain this fact, we should extend the representation space
of the degenerate principal series to the space of hyperfunctions on G.

The space B(G) of hyperfunctions on G is a left G-module by the left trans-
lation G x B(G) > (g, f(z)) — f(g7'z). We take a parabolic subgroup Peg of
G. Also we take a character A\: Pg — C* for ‘()\1, .-+ ,A1) € CE. Then we can
define a G-submodule

B(G/Pe;A) ={f € B(G) | f(zp) = A(p)f(z) for p € Po},

as in Section 2.1. Let M = {k € K | kak~! = a, a € A}, then we can define the
minimal parabolic subgroup P, = Py 5,... n} = MAN. We define a character -
of P, by

/\@Z Po — C*
L mig1

—
i=1j=n;+1

for m € M,a € Ajn € N. Now we introduce the Poisson transform of

B(G/Py; Xo).
Definition 2.3. The Poisson transform is a G-homomorphism

PY: B(G/Pysre) — B(G/K)
F F(m):/f(mk)dk, yel
K

Here dk is the normalized Haar measure on K so that f x k= 1.

We define a character of the center Z(g) of U(g). Let d\g: Lie(P,) — C
be the differentiation of Ag. By the restriction to a C Lie(P,), we can regard
d)e € ag. Let w be a projection map from U(g) to the symmetric algebra S(a)
of ac = a ®g C along the decomposition

U(g) = S(a) ® (AU(g) + U(g)n).

It is known that w is an algebra homomorphism from Z(g) into S(a). We can
identify the symmetric algebra S(a) with the algebra of polynomials on af.
Hence if we consider the evaluation of w(-) € S(a) at d\e, we obtain a character
of Z(g) as follows

Xa: Z(g) 3 X — w(X)(dXe) € C.
We:define a subspace of C*°(G/K) by

C®(G/K; My) = {f € C®(G/K) | Rxf = xA(X)f for X € Z(g)}.

eo)= [ T (%(3+ g_@_@,_a))) T (}1(1 N 2(>\@,a))> !

aeAt(a0) CAY {a, @)

The following theorem is known as Helgason’s conjecture [8].



Theorem 2.4 ([14]). The Poisson transform P> gives G-isomorphism
B(G/Po; Ae) = C*(G/K; M»)

if and only if e(Ae) #0 .

We can also define the Poisson transform for the subspace B(G/Po;\) of
B(G/P,; o). We discuss the characterization of the image of B(G/Pe;)). We
consider the subspace

C’°°(G/K; Ie(\)) ={f € C*(G/K) | Rxf =0 for X € Ig()\)}
of C*°(G/K;M,).

Remark 2.5. We can easily show that

o> 3 UE)(D-w(D)(e))

DeZ(g)

(cf. Remark 4.3 in [22]). Hence actually C=(G/K; I@(X)) is a subspace of
C>®(G/K;M,).

We assume
Ao + p € ag is regular and dominant.

Here p = 1tr(ad|s) € af;, ie.,

1 . n+1
p=§ (ej-—ei)ziZ::(’l/— B )e,-.

This assumption is equivalent to

i’\e’(;) ¢ {0,—-1,-2,---} for a € A*(g,0),

ie.,

(/\_7' +I/j) — (/\i+1/i) ¢ {0,—1,—2,'“}

for i < j'and Vi, are integers which satisfy ng_1 +1< v < ng (k=iorj). We
keep this assumption all through the remaining of this paper.

Theorem 2.6 (Oshima. Theorem 5.1 in [22]). Under the above assumption,
the Poisson tranform

P&: B(G/Po;A) — C=(G/K, To(N))
f — _F(x):/Kf(mk)dk, z€QG.

is a G-isomorphism.



2.3 The explicit generators of Ig(}\).

In the previous section, we see that a degenerate principal series representa-
tion has a realization on the subspace of C°°(G/K) which is the kernel of the
annihilator ideal Ig(A). In [19],[20] and [22], T.Oshima obtained several good
generator systems of Ig(\). We introduce one of his generators here.

We denote the space of n X n matrices with entries in U(g) by M (n;U(g)).
For E = (E;;)s; € M(n;U(g)), we define elements in Z(g) by

A =tr(EF), fork=1,...,n.
Then it is known that Z(g) = C[A4,...,A,] as C-algebras.

Theorem 2.7 (Oshima. Corollary 4.6 in [22]). Asuume Ao + p € a. is regular
and dominant. Then we have

n n L . L-1
TeMW) =3 U@ [TE M —ne-v)is + 3 U@)( Ak — xa(Dk)).

=1 j=1 k=1

3 Generalized Whittaker models

The generalized Whittaker model is the main theme of this paper. We give
a characterization of the space of the generalized Whittaker models of a de-
generate principal series mo ) as the .kernel of Ig(A). This is an analogy of
Yamashita’s method in the case of irreducible highest weight modules [34]. The
substantial part of his method is that the maximal globalization (in the sense
of W.Schmid [26]) of highest weight modules is given by the kernel of a certain
differential operator. The corresponding theorem for the degenerate principal
series is obtained in Theorem 2.6 in Section 2.2. Moreover thanks to Theorem
2.7, we know explicit structures of these differential operators. Hence we can
carry out the explicit calculations about the space of the generalized Whittaker
‘models.

Let Vi be the space of K-finite vectors for a continuous representation of G
on a complete Hausdorff locally convex space V. Let Xg » be C®(G/Po;\) k-
This becomes a (gc, K)-module, i.e., the gc-action is the differentiation of mg x
and the K-action is the restriction of 7g », furthermore the actions of gc and K
are compatible. Also Xg  is a Harish-Chandra module, i.e., finitely generated
as a U(g)-module and with finite K-multiplicities.

3.1 Maximal globalization

For the Harish-Chandara module Xg », let us consider its dual Harish-Chandra
module Xg x«. Here the character \* of Pg is defined by

N=-A=2pg=Mm—-ng—n1—X,...,n—np_1 —ng —A),

where pg = 3tr(ad|ng) € ag, ie.,

L niatni—n &
pezz% Z ej.

i=1 J=mni-1

10



Actually, if we consider the pairing ( , ): C*(G/Pg; ) x C*®(G/Pg; \*) = C
defined by

(f g = /K F(k)g(R) dk

for (f,g) € C*(G/Pe;A\)xC>(G/Pe; X\*), this is a G-equivariant non-degenerate
sesquilinear pairing. By this pairing, the Harish-Chandra module Xg y« =
C*°(G/Pe, )k can be identified with the dual Harish-Chandra module (Xg »)*i.e.,
all K-finite vectors in Hom¢(Xe x,C)x. Here K acts on Homc(Xe x,C) by
k- I(v) = I(me(k™')v) for I € Homc(Xe,C)x and v € Xg ».

We can consider the natural (g¢ X gc, K x K)-bimodule structures on Xo\®
Xo,x+ and C*(G). For X1,X5 € gc and ky, ky € K, we put

- (X, Xo)(f ® f7) =mex-(X1)f ® f* + f ® mo,x+(X2)f*,
(k1 k2)(f ® ) =me (k1) f ® T - (k2) f*
for f € Xo,x and f* € Xg . Also we define
(X1,X2)9 =Lx,9 + Rx,9,
(kla k2)g :Lk‘1Rk2g

for g € C*°(G). Then we introduce the matrix coefficient map (cf. [4]) from
(gc x g¢, K x K)-bimodule Xg x ® Xo « to C°°(G) so that,

1. the map c: Xox ® Xo - = C®(G) is a (gc X gc, K x K)-bimodule
homomorphism,

2. for any f € Xo,x and f* € Xg r+, the evaluation at the origin e € G

becomes
c(f® f)(e) =(f, f I~

It is known that this matrix coefficient map is uniquely determined (cf. Theorem
8.7 in [4]). ,

If we consider the restriction of Poisson transform P3 on Xg », Theorem 2.6
gives us the (g¢, K)-isomorphism

PY: Xox = C(G/K;To(N)x.

Lemma 3.1. Take the K-fized vector fo € Xg x~ such that folx = 1. Then
the restriction of the Poisson transform on Xeg x is a matriz coefficient of an
element of Xeo x with fo € Xo -, i.e.,

Pa(f) = c(f ® fo).

Proof. By the pairing of C*°(G/Pg; ) x C®°(G/Pg;\*) defined above, we can
define a map Xg x ® Xg ¢ = C°(G) as follows, '

F® s (monlg™f f) = /K F(ak) TR dk,

11




for f € Xeo,x» and f* € Xg -. This map satisfies the conditions of the matrix
coefficient map. Hence for f € Xg x, we have

Pa(NN) = [ flabyak
— [ fioh) TRy a
K
_ /K (mo,x(g71)F) (k) fo(k) dk

= (mox(g™N)f, fo)ans
=c(f ® fo)(9),

by the uniqueness of the matrix coefficient map. g

Lemma 3.2. The dual Harish-Chandra module Xo x+ is a cyclic U(g)-module
with the cyclic vector fo € Xe » such that folx = 1.

Proof. We put W = {mo »~(X)fo | X € U(g)}. This is a (gc, K)-module. We
restrict the pairing (, ) x+ to Xo » X W. Take an element f € Xo,» and assume
(f,w)xx» =0 for any w € W. Since Px(f)(g) is K-finite and Z(g)-finite, it is a
real analytic function on G. Let C be an sufficiently small open neighbourhood
of 0 in g. Then we have the Taylor expansion at the origin e € G,

PAf)(e X) = 3~ Roen (PA(T))(e)

n=0

_ Z‘%Rxn(c(f®fo))(e)'

n=0 "

=3 ih e (X b

n=0

=0

for X € C. Here we used Lemma 3.1. We can extend this equality to the identity
component G° of G because both functions are real analytic. Also we can extend
‘to G by the equation G = KG°. The injectivity of the Poisson transfrom P
tells us f = 0. Hence the bilinear form of Xg » x W is non-degenerate. Then
W = Xeg,x+ by Lemma 2 in Section 5.2 of [29]. O

Let us consider the space of (gc, K)-homomorphisms of Xg x~ into C*(G),
Homge, (X 2+, C%(G))-

Here we regard C*°(G) as a (g¢, K)-module by the right translation. More-
over, this space of (gc, K)-homomorphisms inherits a Fréchet topology and
a continuous G-action from C*°(G). More precisely, we define a semi-norm
on this space as follows. The space C*°(G) is a Fréchet space of uniformly
convergence on compact sets for functions on G and their derivatives. Let
{]* |a}aeca be a family of countable many semi-norms on C*°(G) which defines
the Fréchet topology on C*°(G) where A is the index set. Take a semi-norm
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|- ]a € {l “la}aca and v € Xg x«. Then we define a real-valued function
' . |a,v3 HomgC,K(X@,A*,C‘”(G)) — RZO by

oo = 11(v)la

for I € Homge,k(Xe,x,, C(G)). We can see that the function | - |4, defines a
semi-norm on Homg, k(Xe,x,, C°(G)) for a € A and v € Xg »+.

‘Lemma 3.3. Let {v,} be a countable vector space basis of the Harish-Chandra
module Xo x«. Then the family of semz norms {| lo,om fae A ume{va} defines a
Fréchet topology on Homy x(Xe x,,C™(G)).

Proof. Take I € Homgy, x(Xe a+, C™(G)), and we assume ||, ,,, = 0 for any
| “layom € {l - lasum JaeA,omefon}- Since {v,} is a basis of Xg a«, it follows
that |I(v)la = O for any v € Xg» and & € A. This means I(v) = 0 for
any v € Xg x» because C*(G) is the Hausdorff space. Thus we have I =
0. This implies that Homg x(Xe ., C®(G)) is a Hausdorff space as well.
Since {| - |a,um YacA vmefv,} COnsists of countable many semi-norms, the space
Homg. x(Xo,x., C°(G)) is metrizable by this family of semi-norms. Finally we
need to check the completeness. Suppose that there exists a Cauchy sequence
{I} of the elements of Homg, x(Xe,x,,C®(G)), i.e.,

I — Lila,v,, = 0 for k,1 — oo,

for any |- |a,v, € {| - la,um Ja€A,vme{va}- Then this implies that for any v €
Xo,x+, the sequence {Ix(v)} C C*(G) is a Cauchy sequence. Hence there
exists limg—00 Ix(v) € C®(G). We define the map I: Xg - — C®(G) by
I (v) = limg_y o0 Ix(v) for v € Xg ». Then we show that I is the element in
Homgy. x(Xo,x,,C™® (G)) For any Z € gc, v € Xo,x~ and a € A, we have

[I(re,x(Z)v) = RzI(v)|a
= |f(7l'9,)\* (Z)’U) - Ik(‘n‘e’)\* (Z)’U) + szk('v) — sz(v)la
< [I(ro = (Z)v) — Ix(wox+(Z)V)|a + |RzIk(v) — RzI(v)]a
—0 fork— oo.

Thus j(ﬂ'@’)\* (Z)v) = RzI(v) for any Z € g¢ and v € Xo - Hence I is a
gc-homomorphism. Similarly we can show that [ is a K. -homomorphism and
a linear map. Hence we could show that I € Homgy, x(Xe x,C™(G)). By the
construction of I, we can see that I, — I (k — 00) in Homg, x(Xe x-, C®(G)).
This proves the lemma. O

We could define a Fréchet topology on Homg. x(Xe x,,C™(G)). Then a
continuous G-action on this space is defined by left translation on C*°(G). Hence
this space defines a continuous Fréchet representation of G. This is called the
maximal globalization of the Harish-Chandra module Xg » (cf. [26] and [15]).

Lemma 3.4. Take. the K-fized vector fo € Xg = such that folxk = 1. We
consider a mapping -
C>(G)

@:-Homgcyk(Xe,A*,Coo(G)) LT
I - I(fo)(9) (9€G).

13



Then ® is a continuous mapping. Moreover for any semi-norm'| - |an,, € {] -
lot,vm Yo A wme{va} 0N Homg, g (Xeo A+, C=(G)), there ezists a continuous semi-
NOTM e, v,, 00 C°(G) such that

Boom (2(1)) = |I|a,vm7
for I € Homg, x(Xe x=,C®(G)). Thus @ is injective.

Proof. For any semi-norm |- | on C*°(G), there exists a continuous semi-norm
| o, fo on Homg, k(Xe,x-,C(G)) such that

a0 = I(fo)la = |2(I)]a

for I € Homg, x(Xe a+,C>®(G)). Hence ® is the continuous. Conversely, we
take a semi-norm |- |q,,, on Homg,, x (Xe,r+,C®(G)) for @ € A and vy, € {vn}
By Lemma 3.2, Xg 1+ is a cyclic U(g)-module with cyclic vector fy. Thus there
exists an element X € U(g) such that g x+(X)fo = vm. Then we have

a0 = H(vm)la = [I(mo,x+(X)fo)la = |RxI(fo)la-

If we recall that U(g) can be identified with the ring of left invariant differential
operators on C*°(G), then pq 4, (f) = |Rx f|a defines a continuous semi-norm
on C*°(G). This proves the lemma. O

The maximal globalization of Xg » is isomrphic to the subspace of C*°(G/K) -
as follows.

Proposition 3.5. Take the K-fized vector fo € Xeg - such that folx = 1.
Then we have a following topological G-isomorphism,

~

®: Homy, x(Xoa,C®(G)) — C>®(G/K;Is(N))
I — I(fo)(9) (9€@).

Here C*°(G/K;1o())) has the Fréchet topology as the closed subspace of C*(G).

Proof. We can immediately see that ® preserves the action of G by defini-
tion. First we show that ® is well-defined. Take a K-finite element I €
Homy, x(Xe,x+,C®(G))k. Then by the evaluation at the origin e € G, we -
can regard I(-)(e) as the element of Xg » = (Xg,)*. Since I(fo)(g9) € C*°(G)
is K-finite and Z(g)-finite, it is a real analytic function on G. Let C be an suffi-
ciently small open neighbourhood of 0 in g. Then we have the Taylor expansion
at the origin e € G,

|~

I(fo)(exp X) = Z |RX"(I(f0))(e)
= Z —1—!(I(-)(e’),ﬂ@,A*(Xn)foh,A,
=3 S eI()(e) @ Top (X fo)(e)

-3 % Rxne(I()(e) ® fo)(e)

n=0

= c(I(-)(e) ® fo)(exp X)

- 14



for X € C. We can extend this equality for the identity component G° of G
because both functions are real analytic. And the fact G = G° - K implies

I(fo)(g) = c(I(-)(e) ® fo)(g) for all g € G. Hence by Theorem 2.6 and Lemma
3.1, we have-the inclusion

@(Homge, x (Xo,x+, C%(G))k) C C=(G/K;To(N)).

We recall that for a continuous represéntation of G on a locally convex complete
space V/, the space of K-finite vectors Vi is dense in V (for example, Lemma
1.9, Ch.IV in [9]). Since ® is a continuous mapping by Lemma 3.4, we have

®(Homge x (Xo,a+, 0(G))) = &(Cl(Homg 1 (Xo,x+, C(G))k)
C Cl(@(Homg,, k (Xo,1-, C®(G))k)) C CI(C“(G/K Io(\)
=C%(G/K;Io(N)).

‘Here CI(-) is the closure. Hence ® is well-defined. Next we prove & is the
bijective map. By Lemma 3.4, ® is injective. We prove that & is surjective.

For any F(g) € C*(G/K;Ie()))k, there exist h € Xo » and F(g) = c(h ®
fo)(g) (g € G) by Theorem 2.6 and Lemma 3.1. We define an element of
Homgy, x (Xo,x, C*(G)) so that

Iu(v)(9) = c(h ®v)(9),

for v € Xg,x=. Then we can see that ®(I1)(g) = In(fo)(9) = c(h®fo)(g) = F(9).
Hence we have an inclusion C*(G/K;Io()))x C ®(Homy, x(Xe,x, C®(G))).
Because C*(G/K;Is(\))k is a dense subspace of C®(G/K;Ig())), for any
f € C*(G/K;Is(A)) we can choose a convergent sequence f, — f (n — o0)
where f, € C®(G/K;Io(N\))k for n € N. The above inclusion shows that
there exist I, € Homg. k(Xe,x, C*®(G)) such that ®(I,) = f,. From the
second assertion in Lemma 3.4, the sequence {I,} is a Cauchy sequence in
Homg, g (Xe,x, C*(G)). Since Homgy, x(Xe,x,C®(G)) is a Fréchet space, i.e.,
complete space, there exist I € Homg, x(Xex, C®(G)) such that I, — I
(n — 00). Thus we have ®(I) = (f) by the continuity of ®. This shows
that ® is a surjective map. The open mappmg theorem leads that ® is a
homeomorphism. , O

3.2 Generalized Whittaker models

We define a generalized Whittaker model for Xg ). Let us fix a closed subgroup
U of N. We take an irreducible unitary representation n of U on a Hilbert
space V;. Let V> be the space of C*°-vectors in V;,. Let us consider the space
C’°°(U\G) = {f: G — V;® smooth| f(ng) = n(n)f(g) g € G,n € U}. This
becomes a G-module by the right translation.

Definition 3.6. We consider the following intertwining space
Homgc,K(Xe,,\*,Cf;"(U\G)).

- We call images of Xo x» by these (g¢, K ) homomorphisms generalized Whittaker
models of X .
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Theorem 3.7. We take the K-fized vector in Xeo x» such that fo|x = 1. Then
* the following mapping

®: Homge,x(Xo - CP(U\G)) = CP(U\G/K;Ie(N)
w — W (fo)(9)

is a linear isomorphism. Here

C(U\G/K;1e(X))
={f: G =V smooth| f(ngk) =n(n)f(g9),9 € G,n € U keK
' and Rx f(g) =0, X € Io(\)}.

Proof. Fix a nonzero element & € V;,. Then we consider the linear mapping
T: CF(U\G) € f— (& f(9))n € C(G),

~ which commutes with G and gc actions from the right where ( , ), is an inner
product on V;,. Since (1, V;) is an irreducible unitary representation of U, this
mapping T is injective. In fact, if T(f) =0 for f € C;°(U\G), then we have

=T(f)(ng) = (&, f(ng)) = (&,n(n)f(9)) = (n(n )¢, £(9)),

forany n € U and g € G. Since V, is irreducible, this implies f = 0. By this
map T, we also have an injective map

T : Hom(gC)K)(Xe,)\*,Cgo(U\G)) — Hom(gC,K)(Xe,,\*,Cm(G))V
w — ToW.

For any W € Hom(ge, k) (Xe,x+, O (U\G, 1)), we have T(&(W)) = T(W (fo)) =
T o W(fo) = T(W)(fo) = ®(T(W)). Hence we have the following commutative
diagram,

Homg,, k) (Xe, 3, CP(U\G)) —— CX(U\G/K)

Tl lT

Hom(ge, i) (X0 C2(G))  —— C¥(G/K)

Since ®, T and T are injective, we see @ is injective. Next we show that
Imd c Cr(U\G/K;Ie(})). Take W € Homy k)(Xo,+,Ce°(U\G)), then
T(®(W))(g ) = (&, W(fo)(g9)) € C(G/K;Ie()\)) where g € G. Hence we have
0 = RxT(2(W))(9) = T(Rx2(W))(g) for X € Ig(A) and g € G. Since T
is injective, we have Rx W (fo)(9) = 0 for X € Ig(\) and g € G, i.e, Im® C
C* (U\G/K; Io().
Finally, we show that & is surjective. Let f € Cr(U\G/K;Ig(N)). For
v € Xo - there exist X, € U(g) such that v = 7wg x«(X,)fo since Xg «
is irreducible. Then we define a mapping Wy: X« 3 v = mo x+(Xy)fo —
Rx,f(g) € C*(U\G). We need to check that it is a well-defined mapping.
If for X, X, € g we have v = 7o -(Xy)fo = mo,«(X])fo, then we have
o (Xy — X,)fo = 0. On the other hand we have T'(f) € C>(G/K;Io()\)).
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Thus there exists Iy € Homge,x(Xe,a+,C>(G)) such that T(f) = ®(If) by
Proposition 3.5. We put Z = X, — X,. Then we have T(Rzf) = RzT(f) =

®(RzIf) = RzIf(fo)(g) = If(me,x+(Z) fo)(g) = 0. Hence by the injectivity of
T, we have Rzf(g) = 0, ie., Rx,f = Rx;f. This implies that W; is well-
defined. - Also we can check that Wy is compatible with gc and K actions.
Hence Wy € Homy. k) (Xe,a+, C5°(U\G)) and ®(Wy) = Wy(fo) = f. Hence &
is surjective. O

Remark 3.8. This theorem is an analogue of Yamashita’s result for the gen-
eralized Whittaker models of discrete series representations (Theroem 2.4. in
[33]) and more general settings (Corollary 1.8. in [34]).

4 Calculus on the case of GL(4,R)

In previous sections, we gave a characterization of the space of generalized Whit-
taker model as the kernel of some explicit differential operators. We calculate
some examples on GL(4 R) by using these theories. In particular we take the
spherical degenerate principal series representatlons induced from the maximal
parabolic subgroups P 4, P 4 and compute dimensions of the spaces of gener-
alized Whittaker models and find the basis for them.

Let us explain the detailed settings. We consider the case » = 4. Hence
G =GL(4,R), K = O(4) , A is the group of the 4 x 4 diagonal matrices with
positive real entries and IV is the group of 4 x 4 strict lower triangular matrices
- with 1s in the diagonal entries. We put Py = Py 4,k = 1,2. For (A1, A2) € C2,
we define the character A: P, — C* and define degenerate principal series
representation induced from P and A as before. Let Xj 5 be their Harish-
Chandra modules which consist of K-finite vectors of these degenerate principal
series representations. Then by Theorem 2.7, the annihilator ideal in U(g) of
the degenerate principal series representation are written by

Ik()\) = I{k 4
EZ U(8)(E — M) (E — s — k) + U( g)(Z Eii— M — (4—k)o). (41)
=1 j=1
for k = 1,2. We put a stronger condition for"\,
— A ¢ Z.

4.1 Equivalent classes of C:°(U\G).

A generalized Whittaker model is an image of an embeddings of Xg y~ into
Ci°(U\G) where U is a closed subgroup of N and 7 is its irreducible unitary
representation. In this paper, we consider the space Cp°(U\G) defined as fol-
lows.

1. the group U is a closed subgroup of N and 7 is its unitary character,

2. the unitary induced representation L2 —Indg 7 is an irreducible unitary
representation of N.

We classify the G-equivalent classes of these Ce(U\G).
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© 4.1.1 The classification of N

Firstly we give the classification of the unitary dual of maximal unipotent sub-
group N of G by using the Killirov’s method for coadjoint orbits. Since the
contents of this subsection is standard, the details of this method can be found
in [3] for example.

Let n = Lie(N), i.e.,

0
— y— |z O . R
n= n(zvylyy27zl3m27x3)— 1" T 0 ; Liy---52 € .

z y2 z3 O

We denote its dual R-vector space by n* = Homg(n, R). We identify this space
with a subspace of M(4,R),

00 m1 B1 «
5 ,
l(a, B, B2,71,72,73) = ’62 gz ;0,...,13E€ER Y,
0

so that

Ko, Bt, B2, 71,72, ¥3) - (2, U1, Yo, 1, 2, T3)
= tr(l(a, b1, B2, 11,72, V3)n(2, Y1, Y2, 1, T2, 23))
= 0z + f1y1 + Bay2 + mT1 + Y2x2 + Y373,
We define the coadjoint action of N on n by (Ad"(n)!)(X) = [(Ad(n~1)X) for

n € N,l € n*, X € n. Take a basis X, X5, X3,Y7,Y5, Z of n and its dual basis
X7, X5, X3,Y, Yy, Z* of n* so that

' 2 3
'n(z, y17y27x17x2yx3) =2z + ZyﬁY; + ZIL']X]

i=1 Jj=1
and
2 3
l(a)ﬂ17/32171>721’y3) =aZ" + Z/BZY;* + Z’YJX;
i=1 Jj=1

Under our coordinate system, the coadjoint action is written as follows,

(Ad* exp(n(z, ) x3)))(l(a’ Tt 373)) .
=aZ" + (61 + ax3)Yy + (B2 — az1) Yy

z x * * .
+ (7 + Brze + ays + %))Xl + (72 + 2302 — 2161 — T1230) X5 (4 ,2)

1T ”
12 —yl))Xa(

+ (v3 — z202 + o 5

We consider the classification of coadjoint orbits of n*. First, we assume
that « # 0. Then by the equation (4.2), if we choose appropriate 3, T1, ¥2, y1,
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we can find in the Ad*N-orbit a point with 8; = s = 73 = 3 = 0. Hence if
© we write o4, = l(,0,0,0,v2,0), the coadjoint orbit is written as follows,

(Ad*.N)la,'n = {aZ* + 4 Y+ Ys + 51 XY

tqt
+ (12 + Lg)Xz + 32X3 ; t1,t2, 81,82 € R}

Next, we consider the case a = 0, i.e., l(O,,Bl,,Bz,’h,’)’g,’)’;;). We assume (; # 0
or 2 # 0. Then from the equation (4.2), we can see that there is an element

l(07 1317 ﬂé) 71’ 07 ’YI/?,) in (Ad*N)l(()’ :81 ) ,327 1,72, ’73) Hence in this case, it is
enough to consider the orbit

(Ad*N)l(Oy :813182’719 ,’)’3)
={61Y]" + BY5 + (Bit1 + 1) X7
) + t2X2 + (’}’3 - ,thl)Xg, ; t1,t0 € R}

Finally we consider thé case f; = B2 = 0. Then we have
(Ad*n*(0,0,0,71,72,73)) = {m X7 + 7=X3 + 13 X3}.

We summarize these as a proposition.
Proposition 4.1. We can classify coadjoint orbits of n* in following cases.

(I) For o € R\{0} and y; € R, '

Oa,vs ’=(Ad*N)l(a, 0,0,0,72,0)
—{aZ" + YT + Y5 + 01X + (0 + L)X
+ 52X3 ; t1,t2,51,82 € R} k
We have dim Oq , =4.
(IT) For B1,02,71,7s € R such that 81 # 0, or B2 # 0,

Oﬂl,ﬁz,’n,’m Z(Ad*N)l(O? :81 aﬂ2771, 0,73) ‘
={61Y7" + BoY5" + (Bit1 + M) XT + taXa + (3 — P2t1) X3 ;
t1,15 € R}

- We have dimOg, 8, v, ,v; = 2.
(III) For Y1,72,73 € ]R’

071,72,73 :(Ad*N)l(O’ 0,0, Y1725 73)
={nX] +7X; + X35}

We have dim O, ;.4 = 0.

To construct the irreducible unitary representation of IV from the coadjoint
orbit of [ € n*, we should determine its radical r; and maximal subordinate
subalgebra ;. We define the coadjoint action of the Lie algebra n on [ € n* by
((ad*X)))(Y) = ([Y, X]) for X,Y €n.
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Definition 4.2. Forl € n*, we define the subalgebra of n such that
uy={Xéen; (ad" X)l =0}
We call this subalgebra the radical of | € n*.

If V is a R-vector space with an alternating bilinear form B, its isotropic
subspace W is the subspace such that B(w,w’) = 0 for all w,w’ € W. We define
the radical of B by radB = {v € V ; B(v,w) =0,all w € V}. It is known that
any maximal isotropic subspaces of V have codimention 1dimg(V/radB).

Definition 4.3. For | € n*, we can regard [([X,Y]) as a bilinear form for
(X,Y) € nxn. By the antisymmetry of Lie bracket [X,Y] = —[Y, X] (X,Y € n),
this is an alternating form on n x n. The subalgebra s; C n which is isotropic
for l and has codimension % dimg(n/v;) is called mazimal subordinate subalgebra

of n forl.

Remark 4.4. For a nilpotent Lie algebra n, there exists at least one mazimal
subordinate subalgebra for any | € n*. Although the radical for 1 is uniquely
determined, mazimal subordinate subalgebras are not unique for I.

Let us construct radicals and maximal subordinate subalgebras for coadjoint
orbits (I), (II), (III) which are classified in Proposition 4.1.

The case (I). By the equation (4.2), the coadjoint action of N on I
l(a 0,0,0,72,0) is written as follows,

a2 =

(Ad* eXp('n(Z, STty $3)))l(aa 0’ 07 0’ Y2, 0)
={aZ" + pY{ + 1Yy + o X{ + (2 + w)Xg T2 X3}

Hence we can see that
layyy = ={RZ + RX,}.

As we noted before, there are some choices of maximal subordinate subalgebra
even if it contains the radical r;, ., . Among these choices, we pick up a maximal
subordinate subalgebra

Sly ., = {RXs +RY] + RY; +RZ}.

°"Y2

It is easy to check that this subspace is isotropic and its codimension is equal
to 1dimg(n/ v, .,) = 2. Also this becomes a subalgebra of n. We can see that
Si,,.,, does not depend on the choice of & € R\{0} and 7, € R. Hence we simply
write 5(1) = 81,

The case (II) As well as the case (I), we can see that the radical for
181,82m,7s = (0, B1, B2,71,0,73) is given by
= {R(£1X3 + f2X1) + RY1 + RYz + RZ}.

tlB1 1B2,71,73

The codimension of maximal subordinate subalgebras are %dimR(n [Cla) 5y i) =
1. We recall a fact for the codimension 1 subalgebra of n.

Proposition 4.5 (cf. Proposition 1.3.4 in [3]). Let g be a nilpotent Lie algebra
and go a codimension 1 subalgebra of g. Forl € g*, letly = l|g4, be the restriction
to go. If the radical of | in g is contained in gy, any maximal subordinate
subalgebra of go for ly is also mazimal subordinate subalgebra of g for I.
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For any codimension 1 subalgebra ng of n contammg Clg, .y iys > UDETE EXISE
a maximal subordinate subalgebra of ng for lg, g, 4, vs|n, from Remark 4.4. By
this proposition, this is also a maximal subordinate subalgebra of n for lan- By
the calculation done above, this maximal subordinate subalgebra should have
codimension 1. Hence this is nothing but ng. This implies that any codimension
1 subalgebra ng of n containing g, sam1.ys 1S Maximal subordinate subalgebra
for lg, 8,,v1,vs- Among these, we pick up a maximal subordinate subalgebra

5l31»32,71y73 = {RXl +RX3 + RY’I + RY; + RZ}

As in the case (I), the subalgebra s;, , . does not depends on the choice of
B1, B2,71,73 € R. Hence we simply write 5(11) = 5lg, gy m1ivs”

The case (III ). The coadjoint action on Ly, ~, .+, = 1(0,0,0,v1,72,73) is given
by

(Ad* eXP(n(Z, ) :1:3)))1(07 07 0’ Y1725 73) = {71Xj’[k + 72X§ + 73X:;}
It is obvious that the radical of I, 4,,~s is

1] =n.
Y1:72,73

Also it is obvious that a maximal subordinate subalgebra of 1, 72,73 is

Sy1,y2,3 = 0

Let us recall Kirillov’s theory for irreducible unitary representations of nilpo-
tent Lie group N. For [ € n*, let 5; be a maximal subordinate subalgebra for [
and let S; = exps; . We can extend |5, : 5; — R to the map x;: S; = C! by

xi(exp X) = 2 0 X e g

This is a group homomorphism, i.e., an unitary character of S; because s; is an
isotropic subspace for I, i.e. l([X Y]) =0 for X,Y € s5;,. We consider a Hilbert
space induced from g,

Hy, ={f: N — C measurable ; f(sz) = xi(s)f(z) for s€ S;,z € N,
and / |f(z)|? di < +00},
SI\N

where di is the right-invariant measure on S;\N. The inner product is defined" -

by
- [ r@F@
SI\N

It can be shown that #,, is complete by this inner product. The action of N
on H,, is given by the right translation. This is the unitary representation by
the right-invariance of dz. This representatlon is called the representation of N
induced from x;, and denoted by L? —Inds (xa)-

Theorem 4.6 (Kirillov [13]). Take l € n* and let s; be a mazimal subordinate
subalgebra of n for I*.

1. The induced representation L? —Indgl (x1) s an @rreducible representation
of N.
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2. Let s; be a mazimal subordinate subalgebra of n fo'r l and S| = exps)..
Then L?- IndS/ (x1) is unitarily equivalent to L -Ind} (x1). Hence we may

write m for I2- -Indg, (x1)-

3. Let I' € n*. Then my is unitarily equivalent to m if and only if I! €
(Ad*N)L.

4. Let w be an irreducible unitary representation of N. Then there ezists an
l € n* such that w is unitarily equivalent to .

This Kirillov’s theotem implies that irreducible unitary representations of
nilpotent subgroup N of G are equivalent to induced representations Indg (x1)
and their equivalent classes only depend on coadjoint orbits of I € n*. We
have already classified coadjoint orbits of I € n* and determined their maximal
subordinate subalgebras 5;. Hence we can obtain equivalent classes of irreducible
unitary representations of N.

Proposition 4.7. We retain the notation as above. The every irreducible uni-
tary representation of N is unitarily equivalent to one of the following represen-
tations.

(I) For ly ., = 1(0,0,0,0,72,0) € n* and its mazimal subordinate subalgebra
51y = {RX2 + RY; + RY; + RZ}, we define the representation

L?-Indg, xi

o,y *
Here S(1) = exps() and a € R\{0},y2 € R.

(I) For lg, g, yivs = U0,B1,02,71,0,73) € n* and its mazimal subordinate
subalgebra sy = {RX1 + RX3 + RY; + RY; + RZ}, we define the repre-
sentation ¥

2
L _Inds(n) X?ﬂ1v€2,71,73

Here Sl(") = eXPsl(m and 131’,827717’73 S R: (ﬁl?ﬂ?) 7& (O’ 0)
(IIT) For Ly, ,~s = 1(0,0,0,71,72,73) € n*, we define the unitary character of

)

Xl'vl ¥2>73 "

4.1.2 Conjugacy classes of Cp°(U\G)

In previous section, we describe the unitary dual of N. The next step is the
classification of G-équivalent classes of the following spaces:

C;?a,,m (S(I)\G)) a € R\{0}, 12 € R, \ ' [§))
)C?l)ﬁl B2.v1:v3 (S(II)\G)7 /817/82 S Ra (/81352) # (0,0), : (II)
(N\G), 71,72,73 €R. : (1)

Xl’Yl Y2,73

For z € G, we write the conjugation of g € G by x as g° = zgz~'. Let H be
a closed subgroup of G and 7 a continuous representation of H on a complete lo-
cally convex space E. Then for x € Ng(H) ={g < G|h? € H, for any h € H},
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we can define conjugation of 7 as 7*(h) = w(h*). Then we have the follow-
ing fact about the induced representation C3°(H\G) = {f: G — Esmooth |
f(hg) =7(h)f(g), g € G,h € H} on which G acts by the right translation.

Lemma 4.8. We retain the notations as above. The map

CX(H\G) = CX(H\G)
f(9) —  F(g) = f(zg)

gives isomorphism as G-modules.

Proof. We see that this map is well-defined. Take f € CX(H\G) and define
F(g) = f(zg). Then we have

= f(zha™ zg)

= m(zha™") f(zg)

=7 (h)F(g),
for h € H. Hence F € C32(H\G). Obviously this map is bijective and preserves
the action of G. |

Lemma 4.9. Fiz a mazimal subordinate subalgebra s; C n for | € n*. We
put S; = exps;. Let us define a character x;: S; — C! so that x;(exp X) =
e2™V=IX) for X € 5. Then the character x; is invariant by the conjugation
by S[, z'.e., '

xi(s) =xu(s)
for s,x € 5.
Proof. Take an element of z € S;. Then there exists Z, € s; such that z =
exp Z,. By the Campbell-Hausdorff formula, for any X € 5; we have

z(exp X)z ™! = exp Z, exp X exp(—Z,)
=exp(Zo+X —-2Z,+Y)
=exp(X +7Y)
for some element Y € [s;,5] = {[V,W] | V,W € 5;}. If we recall that s; is a

maximal subordinate subalgebra for I, we have [(Y) = 0 for Y € [s;,5;]. Thus
we have

X7 (exp X) = xi(z(exp X)z ™)
_ e27r\/_—_1_l(X)
= xi(exp X).
for any X € s;. : O
By these lemmas, we have the following classifications.
Proposition 4.10. Case(I). For o € R\{0} and 72 € R, we have

0;7(0,1,1,0,0,0) (S(I)\G) Zf "2 75 0’ (Il)

c .
09067(0,0,1,0,0,0) (S(I)\G) if 2 = Ov (12)

Xla,yg

(Sm\G) = {

23



Case(II). We take B1,P2,71,73 € R and assume B1 # 0, or B2 # 0. Then we
have

C;i)ﬂpﬁz,'n 3 (S(II) \G) =
(C oonnon (San\G) if (Br,m) - (v3,82) #0,  (Ih).

; ) " 5 = 0
Crwo0m0m (San\G) y (aﬁr;d’yﬂlf 75(’();?,352; 0o’ (1)

' ) if(ﬂ],’)’1)'(’)’3,,82)=0
CXz(o,o,o,x,o,o)(S(U)\G) and By £ 0,85 = 0 > (IIz)

; ) : ‘ ) =0
Cz(oyo,o,o,o,n(s(”)\G) ! (frzd’gl) ;(’(;?,352;0 ’ (L)

where (a,b) - (¢,d) = ac+ bd for a,b,c,d € R is a natural inner product in R2.
Case(III). For v1,72,7v3 € R, we have

(v \G)

X"yl v2:73
(O 00011y (V\G) i 71 #0,72 # 0,95 £0,  (IIh)
C;7<o,o,o,1,1,0) (N\G) if71 #0,%2#0,73=0, (1Ik)
Crooonon N\G) #m#0,72 =01 #0,  (Il)
CoroooonnN\G) & =072 #0,93#0,  (II)
0;7(0,0,0,1,0,0) (N\G) #m#07=07=0 (IH5)
Cironvoony M\G) 71 =07 #0,73=0,  (Ilk)
Céii’(o,o,o,o,o,l) (MG) #fn=072=03#0, (Ik)

(NM\G) fn=0,72=0,73=0, (I)

\ Xz(o,o,o,o,o,o)

Proof. The case (I). The normalizer Ng(S(1)) of S(1) in G is written as the
semi-direct product L; x S; where

LI:{( 6‘2 - ) |A,BeGL(2,]R)}.

Here 02 = (8 8) € M(2,R). We define the action of Ng(S(1)) on X(a,y,) as
(T-X(ayr2)) (5) = X(a, 72‘)( _1) forz € Ng(S(y) and s € S(yy. Then by lemma 4.8,

if x1,,,, and xu,, , are in the same Ng(S(y))-orbit, the spaces C (SI\G')
72
and C° (S I\G) are G-equivalent. Also by Lemma 4.9, we only “need to
OLI,'YI
classify thezL( ry-orbits of Xl g for o € R\{0} and 72 € R. Then it is easy to
see that l(a,O 0,0,72,0) € Ad* (Ng( I)))(Z(O,I,O,O,O,l)) if v £ 0 and l(a 0,0,0,72,0) €

Ad* (Ne(Sm))(ko,10,0,00)) if 72 = 0.
The case(II). The normalizer of Sy in G is written as the semi-direct prod-
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uct L(I'I) X S(II) where

a 02 0 .
L(H) = § N(a,b,4) = t02 A t02 ed | a,b (S RX,A < GL(?, R) .
0 0, b

0

Here 02 = (0,0) and 0, = (0> Then there are following L p)-orbits of
Xig, 53y 10T B1,82 € R (By #, or B2 #0) and 71,72 € R,

O1 = {X1(0,0,01,v2,w1,0,w3) | V1W1 + V2w # 0}
Oz = {X1(0,0,01,v2,01,0,w2) | (v1,92) # (0,0), (w1, w2) # 0 and viwy + vaws = 0},
O3 = {X1(0,0,01,02,01,0,w2) | (v1,v2) # (0,0), (w1, ws) =0 and vyw; + vaws = 0},
O1 = {X1(0,0,01,v2,w1,0,w2) | (V1,92) = (0,0), (w1, ws) # 0 and viw; + vowz = 0}.

The case(III). The normalizer of N in G is written as the semi-direct product
L(III) X S(III) where

az

L(III)= 0,1,...,0,4€RX

as

Then the lemma is easily follows. | O

4.2 Differential operators on the generalized Whittaker
models

Let U be a closed -subgroup of N and x a character of U. By Theorem 3.7, the
space of the generalized Whittaker model is isomorphic to the subspace of

CX(U\G/K) ={f € C(G) | f(ugk) = x(u)f(g) for (u,g,k) €U x G x K}.
Lemma 4.11. We retain the above notations. There exists a linear bijection
E: CP(U\G/K) = C=(U\N x A).

Proof. Because N is a nilpotent group and U is its closed subgroup, there is a
smooth cross section 8: U\N — N with the smooth splitting of n € N so that
n = u(n)s(n) for u(n) € U and s(n) € (U\N) (cf. Theorem 1.2.12 in [3]). This
smooth cross section gives us a linear mapping

=: C(U\G/K) = C®(U\N x A)
f —  E(f)(@,a) = f(0(z)a),

for x € U\N and a € A. Take an element ¢ € C°(U\N x A). If we define an
element of f, € C*(U\G/K) by '

fo(usak) = x(u)¢(sa)

forue U,s € (U\N),a € Aand k € K. Since G =2 UxU\N x Ax K, this is well

defined. We denote this map II. Then it is easy to see that [IoZE = idee (\a/K)
X

and Eo Il = idge(\nx 4)- Hence = is bijective. O

25



We define the action of U(g) on C°(U\N x A) by X - E(f) = E(Rx f) for
X €U(g) and f € C°(U\G/K). In this section, we give the explicit expression
of the action of U(g ) on C®(U\N x A).

According to the Iwasawa decomposition g = n® a @ ¥, it suffices to see the
action of n,a and € respectively. We can see that E; € a,i = 1,...,4 acts on
C®(U\N x A) as 94, = a; 63 ,t =1,...,4 if we denote the elements of A by
a = diag(ai,...,as). By the right K-invariance of C(U\G/K), the elements
in € acts terlally Hence we have the following symmetric relation among the
generators of the annihilator ideal I (\).

Lemma 4.12. For F' € C*°(G/K), we have

(E=X)E-X—k)),; F= ((E Al)(E A2 — k) F,
wherel<zg<4 and k =1,2.
Proof. Take elements (E;; — Ej;), 1 <14 < j < 4 as the generators of £. Then
we have (E’LJ - Eﬂ)F =0,1<i<j<4for F e COO(G/K), ie., E,;jF =
E;;F, 1 <i< j<4. This implies that .

(B=X)(E- X2 —k)); F

4
= (E EilElj - (/\1 + )\2 + k)Eij + A1(>\2 + k)5ij)F
=1

4
= (Z Equl - (/\1 + X2+ k)Eji + /\1()\2 + k)(sij)F
=1 .

Z(EJlEd ﬂ, zl]) ()\1 + Ao + k)Eij + A\ ()\2 -+ k)é,])F

= (E(Eleli — (0uEj — 051Eq)) — (M1 + A2 + k) Eji + A1(A2 + k)63 F
=1

; _
=0 EjiByi — (Eji — Byj) — (Al + A2 +E)Eji + M (Do + k)05 F
=1

ZE a B — ()\1 + Ao + k)E]z + )\1()\2 + k) z])F
=1 '

= ((E - )\1)(]E — Az — k))ji F.
This is the required equation. O

We give more precise expressions of (E — A1) (E — A2 — k)),; mod U(g)¢ for
k=1,2and 1 <14 <j <4 below.

Lemma 4.13. Representatives ((E — A1)(E — A2 — k)),; modulo U(g)t (k = 1, 2
and 1 <14 < j <4) are written as follows,
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Eh+ B3+ B+ Ej—(M + Ao+ k—3)En .
— (By + Es + E3) + M(Ma + k), (69 =1,1)
En(Eryi+Eop— (M + A+ k—3))+ EseEs;1 + EeoEa1,  ((4,7) = (1,2))
E31(E11 + FE33 — ()\1 + X+ k— 2)) + E33F91 + E43E 41, ((Z,]) = (1, 3))
Eyu(Bu+Ey— (M +X+k—2)+ EpFy + Es1Ess,  ((4,5) = (1,4))
B — (M + X+ k- 2)Exn+E3, + B3, + B .
— (B33 + Eu) + 2M1(A\2 + k), ((%.7) =(2,2))
E33(Eaz + E33 — (M + Ao+ k—2)) + E21Es1 + EgsEyge,  ((4,5) = (2,3))
Ep(Ex+Egy— (M +X2+k—2)+ EnEy + EssEas,  ((5,5) = (2,4))
E%Z — (M + X2+ k—1)Ess + B2, +E% + E2, .
e s, (G =G3)
E 3(E33 + Eyy —/()\1 + X+ k—1))+ Es1En + EsEs2,  ((4,7) = (3,4))

Efi— (M + X2+ k)Es + By + Bf + Efs. ((,5) = (4,4)
Proof. If we note that (E;; — Ej;;) 1 < ¢ < j < 4 are the generators of &, this
lemma can be obtained by the direct computations. O

Along the classification obtained in Proposition 4.10, we express the action
of n. )
The case (I). We consider the space
O (Sw\G/K)

X1(0,1,¢,0,0,0)

Here € = 1 (resp. = 0) corresponds to the case (I7) (resp. (I2)) classified in
Proposition 4.10. If we notice that 51 = {RX;3 + RY; + RY; + RZ} is not
only a subalgebra of n but also an ideal of n, then sy\n = {RX; + RX3}
can be seen as a subalgebra of n. Hence S(;)\NV is isomorphic to the subgroup
{exp(uX1 + vX3) | u,v € R} of N. This isomorphism gives a smooth cross
section O(1y: S1y)\IN — N. Then we have the linear isomorphism

Xl(o,1,e,o,0,9)
by Lemma 4.11. We introduce a coordinate system on S(p)\N x A as follows,
R? x (R>0)4 = _ S([)\N X A
(u,v) X (a1,a9,a3,a4) +—> exp(uX; + vXs) x diag(ay, as,as,aq)

Proposition 4.14. We regard the space C>°(S)\N x A) as the image of the
space C° (S)\G/K) by the mapping Z(y) for each € = 0,1. Then n

X1(0,1,¢,0,0,0)

acts on C*°(S(1)\N x A) as follows,

EnF=2%F EqF =e2ry/ 18 F
a, Ou aq
- EuF =0, EspF = 271'\/—12—3(1) — ew)F,
2
o
EpF = 2nV/—12F, EpF =22
as _ az Ov

for F € C=(S)\N x A).
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Proof. For F.€ C®(Sy)\N x A), there exists a f € CRoe 0,00 BH\G/K)

such that F(u,v;a) = Zq)(f) = f(exp(uX; + vX3)a) for u,v € R and a € A.
Hence for E;;(1 < j < i <'4) we have

(E‘UF)(U" v; a) = :(I) (RE” f)

dt (exp(uX1 + vX3)aexp(tEi;))|t=o

= Ef(exp(wﬁ + vX3)eXP(tAd(a)E¢j)a)lt=o (4.3)
—z%f(exp(qu + vX3) exp(tEij)a)|t=o-

By the direct computation, we have

exp(uXi +vXs) -expn(z, - ,z3)
= expn(2’, 41,3, 0, z2,0) - exp((u + 1) X1 + (v + 23)X3),

where
2 =z+4v u +1.1: 1:1: UVT VLT L L
= - - - = — —= — ZUTT3 — =T1T
1 y223y121y2 2212223312%3,
’ T1I2
Y1 = Y1 —ur2 — 9 )
T2X3
Vs =2 + VB + =

Hence we have

f(exp(uX1 +vXs)expn(z, -, z3))
= f(expn(z’,y1,93,0, 2,0) exp((u + 1) X1 + (v + $3)X3))
= XI(O,E,I,0,0,Q) (exp TL(Z 7:'!1: y27 07 X2, 0))f(exp((u + $1)X1 + (U + $3)X3))
= ¥™VTIEH) f(exp((u + £1) X1 + (v + 73) X3)).
~ (4.4)
Combining formulas (4.3) and (4.4), we have the proposition. O

The case (II). We consider the space

C;?(O,O,sl ,€2,0,63) (S(II) \G/K)'

Here each (e1,e9,€3) corresponds to the case (IL;) (¢ = 1,...,4) in Proposition
4.10 as follows, ’

(1,1,0) if the case (II;),
0,1,1) if the case (Ily),
(e1,€2,€3) = ( ) . (Tl2)
(0,1,0) if the case (II3),
( (

0,0,1) if the case (ILy).

The subalgebra 511y = {RX; + RX5 + RY; + RY; + RZ} is'a codimension 1
subalgebra of n. Because any codimension 1 subalgebra of a nilpotent Lie algebra
becomes an ideal (cf. Lemma 1.1.8 in [3]), the subalgebra s(y5) is an ideal of n.
By the similar argument as in the case (I), the homogeneous space S\ N is
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isomorphic to the subgroup {exp(uXs) | © € R} of N. This isomorphism gives
a smooth section 011y : Si1)\IN = N. Then we have a linear bijection

Emy: Cx, (San\G/K) = C=(Sap\N x A).

X1(0,0,eq 1€2,0,e3)

We introduce a coordinate system on Sip\IN x A as follows,

R x (R>0)4 = S(H)\N x A
U X (ala az,asg, a4) i exp(UX2) X diag(al’a21a3a 04)

Then we can write down the action of n on C*°(Sp)\N x A).

Proposition 4.15. We regard the space C°(S;)\N x A) as the image of
the space C° (Sap\G/K) by the mapping Zry. Then n acts on

X1(0,0,e1,£2,0,e3)

C>®(Sun\N x A) as follows,

En F = (27r\/—1(2—j)52)F, EsF =0,

Eu F=0, EsF = EEF,
a9 ou

E42F = (27‘&'\/-—1(2—:)81)}7, E43F = (271'\/ —1(2—:)(63 — slu))F
Here F € C*(S()\N x A) and

(1,1,0) f the case (II),
(0,1,1) if the case (IL),
(0,1,0) if the case (II3),
(0,0,1) if the case (II4).

) (€1,€2,€3) =

Proof. The proposition can be obtained in the same way as the case (I) by the
formula, ‘

exp(uX2) -expn(z, -+, z3) = exp(n(2’, y1, 3, 21,0, 23)) - exp(u + @2),
where
, 1
zZ =z4+ 63:13:23:3
1
Yy =y1 + T+ 51'1992

1.
Yh = Y2 — T3u — 37273

The case (III). We consider the space
Cs (N\G/K)

X1(0,0,0,e7,e3,e3)



where .
(1,1,1) if the case (II),

(
(1,1,0) if the case (IIIy),
(1,0,1) if the case (III3),
(0,1,1) if the case (II14),
(1,0,0) if the case (III5),
(0,1,0) if the case (I1Ig),
(0,0,1) if the case (III7),
((0,0,0) if the case (IIlg).

By the Iwasawa decomposition, we have the linear bijection

Eam: CF (N\G/K) > f + fla € C®(A).

X1(0,0,0,e7,e2,e3)

(€1,€2,€3) = <

by the restriction to A. Then we have the following proposition.

Proposition 4.16. Let us consider the space C*°(A) as image of the space

C;?(o,o,o,sl,sz,%)(N\G/K) by the mapping Zrrry. Then n acts on C°(A) as
follows, ‘

Ep F = (27r\/—_1(g—j)él)F, EyF =0,

EnF =0, | EF = (2m/——1(z—z)52)F,

EpF =0, . EpF= (2mf—“I(Z—:)a3)F.

Here F € C*(A) and

((1,1,1) if the case (IIL, ),
(1,1,0) if the case (IIL),
(1,0,1) if the case (II13),
(0,1,1) if the case (1),
(1,0,0) if the case (III;),
(0,1,0) if the case (IIIg),
(0,0,1) if the case (III7),

[ (0,0,0) if the case (IIlg).

(e1,€2,€3) =

Proof. Tt is obvious from the formula,

dt
for1 <i#j<4 , O

- (EijF)(a) = 2 Pa exp(tEij))|t=o = %F(exp(tAd(a)Eij)a)|t=9.

4.3 Generalized Whittaker models of GL(4,R)

After these preparations given in the preceeding sections, we can investigate
explicit structures of the generalized Whittaker models. More precisely to say,
we give the dimensions of these spaces and their basis in terms of the hyperge-
ometric functions one and two variables.
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4.3.1 The embeddings into the spaces (I)

We give the explicit structures of the embeddings of the Harish-Chandra mod-
ules X » (k= 1,2) into the spaces (I1) and (I2) which are classified in Propo-
sition 4.10. These spaces are isomorphic to CRrone000 SO\G/K 5 I(X)) by
Theorem 3.7. We consider the image of Crone000 (Sm\G/K ; Ir()\)) by the
mapping Z(1) defined in Section 4.2. Here € = 1 (resp. = 0) for (I) (resp. (I2)).
Hence our purpose is to investigate these spaces

CX1(0,1,s,o,o,o) (S(I)\N X A Ik()‘)) - _‘(1)(CX1(0,1,5,0,0,0) (S(I)\G/K Ik()‘)))
Proposition 4.17. Fore = 0,1, we consider the spaces Cxuo Leoo 0)(,5'(1)\N X

A; I(X). Then these are the solution spaces of the following systems of the
differential equations on C*°(S)\N x A).

[92,—(M1 + Az + k= 3)0a, + M (X2 + k) + ( )2 57

(4.5)
+ (2220 = (o + 0y + )+ 0+ D=0

[%(1%1 00, — (M + Ao+ k= 3)) + s(%;i)?(m/-_n?(v —ew)p=0, (46)
(P, + Pag — (A1 + Az —2)) + (v — au)a%]qﬁ o, @7)
% + e—]¢ 0, (4.8)

[92, — (A1 + A2 + k — 2)0q, + (a—l)ZW + (a 22rv=1)%(v - eu)?

(4.9)
+(“—4)2(zm/——1)2 — (Vg + V) + Alm +k)]o =0,

(@~ ) Wz + Vg — Ot + 4z + = 2) - e(22 )2 (Z—‘;)Z—M 0,
(4.10)

(o + Py — M1+ A2 +k—2))+ (v— au)a%w =0, (4.11)

[92,— (M + Ao + k= 1)0q +e( ) (2my/—1)?

+(Z_Z)2(21r\/—_1)2(v—€u) +(2 )252 19a4+/\1(/\2+"’)]¢ 0

: (4.12)

[%(v‘ag + 0, — (M + X+ k—1))+ (2—2)2(%\/—_1)2(0— eu)l¢p =0, (4.13)
92, — O+ 2o + B + (22017 4 (227 20 4 x0u + R0 =0,

_  (4.14)

[(Fa, + ay + Vay + Yo, — kA1 — (4 —K)A2)]o =0. (4.15)

Here ¢ € COO(S(I)\N X A)

Proof. Recall that Ix()\) is written as (4.1). Then these differential equations
immediately follows from Lemma 4.12, Proposition 4.13 and Proposition 4.14.
O
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We solve these systems of the differential equations.
(i) The case e =1.
We investigate the space oo S®\N x A; I(N)), ie, the case e = 1.

We consider the case k¥ = 1, i.e., the embedding of the Harish-Chandra
module X7 .

Proposition 4.18. For the case € = 1 and k = 1, the solution space of the
system of the differential equations defined in Proposition 4.17 is {0}.

Proof. The equations (4.7) and (4.11) give us the equation,
[P, + Pay + Vag + Fay — 221 — 2X2 +2+v2(v—u)(—8— + 2)]<15 =0.
1 ;2 3 aq au av ;

By the equation (4.8), the term % + % can be eliminated. Hence the only
remaining term is

[’0‘11 + 19(12 + ﬂaa + 790,4 -2\ — 2/\2 -+ 2]¢ =0.
However if we compare this with the equation (4.15),

[190,1 + 190,2 + '190,3 + 'l9a4 s A]_ - 3)\2]¢ - 0,
we can conclude the solution space of these equations must be {0} because we
assume A1 — Az ¢ Z. O

Next, we consider the case k = 2, i.e., the embedding of the Harish-Chandra
module X3 5. We introduce a new coordinate system below,

T1 = A1020304,
2 = (/=T (220 =) + (2 + (2,

-2
aias asas ay1ay
r3=|—— v—’u)2+—+——
a2a4 ai1a4  Qagag
a1as
4 = )
a204
104
T5 = —,
asas3

(4.16)

T = U.

Proposition 4.19. Lete =1 and k = 2. We consider the system of the differ-
ential equations in Proposition 4.17. By adding and substituting each differential
equations and multiplying some rational functions, the system of the differential

32



equations under the new coordinate system x1,...,xg is written as followings ,

(92, — 22 Jg )6 =0, | (4.17)
(72— (Bos = )20, = )6 =0,  (418)

[1:3(19302 - 20m3)(19m2 - 219903 - 1)

- e = 200 =)~ DO + 20w - Ao =0, 41
8—2—;¢ =0, (4.20)
b =0, (4.21)
5%(13 =0. (4.22)
| Proof. First, we put
a1 = a1ay, ap = aia3", az = agay,
a4 = agay’, v =u, v = (v—u).
Then the differential equation (4.8) becomes
%& = 0. (4.23)
Furthermore we exchange the variables as, a4, to
w= pasv? 4 azogt + ag g, Ba = ag04, Ba = asagt.
Then equations (4.10) and (4.11) become ;
Us,9 =0, (4.24)
98,6 =0, (4.25)
respectively. Setting »
B = aias, - Pz= aia;l;
the equation (4.15) becomes
(298, — (M +A2))¢ = 0. (4.26)

Also we can see that the equation (4.6) is written as

[2'(1)8%(2(19,31 +98,) = (A + A2 = 1)) = @rV=1)?B5 wlp =0.  (4.27)

If we eliminate ¥, from (4.27) by using the equation (4.26), it can be written
as

[2w8%(21933 +1) — 2rv=1)*65 'w]p = 0. (4.28)
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We note that the equation (4.13) can be reduced to the same equation. Taking
into account the equations (4.26) and (4.28), the equation (4.5) can be reduced
to the equation

(Vs + P — %(/\1 A2 — 4))(’&953 + 9w+ = ()\1 A3)) — 4%@ =0. (4.29)

We can also see that the equations (4.9), (4.12) and (4.14) can be written as
the same equation (4.29). Finally, we put ;

= (mV/-1)"f5 "w, Y2 =w2
Then the equation (4.28) is equivalent to
1
[('0’71 - 2"'972)(5 - 19’11)‘_ Tlé = 0. (4.30)

Also the equation (4.29) is written as

1
[(1972 - Z(’\2 - )‘1) 1)("9’72 + - ()‘2 - )‘1)) 72(19’71 )('0’)’1 - 2012 - 1)]¢ = 0.
(4.31)
If we put
= 1, T2 =", 3 =79,
x4:ﬁ2a . \1'5 =/347 Te =’U,,,

then the theorem follows from the equations (4.23), (4.24), (4.25), (4.26), (4.30)
and (4.31).
‘ O

Corollary 4.20. The change of bariables (4.16) gives a diffeomorphism from
{(a1,...,a4,u,v) €R® | a; € R (i =1,...,4)} = 5;)\N x A to the domain
D1={((l?1, $6)|$16R>0(Z-—1 345) $2€R<0,IL‘6€R}

Proof. We should show that this gives bijection and the Jacobi determinant is
not zero, i.e.,

N

ap) - 5=(p) Qﬂ(p) %4 (p)
o(z1,- - -, Ts) _ : : : ‘
(p) = : : : # 0,
8(0,1, e G4 s U) Oz ' - Bag Oz 37:6'
dee(@) - 32(p) J(p) S (p)

for any p € {(a1,...,a4,u,v) €ER® | a; € Ryo (i = 1,...,4)}. Here |X| means
the determinant of X € M(6,R). As we see in the proof of the previous propo-
sition, this change of variables is the composition of the following change of
variables.

Stepl.
-1
Q1 = aias, Qg = 109 7, Q3 = 30y,
—_ /
a4 = aza;’, v = u, v = (v—u).
Here we can see this gives a bijection from {(ai,...,aq,u,v) € R® | a; €

Rso (i=1,...,4)} to {(ai,...,a4,u’,v") ERO | a; ER5p (i =1,...,4)}.
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Step2.

= = _ —1
B = ayas3, B2 = asay, B3 =aioz°,
Ba = 0120!4_1, w= a2a4v’2 -+ agazl + a;1a4, o =
Here we can see this gives a bijection from {(ai,...,a4,u/,v") € R® | a; €

R-o (ZZ 1,,4)} to {(,81,...,,84,w,u’) c RS ‘ Bi,w € R0 (Z= 1,...,4)}.
Step3.

z1 = B, Ty = (mv—1)28; 'w, T3 =w?,
x4 = Bo, x5 = P, 6 =1u'.

Here we can see this gives a bijection from {(8i,...,08s,w,u’) € R® | B, w €
Ryo (i = 1,...,4)} to {(ml,... z) € RO | z; € Ryo(i = 1,3,4,5),20 €

Rco, 76 € R}
Also it is not hard to see that

’ Os, 7)) |0

day,...,a4,u,0)

6(:1:1,...,136) 8(,81,...,64,w,u’) a(al,...,a4,u’,v')
1061, - - -, Ba, w, ') B(a, ..., aq,u,v") B(ai,...,a4,u,v)

for any p € {(a1,...,a4,u,v) €R® | a; € Rsg (i =1,...,4)}. Thus we have the
proposition. O

Pick up the differential equations (4.18) and (4.19). We take f(z2,73) asa -
solution of them. We take a function F(z2,x3) such that

f= m%x“()‘l A g

Then this F(z2,z3) satisfies
» 1
[z2 — 19952 (2045 — Op, + —2-()\1 — A —1))|F(z2,z3) =0, (4.32)

[273( 19 ’19952 + = ()\1 Ao — 1))(2’(993 — 'l%;z + %(/\1 — Ay — 1) + 1)
(4.33)
~Vag (Vs + 5 (Al A2) = D]F(z2,23) =

These are the differential equations for Horn’s hypergeometric function Hygp( % (M
A2 = 1), 2(A\1 — A2); 2, 23) (cf. [11]). Let $H10(a,d;x,y) be the solution space
of the system of the partial differential equations for Horn’s hypergeometric
function Hig(a, d; z,v), i.e

[2(20; — Py +a)(20; =y +a+ 1) — 9p(Fs +d—1)]f(z,y) =0,
ly — 9y(29, — 9y + a)f(z,y) = 0.

We can see more detailed properties of H10(a, d; z,y) in Appendix.

Definition 4.21. Let U C R™ be a domain. A function f(z) on U is called
rapidly decreasing on U zf it satzsﬁes,

sup |z* f(z)| < o0
zeU
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for any o = (0, ...,a,) € N*, where 2™ =z -- - 2.

Also a function f(z) on U ts called slowly increasing on U if there exists
N € N such that

sup(1 + |z[) V| f(2)| < oo
zeU

where |z| = \/z3+---+ a2 forz € U.

Theorem 4.22. The space C° (S(\N x A; It(X)) consists of the el-

: X1(0,1,1,0,0,0)
ements
’ NP2 43 (u-he)
T x2 T3 f(z2,z3),

for f(z,y) € Hio(3(M — A2 — 1), (A1 — A2);z,y). Here

T1 = 1020304,

25 = (rv/=1 )2(< (o - >2+(g§)2+(a_3)2)’

ax
-2
' a1a azas  aia
25 = (1_3(,,_u)2 4020 g)
asay @104 Q203
aias
. :1,'4 = ,
a204
o ajag
- a2a3’
T = U.
Thus we have
dim‘CCX:(o,1,1,o,o,o) (S([)\N X A; Ik(/\)) =4
In O3\ 1000 SM\N x A; Ik(X)), there is a rapidly decreasing function on

{(z2,...,2z6) | z2 € Reo,3,24,25 € Rso,26 € R} and it is unique up to
constant multiple.

Proof. This follows immediately from Proposition 4.19 and the argument above.
The second assertion follows from Appendix B and Thorem C.1. O

(ii) the case € = 0.
We investigate the space C° (S \N x A; I (X)), i.e, the case e = 0.

X1(0,1,0,0,0,0)
We introduce a new cooridinate system as below,

Iy = ai, T2 = az,

2 2 -2, 2 2\-1
z3 = a2 + a2v?, z4 = (ag” +az “v*) 7,
Ty =a3a41, T = U.

Lemma 4.23. The change of variables given above is the diffeomorphism from
{(al, .., G4, U, 'v) € R |a; € Ryg (z =1,...,4)} = S\N x A to the domain
{(.’171, .’1}6 I x; € R>0 (’L =1,. 5), Tg € R}

Proof. We can see that this is a bijection. Also it is not hard to see that
B(ml, ce ,336)

d(ay,...,aq,u,v) ‘

(p) #0,

for p € {(a1,...,a4,u,v) €ER6 | a; € Ry (i =1,...,4)} by direct computation.
O
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Then the systems of the differential equations in Proposition 4.17 are reduced
to the followings

Proposition 4.24. For k = 1,2, we consider the systems of the differential
equations in Proposition 4.17. Then by adding and substituting each differential
equations and multiplying some rational functions, these systems are written on
{(a1,...,a4,u,v) ER® | a; € R5g (i =1,...,4)} as follows.

(19:111 - ()‘1 - (4 - k)))('ﬂcu - >‘2)¢ =0, (434)
[1922 — (M + X -3+ k)Osy + Uy

+ 21V =1)%z5 %23 4+ Aa(M1 — (4 — k)¢ = 0, (4.35)
[4(92, +92,) — 2001 + Ao—1 + k)0 + 20, (436)
+ @2rvV=1)%z5 %23 + 20 (Mg + K)o = ’
(202, — \1)(202, — (A2 + k) =0, ' (4.37)
Vasd =0, (4.38)
Vued = 0. - (4.39)

Proof. By the equations (4.5) and (4.15), we have the new equation

62

57 + el — (4= )6 =o0.

[62, — (M + Az — 4+ k)da, + (a )
1

By the equation (4.8), we can eliminate the term 5 from the above equation,
" then it can be written as -

(Ya; = (M1 = (4 = K)))(Fa, = A2)¢ = 0. (4.40)
Next, from the equations (4.9) and (4.15), we have a new equation

[0y — (M1 + A2 —3+k)00, +9a, + (27 —1)2(a2 +a2v?)ay +,\2(/\1—(4 k)¢ =0,
(4.41)
as well. If we put ag = agas and oy = agazl, we have a new equation

(204, + (o720t — v)a%]qs =0

from the equation (4.10) and (4.11). Moreover if we put w = a;' + aq0?,

B3 = a3 and B4 = a4, the above equation is reduced to
95,6 = 0. | (4.42)

And the equation (4.13) becomes

[00(205, — (M + X2 — 1+ k) + 5 (2m/— )2B3waz 2] = 0. (4.43)

Also if we consider the sum of the equations (4.12) and (4.14), we have a new
equation

(202, — 2(A\1 + Az + k)P, + 202 + 20, + (2nv/=1)’whsa;” + 221 (A2 + k)¢ = 0.
: (4.44)
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By the equation (4.43), we can eliminate the term Bs3wa;? from (4.44). Then
we have '

(98 — Y — A1) (P8, — P — (A2 + k))p = 0. (4.45)

Hence if we put
z1 = a1, T2 = ag, z3 = B3w, (4.46)
T4 = Paw”t, z5 = P, Te = U, (4.47)

then we have the proposition from the equations (4.40), (4. 41) (4.42), (4.44),
(4.45) and (4.8). d

Let MB(v; x) be the solution space of the differential equation

2L 14 Spe) =o,

i.e., the solution space of the modified Bessel equation. We have dime 9MB(v; ) =
2. In MB(v; x), there is a series solution :
= (g
I = —_
»(®) Z m!T(v +m+1)
m=0
Also there is a solution as a slowly increasing function

T I—u(x) Iy(=)
sinvmw

K, (z) =

and any slowly increasing functlon in MB(v; z) are constant multiples of K, ().

Theorem 4.25. For the cases k = 1,2, C37 | (S)\N X A; Ix(X)) are
written as follows under the coordinate system,
1 = a1, T2 = a2,
T3 = aj + a3v?, zs = (a3° +az?v?) 7,
Ty = a;:,a;l, ‘ Tg = U.
(i) For k=1, C;?;(m o,o,o,O)(S(I)\N x A; I1(X)) consists of

N, M1fra=2? >\1+>\2 A2+1
2

zy’zy ' xgt f(27”»'2 V3)

for f(z) € MB(22=2=2; 7). Thus we have

X1(0,1,0,0,0,0)

‘dimcC (Sm\N x A4; () =2,

and there is a slowly increasing function on {(z1,...,26) | Z: € Rso(i =
,5), z6 € R} and it is unique up to constant multiple.
(m) Fork=2,C (S)\N x A; I())) consists of

X1(0,1,0,0,0,0)

: N, MFA2=lo Apbdgtl Ay 1
. 2 4 2 -
Czx?zy % g4 2 f2mzy "\/T3)
A1+Ag—1  Ap4Ag+1 _gﬁ

+C'z 2, T gy * oz, 2 g(2mzy 'y/as),
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where C,C’ € C, f(z) € MB(2=32=L; 1) and g(z) € SJT%(&"—’;ZL:;-; z). Thus
we have

dim¢ CXI(O,l,o,o,o,o)(S(I)\N x A; I () =
and there is a 2-dimensional subspace which consists of slowly mcreasmg func-
tions on {(x1,...,26) | z; € Rso (i =1,...,5), z6 € R}.

Proof. The solution space of the equation (4.34) consists of the elements

Ci1¢1(z2, x3, $4)wi‘1_(4_k) + Copo (a2, T3, 1) 2,2,

where C; are constants and ¢; are arbitrary functions for i = 1, 2. We determine
functions ¢; by the equation (4.35). Then these functions satisfy following
equations,
(92, — (A1 + X2 — 3 + k)0, + 20V =1)%z5 %23 + (A1 — 4+ k)(A2 + 1)]1 =0,
[92 2 — (A1 + A2 =3+ E)0, + 27V -1 )52 933‘+ (M =3+ k)A2]de = 0.

: +Ag—34k
We define the functions ¢ so that ¢; = :1:2 : @, for i = 1,2, then ¢} satisfy
following equations, .

M)m% =0,

23t g =o.

(92, — (2nz31 VE3)* + (
(92, — ((2mayy/a)? + (L

~ For some fixed 3, if we put z = (27zy 1,/:1:3), these equations are nothing but
modified Bessel equations

¢ 1d v?
— 4+ —— - (14 )¢, =0,
[dZ2+ZdZ ( +22)]¢Z
where 11 = -)-‘J—_’\;—s"'k and v, = )‘1)‘;& Hence the intersection of the
solution space of the equatlons (4.34) and (4.35) consist of functions written as
follows,

k]+>\§—3+k
C1Ci(x3, x4) f1(z2, $3)$)‘1 ~(4Ry

A1+Ap—3+k
+ Cala (23, 4) fo (2, T3)277 25 )

where C; are constants, (; are arbitrary functions and f; € MB(v; ; 2mzy 1\/53)
for.i=1,2. '

By the same argument, we can also see that the intersection of the solution
spaces of the equations (4.36) and (4.37) are written as follows,

A1+Ag—1+k A
D11 (1, x2)g1(w2, 23)T5  * zf

ApHAg—1+k  Ao+k
+ Dol (21, 72)g2(T2, T3)T3  * Ty ?

where D; are constants, {, are arbitrary functions and g; € 9B (y; ; 27z ' /Z3)

for i = 1,2. Here we put p; = 2=22H=Fk and gy, = J=Az=lok
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Note that MB(v; ) NMB(p; =) = {0} if v # p. Then intersections of the
solution spaces of the equations (4.34), (4.35), (4.36) and (4.37) are written as
follows. For k =1,

A14+A2—=2 Ajd+As  Ag+l 1
Ty 2 xg T omy® f(2mzy y/m3)

where f(z) € MB(21=32=2; 7). And for k =2,

xi\z

Ap+Ao—1  AjdArg+l A
S e —1
Czi?x, zs Tz, fQ2mzy /x3)
’ A1+Aa—1  Aj4Ag4l
o A—2 ) TR S X242 ~1
+ Clzi "z, zg * xy* T g(2mzy T \/T3),

where C,C" € C, f(z) € MB(21=32=1; 1) and g(z) € MB(=22=8; 7). O

4.3.2 The embeddings into the space (II)

We consider the embeddings of X3 (K = 1,2) into the spaces (II;) (i =
1,...,4) which are classified in Proposition 4.10. These spaces are isomorphic
0 C(0,0,61,62,0,65)) (S \G/K 5 Ir(X)). We consider the image of this space by
the map Z(jyy defined in Section 4.2. Here

(1,1,0) if the case (II),
(0,1,1) if the case (Il3),
(0,1, 0) if the case (II3),
(0,0,1) if the case (ILy).

(e1,€2,€3) =

We denote these space by

Cy, (Sap\N x A4; I(N) = Eup (Cy;,

X1(0,0,¢1,¢2,0,e3) 1(0,0,e1,£2,0,e3)

(San\G/K; Ix(})).

Proposition 4.26. The function space C° (Sap\N x A; Ix(X)) for

X1(0,0,e1,£2,0,e3)

k = 1,2 are equal to the solution spaces of the following systems of the differen-
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tial equations in C*(Sp)\N x A).

[92, = (A1 + A — 3+ k)P, + (2m/—_1)2(z—2)252
1

(4.48)
+ Xi(A2 + k) — (Ya, + Vas + Ya,)]e =0,
€2(Ya; + ey — (M1 + A2 =3 +k))p =0, (4.49)
0
8—u¢ =0, - (4.50)
8162¢ =0, (451)
2 292 \2 ag,, 0
[92; = M+ 22 =2+ K)da, + v =1)*(—=)*c2 + () 5
ax az’ Ou (4.52)

+(27T\/—_1)2('Z‘;1‘)251 + )‘l(/\Z + k) - ("9a3 + "9414)](1S = 07,

ag & _ _ J2% _
[a2 E® (Fay + Fag — (A1 + A2 — 2+ k) + 27V —1) 02a351(53 g1u)]¢ =0,
| (4.53)
1(Pay +Fay — (M + A2 —1+Kk)) + (95 — ﬁlu)aa—u](ﬁ =0, (4.54)
[92. — (A1 + Ag — 1+ k)9 +(@)276—2 |
= U o (4.55)
+ (2m/——1)2(2—z)2(53 — 1) — 0, + M2 + k)6 =0,
[(63 — slu)(ﬁas + 19(14 — ()\1 + )\2 -1+ k)) + El%ks = 0, (456)
102, = Oatde + k)da, + (2nV =DA%y
2 (4.57)

+ @rvV=IR(E) e —e1w)® + Ma + )6 =0,
3 ) :
[Fa; + Fay + Fag + Fay, — kA1 — (4 — k) A2]p = 0. (4.58)
Here ¢ € C®(S\N x A). ‘

Proof. As well as Proposition 4.17, these are obtained by the direct computation
from Lemma 4.12, Proposition 4.13 and Proposition 4.15. O

(i) The case (e1,e2,e3) = (1,1,0).
Theorem 4.27. When (e1,€3,e3) = (1,1,0), we have
cy (San\N x 4; Ir(N)) = {0},

Xi(0,0,1,1,0,0)

for k=1,2.

Proof. It is immediate from the equation (4.51). O
(ii) The case (g1,€2,e3) = (0,1,1).

Theorem 4.28. When (g1,£2,e3) = (0,1,1), the space C;?(O,O,O,I,O,;)(S(II)\N X

A; I(N) (k =1,2) are written as follows.
(i) If k = 1, we have

o (Sap\N x 4; 1Y) = {o}.

X1(0,0,0,1,0,1)

41



(ii) If k = 2, the space C° (Sap\N x A; I(X)) consists of

X1(0,0,0,1,0,1)

Az+Ai—1 1 Ajd+Agtl g .
zy 2 xizg 2z} f(2mxa)g(2mz3)

for f(z),g(x) € MB(i\-E—;‘-?i;x). Here we put
T1 =0a102,T2 = al“lag,a;g = Qa304,T4 = a§1a4.

Thus we have dimg C>°<<z)(o,o,o,1,o,1) (Sap\N x A; Iy(X)) = 4. There ezists a
slowly increasing function on the domain {(x1,...,z4,u) | ; € Rsg,u € R} in

ce (Sp\N x A; I(X)) and it is unique up to constant.

Xt(0,0,0,1,0,1)

~ Proof. We show the case k = 1 first. By the equations (4.49) and (4.56), we
have the new one,

[Pa; + Vay + Vag + Doy — 201 — 22 + 2]¢ = 0.

Comparing this equation with the equation (4.58), we can conclude that the

space O30 o4 (Sap\IV x A4; I1(X)) is equal to {0}. Next, we consider the
case k = 2. By the equation (4.50), we can eliminate the terms 5% from the

other differential equations. Then the equations in Proposition 4.26 are reduced

to the followings, :
[Pay 4+ Pay — (A1 + A2 — 1)]¢p =0,

[92, — (A1t+A2 = 1)da; + A1(A2 +2) ‘
+ (277\/__1)“11_2"% — (Yay + Fag + 9a,)]¢ = 0,
[92, — A1+ A2)Pa, + 271V =1)% + X1 (A2 + 2) = (a5 + Pa,)| = 0,
[Pas + Yoy — (A1 + X2+ 1)]¢ =0,
[92, — (A1 + Az + D)Vq, + (27v/—1)%a52a3 — Y0, + A1(X2 +2)]p = 0,
[92, — (A1 + A2 + 2)3q, + (27v=1)%a52a] + M1 (N2 + 2)]6 = 0.

We put

-1
T = a1a2, T2 = aq a2,

-1
T3 = a0y, Ty = Qg A4,

Then we can rewrite above differential equations as follows,

20, — (A1 + A2 — 1)) =0,
2925 — (A1 + A2 + 1)]¢ = 0,

Al =X —2 1
[02, = Oz, + 21V ~122)? — (F—57—)" = 716 =0,

A=A —2 1
[95, = Oeu + 21V =T24)? — (F—5"—=)" - Jl¢ =0.
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1 1
We take ¢’ as ¢ = 2z} ¢’. Then we can see that ¢’ satisfies following equations,

29z, — (A + A2 = 1)]¢" =0,
20+ —(>\1+>\2+1)]¢’=0

[9%, — (2mv~1z2)* + (———-—-) )¢ =0,
92, ((277\/_ w4)2 + (———-——)2)]
Then we can conclude that
(1, 2,23, T4) = a:fﬁ%r_l:cz wf%zﬂ 7f(2mc2) (27zx3),
where f,g € 931%(&‘—;‘2'—2; z). Hence we have the proposition. O

(iii) The case (e1,€2,€3) = (0,1,0).

Theorem 4.29. When (e1,e2,e3) = (0,1,0), the space C’;‘l’(o 0000 o)(S(H)\N x
A; I(N) (k=1,2) are written as follows.
(i) If k = 1, the space C;T<o,o,o,1,o,o)(S(II)\N x A; I1 (X)) consists of
A1+Ao—2 V
2 7 o) (@sea) 7 f(2ma)
for f(z) € MB(21=32=2; 7). Here we put

-1
I = a10a2,T2 = @y "G2,T3 = A3,T4 = Q4.

Thus we have dimcC' (Sap\N x A; I1(X)) = 2. There ezists a

Xt(o,o,o,1,o,o)
slowly increasing function on the domain {(x1,...,24,u) | z; € R>o,u € R} in
cx (Sup\N x A; I(X)) and it is unique up to constant.

X1(0,0,0,1,0,0)

i) If k = 2, the space C° Sap\N x A; Is(X)) consists of
(1)

X1(0,0,0,1,0,0)

1
(Cla;3 )" + Coxy* a2 t?) ><:;7:1 2 z3 f(2mas)

for f(x) € MB M=22=2. ) gnd Cy,Cy € C. Here z; (i =1...,4) are same as
2

().

Thus we have dimc CXL(O,O,O,I,O,O) (Sap)\N x A; Iy(X)) = 4. There exists a 2-
dimentional supspace of C3° 0.0.010, 0)(5(11}\N x A; Iy()\)) which consits of slowly -
increasing functions on {(z1,...,Z4,u) | z; € Rso,u € R}.

Proof. By the equation (4.50), we can eliminate the term aa—u‘ from the other
equations. Then the equations in Proposition 4.26 are reduced to the followings,

(92 — (AL + Ao — 4+ k)0a, + 27y =1 )2a72a2 + Xa(M — (4 — k))]é = 0,
[Fa, + Doy — (A1 + A2 — 3+ k)]¢ =0,
W2, — (M1 + A2 — 3+ k)Wa, + 2nv—1)%a7%a3 + Pa, + A2(M1 — (4 — k))]o =0,
(92, — (M + A2 — 1+ k)ag — Pay + A1(X2 + k)]p =0,
[(Jap— M) (Pay — (A2 +k))]¢ = 0.
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We put
— e _ -1
T1 = aiaz, T2 =aq az.

We take ¢’ as ¢ = xé ¢'. Then we have

AL+ Az —
e, - 2222223 F Ry (459)
A —(4—
92, — ((2may? + (22 BBy g (4.60)
02, — (A1 + A2 = 1+ k)bay — U, + A1(A2 + k)¢ =0, (4.61)
(9as — M) (Ba, — (g + k)¢’ = 0. (4.62)
The solution of (4.59) and (4.60) is
A1+X2—3+k

¢ (z1,%2,03,a4) = C(a3,a4)$1 f(2rzs), »

for an arbitrary function c(as,as) and f(z) € smas(w z). We solve
. the equations (4.61) and (4.62) to determine the function c(a3,04). Then we
can see that

(a3a4)’\2+1 for k=1,
c(a3‘, a'4) = C a)\2+1 A1 + Cy a’\l*l Az+2 for k =2

for some constants Cp,C2 € C. This concludes the proposition. O

4.3.3 The embeddings into the space (III)

We consider the embeddings of Xy » (k = 1,2) into the spaces type (IIL;) (i =
1,...,8) which are classified in Proposition 4.10. These spaces are isomorphic
to C' RU0.00,1,52,65 y(N\G/K; Ix())). We consider the image of this space by
the map Z(jpy defined in Section 4.2. Here

((1,1,1) if the case (IIIy),
(1,1,0) if the case (IIIo),
(1,0,1) if the case (III3),
(0,1,1) if the case (IIl4),
(1,0,0) if the case (III5),
(0,1,0) if the case (IIlg),
(0,0,1) . if the case (IIl7),
[(0,0,0) if the case (IIls).

(61762a€3) =

We denote the image of =771y by

C;T(O,O,O'El,tg,e;;) (45 1e(N) = E(HI) (C)o(?(07070:51y52,53)) (N\G/K; I (N)))-

Proposition 4.30. The space C° (4; I (X)) is equal to the solution

X1(0,0,0,e1,69,3)

space of the following system of the differential equations on C*>°(A).
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[9a, — (A1 + A2 + k — 3)9a, + (2m/_-1z—2)25‘l
1

(4.63)
- (1902 + 190»3 + 190»4) + )‘1(’\2 + k)]¢ =0,
612m/—~1gz(19a1 F0,— M+ A+k—3)d=0,  (4.64)
1. .
' 6182¢ = O, (4.65)
[9a; — (A1 + Az + & — 2)00y +(20vV=12)2e; + (217 —123)2¢,
a as (4.66)
= (Yag +Vay) + M(A2 + k)]0 =0,
6227r\/——lg§(19a2 F 00 — A1+ A2+ —2))6 =0, (4.67)
- :
v g2e3¢p =0, 7 (4.68)
[92, — A+ Ao + k — 1), + (27r\/—1Z—3)252
2
(4.69)
+ (zm/:—lg-%)%g —Pa, + MMz + )6 =0,
3 .
s3zm/_—1z—4(«9a3 90, — (A +do+k—1))p=0, (4.70)
3

92, — (1 + 22 + Ko, + 2rvV =125 ea + Mo + R)I6 =0, (471)
3
["-9a1 + ’l9a2 + 19,13 + ’19,14 — kA — (4 - k)/\2]¢ =0. (4.72)
Here ¢ € C=(A).

Proof. As well as Proposition 4.17 and Proposition 4.26, this system of differ-
ential equations are obtained by the direct computation by using Lemma 4.12,

Proposition 4.13 and Proposition 4.16. : O
Theorem 4.31. The space C;?(O,O,O,tl,eg,s;;)(A; I:(\)) are written as follows.
(i) When
(1,1,1)
(51752763) = (1,1,0) )
(0,1,1)
then we have
03(010,0’51’52‘53) (A; Ik(A)) = {0}'
(i) When (e1,e2,€3) = (1,0,1), the space CF; (A;Ix(X)) consists of
followings. If k =1, we have CF | (A; (V) ={0}. If k =2, the
space C2° (A;I2(N)) consists of

X1(0,0,0,1,0,1)

1 Aidrg—1 1 Ap+Ag+l
rixy * zimy f(27r‘:c1)g(27rx3>)

for f(z), g(z) € MB(21=32=2;1). Here we put

as Qg4
1 = —,%2 = A102,T3 = —, T4 = A304.
a asg
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(iii)

()

(v)

Thus we have dim¢ C2° (A;I;(N\)) = 4. There is a 1-dimensional

X1(0,0,0,1,0,1) )
subspace of 0;7(0,0,0,1, 011)(A; I2(N\)) which consists slowly increasing func-

tions on {(1,...,%4) | z; € Rso,2=1,...,4}.
When (e1,€2,e3) = (1,0,0), the space C;?(O,O,O,I,O,O)(A; I (M) consists of
_ Az+1, Az+1 .
m%m; gtk 3f(27r:c1) y x32+ :c42+ { ifk=1,
Clwg\,erlxi‘l + Cza:g‘l_lxi‘z“ if k=2,

for f(z) € MB(2=22tk=4. 2} and C1,C, € C. Here we put

as i

T1 = —,T2 = 0102,T3 = a3, T4 = (4.

ai
Thus if k = 1, we have dim¢ CF7 ) (A;11(N)) = 2. There is a 1-
dimensional subspace of C0 (A;I1 (X)) which consists slowly in-
creasing functions on {(z1,...,z4) | 2; € Ryg,i=1,...,4}.
Also if k = 2, we have dimg 0;7(0,0,0,1,0,0) (A;I2(M\)) = 4. There is a 2-

dimensional subspace of (A;I2(N\)) which consists slowly in-

c
X1(0,0,0,1,0,0)

creasing functions on {(x1,...,24) | z; € Rso,i=1,...,4}.
When (e1,€2,€3) = (0,1,0), the space C3; . 5 (A;Ix(X)) consists of

followings. We put
as
1 = a1,T2 = ZL—,CB3 = a20a3,T4 = Agq.
2

Ifk=1,
1 ApFdg+k—2
a*ziey ¢ @yt f(2m)
for f(z) € mas(&:-;r—?;:c). Thus we have dim¢ C37 | (A5 11(})) =
2. There is a 1-dimensional subspace of C;?(o,o,o,o, L0 (A; I(N)) which con-
sists slowly increasing functions on {(z1,...,24) | z; € Rso,i=1,...,4}.
Also if k =2,

1 A1+Ao+k—2 1 Ap+Ao+k—2 .
Cx’l\l‘zmgmg,l 5 2322 g (2m22) + C'2 el x, : 31 go (2ms)
for C,C"' € C, g1 € Sﬂ%(%,x) and g € EDI‘B(A-‘—;ﬁ;:c). Thus
we have dim¢ C;?(o,o,o,o,l,o)‘(A; I;(N)) = 4. There is a 1-dimensional sub(—
space of O30 0 o (A; I(X)) which consists slowly increasing functions

on {(z1,...,24) | i € Rso,i =1,...,4}.

When (91,92,93) = (0,0,1), the space CF (A; Ix(X)) consists of

X1(0,0,0,0,0,1)

1 AztAg+k—1

Az A2 .
ryix ifk=1,
ziz, *  g(2mz3) X { 12 /

2
Clx’l\zxé\l“l + ng’l\lxg‘”l ifk =2,
for g(z) € EDIZB(AI_—;‘Z_’“-;.%) and C1,Cs € C. Here we put

as
1 =ai,r2 = az,r3 = a—,$4 = a304.
3
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Thus if k = 1, we have dime G556, (4 H(Y)) = 2. There is a 1-

dimensional subspace of C. (A; I (X)) which consists slowly in-

Xz(o,o,o,o,o,n

creasing functions on {(z1,...,24) | 2; € Ryg,i=1,...,4}.
Also if k = 2, we have dimc Ce (4; () = 4. There is a 2-

X1(0,0,0,0,0,1)

dimensional subspace of C. (0,0,0,0,0 1)(A I(X)) which consists slowly in-

creasing functions on {(x1,...,24) | ;i € Ryo,4=1,...,4}.
(vi) When (e1,e2,e3) = (0,0,0), the space Crro0.0.00.0 (A5 Ik(X)) consists of
the followings. If k =1,
C’la1 a2 a3 a4 +C2a1 ag‘l —2 ’\2+1 >‘2+1 '
+C3a)\1—3 )\2+1 /\2+1 A2+1+C4ai§2a§\2aé\1—1a22+1’

forC;eC,i=1,...,4.
Also if k = 2,

A A1—2 A1—-1 /\ +1 /\
Cira)?ay a31a4 + Coay* Tay' " ag? !
A1—2 /\2+1 A2+1 Al )\1 1 /\1 1 /\2+2
+ Ca) + Oyl e

)\——2>\+1)\ —1_X242 A1—2_ A 2)\+2)\+2
+05a11 a22 q31 a42 +Cﬁa11 a21 (132 a42

forC;eC,i=1,...,6.

Proof. (i) It is immediately follows from equations (4.65) and (4.68).
The remainig cases are show by solving the following differential equations.
(ii) If we put z; = %f,wg = a1a2,%T3 = Z—:,u = agay, differential equations
are written as

1
92, — 19301—10\1 +Aa+k—3) A+ A +Ek—1)
+ (271’\/ —1:1:1)2 + ()\1 +k—-3)(A2+ 1)]¢ =0,
[2’(99,,2 — (/\1 + X+ k— 3)]¢ =0,
1
(92, — oy — Z(()‘l + A+ k)2 H+1) + 20V =1z3)2 + M (Mg + k)| =
' [202, — (A1 + A2+ &k —1)]¢ =0,
204, + 204, — kA1 — (4 — k) A2]o =
(iii) If we put z; = g—f,:@ = aiaz, T3 = as, Ty = ay, differential equations
are written as
1
9%, = Vo= 3O+ A2 + B =B+ D2 +k— 1)

+ (2rvV=1z1)2 + (M + k= 3) (A2 +1)]p =0,
20z, — (M1 + A2+ k—3)]¢p =0,
(199:3 - (/\1 +k— 3))("9:03 - ()‘2 + 1))¢'= 07
(Fzg — A1) (Pzy — (A2 + k) =0,
[P2s + Oz, + (1 — k)AL + (k= 3)Aa + (k — 3)]¢p = 0,
(205, + Py + Fuy, — kA1 — (4 — k)A2]p = 0.
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(iv) If we put 1 = a1,z2 = %,(1)3 = ag0a3,T4 = a4, differential equations
are written as

2y — M1+ (k= 4))) (02, — A2)p =0,
(62, — O, — i()\l o4k =2+ As + k)

+ (2mV~1z3)? — 9y + Mi(A2 + k)¢ =0,
(2025 — (A1 + A2 + k —2))p =0,
(Fzy — A1) (Ve — (A2 + k)9 =0,
[Oay + 20z, + D0y — kA1 — (4= k)A]6 = 0.

(v) If we put 21 = a1, 22 = ag,z3 = %:-, T4 = agay, differential equations are
written as

(19561 - (’\1 -4+ k))(ﬂml - ’\2)¢ = Oa
(22— O = D)z — Oz = L+ E))$ =0,
[92, — Bax — (O + 2 + ) 4+ 1) + 2y "Tz5)? + M(hs + Bl =0,

[219;54 — ()\1 + X+ k— 1)]¢ =0,
[’191;1 + ’193;2 + 2193;4 — kX1 — (4 - k)/\2]¢ =0.

(vi) Differential equations are written as

(Far — (M1 = (k= 4))) (90, = A2)¢ =0,

[92, — (A1 4 A2 + k — 2)0a, — (Fag + Ya,) + M(D2 + K)]¢ =0,
(02, — (A1 + A2 + k — 1)y — Ya, + M (X2 + K)]¢ =0,
(P, — A1) (0, — (A2 + k) =0,

[9a;, + Py + Vay + Ja, — kA1 — (4 — k)A2]ép = 0.

Appendix

A The table of dimentions of generalized Whit-
taker functions of GL(4,R)

‘We summarize the dimensions of generalized Whittaker functions of GL(4,R)
as the table below. The notations are same as in Section 4. The first row of the
table describes the basis of the space of generalized Whittaker functions. The
second row describes the dimensions and the third row the dimensions of the
spaces of functions which satisfy the growth conditions. For detailed conditions,
see Section 4.

(i) Generalized Whittaker functions for Xy .
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L| I |IL |II, | II3 I14
basis 0O |2;B | 0 0 | 2B | B
dim 0 2 0 0 2 2 |
dm®#™ [0 ] 1 Jo o] 1 1
oI, | Il | 1103 | III, | III5 | IlIg | IILI; | IIlg
0 0 0 0O |28 | 9B | MB | 22
0 0 0 0 2 2 2 4
0 0 0 0 1 1 1 4
(ii) Generalized Whittaker functions for X j.

I I, I II, I 114
basis Hio | MB+IMB | 0 | MB x MB | (z* + °)MB | (z* + z°)MB
dim 4 4 0 4 4 4

dim®°™"*" | 1 2 0 1 2 2
I, | 111, 1115 111, 1115 IIg
0 0 | MBxMB| 0 | (z*+2°)MB | MB + MB
0 0 4 0 |- 4 4 ’
0 0 1 0 2 2
, 1117 11
(z* + 2P)MB | z*
4 6
2 6
B The multiplicity one theorem for Horn’s hy-

pergeometric functions

We consider asymptotic behaviors at the infinity of Horn’s hypergeometric func-
tions for the purpose of the application to the multiplicity theorem for general-
ized Whittaker models.

Let P;(z) and Q;(z) are nonzero polynomials of variables z = (1, . ..

i=1,..

of the system of linear partial differential equations

Here 9; = :cla

Pz(s) =

for s € R™, Ag, By € R”, ¢k,d; € C and ( s
in R™. We also assume P;(s), Q;(s + e;) are relatively prime for i = 1,..
,0) (1 in the ith position).

Here e; = (0, ..

and ¥ =

.,0,1,0,.

[z:P;(0) —
(7917

)4

1Ak s) —

k=1

Qi(9))f(z) =0,

ci)a

7 =

1,...,n.

, Zp,) for

.,n. Then the Horn’s hypergeometric functions are defined as solutions

(B1)

.»¥y). In this note, we assume that P; and Q;
can be decomposed by products of linear factors, i.e.,

q
Qi(s :H Bla
=1

) denote the natural inner product

., M.

We con51der the followmg system of difference equations assoc1ated with the
system of differential equations (B.1),

Pi(—(s+e:))p(s +e:) = Qi(—s
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Remark B.1. Let ¢ be a solution of the system of difference equations (32)
We consider the following integral,

f@) = [ o)~ ds.

Then under the following assumptions, we can see that f(z) is a solution of
the system of differential equations (B.1).

1. For any i = 1,...,n, the translation of the contour C with respect to the
basis e; is homologically equivalent to C in the complement of the set of
the singularities of the integrand ¢(s) in C™.

2. The integral converges absolutely and it can be differentiated with respect
to « sufficiently many times.

We put

Theorem B.2 (Ore [18], Sato [25], Sadykov [24]). 1. The system of differ-
ence equations (B.2) is solvable if and only if

. 'Ri(s+e€;)R;(s) = Rj(s + e'i)Ri(s), ih,j=1,...,n. (B.3)

2. If the system (B.2) is solvable, then its solution is unique up to an arbitrary
periodic function 1(s) with respect to e;, i.e.,
Y(s+ei) =P(s),

fori=1,...,n. Furthermore, there ezistp’,q’ €N, A},Bj e R" 1<k < -
P, 1<1<¢), ¢, djeC(1<k<p,1<I<¢)andt;eR(i=1,...,n)
such that the general solution of (B.2) is written as follows,

LI TBL) —d))
P (A0 )

8(s) =t

where t=° =71 .- -t7°» and v(s) is an arbitrary periodic function satis-
fying (s + e;) = ¥(s).

We put an assumption as follows for the multiplicity theorem.
(A). The system of difference equations (B.2) is solvable, i.e., the condition
(B.3) is satisfied and we can choose a solution,

sy=t"° H?I:l F((B{,,g) _ d;)
¢(s) t‘ ()

which satisfies following conditions;

(i) We have the inequality,

’ ’

(B}l = D (A s) =Y lsil
1= =1

1 ; k=1

for s € R™.
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(ii) The function ¢(s) has no zero if each Re(s;) are sufficiently large for
t=1,...,n.

Remark B.3. We consider the integral

o1+v—=Too On+v/—T1oo
f@ = [ [ o(s)a* ds,
o1—+v/—1co on—+/—100

for appropriate o; € R i = 1,...,n. Under the assumption (A)-(i), it follows
that the integral is absolutely convergent in the set {z € R™ | (t121,...,tnTn) €
(Rx>0)"}-

The following theorem is a generalization of the theorem of Diaconu and Gold-
feld (Theorem 6.1.6 in [5])

Theorem B.4 (Multiplicity one). Suppose that the system of difference equa-
tions (B.2) associated with the one of differential equations (B.1) satisfies the
“assumption (A). Let f(x) be a solution of the system (B.1) which satisfies the
growth condition

sup |z¥f(tz)] < +o0
z€(R>0)™

for sufficiently large integers a; € N, i = 1,...,n. Then it is unique up to
constant multiple. Here z* = x7*--- 22" and tz = (t121,. .., tnTn).

| Proof. We consider the Mellin transform of f(tz) as the function of z,

M(f,s] = /ooo fe /Ooo ftx)z*~t da.

This integral converges absolutely and M(f, s] is analytic function of s if each
Re(s;) is sufficiently large by the assumption of f(z). Changing the variables
to tx = (t121,- -+ ,tnTn), then we have

7 oo totoo
M(f,s] = t“s/(; /0 f(z)z* ' da.

By the growth condition of f(z), we have

-1

t; “oo t-loo ak
/0 _ /0 %f(:;c)scs—1 dx
1

% tl_loo t,, oo ak L
= (-1 / / T z°7 dzx,
v [ RRECr -

by integration by parts for i = 1,...,n. Recall that f(x) satisfies the system of
the partial differential equations (B.1), then we have the system of the difference
equations for M(f,s|,

Pi(—(s+e))M[f,s +e] = Qi(—s)M[f,s] i=1,...,n.

Hence by Theorem B.2, there is a periodic function 1(s) and we have

1

DB —d) o (57 5
i'zlr((A;c,@_c;)w(s)_/o : /0 f(z)z* " da. (B.4)
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By Stirling’s formula and the assumption (4)-(i), we obtain the estimate for
Re(s;) >0 (i=1,...,n),

[ T(Biys) —di) _ RN . |
P T((Ak,s) — ci) =0 (exp( 5 ;II, (Sz)l)) as lem(sz)l s oo,

Also by the Riemann-Lebesgue theorem, we have

i=1

n
M[f,s] >0 as Z]Im(si)| — +o00.
. i=1
Combining these estimates, we obtain the asymptotic behaviour of the periodic
function ’

$(s) = Ofexp(5mltm(s1))), (85)

as Im(s;) — oo and the other s; (i # j) are fixed. The right hand side of
the equation (B.4) is the analytic function of s when Re(s;) (1 = 1,...,n)
are sufficiently large. Thus if we recall that the assumption (A)-(ii) and the
periodicy of ¥(s), we can see that 1(s) is an entire function. We put z; =
exp 2my/—1s; for 4 =1,...,n. And we consider the Laurant expansion of ¢(s)
with respect to 21, '

o0
1
W)= D sz, .00 m)2E
k=—oc0
Here cg)(SQ, ...,8p) are periodic and entire functions for (ss,...,s,) € C* L.
We write s; = 0;++v/—17; for 05,7 € R, i =1,...,n. We consider an integration

/1 [v(s)|? do; = i |c,(cl,)(32, <o+, 80)|? exp(—4rkT;) |
0

k=—o00

> Icﬁl)(sm ovy 8n)|? exp(—4rtr;)

for every t = 0,%1,+2,.... However the estimate (B.5) tells us that there exist
constants M; € R and we have

‘ 1
exp(rlni) > M; /0 p(s) 2 do

for sufficiently large 7;. Thus we have Cgl)(SQ, cooy8p) =0fort = +1,£2,....

The remaining coefficient cgl) (s2,-..,8y) is also the periodic and entire functions

for (sa,...,8,) € C*~1. Hence we apply the same argument for C(()l)(SQ, . eeySn)
with respect to s3. And also we can proceed inductively for i = 3,...,n. Thus
we can conclude 1(s) must be a constant. This completes the proof of the
theorem. O

C Horn’s hypergeometric function Hy

We give some facts about Horn’s two variables hypergeometric function Hjg.
~Horn’s hypergeometric function Hig is the hypergeometric seires defined as fol-
lows,

- (a)Qm—n m, n
Hio(a,d; z,y) = Y @i ¥
m=0,n=0 mE
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Here the symbol (a), means the Pochhammer symbol, ie., (a), = a(a +
1)---(a+ (m—1)) for a € C and m € N. It is not hard to see that this power
series satisfies the system of hypergeometric partial differential equations,

{2(20, — 9y +a)(205 — 9y + a+ 1) — 9u(95 +d — 1)}d(z,y) = 0,
{y —9,(20, — 9, + a)}¢(z,y) = 0.

It is known that the dimension of the solution space is 4 (cf. [2]). We define
another convergent series '

(C.1)

H d: _ 5 (-ym*z
10(@, 3 T,Y) = Z '(a+ 1)m+2n(d)nm!n!$

m=0,n=0

m, n

Y.

Then the basis of the solution space are written by the power series below,

Hio(a,d; z,y)
y~ 1 Hyo(a — 2d + 2, —d + 2; x,7),
2*Hio(a, d; z,2%),
2%y~ o (a — 2d + 3, —d + 2; z, 2%y).

The system of hypergeometric differential equations (C.1) has the solution
which has the Mellin-Barnes integral representation. This is written as follows,

o(z,y) =
o1+v=Ioo poa++v/—Ioco '
/ / " D(51)T(51~283—a)T(s3)T (s3—d+1)(—z)~*1y=* ds; dss.
oc1—v—1loo Joz—v/—=1co

Here 0y € Rand 05 € R satisfy the conditions, o1 > 0, o2 > max{0, Re(d — 1)}
and 01 — 202 > Re(a). This integral converges absolutely for € R<o and
TES RZO' )

Theorem C.1. If f(z,y) is a solution of the system (C.1) which satisfies that

sup |z*y*? f(—z,y)| < +o0

mvyG]RZO

for sufficiently large a1, as € N, then

f(z,y) =
vV oo poptyToo
cf / T(51) (51283 —a)T(s2) D (s3—d+1) (=) "1y~ ds1 dsa,
o1—v—1oo Joz—v/—1co

for some constant C.

Proof. For
o(z,y) =
g1+v/—1oo  pozt+v—TIoo
/ / [(s1)T(s1—283—a)T'(s2)[(s2a—d+1)(—x) "**y~°2 dsy dsa,
o1—v—1oo Jog—v/—1co
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it is easy to see that ¢ satisfies the assumptions of Theorem B.4. Hence we
only need to check that ¢ satisfies the growth condition. If we write a complex
number s = ¢ + +/—17, we have

2= = Ja .
Thus we have the inequality,
l6(z,y)| < Mla|™ |y|~2,

for £ € R<p and y € R>p. Here the constant

o1+v—=1oo por+v/—loo
M= / / T(s1)T(s1 — 252 — a)T'(s2)T'(s2 — d + 1) dsy dsa| .
g _

1—\/—-190 0‘2—-\/—100

We can choose o1 and o3 as g1 > 0, o2 > max{0,Re(d — 1)} and o7 — 202 >
Re(a). Thus ¢(z,y) satisfies the growth condition. : (]
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