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Chapter 1

Introduction

During the last two decades, the discovery of Box and Ball systems (BBS) [1]
and of the ultradiscretization procedure [2] had a great impact on the study
of the integrable systems. The BBS is a cellular automaton that consists of
an infinite sequence of boxes and a finite amount of balls and distinguishes
states by means of existence/non-existence of balls in each box. The time
evolution of the BBS is described by the following procedure:

1. Starting from the left, pick up the ball in the box and put it into the
nearest right empty box.

2. Skip the balls already moved in this time evolution.
3. Finish the time evolution when all balls have been moved.

Figure 1.1 shows an example of the time evolution of the BBS. Even though
the states are binary-valued, blocks of balls behave like solitons. Cellular
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Figure 1.1: An example of time evolution of BBS



automata with such behavior are called soliton cellular automata. Further-
more, the BBS has an infinite amount of conserved quantltles [3], like most
ordinary soliton equations.

By introducing the dependent variable B; to represent the state of the
box at site 7 and time ¢ and defining B;‘: = 1 when there is a ball in the box
and B; = 0 when not, the time evolution rule is rewritten as

Bi*! = min (1~ B, Z (B, - BL)) (1.1)

n=—oo

and B; is required to satisfy the following boundary conditions:
B; =0 for |j| >0, : (1.2)
which means that the number of balls is finite.

The ultradiscretization is a limiting procedure used to relate discrete soli-
ton equations to soliton cellular automata and is defined as follows:

1. Transform the dependent variables and parameters by exponential func-
tions, upon introduction of a parameter ¢, for example a = e?/¢.

2. Take the logarithm of each side of the equation and take the limit
€ — 0. Then, by means of the identity

li_)m elog(e?® + ¢B/%) = max(A, B), (1.3)

the operators + and X are replaced with max and + respectively.

The time evolution rule of the BBS (1.1) is obtained by ultradiscretizing the
discrete KAV equation [2].

The BBS has extensions such as variable capacity of boxes, several kinds
of balls [4] and a carrier with limited capacity [5] and these varieties are also
obtained by ultradiscretizing the discrete soliton equations. It is therefore
assumed that the ultradiscrete systems preserve the main characteristics of
integrability and that finding ultradiscrete analogues of the ideas for the
ordinary soliton equations is a road map to reveal structures of the soliton
cellular automata.

A procedure to obtain a new solution of a soliton equation from a given
one is known under the name of a Béacklund transformation and is generally
expressed in the form of differential equations. The ultradiscrete analogue
of the Bécklund transformation for the KdV equation in the case of the
ultradiscrete KdV equation is presented in [6].
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The fact that soliton solutions are expressed as determinants and that
the equations themselves are indeed determinantal identities, is the main
paradigm of soliton theory. Takahashi and Hirota presented an approach
based on so-called “permanent type solutions” [7] (which are expressed as
signature-free Casorati determinants) to discuss particular solutions of ultra-
discrete systems. Nagai presented identities for permanent type solutions,
which can be considered as ultradiscrete analogues of Pliicker relations for
determinants in [8].

In this thesis, we propose another approach by means of the ultradiscrete
analogue of the vertex operator, which is an operator representation of the
Bécklund transformation and maps N — 1-soliton solutions to N-soliton ones.
The approach is believed to be closely related to certain types of symmetries
for this system because in fact, the vertex operator approach is closely re-
lated to the existence of certain symmetry algebras for integrable systems.
In chapter 2, we propose the vertex operator for the ultradiscrete KdV equa-
tion. In chapter 3, we propose a vertex operator for the non-autonomous
ultradiscrete KP equation, which is an extension of the ultradiscrete KdV
equation. ’

Recently, ultradiscrete systems have drawn increasing interest due to the
establishment of relationships to other mathematical topics. Mada et al.
solved the initial value problem of the BBS by means of combinatorial tech-
niques in [9]. The fundamental period of the BBS with the periodic bound-
ary condition is found by means of an algebraic geometrical approach in [10].
The dynamics of the BBS is described by representation theory in [11]. It
is therefore fruitful to clarify the symmetries and the algebraic structure of
ultradiscrete soliton equations, as was done for the continuous ones.

However, by definition (1.1), we can obtain the time evolution of arbitrary
initial states as long as they satisfy the boundary condition (1.2). Figures
1.2 and 1.3 show time evolutions for this system when the initial values
are not limited to {0,1}. Travelling waves with various values, which are
not traditional soliton solutions, are observed in these time evolutions, in
addition to blocks of ‘1”s (solitons).

In chapter 4, we deal with such solutions. We first propose a class of
solutions which can be “backgrounds” for solitons, an extension presented
in [12]. "We prove that we can apply the vertex operator to these solutions
and give explicit formulae for solitons blended with backgrounds such as
in Figure 1.2 and 1.3. This approach is expected to lead to a solution of
the initial value problem for these equations because of the observation that
most integer-valued initial states split into solitons and backgrounds under
the time evolutions.
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Chapter 2

Vertex operator for the
ultradiscrete KdV equation

2.1 Introduction

In this chapter, we propose an ultradiscrete analogue of the vertex operator
in the case of the ultradiscrete KdV equation. In section 2 this operator is
introduced and in section 3 we prove that the functions generated by this
operator indeed solve the ultradiscrete KdV equation. In section 4 we give
some examples for the action of the vertex operator in the language of the
Box and Ball System.

2.1.1 KdV hierarchy and the vertex operator

The KdV hierarchy is a series of partial differential equations for u = u(z +
t1,t3,ts5, .. ) given by

0 2 —
su= 1P (PY?)s)  (1=1,3,5,...), (2.1)

for
P=¢§+u. (2.2)

Here, (A)»o is non-negative part of the pseudo-differential operator A =
Yoo a7k fe

(A0 =Y | 23)



and 0 = %.
By substituting
2
u = Er) logf (2.4)

and setting some boundary conditions, the KdV hierarchy (2.1) is trans-
formed into the series of bilinear forms, for example:

(Df —4D1Ds) f - f =0, (2.5)

which is the bilinear form of the KdV equation. Here, D?Df 7 - 7 (Hirota
derivative) is defined as '

@ 9B
3 5l 0+t

DeDSf - f = (2.6)

s=0
for s = (81, 83,85, .. )

The vertex operator of the KAV hierarchy is given in the form of an
infinitesimal transformation:

1 1 0
X(p) = exp (2 Zp2k+1t2k+1> exp ( 22 %%+ 1% Dtgr s 1) . (27)

k=0

which was first presented in [13]. The exponent of this operator maps N — 1-
soliton sclutions to N-soliton ones and all soliton solutions are generated by
repeated application. It should be noted that X(py)? = 0 ie. enXen) =
1+ cnyXi(py) indeed.

2.1.2 Discrete KdV equation

The bilinear form of the discrete KAV equation [14] is written as

PRI = R+ (2 = D (28)
By takinz a continuum limit, (2.8) is transformed into the bilinear form of
the KdV equation (2.5).

The N-soliton solution of (2.8) is expressed as the Casorati determinant
[15]:
b1 P12 ... PN
P21 P22 ... PanN
i Jt R : . P (2'9)

ON1 ON2 ... ONN



where ¢y is the function of ¢, j written as

Gy =1+ (=1) e gl (2.10)
and the parameters ¢;,w; (¢ = 1,..., N) satisfy the dispersion relation
2 _ . 2
2 _ q; — W
= 55— 2.11
=T (211)

2.1.3 Ultradiscrete KdV equation and Box and Ball
System

By assuming r > 1, substituting
fi=efile, r=efe (2.12)

into f; and r in (2.8) and taking the ultradiscrete limit € — 0, we obtain the
ultradiscrete KAV equation:

F}+ FiY =max(Fj** + F},, —2R, F;"' + Fif)  (R>0). (2.13)

By means of the dependent variable transformation

1
By = L (F 4+ Flyy - FH - FY) 2.14)
and boundary condition
Bi=0 for|j| >0, (2.15)

the ultradiscrete KdV equation (2.13) is transformed into

B! = min (R - B, Z (Bt — Bt ) (2.16)

n=-—0oo

which is nothing but the time evolution of the BBS.

2.2 Vertex operator for the ultradiscrete KdV
equation

First, we define the vertex operator and consider the functions generated by
this operator.



Definition 2.1 The function with 2N parameters F(Qu,...,Qn;C1,...,Cy)
and the vertex operator X are defined as follows:

1. The function F(;) is defined as:

F(;)=0. | (2.17)

2. The vertex operator X depends on two parameters Q1 > 0 and C1, and
maps the function F(;) to

X(Q1,Ch)F(;) := max(0,2m). (2.18)
where my s the function of t,j written as
m = C1 = jfh +tQh. (2.19)
Accordingly, F(Q1;C1) is defined as:

F(Q1;Ch) = X(Qu, C1)F(;). (2.20)

3. For general N > 1, the vertex operator X maps a function
F(Q1,...,Qn-1;C1,...,Cn-1) (written as F(Q'; C") for brevity) to the
function written as: '

X(Qn,Cn)F(Q';C’) :=max (F(Q';C")),2nx + F(Q'; C' — Al))
= F(Ql, . ,QN_l, QN; Cl, e 7CN—1a ON)

(2.21)
where
mi = Ci — j8% +1Q; , (2.22)
v="(A1N,. .., AN_1N) (2.23)
A;; = 2min(Qs, Q;) (2.24)
and the parameters Q;, Q; satisfy the dispersion relation:
Q; = min(R, Qs), (2.25)

which is the ultradiscretization of (2.11).
We denote F(Q1,...,Qn;Ch,...,Cn) = F(Q; C) for brevity again.
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The parameters @y and Cy in the vertex operator X are in fact the
amplitude and phase parameter of the new soliton, inserted by the operator.
The definition (2.21) indicates that all pre-existing solitons, described by
F(Q'; C"), have their phases shifted by inserting a new soliton. The phase
shifts correspond to the contribution of the shift operator in (2.7).

Here we present the basic properties of the operator X and the corre-
sponding function F'.

Proposition 2.2 The action of the vertex operators is commutative.

Proof We calculate X (Qp, Cy) X (Qq, Co) F(Q; C) directly following the def-
inition (2.21). |
X (Q, Ct) X (Qa, Ca) F(Q; C) = max (F(Q; C),2m, + F(Q; C — Ay),
20+ F(Q;C — Au), 200 + 2my — 24p0 + F(Q; C — Ay — Ay)) (2.26)

From this relation it is clear that interchanging the subscripts a and b does
not change its overall value.

Rewriting this proposition in the language of the function F, yields the fol-
lowing corollary: ' ’

Corollary 2.3 The function F(Q; C) is invariant under the permutation of
their parameters, i.e.:

F(Q1>~-wQN;Cl,---,CN)

‘ 2.27
= F(Qo); - -+, Qov); Co(1), - - -, Covy) (0 € S). (2.27)

2.3 Recursive representation of solutions for
the ultradiscrete KdV equation

Let us prove that these functions are indeed solutions of the ultradiscrete
KdV equation, by means of the recursive form (2.21). This property indicates
that the vertex operator defined in (2.21) is nothing but the operator, well
known from soliton theory, which maps an N-soliton solution to an N + 1-
soliton solution.

Theorem 2.4 The function F(Q;C) solves the ultradiscrete KdV equation
F} + Fi} =max(Fj? + F},, —2R, F/" + FiIl)  (R>0). (2.28)

J Jj+1
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Proof By virtue of corollary 2.3, we can fix the labels of the parameters

Qn2Qn12>...2012>0 (2:29)

without loss of generality. By virtue of this ordering, the phase shifts in
definition (2.21) simplify to

It should be noted that the phase shifts C — C £ Q are equivalent to the
time shifts ¢ — ¢ = 1. Then, F(Q); C) is reduced to F’J(N)’t, written as

J
J

0 (N =0)
(2.31)

PE {max(l*}w_l)’t, 2(Cy — jQy +tQy) + FN 2 (N > 1)

To prove this theorem, let us introduce a fundamental property of the
max operator and prepare some lemmas.

Proposition 2.5 The inequality

max(z,y) — max(z, w) < max(x — z,y — w) (2.32)
holds for arbitrary x,y, z,w € R.
Proof The inequality
max(a + ¢,b + d) < max(a, b) + max(c, d) (2.33)

holds for a,b, ¢, d € R because the right hand side in (2.33) can be expanded
to yield max(a+c,a+d,b+c, b+ d), which includes all candidates of the left
hand side. Then, we obtain (2.32) by settinga = 2,b = w,c = z—2,d = y—w
in (2.33) respectively. O

It should be noted the relation (2.33) is an extension of the triangle inequality
because it reduces to the triangle inequality by setting b = —a,d = —c.

Lemma 2.6 Let

(Nt (N) thm+2 (N),t+2 (N),t+ (N)t ,
N A WA X )

where parameters | > 0 and m satisfy l +m > 0. Then the relation
HM' < 2(19x +mQy) (2.35)
~ holds.

12



Proof By employing the inequality (2.32), we obtain

(N)t+m+2 (N),t+2
Vg

(N=1),t+m+2 (N=1),t4+2
3+ F; —F

< max( i i ,

2(1Qy +mQy) + FN 0™ gl (2.36)
FUE _ (N t4m < max(F&-Dt _ pV-1t+m

L J G+ j
—2(IQn + mQn) + F;(ﬁ‘l)’t‘z _ F'](N-l),t+m—2).
(2.37)
Adding the inequalities yields
().t (N—1),t
Hj < maX(Hj ,
Q(ZQN + mQN)’
- 2(ZQN + mQN) -+ H;N_l)vt + H;N—l);t_27
(N—=1),t—2
H; ) (2.38)

By taking into account the relation @y > Qn-1, it can be shown inductively

that the four arguments in this maximum are all less than 2(IQx + mQy).
O

Lemma 2.7 Let

INYE (Nt (N),t+2 (N),t+1 (N),t+1
HM = FV 4 FY — FO - p, (2.39)
one then has:
0< H™M" <2(Qn — Q) (2.40)

when Fj(i)’t solves the ultradiscrete KdV equation (2.28) fori=0,...,N.

Proof If Fj(N)’t solves the equation (2.28), by virtue of the property of
maximum operator, we obtain:

N),t N),t+2 N),t+2 N),t N),t+1 N),t+1
F{ 4 F? = max(FV2 4 FDY — 2R, PV 4 pED

g (2.41)
> Fj(N),t+1 i F}givl),t+1

Y

which is nothing but the positivity of H]"(N)’t.
By employing the inequality (2.32), we obtain

Fj(N),t—l _ P,Jgivl),t < max(

Jj+1 ’
2(Qn — Q) + FNTIHT8 gAY (9 49)

J

Fj(ﬁ)’m _ F,j(N),t < max( F,J(fl—l),t+l _ F,j(N—l),t’

~2Qn — ) + FTT - YUY (2.43)

FN=1)-1 (N=1),t
J

13



Adding these inequalities, we obtain

HY* < max(HND*,

2(QN _ QN) _ H{(N—l),t—l

J )

= 2Qy = Q) + BTV I

HN A (2.44)

where H J(N)’t is given by Lemma 2.6. It can be shown inductively that all
arguments are less than 2(Qn — Q). O

In particular, H;(N)’t = 0 when Qy = Qn by (2.40) because of the form of
Fj(N)’t and the conditions (2.29).

Let us return to the proof of the Theorem 2.4. We shall prove the theorem
inductively. It is clear that Fj(o)’t = 0 solves the equation (2.28) because of
the positivity of R. Now, let us assume that the theorem holds for N —1. By
substituting (2.31) in the ultradiscrete KdV equation (2.28), the left hand
side can be rewritten as

2(2Cy — (2j + 1)Qn + (2t + 2)Qn) + FN 472 4 p DA

2(Cn — jON +tQN) + Fj(N—l)’t_Z + F}(fl_l)’tH,

20—+ 1)+ (t+2)QN) + Fj(N‘l)’t i ij{fl—l),t)

N),t N),t+2 N-1),t N-—-1),t+2
FOt 4 FY = max (B0 4+ BT

(2.45)

In this expression it looks as if the maximum in (2.45) has four arguments.
However, the third argument cannot be the maximum because it is always
less than the fourth one by virtue of Lemma 2.6, in case [ = —1,m = 2.

By means of the same procedure and Lemma 2.6, in case [ = 1,m = 2
and [ = 1, m = 0, the right hand side of equation (2.28) is rewritten as

max (max (I;JgN—l),t+2 n E-(ivl—l)’t —9R, Fj(N—l),t—f—l i Ejgfl—l),t+l)’

2(2Cy — (27 + 1)Qn + (2t +2)Qn)
+ max (Fj(N‘l)’t + Fj(i\’l—l)’t—Z —92R, Fj(N—l),t—l n P}'(ivl-l)’t—l)a

2(ON —jQN + (t + I)QN) + Fj(N—l),t-l n Fj(fl_l)7t+l))

14



There are three arguments in the principal maximum. The first and second
arguments are the same as those on the left hand side because Fj(N_l)’t solves
equation (2.28) by assumption. It can also be shown that the last argument
is also the same by employing the method which was used to prove Lemma
2.6.

The condition which expresses the equality of the last argument to that
of the left hand side then reduces to:

0 = max(2(Qu — R),2(Qy — Qn) — H 4 (2.46)

In the case Oy = Qn < R, Qpn_, has to be equal to Qn_1, due to condition
(2.29). Then, the first argument in (2.46) is non-positive and the second
argument is 0, due to Lemma 2.7.

In the case 0y = R, the first argument in the maximum in (2.46) is 0 and
the second argument is non-positive by virtue of Lemma 2.7. Thus, (2.46) is
equal to 0, in both possible cases (i.e., Qy = Qn or Qy = R).

We have therefore shown that all arguments of the maximum in (2.45)
which constitutes the left hand side of (2.28), have an equivalent counterpart
among the three arguments that contribute to the right hand side of (2.28).
Hence, (2.28) is satisfied. O

By taking the ordering (2.29), the recursive representation (2.31) is equiv-
alent to the ultradiscretization of the cofactor expansion by the N-th column
of the Casorati determinant solution (2.9), because the terms with negative
signs in the determinant do not contribute to the ultradiscrete limit. The
permanent type solutions presented in [7] are equivalent to this ultradiscrete
limit for the same reason. However, we would like to stress that these two
approaches are quite different.

2.4 An example of the action of the vertex
operator for the Box and Ball System

Finally, we give an explicit example of the action of the vertex operator X,
in the case of the Box and Ball System.

It can be shown that the possible values of the variable B; that correspond
to the N-soliton solutions of theorem 2.4 (i.e. constructed by means of the
vertex operator X) are restricted to the set {0,1}.

The lattices depicted in Figure 2.1 are the vacuum lattice, and the lattices
that are obtained from vacuum by successive application of the vertex opera-
tor Xz = Xi(Qi, Cz) with parameter values (Ql, Cl) = (1, 2), (Qz, 02) = (2, 3),

15



and (Q3,C3) = (4,2). By repeated application of the vertex operators, it is
observed that the number of the blocks of ‘1”s (solitons) is increasing. Figure
2.2 represents lattices that are obtained from vacuum by successive applica-
“tion of the same vertex operators X; (t =1,2,3) in the order X3, X5, X;. By
Proposition 2.2, the final state is the same but the middle states are different.

16
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LX) IQI LX)

9-8-7-6-5-4-3-2-10 23 45678 910

Figure 2.1: BBS obtained by successive application of the vertex operator in
order of X, X5, Xs.

-9 -8-7-6-5-4-3-2-1 0'12 3456728910

| '][][ L

98-76-5-4-3-2-101 23 56 7 8 910

000 | 000

-9-8-7-6-5-4-3-2-101 23456728910

o0e o | 006

- 9-8-7-6-54-3-2-10 23456728910

Figure 2.2: BBS obtained by successive application of the vertex operator in
order of X3, X5, X;.
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Chapter 3

Vertex operator for the
non-autonomous ultradiscrete
KP equation

3.1 Introduction

In this chapter, we propose a vertex operator for the non-autonomous ul-
tradiscrete KP equation and various ultradiscrete soliton equations obtained
from it by reduction. In section 2 we first propose a recursive representation
of the soliton solutions of the non-autonomous ultradiscrete KP equation. In
section 3, we propose the vertex operator as an operator representation of
the recursive one. In section 4, we present various reductions of this equation
and discuss their vertex operators and solutions.

3.1.1 KPP hierarchy and its vertex operators
The bilinear identity of the KP hierarchy is given by [13]

e (e (D)) r(ere (D)) 3]0 @

where t = (t;,ty,13,...) are an infinite number of independent variables and

€ (u) = (u %u{ %u?’, . ) (3.2)

E(t,)\) = itk)\’“. (3.3)
k=1

18



By denotmg t = x+y, t' = X—y and expandmg for Yir & series of partlal

form of the KP equatlon
(D +3D3; — 4D\ D3) -7 =0, (3.4)
where Df"Dé3 7 - T is defined as

o~ 88

Dgpj@}.T::a 8ﬂ 7(x + 2)7(x ~ 2)

(3.5)

z=0

for z = (21, 29,...).
The N-soliton solution of the KP hierarchy (3.1) is expressed as

T = Z exp (Zm + ZAi,j) (3.6)

SC[N] €S i,J€S
i<j
for n; and A, ; given by
mi= Y (0F — )z (3.7)
k=1 ‘
' (pi — pj) (% — ¢5)

exp A;j = (3.8
T (= 4) (05— ) )

for parameters p;,q;. Here, Y ¢ (...) stands for the summation of the ar-
gument for all subsets of U and [N] ={1,2,..., N}.

The vertex operator of the KP hierarchy is given in the form of an in-
finitesimal transformation:

o [ S0 — M Jexp (S L(L_L1Y )
X(pq) = p(k;(p VQ)k> p( ;k(pk qk> a@}g) (3.9)

The exponent of this operator maps N — 1-soliton solutions and N-soliton
one and all soliton solutions are generated by repeated application, i.e. (3.6)

is equal to
T = N Xrnan) .. gaX(pLa) | 1 (3.10)
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3.1.2 Non-autonomous discrete/ultradiscrete KP equa-
tion
By denoting

m n

l
> elad) + ) elba) + > elca) | (3.11)
2 €(aq) + E_: €(by) + 2—: €(cq) (3.12)

0 0

t
t’

and 7(t) = Timn, the bilinear identity (3.1) is transformed into the non-
- autonomous discrete KP equation [4]:

ay (bm - Cn)77+1,m,n7-l,m+1,n+1 + bm(cn - al)Tl,m+1,nTl+1,m,n+l

3.13
+Cn(al - bm)Tl,m,n+1Tl+1,m+1,n =0 ( )

Here, 37 €(ag) stands for

j > i1 €(aq) (i <7)
> e(ag) =40 (i=37) (3.14)
’ —> i1 €lag) (i>7)
and similarly for 7 €(b;) and 37 €(cs).

The discrete KP equation (or Hirota-Miwa equation), which is a dis-
cretized version of the KP equation, is also regarded as a fundamental discrete
soliton equation. By restricting its solutions, it reduces to many well-known
discrete soliton equations, as for example the discrete KAV equation or the

discrete Toda equation.
Taking a; = a(const.), b, = b(const.) and

2 _ _b(cn —a)
Tn = a(b IR Cn), (315)

(3.13) is rewritten as

2 2
T Tlm+1,nTi+1,mn+1 = Ti4+1,mnTl,m+1,n+1 + (Tn - l)Tl,m,n+1Tl+1,m+l,n~ (316)
By assuming that r, > 1, substituting

T = ETmee, = e (317)
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and taking the ultradiscrete limit ¢ — 0 of (3.16), we obtain the non-
autonomous ultradiscrete KP equation in bilinear form [4]

Tl,m—i—l,n + Ti—i—l,m,n—i—l =

max ( Tl—i—l,m,nf + Ti,m—l—l,n+1 - 2Rn7 Tl,m,n—i—l + ﬂ—l—l,m—i—l,n ) (an > 0)
| (3.18)

3.2 Recursive representation solution for the
non-autonomous ultradiscrete KP equa-
tion |

In this section, we propose a class of solutions for the non-autonomous ultra-
discrete KP equation, with parameters P, ..., Py, @1,...,Qnx and C4, ..., Cy.

Theorem 3.1 The function Tl(z)n expressed as

N-1 N-1
o0 _ Jmax (TP + IO ) (V2D (3.19)
RIS X (N =0)
solves equation (3.18) for nn given by
nv =Cx+1Py —mQy — Y _ Qa. (3.20)
0

Here, Zf Qnq stands for

j : {i=i—|—1 QN (i <‘j )
> Qna=10 (i=7), (3.21)

and the parameters P;, Q; and Qi n(t = 1,..., N) satisfy the relations:

Py>Pyy>..>P >0 (3.22)
Qn2>2Qn-12...201 20 (3.23)
Qi,n = min(Qi, Rn_]_). (324)

Before starting the proof, we shall prepare some lemmas.
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Lemma 3.2 Let

(N)ijsk _ n(N) N) (N N
Hl,m,r: = Tl,m-‘rj+1,n+k + Tl(+z'+1,m,n - Tl+1),m+j,n+k - Tl(+z',)m+1,n (3-25)

for i, 4, k such that

n+k n+k
iPN+jQN+ZQN,dZ---ZiP1+jQ1+Zﬂl,d20- . (3.26)
Then it holds that
o n+k
HNW% < 2(iPy + jQn + Y Ona). (3.27)

for N > 1.

Proof Since 4, 7,k do not change in this proof, we denote Hl(ﬁ?rz’k = Hl(x),n
for brevity.
By employing the inequality (proven in proposition 2.5)

max(a, b) — max(c,d) < max(a — ¢,b— d), (3.28)
we obtain
N) (N) (N-1) (N-1)
Tz§m+j+1,n+k - Tl+i,m+1,n < max (Tl,m+j+1,n+k — im0
n+k

) . N-1 N-1

—2(iPy — jQn — Z Qn,a) + Tz(—l,m)+j+2,n+k - Tl(+i—1,)m+2,n) (3.29)
(N) N) (N-1) (N=1)
T;-i—i—!—l,m,n - TE(—l—l,m—t—j,n—i-k‘ S max (T}—i-i-l—l,m,n - T’l-i—l,m—l-j,’n-f—k’

n+k
2Py +5Qn + D W a) + T ln =~ Timeshanes)  (330)
Adding the inequalities yields

n+k
Hl(,JrVn),n < max (Hl(,{rvn,_nl)’ 2(iPn +jQn + Z QOna),

n+k
. . N-1 N-1 N-1
—2(iPy+jQn + Y Qna) + Himo) + B HED ).

(3.31)
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Taking into account the relations (3.26) and

0),5,k __ 0 (0) 0 0 _
I{l,m,n‘7 "' T1l(,n’)b+j+1,n+k + Tl—i—i-i—l,m,n - TE(-I-)I,m—l-j,n—l-k - T;(-I—g,m-f—l,n - 0? (332)

it can be shown inductively that the four arguments in this maximum are all
less than 2(iPy + jQn + ZZHC Onag). O

Lemma 3.3 Let

N) _ (N N N N
»Hl/,(m,)n = T}(,m,)n-l-l + Tl(,m2|-2,n - J}Sm?i-l,n - ,‘Tl(,mzl-l,n—i-l' (333)
One then has N
HD < 2(Qn = Qwvni) (3.34)
for N > 1 when one requires that the Tl(:zm(z = 1,...,N) are solutions

of (3.18). Especially when Qn, = Qn, the inequality (3.34) becomes an
equality, i.e: H '), '

l,m,n

" Proof When Q Nn = Rny1, we obtain by virtue of the inequality (3.28):

Hy, Smexc (HG2Y, BT,
(N-1) N-1 (N-1) N-1
2(QN - QN,"Z‘H) + ﬂ—l,m+1,n+1 + T’l(,m+2?n - T,l—l,m+2,n - Tf,m-l—l?n—l—l’

- 2(QN — QNpy1) + Hl(ivl:':l)’;?fl’—‘l + H/_(_I\lj’_nj}rl’n). (3.35)

(N-1) (N-1) (N-1)  _ p(N-1) (N-1)
HOW@VGI‘, Tz—l,m+1,n+1 + 71l,m+2,n - T;—l,m-i-2,n T;,m—l-l,nﬁ—l S 0 because T},m,n

satisfies (3.18), and

0 0 0 0 0
Hll(m)n = l(,nz,n+1 + Tl(,n3+2,n - Tzfniﬂ,n - l(,n?a—i—l,n—l—l =0. (3~36)

It can then be shown (again inductively) that all arguments in the maximum
are less than 2(Qn — Qn,n41), by virtue of the relation (3.23) and (3.24).
On the other hand, when Qy , = Qn, by virtue of (3.23), (N=1) g equal

l,m+1n
to TN Y for all I, m because
l,mn+1 )

n n+1
Ci+1P,—(m+1)Qn—> Qua=Cy+IPy—mQn— Y Qg (3.37)
0 : 0
foralli =1,..., N. We thus obtain that
N N N N
Hl/,(nl'\b?n = (trl(,m?n-i—l - T'l(,mz-l,n) + (,IL(,mziQ,n - l(,mzi-l,n—i-l) =0. (338)

O
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Lemma 3.4 Let

Hy o =T+ T = Tl — T (3.39)

I,m,n I,m,n+ +2;mmn ~ TIl+lm,n I4+1,m,n+1"
One then has
HMN <opy (3.40)

Iy;mmn —
for N > 1 when all ole(,i)w(z' =1,...,N) are solutions of (5.18).

Proof By virtue of the inequality (3.28), we obtain

H//(N) < max (H//(N—l) H//(N—l)

l,m,n Immn T l=-1,m+1n -
N-1 N-1 N-1 N-1
2PN + T’l(,m,n-{zl + ’I}(—i-l,ml-l,n - T}(—I-l,m?n+1 - ,‘Z}(,m—i—l,)n? (341)
N-1),1,0,0 N-1
—2Py + Hl(—l,m),n—l-l + Hl/iigl,m,r)z)
(Now,)zﬁ%‘;?nﬂ + T in = Timnis = Tifumian < 0 because Ty~ satisfies
3.18) an
1(0 0 0 (0 0
Hl,ﬁn,)n = T‘l(,nz,,n—l-l + ,I'l(—l-)Z,m,n - T;(—i-)l,m,n - Ti(-i-)l,m,n-}—l =0 (342)

Then it can again be shown inductively that all arguments are less than 2Py,
by virtue of the relation (3.22). O

It should be noted that Lemmas 3.2 and 3.3 correspond respectively to
Lemmas 2.6 and 2.7 in the chapter 2 and that Lemma 3.4 is a new necessary
condition. In some special cases of parameters, for example P, = Q);, we need
not to use this lemma to prove this theorem by virtue of Lemma, 3.2.

We now have all the necessary lemmas at our disposal and proceed to the
proof of Theorem 3.1.

Proof of Theorem 3.1 We shall prove the theorem inductively. It is clear
that Tl(?,zn solves equation (3.18) because of the non-negativity of R,. Now,
let us assume that the theorem holds at 1,..., N — 1. By substituting (3.19)
in equation (3.18), each contribution can be written as

_ N—
Tl(ﬁz,_lm + Eﬂ{m,n+1 = max ( T(N 1) + T( 1)

l,m+1,n I+1mmn+1
2(Py — Qnpy1) + 208 + E(ﬁli)n + Tl(,ﬁ:?mp
= 2QN + 208 + Ty o + Tt
4y +2(Py — Qn — Qve) + T g0 + ﬂ(ﬁ—;i)n-l»l)? (3.43)
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for the left hand side of (3.18), and

N N N-1 N-1
,Tl(—i—l),m,n + ,Tl(,m?l—l,n-l—l = Inax (T( ) + T( :

l,m,n l,m+1,n+1>
(N-1) (N-1)
2Pn + 208 + T i + D10 b nr 1

N-1 N-1
- 2(QN + QN,n—l—l) + T,l(—l-l,m,)n + Tl(,m+2?n+1’
4nn +2(Py = Qn = vnia) + Timarn + Tt hamsn) (3.44)

N N N-1 N-1
71l( ? + T;(-i-l),m-i-l,n = max (Tl(,m,n-zl + T}(—i-l,m?m

N— N-
2(PN - QN) + 277N + Tl(,m,nBI + Tf,m—i—;,)n’

) N-1 N-1
- 2QN7"+1 + Tl(—l,m?i-l,n-kl + Tl(—i-l,mz-l,n’

4nn +2(Py = Qn = Qvnsn) + T s + Timion) (3.45)

for the right hand side. In these expressions it looks as if each of the maxi-
mum operations in (3.43)—(3.45) has four arguments. However, by virtue of
Lemma 3.2, the third argument in (3.43) and (3.44) cannot yield the maxi-
mum because it is always less than the second argument.

Then, the relevant arguments of the maximum in (3.43) are in fact

N-1 N-1
Tl(7m+1?n + Tl(—l—l,m?n—kl (346)
N— N—

dnn +2(Pnv — QN — Qnpny1) + :F}_’Vl‘,;>+2n + T(,,Nz;})n " (3.48)

and those in the maximum of the contributions in (3.44), (3.45), as they
appear in the right hand side of equation (3.18):

max(T{ 2 + T Dy — 2R, Ty + TG0 (3.49)
20y + max(2Py = 2Rn + T{p 1 + Tl Pt
2(Py = Qn) + Tl(ﬁﬁl + T,Z(Z;;)"’ 2041 + Tl(—bi,—nlzzrl,nﬂ"‘ ﬂﬂ;rlzzr1,n)
(3.50)
dnn +2(Py — QN — Q1)
+max(Tim A TN o = 2R TN+ Tish). (351)

Here, (3.46) and (3.48) are identical to (3.49) and (3.51) because by assump-
tion, T\ Y solves the equation (3.18).

l,m,n

By subtracting (3.47) from (3.50), we obtain

max (2(Qnni1 — Rn), 2(Qnni1 — Qn) + HWY-U _opy + HN-Y).

I,mmn ,m,n

(3.52)
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The third argument of this maximum is non-positive by virtue of Lemma
3.4.

In the case 0y 1 = @n < Ry, Qn-1 has to be equal to Qn_1, due to
condition (3.23). Then, the first argument in (3.52) is non-positive and the
second argument is 0, due to Lemma 3.3.

In the case Qn 41 = R, the first argument in the maximum in (3.52) is
0 and the second argument is non-positive by virtue of Lemma 3.3. Thus,
(3.52) is equal to 0, in both possible cases (i.e., Oy ni1 = QN OF Uy i1 = Ry).

We have therefore shown that all arguments of the maximum in (3.43)
which constitutes the left hand side of (3.18), have an equivalent counterpart
among (3.49), (3.50), (3.51), i.e. among the three arguments that contribute
to the right hand side of (3.18). Hence, (3.18) is satisfied. O

Please note that the proof allows for the possibility that, at different
values of n, Qn 1 satisfies different equalities (Qn nt1 = Rn 0r Qnni1 = Qn
for different n), because the shift of the independent variables mduced by
(3.19) affects only ! and m, not n.

3.3 Vertex operator for the non-autonomous
ultradiscrete KP equation

In this section we propose an alternative representation of the soliton solu-
tions, generated by a vertex operator X and we prove that these solutions
are equivalent to the recursive solutions we proposed in the previous section.

By [4], all of the N-soliton solutions of the non-autonomous ultradiscrete
KP equation (3.18) are written as

Ty = ma (sz Z2Aw) (3.53)

1,jES
1<J
for n; and A;; given by
i =Ci+ 1P —mQ; — > min(Q;, Ra—1) (3.54)
0
A;; = min(B;, P;) + min(Q;, Q). (3.55)

Here, maxgcy/(...) stands for the maximum of the argument for all subsets
of U and the parameters P;, @Q); satisfy

(P — P;)(Q:i — Q) > 0. (3.56)
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3.4.1 The Box and Ball System and its varieties

By restricting T ,, , to
Tl,m,n = Fyl;_Mm (369)

and denoting s = | — Mm and n = j, the non-autonomous ultradiscrete
KP equation (3.18) is reduced to the so-called non-autonomous ultradiscrete
hungry KdV equation:

FPE + Fy = max(FyH4 4 Fy — 2R, Fo9 4+ FfM). (3.70)

By means of the dependent variable transformation

1
t
Bi 7j — 5

SE B - B - F), (3.71)

Jj+1

and denoting s = Mt + i, (3.70) is transformed into

Bi$' = min (R; - ZB,thl ZB,“, Z (B, — Bt ) (3.72)

n=—0oo

which describes the dynamics of a Box and Ball System with M kinds of balls
as presented in [4]. This system is required to satisfy the following boundary
conditions:

B{;=0 for j<0 (3.73)

In particular, in the case of M = 1, it reduces to an extension of the standard
BBS [1], with variable size of boxes at each site.

In our representation (3.62), the reduction (3.69) is equivalent to the
parameter restriction:

It should be noted that our representation satisfies the boundary condition
(3.73) because the first argument of max in (3.62) is never chosen for suffi-
ciently small j.

Then, the vertex operator for (3.70) can be written as

X(Pn41,Cn)T(P;C) =
max(T(P, C),27]N+1 +T(P,C - AN+1)), (375)

where the phase factor ny, is

J
Mn+1 = Ong1 + SPyy1 — Z Ont1,4, (3.76)
0
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For N = 1, we define T(P’;Q’;C’) = T(;;) = 0, which is the vacuum
solution of this equation.
Here, we define the operator X (Py,Qn,Cy) as

X(Pn,Qn,Cn)T(P;Q;C") =
ax(T(P;Q;C"), 2y + T(P';Q';C' — AYy)) (3.64)

i.e.
X(Py,Qn,Cn)T(P;Q';C") =T(P;Q; C). (3.65)

The operator X (Py, @y, Cyn) maps an N — 1-soliton solution to an N-soliton
one, which is nothing but the vertex operator. By the form of the N-soliton
solutions, they are expressed as the repeated application of vertex operators

to T'(;;) i.e.
T(P;Q;C) = X(Pn,QnN,Cn) - X(P1,Q1,C1)T(;5). (3.66)

By virtue of definition (3.53), the N-soliton solution T(P; Q; C) is invariant
under the permutation of its parameters ie.

T(P,...,Pn;Qs,...,QnN; Cy, ..., C)
=T(Pyqays - - - Pov); Qo) - - - » Qov); Coa), - - -, Corvy) (0 € Sn), (3.67)
which is equivalent to the commutativity of the action of the vertex operator.
Due to this property, we can fix the labels of the parameters (3.22) (3.23)

without loss of generality. Hence, given a specific ordering, the phase shifts
in A;; in the definition (3.62) simplify to

min(FP;, Py) = P, min(Q;,Qn)=@; (i=1,...,N—1). (3.68)

Then, the phase shifts C — C' + P and C — C + Q are equivalent to shifts
on the independent variables | — [+ 1 and m — m — 1 which shows that
T(P;Q);C) is equivalent to T,( )

3.4 Reduction to various ultradiscrete soliton
equations

In this section we present some examples of reductions of the ultradiscrete
KP equation to 1 + 1 dimensional ultradiscrete equations and we give the
vertex operators for these equations.
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In this discussion, we denote

T’l,m,n=T(Pl)-"7PN;Q17"'7QN;01>""CN) (357)

(written as T(P;Q);C) for brevity), because the parameters P;, Q;, C; are
more important than the independent variables [, m,n. By separating con-
ditions in the max of (3.53), where S includes N or not, we rewrite (3.53)
as ‘

T(P;Q;C) = (Srg%(zm > 245), m SC[N(Z% Z2A,J)>

€S 4,jES €S i,JES
N
N¢S i<j es i<
(3.58)

The former argument of the maximum is rewritten as

SC[N] N¢S (sz : ZZAi’j> - sénﬁxl (Z 21 = Z2Ai’j)

i,jeS i,jes
i<j i<j
=T(P;Q;C". (3.59)
Here, we denote

T(Py,...,Px-1;Q1,-..,Qu-1;C1,...,Cyo1) = T(P;Q;C')  (3.60)

for brevity. By virtue of the identity {S|S C [N],N € S} = {{N}US|S’' C
[N — 1]}, the latter argument is

(S 2m, - 3 24, )
S’CfJI\}]a,JJ}\CTGS(iEZS i Z “J

4,j€S
1<j
ey (ZQW 20 = Z 215 = ZQA%N)
3,j€S’ €S’
1<J
= 277N S/m[]a\hjxl (22 Ai,N) - Z 2A,”j)
. 1,j€S’
1<

=2y + T(P; Q'; C” — A)). (3.61)

Then, we obtain
T(P;Q;C) = max(T(P;Q;C"), 2ny + T(P;Q";C' — AY)),  (3.62)

where A’y is
A/N = t(A]_’N, ey AN—I,N)- (363)
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Figure 3.1: An example of BBS with 3-kinds of balls and variable size of
boxes

CSENCC

and Qy; and the interaction terms A; ; are expressed as
QN’]' = min(Rj_l, MPN), Ai’j = (M + 1) min(B, PJ) (377)

To end this subsection, let us show an example of a soliton solution of
the ultradiscrete hungry KdV equation for M = 3. The lattices depicted in
Figure 3.1 are the lattices that obtained from vacuum by successive appli-

cation of the vertex operator X with parameter values (P, C;) = (1,8) and
(P2, C2) = (3,1).

3.4.2 The ultradiscrete Toda equation

By restricting 1}, to
T1l,m,n - FH_TL (378)

m-+n

and denoting t = I 4+ n, (3.18) is reduced to the ultradiscrete Toda equation:
Fio + FT = max(Fl; + FJ' - 2R, 2F7) (3.79)
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By means of the dependent variable transformation

1 -
Ust = ‘2'(Fst+2 - 2F:+1 + Fst), (3.80)

(3.79) is transformed into

UH-2UHH UL, = max(Ut - R, 0)—2 max(ULH—R, 0) +max(ULH - R, 0),
‘ (3.81)
which describes the dynamics of the Toda type cellular automaton presented
in [16]. : '
In our representation (3.62), the reduction (3.78) is equivalent to the
parameter restriction:

Qy=Qn-Pv ie  Py=Qn-Qy=max(Qy—R,0) (3.82)
The vertex operator of (3.79) can be expressed as

| X(PN+1, CN+1)T(Q§ C)
C=max(T(Q; C), 201 + T(Q;C — Anyr)),  (3.83)

where the phase factor ny.; is

nv+1 = Cny1 + tmax(Qny1 — R, 0) — sQn1, (3.84)
and the interaction term A;; is written as

A; j = min(Q;, Q;) + max(min(Q;, Q;) — R,0) (3.85)

We end by showing an example of the soliton solution for the ultradiscrete
‘Toda equation for R = 1. Figure 3.3 shows the time evolution of the corre-
sponding Toda-type cellular automaton for @, = 2,C; = 0,Qy = 5,C = 5.
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Figure 3.3: time evolution of Toda-type CA (2)
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Chapter 4

Background solutions of
ultradiscrete soliton equation

4.1 Introduction

In this chapter, we propose a wide class of solutions of the ultradiscrete KP
equation, and prove that we can inject solitons into these solutions by means
of the vertex operator. At the end of the chapter, we introduce some examples
of such solutions for the reductions of this equation, which corresponds to
soliton cellular automata.

4.2 Background solutions for the ultradiscrete
KP equation

By assuming that R, = R (const.), the non-autonomous ultradiscrete KP
equation (3.18) is reduced to the ultradiscrete KP equation:

Tl,m—l—l,n + Ti—i—l,m,n+1 =

max ( ﬂ+1,m,n + r—rl,m+1,n+1 - 2R7 Tl,m,n—l—l + Tl-i—l,m+1,n ) (R > 0)
(4.1)

Now, let us consider the solution of this equation such that
T'l,m,n = r—ril(,)m_|_n~ (42)

By subtracting the left hand side of (4.1) from the right hand side, we obtain
the proposition:
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Proposition 4.1 77, ., solves (4.1) iff T}, satisfies

,Tl?i-l,s + Tl(,)s+2 - Tﬁ?s+1 - Tlgrl,s+1 < 2R. (4.3)

This type of the solutions contains the soliton solutions such that Qy =
()~ because they are depending only ! and m + n by the form of these
solutions. However, it contains, for example, T} ; = I?+ s, which is obviously
out of the soliton solutions.

Theorem 4.2 If there exist 0 < 3K < R and 0 < 3L such that Tlox satisfies

H}y =T s+ Tvs = Toin — Thaen < 2K (4.4)
HY = Ty + Thos = Thhas = Thaen < 2L, (4.5)
the function Tl(z)n expressed as

N-1 N-1
T(N) — max: (T}(,m,n )7 277N + Té(—l,mzi-l,n) (N 2 1) (46)
l’mm', Tl(,)m—i—n (N = 0) k
solves equation (4.1) for nn given by
nyv = Cn + Py — mQn — nQy. (4.7

Here, the parameters P, Q; and Q;,(i = 1,..., N) satisfy the relations:

PNZPN—lz---ZplzL (4.8)
Qn2Qn-12...2Q 2K (4.9)

Proof We have proven Theorem 3.1 inductively by starting from the fol-
lowing conditions:

1. Tl(o) is a solution of (3.18).

,m,n

2. Hl(’?,)m given in Lemma 3.2 satisfies H,(",’},,n < 2(4P + jQ1 + k) for

(i,5,k) = (1,1,-1), (1,1,1), (0,1, —1) and (1,0,0).
3. H9 given in Lemma 3.3 satisfies H,"(T?l)’n <2(Q1 — ).

I,mmn

4. H'® given in Lemma 3.4 satisfies H, "0 <op.

l,m,n lmmn
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Thus, it suffices to prove that Tl(?r)m =T} ... satisfies these conditions. It is

clear that Tl(gzn solves (4.1) by the condition (4.4) and Proposition 4.1. By

the form of Tl(’?r)m, conditions 2-4 reduce to (4.4) and (4.5) by virtue of the
the relations:

0,1,1,—=1 _ 77(0),1,0,0 0
Hl(,m,n = Hl(,'n)z,n = Hl,'r(n,)n = Hl,,om-l—n (411)
O = 1, o  uw
H(O),l,l,l _ HO : HO HIO 4.13
lmmn = “Hl+1lm4n + l,;m+n+1 + l,m+n+1 ( . )

By employing the relations (4.8) and (4.9), we can prove this theorem again
inductively. O

It is known that this class of the solutions is observed in the time evolution
of the soliton cellular automata. We give explicit formulae for these solutions
in the following section.

4.3 Integer-valued solution for the Box and
Ball system

4.3.1 Background solution for the ultradiscrete KdV
equation
By restricting 17, ,, in the ultradiscrete KP equation to
nvmfn’ = F’lb—m (4'14)

and denoting ¢ = | —m and n = j, the ultradiscrete KP equation (4.1) is
reduced to the ultradiscrete KdV equation

FH2 4 Ff = max(F2 4+ FE, — 2R, P L B, (4.15)

which is the same as (2.28).
Since the reduction (4.14) is equivalent to the parameter restriction

the solution containing both N-solitons and background is written as

yp _ Jmax(FT2(Cy — jQN +1Qn) + BT (N> 1)
! Fo(t =) (N =0).
(4.17)
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Here, the parameters F,Q;and Q;,(i=1,...,N) satisfy the relations:

ON>Qn1>... 21 > K (4.18)
Q; = min(Q;, R). (4.19)
Fp(z) corresponds to the reduction of T7, ., as
T = Foll — m— 1) = Fo(t — j) (4.20)
and satisfies the condition
Fo(z+2) - F(z+1) - Fo(z)+ Fo(e —1) <2K  (VzeZ), (4.21)

which corresponds to the reduction of (4.4) and (4.5) (We rewrite min(L, K)
as K).

It should be noted that we can prove directly that FJ.(N)’t given by (4.17)
solves (4.15) inductively by starting the conditions:

1. F( " is a solution of (2. 28)
2. H( )t given in Lemma 2.6 satlsﬁes H(O) t < 2(I2 + m@Qy).
3. Hj(o)’ given in Lemma 2.7 satisfies 0 < H]'-(O)’t <2(Q1 — D).

for F(O) = Fy(t — j) satisfying the condition (4.21)

4.3.2 Travelling wave solution for the Box and Ball
| System (BBS)

By means of the dependent variable transformation

1 1 1
B]=-2-(Ft+ +F";+1—‘Fj__:_—1 ijt), (4.22)
the ultradiscrete KdV equation (4.15) is transformed into the BBS with a
capacity of R balls.

The background solutions which satisfy boundary conditions B = 0 for
|| > 0 are the “travelling wave solutions” which are presented in [12]. Trav-

elling wave solutions are explicitly expressed as

)= Y Bo(xo)G(z + o), (4.23)

ToEZL
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tl 1111,

Figure 4.1: time evolution of 2 on a cite (underscore represents a minus sign
at this site and dot means 0)

where G(x) stands for
G(z) = max(0, 2z), (4.24)
and By(z) satisfies the conditions:

Bo(z)+ Bo(z +1) < K (Vz €Z) (4.25)
Bo(z) =0  (for |z| > 1). (4.26)

Here, it should be noted that the summation in (4.23) is indeed finite by the
boundary conditions (4.26).
By means of the property

Glz+zo+1)+ Gz + 20— 1) — 2G(z + x0) = 2654, (for z € Z), (4.27)
the relation (4.22) for travelling waves is equivalent to
Fo(z +1) + Fo(z — 1) — 2Fy(x) = 2Bo(z). (4.28)

By virtue of the relation, the condition (4.25) is nothing but the condition
(4.21). ‘

4.3.3 Finding solutions from arbitrary initial states

In this subsection, let us give some initial states and try to find their explicit
solutions.

Figure 4.1 depicts the time evolution of the initial state such that By = 2
and B;) = 0 for j7 # 0. By the time evolution, we can observe that there are
a block of ‘1’ with the length 3 (soliton) and a travelling wave ‘-1’. Indeed,
the function F; which gives the state of this figure is expressed as

F! = max(—G(t — j),2(=3 — j +3t) = G(t — j — 2)). (4.29)
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Figure 4.2: time evolution of an initial state

Figure 4.2 also depicts the time evolution of an initial state. We observe
two solitons with length 6 and 2 and a travelling wave ‘-3,4,-3,-2’. Then,
the explicit solution is expressed as (4.17) for N =2,Q, = 2,0, = 0,Q, =
6,Cy = —8 and

Fo(z) = =3G(z — 1) + 4G(z) — 3G(z + 1) — 2G(z + 2). (4.30)

Observing the time evolution of the system, one finds the building blocks
(travelling waves and solitons) into which the initial data split. If one can
thus obtain all soliton data, it is possible to reconstruct an analytic expression
for the solution of the system that corresponds to this initial state.

4.3.4 Split of travelling waves

Unlike the ordinary state of the BBS, we can observe some strange phenom-
ena by appending the solitons to travelling waves. For example in Figure
4.3, we append a soliton with length @); = 3 to a travelling wave ‘-5’. By
increasing C7, which indicates the location of the soliton, we can observe that
travelling wave ‘-5’ is transformed into another travelling wave.

Furthermore, we can append the soliton with length ‘0’ to the travelling
waves. Figure 4.4 depicts appending soliton ¢); = 0 to travelling waves. As
C) increasing, travelling waves are split by the soliton located by C; but no
soliton appears there. It should be noted that appending the soliton with
length ‘0’ do nothing for the ordinary state of the BBS.
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Figure 4.3: Appending soliton with length 3 and variable location C; to
background solution
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Figure 4.4: Appending 0-length soliton to background solution
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4.4 Integer valued solution for Toda-type cel-
lular automaton

4.4.1 Background solution for the ultradiscrete Toda
equation

By restricting 71j , , to
T;,m,n = F',l:fn - : (431)

and denoting ¢t = [+ n and s = m + n, (4.1) is reduced to the ultradiscrete
Toda equation:

Fipy + Fif? = max(Fi} + F£™ - 2R, 2F¢] (4.32)

In our representation (4.6), the reduction (4.31) is equivalent to the param-
eter restriction:

Ov=Qn—Py ile. Py=Qn-—Qy=max(Qv-R,0) (433)

and the solution appending an N-soliton to a background solution is written
" as

FOE _ max(F\" ", 2(Cy — sQn +tPy) + FO 7Y (N > 1)
) Fo(s) (N =0).
| (4.34)

Here, the parameters P;, Q; and Q; (¢ = 1,..., N) satisfy the relation:
On2QNna1>...20 > M (4.35)
Fy(z) corresponds to the reduction of T}, ., as
T i = Fo(m +n) = Fy(s) (4.36)
and satisfies the condition
Fo(s+1) — Fy(s — 1) — 2Fy(s) < 2M, (4.37)

which corresponds to the restriction of (4.4). The condition (4.5) is auto-
matically satisfied by the form of the solutions.
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Figure 4.5: Appending solitons to static solution of Toda-type CA (1)

4.4.2 Toda-type cellular automaton and its static so-
lutions

By means of the dependent variable transformation
1
Ui = -2—(F;_2—2F:+1+F:), | - (4.38)
(4.32) is transformed into

Ui —2U 1 +Us s = max(U;13~ R, 0)—2 max(UL}{ - R, 0)+max (U "'~ R, 0),

(4.39)
which describes the dynamics of the Toda type cellular automaton presented
in [16].

These background-solutions are so-called “static solutions” (also pre-
sented in [12]), which do not depend on the (time) independent variable
t. By setting boundary conditions: U} = 0 for |j| > 1, static solutions are
explicitly expressed as

Fo(s) =) Uo(20)G(z — o), (4.40)

ToEZL

where G(z) is defined in (4.24) and Uy(z) satisfies
Us(z) < R. (4.41)

By means of the relation (4.27), the condition (4.41) is equivalent to
(4.37).

To finish this section, we give an explicit example of a blended soliton and
non-soliton solution for the Toda-type cellular automaton. Since the time
evolution of Toda-type cellular automaton (4.39) is a second order difference
equation, all states U} are determined by the initial values U and U}. Figure

41



" Figure 4.6: Appending solitons to static solution of Toda-type CA (2)

4.5 depicts the time evolution of the initial state such that U = &y; and
U} = 61;. The function F} which gives this state is expressed as

F! = max(=G(s),2(—=1 = 2s + t) — G(s + 1)). (4.42)

The function which gives the state of Figure 4.6 is expressed as (4.34) for
N=2,Q1 = 2,01 = 1,Q2 = 3,02 = —1 and

Fo(s) = G(s+1) — G(s) — 2G(s — 1). (4.43)
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Chapter 5

Conclﬁding Remarks

In this thesis, we have proposed vertex operators for the ultradiscrete KdV
equation and the non-autonomous ultradiscrete KP equation. We have proved
that we can apply these operators to not only soliton solutions but also to a
wide class of solutions called backgrounds.

In chapter 2, we proposed an ultradiscrete analogue of the vertex operator
for the ultradiscrete KAV equation and discussed its properties. We presented
a recursive representation of the N-soliton solution generated by this operator
and proved that it indeed solves the ultradiscrete KdV equation.

In chapter 3, we proposed a recursive representation of the N-soliton
solutions and vertex operators for the ultradiscrete KP equation. We also
proposed expressions for various ultradiscrete equations, obtained by reduc-
tion from the KP equation. A ‘

In chapter 4, we proposed a wider class of solutions for the ultradiscrete
KP equation, which can be a base when appending solitons—backgrounds. We
also proposed the solutions to cellular automata, equivalent to the reduction
of this class and we can append solitons to these solutions by means of the
vertex operator. l ’

The discussion in section 2 of chapter 2 and section 3 of chapter 3 does
not depend on the explicit forms of n; and A;;. Thus, the vertex operator
for other ultradiscrete soliton equations can be obtained as long as the N-
soliton solutions are written in the form (3.53). Conversely, we can obtain
a recursive representation which consists of only max and + operators from
the vertex operators.

The solitons in the case of 0 < Qy = @n < R can be considered as
background solutions, by the form of the solutions. However, we can append
these solitons to backgrounds by the vertex operator. It is an interesting
problem to describe the border between solitons and backgrounds. We believe
that the difficulty of the initial value problem for the BBS with multi-capacity

43



boxes is caused by this problem.

The relationship between ultradiscrete systems and geometry is an inter-
esting and important problem. For example, the conditions for background
solutions (4.4) and (4.5) correspond to the curvature of T; , for two different
orientations. ~

In fact, the vertex operator approach is closely related to the existence
of certain symmetry algebras for integrable systems and the exact relation
of our ultradiscrete operator to the symmetries of ultradiscrete systems is an
especially interesting problem we want to address in the future.
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