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Spherical Functions with Respect to the Semisimple

Symmetric Pair (Sp(2,R), SL(2,R) × SL(2,R))

By Tomonori Moriyama

Abstract. Let π be a generalized principal series representation
with respect to the Jacobi parabolic subgroup or a large discrete series
representation of G = Sp(2,R). A spherical function is the image of a
K-finite vector by the intertwining operator from π to the representation
induced from an irreducible unitary representation of SL(2,R)2 in G.
We obtain differential equations for the spherical functions except for a
few cases. We write down the solutions of these differential equations
by means of the Gaussian hypergeometric functions.

§0. Introduction

The theory of spherical functions on reductive groups over local fields

frequently appears in the arithmetic and the analytic theory of automor-

phic forms. Corresponding to the various aspects of the theory of automor-

phic forms, we have to consider not only usual but also various generalized

spherical functions. For example, Whittaker functions have been studied by

many authors. On the other hand, Murase and Sugano[7][8][9] introduce a

new kind of spherical functions on reductive groups over p-adic fields called

Shintani functions and apply them to automorphic L-functions. The pur-

pose of this paper is to investigate an archimedean analogue of Shintani

functions for the reductive group Sp(2,R).

Let us explain general frameworks of this problem. Let G be a real

reductive group. Let K be a fixed maximal compact subgroup of G and R a

closed subgroup of G. For an irreducible smooth representation (η, Vη) of R,

we form a C∞-induced representation C∞ -IndGR(η) with the representation

space

C∞
η (R\G) := {F : G→ Vη| C∞-class, F (rg) = η(r)F (g) ∀(r, g) ∈ R×G},
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on which G acts by the right translation. Denote by π0 the underlying

(g,K)-module of a smooth representation π of G. For a standard repre-

sentation π of G, we consider the space of algebraic intertwining opera-

tors Hom(g,K)(π
0, C∞

η (R\G)0). Let (τ,Wτ ) be a K-type of π. For Φ ∈
Hom(g,K)(π

0, C∞
η (R\G)0) and a specification of K-type i ∈ HomK(τ, π),

the composite Φ ◦ i can be considered as a Vη ⊗W ∗
τ -valued function on G.

We call this function the spherical function of type (π, η, τ). We consider

the following problems:

(1) Under what assumptions on the pair (G,R), is the dimension m(π, η)

of the intertwining space Hom(g,K)(π
0, C∞

η (R\G)0) finite ?

(2) What kind of functions appear as the spherical functions of type

(π, η, τ) ?

Many studies suggest that the problem (1) is closely related with the ge-

ometry of the homogeneous space R\G. Among them when R is reductive,

a general results due to Bien, Kobayashi, and Oshima [1,Theorem (5.1)] as-

serts that the existence of an open P ′-orbit on G/P is a sufficient condition

for the finiteness of m(π, η) for an irreducible admissible representations π

(resp. η) of G (resp. of R). Here we denote by P (resp. by P ′) a minimal

parabolic subgroup of G (resp. of R). Further, some examples suggest that

m(π, η) is likely to have a small upper bound with respect to π and η when

the compact forms (Gc, Rc) have multiplicity-free property. On the prob-

lem (2), Hirano[3](resp. Tsuzuki[11][12]) obtained a general result for the

pair (GL(2,R), GL(1,R) × GL(1,R)) (resp. (U(n, 1), U(1) × U(n − 1, 1))

and there appear Gaussian hypergeometric functions in both cases.

In this paper, we discuss these problems for the semisimple symmetric

pair (G,R) = (Sp(2,R), SL(2,R)2). Here Sp(2,R) stands for the real sym-

plectic group of rank 2 (matrix size 4). Our main results are the following:

(1) Suppose that π is either a generalized principal series representation of

G induced from the parabolic subgroup corresponding to the long root(the

Jacobi parabolic subgroup) or a large discrete series representation of G

and η is a (limit of) discrete series representation of R. Then we have an

inequality m(π, η) � 1 (cf. Corollary(6.7)).

(2) Suppose π and η belong to the same classes as in (1). Then the ra-

dial parts of spherical functions attached to (π, η) can be written in terms

of Gaussian hypergeometric functions, or rational functions of exponential

functions (cf. Theorem (6.1),(6.2),(6.3),(6.4)).
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The organizations of this paper is as follows. In §1 we introduce and

fix some notation about Lie groups and Lie algebras. In §2 we recall the

representation theory of G,R, and K ∼= U(2) needed later. In §3 we define

the spherical functions of type (π, η, τ), where π is a smooth representation

of G, η is a smooth representation of R, τ is a K-type of π. We discuss the

restriction of the spherical functions to a split torus A, which contains a

complete representative of the double coset space R\G/K. In §4 we con-

struct systems of differential equations satisfied by the spherical functions

using two kinds of differential operators. One of them is shift operators,

which are defined by means of the Schmid operator, and the other is the

Casimir operator. In §5 we reduce the above differential equations to more

suitable ones for our purpose. In §6, by investigating these differential

equations, we prove our main results mentioned above.

I would like to express my profound gratitude to Professor Takayuki

Oda for his constant encouragement and much valuable advice. I would

also thank the referee for pointing out some mistakes of the manuscript.

§1. Basic Notation

1.1 Lie groups, Lie algebras and a root system

Put

J =

(
0 I2
−I2 0

)
∈M(4,R),

where I2 is the identity matrix of size 2. The symplectic group G :=

Sp(2,R) is given by

Sp(2,R) := {g ∈M(4,R)| tg Jg = J}.

Let us consider two commutative involutions θ, σ of G:

θ : G � g �→ tg−1 ∈ G,

σ : G � g �→




1

−1

1

−1


 g




1

−1

1

−1


 ∈ G.

Put

K := Gθ, R := Gσ,
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g := Lie(G), k := Lie(K), r := Lie(R).

The fixed point set by the Cartan involution θ determines a maximal com-

pact subgroup K of G, which is given by

K =

{(
A B

−B A

)
∈ Sp(2,R)|A,B ∈M(2,R)

}
.

It is isomorphic to the unitary group

U(2) := {g ∈ GL(2,C)| tḡ g = I2},

via a homomorphism

u : K �
(
A B

−B A

)
�→ A+

√
−1B ∈ U(2).

It is easily checked that

k =

{
X =

(
A B

−B A

)
|A,B ∈M(2,R), tA = −A, tB = B

}
.

The (−1)-eigenspace p of θ is

p = {X ∈ g|θ(X) = −X}

=

{(
A B

B −A

)
|A,B ∈M(2,R), tA = A, tB = B

}
,

which gives a Cartan decomposition g = k ⊕ p. The derivative of the iso-

morphism u, which is also denoted by u, is given by

u : k �
(
A B

−B A

)
�→ A+

√
−1B ∈ u(2).
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The subgroup R is isomorphic to SL(2,R)× SL(2,R). We take a basis

of rC as follows:

k1 :=




0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0


 , k2 :=




0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0


 ,

n+
1 :=

1

2




1 0 i 0
0 0 0 0
i 0 −1 0
0 0 0 0


 , n+

2 :=
1

2




0 0 0 0
0 1 0 i
0 0 0 0
0 i 0 −1


 ,

n−1 :=
1

2




1 0 −i 0
0 0 0 0
−i 0 −1 0
0 0 0 0


 , n−2 :=

1

2




0 0 0 0
0 1 0 −i
0 0 0 0
0 −i 0 −1


 .

We denote the (−1)-eigenspace of σ by q.

The simple Lie algebra g has a compact Cartan subalgebra h := RT1 ⊕
RT2, where

T1 :=
√
−1k1, T2 :=

√
−1k2.

We note that h is a compact Cartan subalgebra of r, too. Let β1, β2 ∈ hC
∗ be

the dual basis of k1, k2. We define the set of integral weights by Zβ1⊕Zβ2.

For each β ∈ h∗C, set

gβ := {X ∈ gC|[H,X] = β(H)X, ∀H ∈ hC}.

Then the root system ∆(gC, hC) given by

∆(gC, hC) = {±2β1,±2β2,±(β1 ± β2)}.

We fix a positive system ∆+ of ∆ as

∆+ := {2β1, β1 + β2, 2β2, β1 − β2}.
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For each positive root β, the root space g
β
C

is spanned by Xβ as follows:

X(2,0) :=




1 0 i 0
0 0 0 0
i 0 −1 0
0 0 0 0


 , X(1,1) :=




0 1 0 i
1 0 i 0
0 i 0 −1
i 0 −1 0


 ,

X(0,2) :=




0 0 0 0
0 1 0 i
0 0 0 0
0 i 0 −1


 , X(1,−1) :=




0 1 0 −i
−1 0 −i 0
0 i 0 1
i 0 −1 0


 .

For each negative root −β, the root space g
−β
C

is spanned by the root vector

X−β := X̄β. Set

p
+
C

:= CX(2,0) ⊕ CX(1,1) ⊕ CX(0,2),

and

p
−
C

:= CX(−2,0) ⊕ CX(−1,−1) ⊕ CX(0,−2).

Then pC = p
+
C
⊕ p

−
C
. For each root β = b1β1 + b2β2 = (b1, b2), we put

‖β‖ =
√
b21 + b22. Since the set of compact positive roots is ∆+

c = {β1 −
β2}, the set of dominant integral weights with respect to ∆+

c is given by

{(λ1, λ2)|λi ∈ Z, λ1 � λ2}.
If we put

H1 :=




1
1

−1
−1


 , and at := exp(tH1),

then a := RH1 is a maximal abelian subspace in p ∩ q. Define a vector

subgroup A of G by A := {at|t ∈ R}. In order to state the next lemma (a

generalized Cartan decomposition) we introduce some notation.

Notation. Set

c(t) :=
1

2
(

1

cosh 2t
+ 1), s(t) :=

1

2
(

1

cosh 2t
− 1),
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and define rC-valued functions L±,M±, and N on R by

L± := c(t)n±1 − s(t)n∓2 ,
M± := s(t)n∓1 − c(t)n±2 ,
N := tanh t · k1 − coth t · k2.

Lemma (1.1). For any t ∈ R∗, we have

gC = Ad(a−t)rC + aC + kC.

To be more precise, each root vector Xβ is decomposed as below:

(1) X(2,0) = Ad(a−t) · 2L+ − tanh 2t ·X,
(2) X(1,1) = Ad(a−t) · (−N ) +H1 − 2 coth 2t · k2,
(3) X(0,2) = Ad(a−t) · (−2M+)− tanh 2t · Y,
(4) X(−2,0) = Ad(a−t) · 2L− + tanh 2t · Y,
(5) X(−1,−1) = Ad(a−t) · N +H1 + 2 coth 2t · k2,
(6) X(0,−2) = Ad(a−t) · (−2M−) + tanh 2t ·X,
(7) X(1,−1), X(−1,1) ∈ kC.

Here we write

X :=
1

2
X(1,−1) = u−1(

(
0 1

0 0

)
), Y :=

−1

2
X(−1,1) = u−1(

(
0 0

1 0

)
).

The proof is direct computations.

1.2 The Jacobi parabolic subgroup

We fix a maximal parabolic subgroup PJ corresponding to the long root

of the C2-type root system, the Jacobi parabolic subgroup of G, as follows :

PJ :=





∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 ∗ ∗ ∗


 ∈ G


 .
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The Langlands decomposition PJ =MJAJNJ of PJ is given by

MJ :=





ε

a b
ε

c d


 |ε ∈ {±1},

(
a b

c d

)
∈ SL(2,R)


 ,

AJ := {diag(t, 1, t−1, 1)|t ∈ R>0},

and

NJ :=






1 ∗ ∗ ∗
0 1 ∗ 0
0 0 1 0
0 0 ∗ 1


 ∈ G


 .

Here diag(a1, a2, a3, a4) denotes the diagonal matrix whose (i, i)-compo-

nents are given by ai. Put aJ :=Lie(AJ).

§2. Representations of K,R and G

In this section we collect some basic facts about the representations of

K,R and G. In §2.1 and §2.2, we describe all the irreducible unitary rep-

resentations of K and R, respectively. In §2.3 we recall the generalized

principal series representations and the discrete series representations of G.

2.1 Irreducible K-modules

For our later computation, we recall some of the results about the

representation theory of K. Since K is isomorphic to the unitary group

U(2) of degree 2, the irreducible finite-dimensional representations of K

are parametrized by the set of their highest weights relative to ∆+
c :

{λ = λ1β1 + λ2β2 = (λ1, λ2) ∈ h
∗|λi ∈ Z, λ1 � λ2}.

For each dominant integral weight λ = (λ1, λ2), we set d = dλ = λ1 − λ2(�
0). Then the degree of the representation (τλ,Wλ) associated to λ is d+ 1.

We can take a basis {wk|0 � k � d} in Wλ so that the representation of kC

associated to τλ is given by

τλ(k1)wk = (k + λ2)wk;

τλ(k2)wk = (−k + λ1)wk;
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τλ(X)wk = (k + 1)wk+1;

τλ(Y )wk = (d+ 1− k)wk−1 = {d− (k − 1)}wk−1.

We call this basis the standard basis of τ . If we want to refer explicitly

to the dominant weight λ, we denote wk by wλ
k .

The vector space pC becomes a K-module via the adjoint representation

of K. It is easily checked that p
+
C
∼= W(2,0) and the correspondence of the

bases is given by

(X(0,2), X(1,1), X(2,0)) �→ (w0, w1, w2).

Similarly for p
−
C
, we have p

−
C
∼=W(0,−2) and the correspondence of the bases

is given by

(X(−2,0), X(−1,−1), X(0,−2)) �→ (w0,−w1, w2).

Let us consider the tensor products Wλ ⊗ p
±
C
.

Lemma (2.1). (i)The tensor product Wλ ⊗ p
+
C

has the decomposition

into irreducible factors as

Wλ ⊗ p
+
C

=

{
W(λ1+2,λ2) ⊕W(λ1+1,λ2+1) ⊕W(λ1,λ2+2) ifλ1 > λ2,

W(λ1+2,λ2) ifλ1 = λ2.

Here we understand W(λ1,λ2) = 0 for λ1 < λ2.

(ii)The tensor product Wλ ⊗ p
−
C

has the decomposition into irreducible

factors as

Wλ ⊗ p
−
C

=

{
W(λ1,λ2−2) ⊕W(λ1−1,λ2−1) ⊕W(λ1−2,λ2) ifλ1 > λ2,

W(λ1,λ2−2) ifλ1 = λ2.

Here we understand W(λ1,λ2) = 0 for λ1 < λ2.

Let P up, P even and P down be the projectors from Wλ ⊗ p
+
C

to factors

W(λ1+2,λ2), W(λ1+1,λ2+1) and W(λ1,λ2+2), respectively. Also denote the pro-

jectors from Wλ⊗ p
−
C

to factors W(λ1,λ2−2), W(λ1−1,λ2−1) and W(λ1−2,λ2) by

the same symbols P up, P even and P down, respectively. We will write these

projectors explicitly in the next lemma.
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Lemma (2.2). (i) Set µ = (λ1 + 2, λ2) or (λ1, λ2 − 2). Then, up to

scalar multiple, the projector P up is given by

P up(wλ
k ⊗ w2) =

(k + 2)(k + 1)

2
wµ
k+2 (0 � k � d);

P up(wλ
k ⊗ w1) = (k + 1)(d+ 1− k)wµ

k+1 (0 � k � d);

P up(wλ
k ⊗ w0) =

(d+ 1− k)(d+ 2− k)
2

wµ
k (0 � k � d).

(ii) Set ν = (λ1 + 1, λ2 + 1) or (λ1 − 1, λ2 − 1). Then, up to scalar

multiple, the projector P even is given by

P even(wλ
k ⊗ w2) = (k + 1)wν

k+1 (0 � k � d);
P even(wλ

k ⊗ w1) = (d− 2k)wν
k (0 � k � d);

P even(wλ
k ⊗ w0) = −(d+ 1− k)wν

k−1 (0 � k � d).

(iii) Set π = (λ1, λ2 +2) or (λ1− 2, λ2). Then, up to scalar multiple, the

projector P down is given by

P down(wλ
k ⊗ w2) = wπ

k (0 � k � d);
P down(wλ

k ⊗ w1) = −2wπ
k−1 (0 � k � d);

P down(wλ
k ⊗ w0) = wπ

k−2 (0 � k � d).

Here we understand that wν
k , or wπ

k is zero for k < 0, or k > dν or k > dπ.

The proof of the above lemmas is easy. It is enough to find out the

highest weight vectors inWλ⊗p
±
C

corresponding to the direct factorsWµ,Wν

and Wπ, respectively. The other vectors can be obtained by operating Y .

2.2 Unitary representations of R

Since R is identified with SL(2,R)× SL(2,R), each irreducible unitary

representation η can be written uniquely of the form η = η1 � η2, where

ηi(i = 1, 2) is an irreducible unitary representation of SL(2,R). So, we have

only to recall the irreducible unitary representations of SL(2,R). Here we

describe them infinitesimally (see Howe and Tan [4, Ch.III, p.100]).
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As a maximal compact subgroup of SL(2,R), we take K ′ := SO(2).

Define a basis {k, n+, n−} of sl(2,C) by

k :=

(
0 −i
i 0

)
, n+ :=

1

2

(
1 i

i −1

)
, n− :=

1

2

(
1 −i
−i −1

)
.

We introduce some sl(2,C)-modules:

(1) Lowest weight module Vµ(µ ∈ C): Vµ has a basis of k-eigen vectors

{vi|i = 0, 1, 2, . . . } such that

kvi = (µ+ 2i)vi, n+vi = vi+1, n−vi = −i(µ+ i− 1)vi−1.

(2) Highest weight module V̄µ(µ ∈ C): V̄µ has a basis of k-eigen vectors

{vi|i = 0,−1,−2, . . . } such that

kvi = (µ+ 2i)vi, n+vi = −i(µ+ i+ 1)vi+1, n−vi = vi−1.

(3)Ss,+(s ∈ C): Ss,+ has a basis of k-eigen vectors {vi|i ∈ Z} such that

kvi = 2ivi, n+vi = (−s
2

+ i)vi+1, n−vi = (−s
2
− i)vi−1.

(4)Ss,−(s ∈ C): Ss,− has a basis of k-eigen vectors {vi|i ∈ Z} such that

kvi = (2i+ 1)vi, n+vi = (
−s+ 1

2
+ i)vi+1, n−vi = (

−s− 1

2
− i)vi−1.

We call the basis {vi} introduced above the standard basis.

Theorem (2.3 Unitary dual of SL(2,R)). Suppose that (η, Vη) is an ir-

reducible unitary representation of SL(2,R), then the sl(2,C)-module struc-

ture of the space V 0
η of K ′-finite vectors in Vη is equivalent to one of the

following :

(1) Trivial representation 1.

(2) ( Limits of ) discrete series representation Vl (l ∈ {1, 2, . . . , }) or V̄l (l ∈
{−1,−2, . . . , }). In this case we write η = Dl, and call l the Blattner pa-

rameter of Dl.

(3)Principal series representationsS−1+it,+for t ∈ R�0 or S−1+it,− for t ∈
R>0. In this case we write η = P−1+it,+ or P−1+it,−.

(4)Complementary series representations Ss,+ for s ∈ (−1, 0). In this case

we write η = P s,+.

We denote by R̂ the set of equivalent classes of irreducible unitary rep-

resentations of R.
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2.3 The standard representations of G

In this subsection we review some facts on standard representations of

G.

2.3.1 The generalized principal series representations

A discrete series representation σ of the semisimple part MJ of PJ is of

the form σ = ε � Dλ(|λ| � 2), where ε : {±1} → C∗ is a character, Dλ is

a discrete series representation of SL(2,R) with the Blattner parameter λ

(see §2.2). For an element of νJ ∈ a∗J,C, let exp(νJ) : AJ � aJ �→ aνJJ ∈ C∗

be the corresponding character of AJ . Define a representation σ⊗ νJ of PJ
by

σ ⊗ νJ(pJ) = σ(mJ)aνJJ , for pJ = mJaJnJ ∈ PJ =MJAJNJ .

Then the generalized principal series representation π(σ, νJ) of G is de-

fined as the induced representation C∞ -IndGPJ
(σ⊗ (νJ +ρJ)) of G with the

representation space

C∞ -IndGPJ
(σ ⊗ (νJ + ρJ))

:= {F : G
C∞
→ Vσ|F (mJaJnJg) = σ(mJ)aνJ+ρJF (g),

∀(mJ , aJ , nJ , g) ∈MJ ×AJ ×NJ ×G},

on which G acts by right translation.

We describe the K-types of the generalized principal series representa-

tionsπ(σ, νJ).

Proposition (2.4). Let π(σ, νJ) be the generalized principal series

representationof G with σ = (ε,Dλ) and νJ ∈ a∗J,C. Then for a dominant

integral weight q = (q1, q2) ∈ Z⊕2(q1 � q2), the irreducible representation

τ(q1,q2) of K occurs in π(σ, νJ) with multiplicity

[π(σ, νJ) : τq]

= ;{m ∈ Z|m ≡ λ (mod 2), sgn(λ)m � |λ|,
(−1)q1+q2−m = ε, q2 � m � q1}.

In particular,
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(1) when ε = (−1)λ and λ � 2, then each of τ(q,q) (q ∈ Z, q ≡ λ

(mod 2), q � λ) or τ(λ,q) (q ∈ Z, q ≡ λ (mod 2), λ � q) occurs in π(σ, νJ)

with multiplicity one.

(2) when ε = (−1)λ+1 and λ � 2, then each of τ(q,q−1) (q ∈ Z, q ≡ λ
(mod 2), q � λ) or τ(λ,q−1) (q ∈ Z, q ≡ λ (mod 2), λ � q − 1) occurs in

π(σ, νJ) with multiplicity one.

Proof. Consider the restriction of σ to K ∩MJ :

σ|K∩MJ
=

∑
ω∈K̂∩MJ

[σ : ω]ω.

Here [σ : ω] is the multiplicity of ω in σ|K∩MJ
. Since K ∩MJ

∼= {±1} ×
SO(2), any ω ∈ K̂ ∩MJ is specified by its value ω(γ) at γ :=

diag(−1, 1,−1, 1) and the restriction ω|SO(2). We define a character χm(m ∈
Z) of SO(2) by

χm(rθ) = exp(imθ),

with rθ ∈ SO(2) being the rotation with angle θ. Then the K-type theorem

for Dλ (see §2.2) implies that the multiplicity of ω = (ω(γ), χm) is given by

[σ : ω] =

{
1, if m ≡ λ (mod 2), sgn(λ)m � |λ|, ω(γ) = ε,

0, otherwise.

The Frobenius reciprocity implies that the multiplicity of τ = τ(q1,q2) ∈ K̂
in π(σ, νJ) is given by

[π(σ, νJ) : τ ] =
∑

ω∈K̂∩MJ

[σ|K∩MJ
: ω] · [τ |K∩MJ

: ω].

Since the irreducible decomposition of τ(q1,q2)|K∩MJ
is given by

τ(q1,q2)|K∩MJ
= ⊕q2�m�q1((−1)q1+q2−m, χm),

together with the above formula of [σ : ω], we have the former part of the

proposition. The latter part of the proposition is a direct consequence of

the former. �
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2.3.2 The large discrete series representations

In this subsection we review the Harish-Chandra parametrization of the

discrete series representations in our case G = Sp(2,R) (cf, Knapp, [5,

Ch. VII]). Consider a compact Cartan subgroup exp(h) of G corresponding

to h. Then the characters of exp(h) are given by

exp(h) �




cos θ1 sin θ1
cos θ2 sin θ2

− sin θ1 cos θ1
− sin θ2 cos θ2




�→ exp{−
√
−1(m1θ1 +m2θ2)} ∈ C∗.

Herem1,m2 are some integers. The integral structure determined by the

derivation of these characters coincides with what we introduced in §1. In

order to parametrize the representations of discrete series of Sp(2,R), we

first enumerate all the positive systems containing ∆+
c . There are four such

positive systems:

(1) ∆+
I = {(1,−1), (2, 0), (1, 1), (0, 2)};

(2) ∆+
II = {(1,−1), (0,−2), (2, 0), (1, 1)};

(3) ∆+
III = {(1,−1), (−1,−1), (0,−2), (2, 0)};

(4) ∆+
IV = {(1,−1), (−2, 0), (−1,−1), (0,−2)}.

Let J be a variable running over the set of indices {I, II, III, IV }. Then

we write ∆+
J,n := ∆+

J \ ∆+
c for the set of non-compact positive roots. For

each index J , define a subset ΞJ of dominant weights by

ΞJ := {Λ = (Λ1,Λ2)|〈Λ, β〉 > 0, ∀β ∈ ∆+
J }.

Then the set ∪IVJ=I ΞJ gives the Harish-Chandra parametrization of the

discrete series for Sp(2,R). Let πΛ be the discrete representation of G

associated to Λ ∈ ΞJ . The Blattner parameter λmin of πΛ is given by

λmin := Λ − ρc,J + ρn,J , where ρc,J or ρn,J is a half of the sum of com-

pact positive roots or non-compact positive roots, respectively. The highest

weights of the K-types of πΛ|K are of the form

λmin +
∑

α∈∆+
J,n

mαα with mα ∈ Z�0.
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Furthermore, τλmin occurs in πΛ|K with multiplicity one, and we call it the

minimal K-type of πΛ. A discrete series representation πΛ is called large if

its Harish-Chandra parameter Λ belongs to ΞII ∪ ΞIII .

Definition (2.5). (1) We refer, in this paper, the generalized principal

series representations π = π(σ, νJ) with σ = (ε,Dλ)(λ � 2)(§2.3.1) and the

large discrete series representations π = πΛ(Λ ∈ ΞII) (§2.3.2) of G as the

half-size standard representations of G.

(2) We define the corner K-type τ of a half-size standard representation π

of G by

τ :=



τ(λ,λ), if π = π(σ, νJ), σ = (Dλ, ε), ε = (−1)λ;

τ(λ,λ−1), if π = π(σ, νJ), σ = (Dλ, ε), ε = (−1)λ+1;

τλmin
, if π = πΛ (Λ ∈ ΞII).

Remark. (1) The rather unfamiliar terminology “half size” standard

representations is due to the fact that Bernstein degree of these representa-

tions are the half of the order of the Weyl group of G. We notice that the

“shapes” of the K-types of these two kinds of representations are the same.

(2) The contragredient representation of π((ε,Dλ), νJ) is π((−ε,D−λ),−νJ).

(3) The contragredient representation of πΛ with Λ = (Λ1,Λ2) ∈ ΞII is πΛ∗

with Λ∗ = (−Λ2,−Λ1) ∈ ΞIII .

§3. Spherical Functions

3.1 Definition of spherical functions

For (η, Vη) ∈ R̂, we define a C∞-induced module C∞ -IndGR(η) with the

representation space

C∞
η (R\G) := {F : G→ Vη| C∞-class, F (rg) = η(r)F (g) ∀(r, g) ∈ R×G}

on which G acts by the right translation. For a smooth representation η of

R and a finite-dimensional K-module (τ,Wτ ), we denote by C∞
η,τ (R\G/K)

the space of C∞-functions F : G→ Vη ⊗W ∗
τ with the property

F (rgk) = (η(r)⊗ τ∗(k)−1)F (g) (r, g, k) ∈ R×G×K,
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where (τ∗,W ∗
τ ) stands for the contragredient representation of (τ,Wτ ). For

a stnadard representation π of G and a K-equivariant map i : τ → π|K , we

define a C-linear map

i∗ : Hom(g,K)(π
0, C∞

η (R\G)0) −→ HomK(τ, C∞
η (R\G)) ∼= C∞

η,τ (R\G/K),

by the pullback via i. Here π0 or C∞
η (R\G)0 stands for the underlying

(g,K)-module of π or C∞
η (R\G), respectively. We call the image of i∗ the

spherical functions of type (π, η, τ). The main purpose of this paper is to

compute the A-radial part of the spherical functions when π is a half-size

standard representation and τ is its corner K-type (see Definition (2.5)).

We should note that if π is irreducible, then the above map i∗ is injective.

3.2 Some consequences from structure theory

We recall some structure theory of semisimple symmetric spaces, by

which we can regard the spherical functions as C∞-functions of one real

variable.

Proposition (3.1). Let R, A, and K be as in §1.
(i) The multiplication map Φ : R × A × K � (r, a, k) �→ rak ∈ G is a

C∞-surjection, and regular at (r, a, k) if and only if a �= 1.

(ii) The fiber of φ above g = rak is given by as follows:

(1) Φ−1(g) = {(rl−1, 1, lk)|l ∈ R ∩K} if a = 1,

(2) Φ−1(g) = {(rl−1, lal−1, lk)|l ∈ NR∩K(a)} if a �= 1.

Proof. See Theorem 9 and Theorem 10 of Rossmann [10]. �

Let C∞
η,τ (A) be the space of Vη ⊗W ∗

τ -valued C∞-functions satisfying the

following conditions (a), (b) and (c):

(a) η(m)⊗ τ∗(m)φ(at) = φ(at) for any m ∈ ZR∩K(a).

(b) η(m0)⊗ τ∗(m0)φ(at) = φ(a−t)

for a non trivial representative m0ofWR∩K(a) = {±1}.
(c) η(r)⊗ τ∗(r)φ(e) = φ(e) for any r ∈ R ∩K.
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Proposition (3.2). The restriction map

resA : C∞
η,τ (R\G/K)→ C∞

η,τ (A)

is a linear injection.

Proof. This follows from Proposition (3.1). �

Owing to Proposition (3.2), we can regard a spherical function F (g) of

type (π, η, τ) as a function φ = resA(F ) on A. In what follows, we frequently

write φ(t) instead of φ(at). For any C-linear map

A : C∞
η,τ (R\G/K)→ C∞

η,τ ′(R\G/K),

there exists a C-linear map ρ(A) : C∞
η,τ (A)→ C∞

η,τ ′(A) such that res |A◦A =

ρ(A) ◦ res |A, and call ρ(A) the A-radial part of A.

If C∞
η,τ (A) = 0, there is no non-zero spherical functions.

Assumption (3.3). Hereafter, we (tacitly) assume that C∞
η,τ (A) �= {0}.

§4. Differential Operators and Differential Equations

In this section, we construct systems of differential equations for spher-

ical functions and calculate their radial parts.

4.1 Differential operators

Here we introduce two kinds of differential operators, that is, shift op-

erators and the Casimir operator.

4.1.1 Shift operators

Before introducing shift operators, we recall the definition of the Schmid

operators. Let g = k⊕ p be the Cartan decomposition of g in §1, and Ad =

Ad |pC
the adjoint representation of K on pC. Then we have a canonical co-

variant differential operator ∇τ from C∞
η,τ (R\G/K) to C∞

η,τ⊗pC
∗(R\G/K) :

∇τF =
∑
i

RXiF ⊗Xi, F ∈ C∞
η,τ (R\G/K),
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where (Xi)i is any fixed orthonormal basis of p with respect to the Killing

form B of g, and

RXF (g) :=
d

dt
(F (g exp(tX)))|t=0 (g ∈ G,X ∈ g).

We call this differential operator ∇τ the Schmid operator.

Let Pτ ′ :W ∗
τ ⊗ pC →W ∗

τ ′ be the projection to an irreducible component

W ∗
τ ′ of the K-module W ∗

τ ⊗ pC. We define a Vη ⊗W ∗
τ ′-valued function F ′ ∈

C∞
η,τ ′(R\G/K) by F ′ := Pτ ′(∇τF ). We prove the following key proposition.

Proposition (4.1). For a spherical function F of type (π, η, τ), the

Vη ⊗W ∗
τ ′-valued function F ′ is also a spherical function of type (π, η, τ ′).

Proof. By the definition of the spherical functions, F can be written

as

F =

d∑
k=0

Φ(wk)⊗ w∗
k,

where Φ ∈ Hom(g,K)(π,C
∞
η (R\G)), {wk} is a basis of τ , {w∗

k} is the dual

basis of {wk}. Then we have

∇τ (F ) =
d∑

k=0

∑
i

RXiΦ(wk)⊗ w∗
k ⊗Xi

=
d∑

k=0

∑
i

Φ(π(Xi)wk)⊗ w∗
k ⊗Xi.

On the other hand, we can identify p∗C with pC by means of the Killing form

B:

ξ : pC � X �→ ξX ∈ p
∗
C, ξX(Y ) = B(X,Y ) (for any X,Y ∈ pC).

We notice that (i) {ξXi ⊗ wk ∈ p∗C ⊗Wτ} is the dual basis of {Xi ⊗ w∗
k ∈

pC ⊗W ∗
τ }, and (ii) the natural map

p
∗
C ⊗Wτ � ξX ⊗ w �→ π(X)w ∈ π|K ,
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is a K-equivariant map from Ad∗ ⊗ τ to π|K . Therefore, considering the

complete reducibility of finite-dimensional K-modules, we obtain the asser-

tion. �

We compute the A-radial part ρ(∇τ ) of ∇τ . As an orthonormal basis of

p, we take

{
C‖β‖(Xβ +X−β),

C‖β‖√
−1

(Xβ −X−β) | β ∈ ∆+
n

}
,

with some constant C > 0 depending on the Killing form. Then

2∇τF = C
∑
β∈∆+

n

‖β‖2RXβ
F ⊗X−β + C

∑
β∈∆+

n

‖β‖2RX−β
F ⊗Xβ.

We write

∇+
τ F = C

∑
β∈∆+

n

‖β‖2RXβ
F ⊗X−β, ∇−

τ F = C
∑
β∈∆+

n

‖β‖2RX−β
F ⊗Xβ.

We put

D−
λ := P down ◦ ∇−

(λ,λ−2) ◦ ∇
−
(λ,λ) :

C∞
η,(λ,λ)(R\G/K)→ C∞

η,(λ−2,λ−2)(R\G/K);

E−
λ := P even ◦ ∇−

(λ,λ−1) : C∞
η,(λ,λ−1)(R\G/K)→ C∞

η,(λ−1,λ−2)(R\G/K).

We call these differential operators D−
λ and E−

λ the shift operators.

4.1.2 The Casimir operator

The Casimir element L of gC is up to constant given by

L =2k2
1 + 2k2

2 − 8k1 − 4k2 + 2X(2,0) ·X(−2,0)

+ 2X(0,2) ·X(0,−2) +X(1,1) ·X(−1,−1) −X(1,−1) ·X(−1,1).

We can extend the action RY (Y ∈ gC) of gC on C∞
η,τ (R\G/K) to the uni-

versal enveloping algebra U(gC) of gC. In particular, the action RL of the

Casimir element L is defined, which we call the Casimir operator.
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4.2 Differential equations

We are going to write abstractly the differential equations satisfied by the

spherical functions in terms of the differential operators constructed above.

We begin with the case of the generalized principal series representations.

Theorem (4.2). Let π = π(σ, νJ) be a generalized principal series rep-

resentation with σ = (Dλ, ε). (i) If ε = (−1)λ, then the spherical functions

F of type (π, η, τ(λ,λ)) satisfies

(a-1) : D−
λ F = 0,

(a-2) : RLF = {2νJ2 + 2(λ− 1)2 − 10}F.

(ii) If ε = (−1)λ+1, then the spherical functions F of type (π, η, τ(λ,λ−1))

satisfies

(b-1) : E−
λ F = 0,

(b-2) : RLF = {2νJ2 + 2(λ− 1)2 − 10}F.

Here we identify νJ ∈ a∗J,C with its value at diag(1, 0,−1, 0) ∈ aJ,C.

Proof. From the irreducible decomposition of π|K as a K-module

(Proposition (2.4)) and Proposition (4.1), we have the equations (a-1) and

(b-1). We will prove (a-2) and (b-2). We denote the infinitesimal character

of π by χπ. As in the proof of Proposition (4.1), we write F as

F =
d∑

k=0

Φ(wk)⊗ w∗
k,

where Φ ∈ Hom(g,K)(π
0, C∞

η (R\G)0), {wk} is a basis of τ, {w∗
k} is the dual

basis of {wk}. Then we have

RLF =
d∑

k=0

Φ(χπ(L)wk)⊗ w∗
k = χπ(L)F.

On the other hand, the value χπ(L) of the infinitesimal character χπ of π at

L is equal to 2ν2
J +2(λ−1)2−10 (see Miyazaki and Oda, [6, Proposition

(7.2)(7.3)]). Hence (a-2) and (b-2) are proved. �



Spherical Functions 147

The next theorem characterizes the spherical functions for the discrete

series representations. This is a special case of a general result of Ya-

mashita [13].

Theorem (4.3). (i) Let π = πΛ be a discrete series representation with

Λ ∈ ΞJ , τ = τλ the minimal K-type of π. We define a differential operator

Dλ, which we also call the shift operator, by

Dλ : C∞
η,τ (R\G/K) � F �→ Pλ(∇τF ) ∈ C∞

η,(τ−)∗(R\G/K),

where Pλ is the projection to the second component τ− :=
⊕

β∈∆+
J,n
W ∗

λ−β

of Wτ
∗ ⊗ pC =

⊕
β∈∆+

J,n
W ∗

λ+β ⊕
⊕

β∈∆+
J,n
W ∗

λ−β. Then the restriction to

the minimal K-type τλ induces an isomorphism

i∗ : Hom(g,K)(π
0
Λ, C

∞
η (R\G)0) ∼= ker(Dλ).

(ii) If the Harish-Chandra parameter Λ belongs to ΞII , the differential equa-

tion DλF = 0 is equivalent to the system:

(c-1) : P down ◦ ∇−F = 0;

(c-2) : P down ◦ ∇+F = 0;

(c-3) : P even ◦ ∇−F = 0.

Proof. (i) By the same reason as Theorem (4.1), the image of the

restriction map i∗ is annihilated by Dλ. The injectivity is remarked earlier

in §3.1. Since the Blattner parameters of the contragredient representations

π∗Λ of πΛ (Λ ∈ ΞII) are far from the wall (see [13, Definition (1.7)]), the

image of i∗ coincides with ker(Dλ)[13, Theorem (2.4)]. (ii) This follows

from the definition of the differential operator Dλ. �

4.3 The radial part of the Schmid operator

We begin with calculating the A-radial parts ρ(RY ) of the actions RY

of Y ∈ gC on C∞
η,τ (R\G/K).

Proposition (4.4). For φ ∈ C∞
η,τ (A), we have

(ρ(Rk1)φ) (t) = −τ∗(k1)φ(t),
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(ρ(Rk2)φ) (t) = −τ∗(k2)φ(t),(
ρ(RX(2,0)

)φ
)

(t) = {2η(L+) + tanh 2t · τ∗(X)}φ(t),(
ρ(RX(1,1)

)φ
)

(t) = { d
dt
− η(N ) + 2 coth 2t · τ∗(k2)}φ(t),(

ρ(RX(0,2)
)φ
)

(t) = {−2η(M+) + tanh 2t · τ∗(Y )}φ(t),(
ρ(RX(−2,0)

)φ
)

(t) = {2η(L−)− tanh 2t · τ∗(Y )}φ(t),(
ρ(RX(−1,−1)

)φ
)

(t) = { d
dt

+ η(N )− 2 coth 2t · τ∗(k2)}φ(t),(
ρ(RX(0,−2)

)φ
)

(t) = {−2η(M−)− tanh 2t · τ∗(X)}φ(t),(
ρ(RX(1,−1)

)φ
)

(t) = −2τ∗(X)φ(t),(
ρ(RX(−1,1)

)φ
)

(t) = 2τ∗(Y )φ(t).

We can deduce these formulae from the generalized Cartan decomposi-

tion (Lemma (1.1)) and the following lemma.

Lemma (4.5). Let U = Ad(a−t)(X1 ·X2 · · ·Xl) ·Hm
1 · Y1 · Y2 · · ·Yn be

an element of U(gC), where Xi ∈ rC,m ∈ Z�0 and Yi ∈ kC. Then for

F ∈ C∞
η,τ (R\G/K) we have

[RUF ](at) =

η(X1) ◦ η(X2) ◦ · · · ◦ η(Xl) ◦ (
d

dt
)m ◦ (−τ∗(Yn)) ◦ · · ·

◦ (−τ∗(Y2)) ◦ (−τ∗(Y1))F (at).

This lemma can be proved by direct computation.

Proposition (4.6). We have the following formulae for the A-radial

parts of ∇+ and ∇− :

(i) ρ(∇+)φ

= 4{2η(L+) + tanh 2t(τ∗ ⊗Ad)(X)}φ⊗X(−2,0)
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+ 2{ d
dt
− η(N ) + 2 coth 2t((τ∗ ⊗Ad)(k2) + 1) + 4 tanh 2t}φ⊗X(−1,−1)

+ 4{−2η(M+) + tanh 2t(τ∗ ⊗Ad)(Y )}φ⊗X(0,−2);

(ii) ρ(∇−)φ

= 4{2η(L−)− tanh 2t(τ∗ ⊗Ad)(Y )}φ⊗X(2,0)

+ 2{( d
dt

+ η(N )− 2 coth 2t((τ∗ ⊗Ad)(k2)− 1) + 4 tanh 2t)}φ⊗X(1,1)

+ 4{−2η(M−)− tanh 2t(τ∗ ⊗Ad)(X)}φ⊗X(0,2).

Proof. (i) It is easy to see that

τ∗(X)φ⊗X(−2,0) = (τ∗ ⊗Ad)(X)φ⊗X(−2,0) − φ⊗ [X,X(−2,0)]

= (τ∗ ⊗Ad)(X)φ⊗X(−2,0) + φ⊗X(−1,−1).

Similarly we have

τ∗(k2)φ⊗X(−1,−1) = (τ∗ ⊗Ad)(k2)φ⊗X(−1,−1) + φ⊗X(−1,−1),

τ∗(Y )φ⊗X(0,−2) = (τ∗ ⊗Ad)(Y )φ⊗X(0,−2) + φ⊗X(−1,−1).

From these formulae and Proposition (4.4), we can compute ρ(∇+). The

computation of ρ(∇−) is quite similar. �

4.4 The radial parts of the shift operators

In order to write the radial parts of the shift operators, it is better to

introduce a ”macro symbol” Cλ, which is given by

Cλ := η(N ) + 2λ coth 2t.

We represent the spherical function φ(0) ∈ C∞
η,τ (A) as

φ(0)(a) =
d∑

k=0

φ
(0)
0 (a)w

(0)
k ,
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with respect to the standard basis {w(0)
k } of the representation τ∗ of K.

Then we can write down explicitly the differential equations (a-1), (b-1),

(c-1), (c-2) and (c-3) arising from the shift operators in terms of the coeffi-

cient functions φ
(0)
k . The computation is divided according to the dimension

d of the corner K-type τ .

Proposition (4.7 one-dimensional case). Set τ = τ(λ,λ). The equation

(a-1) is equivalent to

(A-1) : {( d
dt

+Cλ−1+4 tanh 2t)(
d

dt
+Cλ)+8η(L−·M−+M−·L−)}φ(0)

0 = 0.

Proof. We put φ(1) := ρ(∇−)φ(0), φ(2) := P down(ρ(∇−)φ(1)) =

ρ(D−
λ )φ(0). We define Vη-valued C∞-functions φ

(1)
k (k = 0, 1, 2), and φ

(2)
0

on A by

φ(1)(a) =
∑

0�k�2

φ
(1)
k (a)w

(1)
k , φ(2)(a) = φ

(2)
0 (a)w

(2)
0 ,

where {w(1)
k , 0 � k � 2} or {w(2)

0 } is the standard basis of W(2−λ,−λ) or

W(1−λ,1−λ). Firstly we compute φ
(1)
0 , φ

(1)
1 and φ

(1)
2 . By Lemma (2.2)(iii),

we have

φ(0)⊗X(2,0) = φ
(0)
0 w

(1)
2 ; φ(0)⊗X(1,1) = φ

(0)
0 w

(1)
1 ; φ(0)⊗X(2,0) = φ

(0)
0 w

(1)
0 .

From these formulae we obtain

φ(1) = 8η(L−)φ
(0)
0 w

(1)
2 +2(

d

dt
+η(N )+2λ coth 2t)φ

(0)
1 w

(1)
1 −8η(M−)φ

(0)
0 w

(1)
0 .

In other words, we have

φ
(1)
2 = 8η(L−)φ

(0)
0 ; φ

(1)
1 = 2(

d

dt
+ η(N ) + 2λ coth 2t)φ

(0)
0 ;

φ
(1)
0 = −8η(M−)φ

(0)
0 .
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Using these formulae and Lemma (2.2)(i) we conclude that

φ
(2)
0 = −8{8η(L−·M−)+(

d

dt
+Cλ−1+4 tanh 2t)(

d

dt
+Cλ)+8η(M−·L−)}φ(0)

0 .

Thus the proposition follows. �

Proposition (4.8 two-dimensional case). Set τ = τ(λ,λ−1). The equa-

tion (b-1) is equivalent to the system:

(B-1) : (
d

dt
+ Cλ−1 + 2 tanh 2t)φ

(0)
0 + 4η(M−)φ

(0)
1 = 0;

(B-2) : 4η(L−)φ
(0)
0 − (

d

dt
+ Cλ + 2 tanh 2t)φ

(0)
1 = 0.

Proof. Put φ(1) := ρ(Eλ)φ
(0) = P even(ρ(∇−)φ(0)). By Lemma

(2.2)(ii), we have

P even(φ(0) ⊗X(2,0)) = φ
(0)
0 w

(1)
1 ;

P even(φ(0) ⊗X(1,1)) = φ
(0)
0 w

(1)
0 − φ(0)

1 w
(1)
1 ;

P even(φ(0) ⊗X(0,2)) = −φ(0)
1 w

(1)
0 ,

where {w(1)
k |k = 0, 1} is the standard basis of W(−λ+2,−λ+1). By virtue of

these formulae and Proposition (4.6)(ii) , we get

φ(1) = 4{2η(L−)− tanh 2t(τ∗ ⊗Ad)(Y )}φ(0)
0 w

(1)
1

+ 2{( d
dt

+ η(N )− 2 coth 2t((τ∗ ⊗Ad)(k2)− 1) + 4 tanh 2t)}

· (φ(0)
0 w

(1)
0 − φ(0)

1 w
(1)
1 )

+ 4{−2η(M−)− tanh 2t(τ∗ ⊗Ad)(X)}(−φ(0)
1 w

(1)
0 )

= 8η(L−)φ
(0)
0 w

(1)
1 − 4 tanh 2t φ

(0)
0 w

(1)
0

+ 2{ d
dt

+ η(N )− 2 coth 2t(1− λ) + 4 tanh 2t}φ(0)
0 w

(1)
0

− 2{ d
dt

+ η(N )− 2 coth 2t(−λ) + 4 tanh 2t}φ(0)
1 w

(1)
1
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+ 8η(M−)φ
(0)
1 w

(1)
0 + 4 tanh 2t φ

(0)
1 w

(1)
1 .

This proves our assertion. �

Proposition (4.9 (d + 1)-dimensional case (d � 4)). Set τ = τ(λ1,λ2)

such that d = λ1 − λ2 � 4. Then we have the following :

(i) The equation (c-1) is equivalent to the system:

(C-1)k : 2η(M−)φ
(0)
k+2 + (

d

dt
+ Ck+λ2+1 + (d+ 2) tanh 2t)φ

(0)
k+1

− 2η(L−)φ
(0)
k = 0 (0 � k � d− 2).

(ii) The equation (c-2) is equivalent to the system:

(C-2)k : 2η(L+)φ
(0)
k+2 + (

d

dt
− Ck+λ2+1 + (d+ 2) tanh 2t)φ

(0)
k+1

− 2η(M+)φ
(0)
k = 0 (0 � k � d− 2).

(iii) The equation (c-3) is equivalent to the system:

(C-3)k : 4(d− k)η(M−)φ
(0)
k+1 + (d− 2k)(

d

dt
+ Ck+λ2 + 2 tanh 2t)φ

(0)
k

+ 4k η(L−)φ
(0)
k−1 = 0 (0 � k � d).

Proof. We prove (ii) only. The proofs of (i) and (iii) are similar. Set

φ(1) := P down(ρ(∇+))φ(0). From Lemma (2.2)(ii), we have

P down(φ(0) ⊗X(−2,0)) =

d∑
k=0

φ
(0)
k w

(1)
k−2;

P down(φ(0) ⊗X(−1,−1)) =
d∑

k=0

2φ
(0)
k w

(1)
k−1;

P down(φ(0) ⊗X(0,−2)) =
d∑

k=0

φ
(0)
k w

(1)
k ,
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where {w(1)
k |0 � k � d− 2} is the standard basis of W(−λ2−2,−λ1). Combin-

ing these formulae with Proposition (4.6)(i) we have

φ(1) = 4{2η(L+) + tanh 2t(τ∗ ⊗Ad)(X)}(
d∑

k=0

φ
(0)
k w

(1)
k−2)

+ 2{ d
dt
− η(N ) + 2 coth 2t((τ∗ ⊗Ad)(k2) + 1) + 4 tanh 2t}

· (
d∑

k=0

2φ
(0)
k w

(1)
k−1)

+ 4{−2η(M+) + tanh 2t(τ∗ ⊗Ad)(Y )}(
d∑

k=0

φ
(0)
k w

(1)
k )

=

d∑
k=0

[ 8η(L+)φ
(0)
k w

(1)
k−2 + 4(k − 1) tanh 2t φ

(0)
k w

(1)
k−1

+ 4{ d
dt
− η(N ) + 2 coth 2t(−k − λ2) + 4 tanh 2t}φ(0)

k w
(1)
k−1

− 8η(M+)φ
(0)
k w

(1)
k + 4(d− k − 1) tanh 2tφ

(0)
k w

(1)
k−1 ]

=
d−2∑
k=0

{8η(L+)φ
(0)
k+2 + 4(

d

dt
− Ck+λ2+1 + (d+ 2) tanh 2t)φ

(0)
k+1

− 8η(M+)φ
(0)
k }w

(1)
k .

This proves (ii). �

4.5 The radial part of the Casimir operator

We are going to write down the differential equations arising from the

Casimir operator in terms of the coefficient functions φ
(0)
k .

Proposition (4.10). (i) If τ = τ(λ,λ), then the equation (a-2) is equiv-

alent to (A-2) below :

{( d
dt
− Cλ−1 + 4 tanh 2t)(

d

dt
+ Cλ)

+ 8η(L+ · L− +M+ · M−) + 4λ2 − 12λ}φ(0)
0 = χπ(L)φ

(0)
0 .
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(ii) If τ = τ(λ,λ−1), then the equation (b-2) is equivalent to the system:

(B-3) : {( d
dt
− Cλ−2 + 2 tanh 2t)(

d

dt
+ Cλ−1 + 2 tanh 2t)

+ 8η(L+ · L− +M− · M+)

+ 4λ2 − 8λ− 6}φ(0)
0 − 4 tanh 2t · η(L+ +M−)φ

(0)
1 = χπ(L)φ

(0)
0 ;

(B-4) : {( d
dt
− Cλ−1 + 2 tanh 2t)(

d

dt
+ Cλ + 2 tanh 2t)

+ 8η(L− · L+ +M+ · M−)

+ 4λ2 − 8λ− 6}φ(0)
1 + 4 tanh 2t · η(L− +M+)φ

(0)
0 = χπ(L)φ

(0)
1 .

Proof. Our first task is to express the Casimir element as a linear

combination of such elements as Ad(a−t)(U1) · Hm
1 · U2 (U1 ∈ U(rC),m ∈

Z�0, U2 ∈ U(kC)). Using Proposition (1.1)(the generalized Cartan decom-

position), we have

X(2,0)X(−2,0) = (2 Ad(a−t)L+ − tanh 2t ·X)(2 Ad(a−t)L− + tanh 2t · Y )

= 4 Ad(a−t)(L+ · L−)− 2 tanh 2tX · (Ad(a−t)L−)

+ 2 tanh 2t(Ad(a−t)L+) · Y − tanh2 2tX · Y
= 4 Ad(a−t)(L+ · L−) + 2 tanh 2t(Ad(a−t)L+) · Y
− tanh2 2tX · Y
− tanh 2t{2(Ad(a−t)L−) ·X + [X,X(−2,0) − tanh 2t · Y ]}
= 4 Ad(a−t)(L+ · L−) + 2 tanh 2t(Ad(a−t)L+) · Y
− tanh2 2tX · Y
− tanh 2t{2(Ad(a−t)L−) ·X −X(−1,−1) − tanh 2t(k1 − k2)}.

Similarly we have

X(0,2)X(0,−2) = 4 Ad(a−t)(M+ · M−)− 2 tanh 2t(Ad(a−t)M+) ·X
− tanh2 2t Y ·X
+ tanh 2t{2 Ad(a−t)M− · Y +X(−1,−1) − tanh 2t(k1 − k2)};

X(1,1)X(−1,−1) = −Ad(a−t)(N 2) +H2
1 − 4 coth2 2t · k2

2
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− 4 coth 2t(Ad(a−t)N ) · k2 + 2k1 + 2k2 + 2 coth 2t ·H1.

Getting these formulae together, we obtain

L = 2k2
1 + 2k2

2 − 6k1 + 6k2 − 4 coth2 2t · k2
2 − 2 tanh2 2t(X · Y + Y ·X)

+ 4X · Y + Ad(a−t)(8L+ · L− + 8M+ · M− −N 2 + 4 tanh 2t · N )

+ 4
tanh 2t

cosh 2t
{Ad(a−t)(n

+
1 − n−2 ) · Y −Ad(a−t)(n

−
1 − n+

2 ) ·X)}

− 4 coth 2tAd(a−t)N · k2 +H2
1 + (4 tanh 2t+ 2 coth 2t)H1.

Now we can compute the A-radial parts of the Casimir operator by using

Lemma (4.5). �

§5. Reduction of Differential Equations

In this section we reduce the systems of differential equations constructed

in the previous section to suitable ones for our later computations in §6.

5.1 The one-dimensional case

First we treat the case of one-dimensional corner K-types.

Proposition (5.1). The system of differential equations (A-1) (A-2)

is equivalent to the system:

(A-3) : {( d
dt

+ 2 tanh 2t− Cλ−1

cosh 2t
)(
d

dt
+ 2 tanh 2t+ Cλ)

+ c(t)(
8

cosh 2t
η(n+

1 n
−
1 + n−2 n

+
2 ) + 2(λ2 − ν2

J))

− 16s(t)

cosh 2t
η(n+

1 n
+
2 )}φ(0)

0 = 0,

(A-4) : {( d
dt

+ 2 tanh 2t+
Cλ−1

cosh 2t
)(
d

dt
+ 2 tanh 2t+ Cλ)

+ s(t)(
8

cosh 2t
η(n−1 n

+
1 + n+

2 n
−
2 )− 2(λ2 − ν2

J))

− 16c(t)

cosh 2t
η(n−1 n

−
2 )}φ(0)

0 = 0.

Proof. To get (A-3) or (A-4) from (A-1) and (A-2), it is enough to

compute s(t) (A-1) +c(t) (A-2) or c(t) (A-1) +s(t) (A-2), respectively. The

converse implication is now trivial. �
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5.2 The two-dimensional case

Next we proceed to the case of two-dimensional corner K-types.

Proposition (5.2). Suppose that φ(0) ∈ C∞
η,τ (A) satisfies the system

of the differential equation (B-1), (B-2), (B-3), and (B-4). Then we have

the following formulae from (B-5) to (B-8).

(B-5) : {( d
dt

+ 3 tanh 2t− Cλ−2

cosh 2t
)(
d

dt
+ 2 tanh 2t+ Cλ−1)

+ c(t)(
−8

cosh 2t
η(n+

1 n
−
1 − n−2 n+

2 ) + 2(λ− 1)2 − 2ν2
J)}φ(0)

0

+
4

cosh 2t
(
d

dt
+ Cλ + tanh 2t− 2 tanh t)η(n+

1 )φ
(0)
1 = 0,

(B-6) : {( d
dt

+ 3 tanh 2t+
Cλ−1

cosh 2t
)(
d

dt
+ 2 tanh 2t+ Cλ)

+ s(t)(
−8

cosh 2t
η(n−1 n

+
1 − n+

2 n
−
2 )− 2(λ− 1)2 + 2ν2

J)}φ(0)
1

− 4

cosh 2t
(
d

dt
+ Cλ−1 + tanh 2t+ 2 tanh t)η(n−1 )φ

(0)
0 = 0,

(B-7) : {( d
dt

+ 3 tanh 2t− Cλ−1

cosh 2t
)(
d

dt
+ 2 tanh 2t+ Cλ)

+ c(t)(
8

cosh 2t
η(n−1 n

+
1 − n+

2 n
−
2 ) + 2(λ− 1)2 − 2ν2

J)}φ(0)
1

+
4

cosh 2t
(
d

dt
+ Cλ−1 + tanh 2t+ 2 coth t)η(n+

2 )φ
(0)
0 = 0,

(B-8) : {( d
dt

+ 3 tanh 2t+
Cλ−2

cosh 2t
)(
d

dt
+ 2 tanh 2t+ Cλ−1)

+ s(t)(
8

cosh 2t
η(n+

1 n
−
1 − n−2 n+

2 )− 2(λ− 1)2 + 2ν2
J)}φ(0)

0

− 4

cosh 2t
(
d

dt
+ Cλ + tanh 2t− 2 coth t)η(n−2 )φ

(0)
1 = 0.

Proof. Computing 4η(L+) · (B-2)− (B-3) (resp. 4η(M+) · (B-1)−
(B-4)), we obtain the following equation (B-9) (resp. (B-10)):

(B-9) : {( d
dt
− Cλ−2 + 2 tanh 2t)(

d

dt
+ Cλ−1 + 2 tanh 2t)

+ η(−8L+ · L+ + 8M+ · M−) + 4λ2 − 8λ− 6− χπ(L)}φ(0)
0



Spherical Functions 157

+ 4{η(L+)(
d

dt
+ Cλ + 2 tanh 2t)− tanh 2t η(L+ +M−)}φ(0)

1 = 0;

(B-10) : {( d
dt
− Cλ−1 + 2 tanh 2t)(

d

dt
+ Cλ + 2 tanh 2t)

+ η(8L− · L+ − 8M+ · M−) + 4λ2 − 8λ− 6− χπ(L)}φ(0)
0

− 4{η(M+)(
d

dt
+ Cλ−1 + 2 tanh 2t)− tanh 2t η(L− +M−)}φ(0)

0 .

Now it is easy to check that

(B-5) = s(t)(
d

dt
+ Cλ + 2 tanh 2t− 2 tanh t) (B-1)−c(t) (B-9);

(B-6) = c(t)(
d

dt
+ Cλ−1 + 2 tanh 2t+ 2 tanh t) (B-2) +s(t) (B-10);

(B-7) = s(t)(
d

dt
+ Cλ−1 + 2 tanh 2t+ 2 coth t) (B-2) +c(t) (B-10);

(B-8) = c(t)(
d

dt
+ Cλ + 2 tanh 2t− 2 coth t) (B-1)−s(t) (B-9) . �

5.3 The (d+ 1)-dimensional case (d � 4)

Finally we treat the case of the large discrete series representations.

Proposition (5.3). The system of the differential equations

(C-1)0�k�d−2, (C-3)0�k�d is equivalent to the system of differential equations

(C-4)0�k�d−1, (C-5)0�k�d−1 below : (C-4)k+1 (−1 � k � d− 2):

4η(M−)φ
(0)
k+2 + (

d

dt
+ Ck+λ2+1 + 2(k + 2) tanh 2t)φ

(0)
k+1 = 0,

(C-5)k−1 (1 � k � d):

(
d

dt
+ Ck+λ2 + 2(d− k + 1) tanh 2t)φ

(0)
k − 4η(L−)φ

(0)
k−1 = 0.

Proof. We have only to check

(C-4)k+1 = 2(k + 1) (C-1)k + (C-3)k+1 (0 � k � d− 2);

(C-5)k−1 = 2(d− k) (C-1)k−1− (C-3)k (1 � k � d− 1);
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and (C-4)0 = (C-3)0, (C-5)d−1 = (C-3)d . �

Proposition (5.4). Suppose that φ(0) ∈ C∞
η,τ (A) satisfies the systems

of differential equations (C-1)0�k�d−2, (C-2)0�k�d−2, and (C-3)0�k�d.
Then the following formulae from (C-6)k to (C-11) hold.

(C-6)2�k�d :
2

cosh 2t
η(n+

1 )φ
(0)
k + (

d

dt
+ (d+ 2) tanh 2t− Ck+λ2−1

cosh 2t
)φ

(0)
k−1

+
2

cosh 2t
η(n+

2 )φ
(0)
k−2 = 0,

(C-7)0�k�d−2 :
−2

cosh 2t
η(n−2 )φ

(0)
k+2 + (

d

dt
+ (d+ 2) tanh 2t+

Ck+λ2+1

cosh 2t
)φ

(0)
k+1

+
−2

cosh 2t
η(n−1 )φ

(0)
k = 0,

(C-8) : {( d
dt

+ (d+ 2) tanh 2t− Cλ2−1

coth 2t
)(
d

dt
+ 2 tanh 2t+ Cλ2)

+
8c(t)

cosh 2t
η(n−2 n

+
2 )}φ(0)

0

+ 4{s(t)( d
dt

+ (d+ 2) tanh 2t− Cλ2−1

cosh 2t
)− tanh 2t

cosh 2t
}η(n+

1 )φ
(0)
1

+
8c(t)

cosh 2t
η(n+

1 n
−
2 )φ

(0)
2 = 0,

(C-9) : {( d
dt

+ (d+ 2) tanh 2t+
Cλ1−1

cosh 2t
)(
d

dt
+ 2 tanh 2t+ Cλ1)

+
8s(t)

cosh 2t
η(n+

2 n
−
2 )}φ(0)

d

− 4{c(t)( d
dt

+ (d+ 2) tanh 2t+
Cλ1−1

cosh 2t
)− tanh 2t

cosh 2t
}η(n−1 )φ

(0)
d−1

+
8s(t)

cosh 2t
η(n−1 n

+
2 )φ

(0)
d−2 = 0,

(C-10) : {( d
dt

+ (d+ 2) tanh 2t− Cλ1−1

cosh 2t
)(
d

dt
+ 2 tanh 2t+ Cλ1)

+
8c(t)

cosh 2t
η(n−1 n

+
1 )}φ(0)

d

+ 4{s(t)( d
dt

+ (d+ 2) tanh 2t− Cλ1−1

cosh 2t
)− tanh 2t

cosh 2t
}η(n+

2 )φ
(0)
d−1
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+
8c(t)

cosh 2t
η(n−1 n

+
2 )φ

(0)
d−2 = 0,

(C-11) : {( d
dt

+ (d+ 2) tanh 2t+
Cλ2−1

coth 2t
)(
d

dt
+ 2 tanh 2t+ Cλ2)

+
8s(t)

cosh 2t
η(n+

1 n
−
1 )}φ(0)

0

− 4{c(t)( d
dt

+ (d+ 2) tanh 2t+
Cλ2−1

cosh 2t
)− tanh 2t

cosh 2t
}η(n−2 )φ

(0)
1

+
8s(t)

cosh 2t
η(n+

1 n
−
2 )φ

(0)
2 = 0.

Proof. Direct computations show that

(C-6)k = −s(t)((C-4)k−1 + (C-5)k−2) + 2c(t) (C-2)k−2;

(C-7)k = c(t)((C-4)k+1 + (C-5)k)− 2s(t) (C-2)k;

(C-8) = (
d

dt
+ (d+ 2) tanh 2t− Cλ2−1

cosh 2t
) (C-4)0 +4c(t)η(n−2 ) · (C-6)2;

(C-9) = (
d

dt
+ (d+ 2) tanh 2t+

Cλ1−1

cosh 2t
) (C-5)d−1−4s(t)η(n+

2 ) · (C-7)d−2;

(C-10) = (
d

dt
+ (d+ 2) tanh 2t− Cλ1−1

cosh 2t
) (C-5)d−1 +4c(t)η(n−1 ) · (C-6)d;

(C-11) = (
d

dt
+ (d+ 2) tanh 2t+

Cλ2−1

cosh 2t
) (C-4)0−4s(t)η(n+

1 ) · (C-7)0 . �

§6. Explicit Formulae and the Main Theorems

Throughout this section, we retain the assumption that π is a half-size

standard representation of G and τ = τ(λ1,λ2) is its corner K-type (see

Definition (2.5)). In what follows, we denote dimCWτ = λ1 − λ2 by dπ or

simply by d. When d = 0 or 1, we also write τ = τ(λ,λ) or τ = τ(λ,λ−1). We

use the standard bases {vi} and {wk} introduced in §2 in order to represent

the spherical functions φ ∈ C∞
η,τ (A).

In this section, we write down concretely the differential equations sat-

isfied by the spherical functions of type (π, η, τ), where η is a tensor prod-

uct of (limits of) discrete series representation or the trivial representa-

tion of SL(2,R). By investigating these differential equations, we obtain
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the upper bounds of the dimensions of the algebraic intertwining spaces

Hom(g,K)(π
0, C∞

η (R\G)0). In some cases, we write down the solutions of

these differential equations. Let 2F1(a, b, c; z) be the Gaussian hypergeo-

metric function which is given by the series expansion around the origin

2F1(a, b, c; z) :=
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
,

for a, b ∈ C and c ∈ C \ Z�0.

Roughly speaking, types of the differential equations depend on the rep-

resentation η of R and not on the representation π of G. Thus we separate

our problem according to the representation η of R. Here is the first part

of the main results:

Theorem (6.1). Define subsets D
(+,+)
> and D

(+,+)
< of R̂ by

D
(+,+)
> := {Dl1 �Dl2 ; l1 − d � l2 > 0},
D

(+,+)
< := {Dl1 �Dl2 ; l2 − d � l1 > 0}.

Suppose that η belongs to D
(+,+)
> or D

(+,+)
< and that φ ∈ C∞

η,τ (A) is a

spherical function of type (π, η, τ). Then we have the following assertions:

(1) (i) Suppose that η ∈ D(+,+)
> . Then φ(t) ∈ C∞

η,τ (A) can be written as

(∗1) φ(t) =
d∑

k=0

∞∑
i=0

φi,k(t)vi ⊗ vj(i)+k ⊗ wk,

where j(i) := (l1 − l2 − d)/2 + i.

(ii) Suppose that η ∈ D(+,+)
< . Then φ(t) ∈ C∞

η,τ (A) can be written as

(∗2) φ(t) =
d∑

k=0

∞∑
j=0

φj,k(t)vi(j)−k ⊗ vj ⊗ wk,

where i(j) := (−l1 + l2 + d)/2 + j.

(2) Define a C∞-function u(t) on R by u(t) := φ0,0(t) or φ0,d(t) according

as η ∈ D(+,+)
> or D

(+,+)
< . Then φ(t) is uniquely determined by u(t).
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(3) u(t) satisfies the following differential equation:

{( d
dt

+ (d+ 2) tanh 2t

− 1

cosh 2t
(c1 tanh t− c2 coth t+ 2(c3 − 1) coth 2t))

(D-1) : (
d

dt
+ 2 tanh 2t+ c1 tanh t− c2 coth t+ 2c3 coth 2t)

+ (
1

cosh 2t
+ 1)(

A

cosh 2t
+B)}u = 0,

with the constants :

(c1, c2, c3) := (l1, l1−d, λ2) (resp. (l2−d, l2, λ1)) if η ∈ D(+,+)
> (resp.D

(+,+)
< ).

Here A is given by

A :=

{
(−l1 + l2 + d− 2)(l1 + l2 − d) if η ∈ D(+,+)

> ,

(l1 − l2 + d− 2)(l1 + l2 − d) if η ∈ D(+,+)
< ,

and B := λ2
2 − ν2

J (resp. 0) if d = 0, 1 (resp. d � 4).

(4) Put ε(π, η) := l1 + λ1 (resp. l2 + λ1) if η ∈ D(+,+)
> (resp. D

(+,+)
< ). Then

u(t) is an even or odd function on R according as ε(π, η) ≡ 0 or 1 (mod 2).

(5) The differential equation (D-1) has a unique, up to constant multiple,

C∞-solution u(t) satisfying the parity condition in (4). Further the unique

C∞-solution u(t) is given by

u(t) = (tanh t)|κ|(tanh2 t+ 1)−µ0(tanh t · tanh 2t− 1)µ1

× 2F1(a, b, 1 + |κ|; tanh t · tanh 2t),

with the constants

(κ, µ0) :=

{
(l1 − λ1,max{(−λ1 − λ2)/2, (−2l1 + d)/2}) if η ∈ D(+,+)

> ;

(l2 − λ1,max{(−λ1 − λ2)/2, (−2l2 + d)/2}) if η ∈ D(+,+)
< ;
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and µ1 := (λ1 + 2 − νJ)/2 (resp. (d + 2)/2) if d = 0, 1 (resp. d � 4). Here

a, b are given by

(a, b) :=




((l1 − l2 − d)/2 + µ0 + µ1, (l1 + l2 − d− 2)/2 + µ0 + µ1)

if η ∈ D(+,+)
> ;

((−l1 + l2 − d)/2 + µ0 + µ1, (l1 + l2 − d− 2)/2 + µ0 + µ1)

if η ∈ D(+,+)
< .

Proof. (1) We prove (i). It is easily checked that

ZR∩K(a) =


mθ :=




cos θ − sin θ
cos θ sin θ

sin θ cos θ
− sin θ cos θ


 | θ ∈ R


 .

We write φ as

φ(at) =
∞∑
i=0

∞∑
j=0

d∑
k=0

φi,j,k(at)vi ⊗ vj ⊗ wk,

with the standard basis of Vη and W ∗
τ . Then the condition (a) in the

definition of C∞
η,τ (A) implies that the relation

exp(
√
−1(−l1 − 2i+ l2 + 2j + d− 2k)θ)φi,j,k(at) = φi,j,k(at),

hold for any θ, i, j, k. Hence φi,j,k(at) is identically zero unless −l1 − 2i +

l2 + 2j + d− 2k = 0. This proves (i). The case of (ii) can be proved in the

same way.

(2) Suppose at first η ∈ D(+,+)
> . (i) Suppose d = 0. If we apply (A-4) to φ,

we have

{( d
dt

+ 2 tanh 2t+
1

cosh 2t
((c1 + 2i) tanh t− (c2 + 2j(i)) coth t

+ 2(λ− 1) coth 2t))

(
d

dt
+ 2 tanh 2t+ (c1 + 2i) tanh t− (c2 + 2j(i)) coth t+ 2λ coth 2t)
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+ s(t)(
8

cosh 2t
((−i− 1)(l1 + i) + (−j(i))(l2 + j(i)− 1))

− 2(λ2 − ν2
J))}φi,0(t)

=
16c(t)

cosh 2t
(−i− 1)(l1 + i)(−j(i)− 1)(l2 + j(i))φi+1,0(t).

Thus φi+1,0(t) is determined recursively by u(t) = φ0,0(t). (ii) Suppose

d = 1. Then we can notice that φi+1,1 is determined by φi,1 and φi+1,0

by means of (B-1) and that φi+1,0 is determined by φi,0 and φi,1 by means

of (B-2). Thus φ is determined by u = φ0,0. (iii) Suppose d � 4. Then

we can notice that φi+1,k+1 is determined by φi,k+1 and φi+1,k by means of

(C-4)k(i � 0, 0 � k � d− 1) and that φi+1,k−1 is determined by φi,k−1 and

φi,k by means of (C-5)k(i � 0, 0 � k � d − 2). Hence φ is determined by

u = φ0,0.

Next we suppose that η ∈ D(+,+)
< . Then we use (A-4), (B-1) and (B-2),

or (C-4)k and (C-5)k, according as d = 0, d = 1, or d � 4 to prove our

assertion.

(3) Suppose that η ∈ D(+,+)
> . In order to get the differential equation (D-1),

it is enough to apply (A-3), (B-5) or (C-8) to φ according as d = 0, d = 1

or d � 4.

Next we suppose that η ∈ D(+,+)
< . Then we use (A-3), (B-7) or (C-10)

according as d = 0, d = 1 or d � 4.

(4) As a non-trivial representative of WR∩K(a) := NR∩K(a)/ZR∩K(a) ∼=
{±1}, we can take m0 := diag(−1, 1,−1, 1). If η ∈ D(+,+)

> , from the condi-

tion (b) in the definition of C∞
η,τ (A), we conclude that

(−1)l1+λ1−kφi,k(at) = φi,k(a−t).

This proves our assertion in this case. The case of η ∈ D(+,+)
< is the same.

(5) (i) The case of η ∈ D(+,+)
> . Suppose that d = 0 or 1 and ε(π, η) ≡ 0

(mod 2). We make changes of variables from t to z = (tanh t)2. Then u(z)

satisfies the following differential equation of the Fuchsian type with (at

most) four regular singularities:

(H) {( d
dz

)2 +
∑

a=−1,0,1

αa
z − a

d

dz
+

∑
a=−1,0,1

(
βa

(z − a)2 +
γa

(z − a))}u = 0,
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with

α−1 = 2− c2, α0 = 1, α1 = −1− λ1,

β−1 = (−A− 4c2)/4, β0 = −(c2 − λ2)
2/4,

β1 = (4 +B + 4d+ d2 + 4λ2 + 2dλ2)/4,

γ−1 = (−4− 3A−B − 4c2 − 4c22 + 4d− 2c2d+ 4λ2)/8,

γ0 = (4 +A+B + c2 + c22 + d+ λ2 − λ2
2)/2,

γ1 = (−12−A− 3B − 8d+ 2c2d− 8λ2 + 4λ2
2)/8.

Here we use the relation c1 = c2 + d. Put ũ(z) := z−(c2+λ1)/2u(z). Then

Proposition (A.3) in Appendix 2 tells us that ũ(z) satisfies a differential

equation of the Fuchsian type which has (at most) three regular singular-

ities at z = 0, 1 and −1. Computing the characteristic exponents at these

singularities, we have

ũ(z) ∈ P




0 1 −1

µ0 (λ1 + 2 + νJ)/2 (l1 − l2 − d)/2 ; z

µ0 − |κ| (λ1 + 2− νJ)/2 (l1 + l2 − d− 2)/2


 ,

where P stands for the P -function of Riemann. Keeping the relation µ0 +

(c2 +λ1)/2 = |κ|/2 (∈ Z) in mind, we obtain our assertion in this case. The

other cases can be proved in the same manner.

(ii) The case of η ∈ D(+,+)
< . If we interchange l1 with l2 in the differential

equation (D-1) for η ∈ D(+,+)
> , we get the differential equation (D-1) for

η ∈ D(+,+)
< . Here we use the identity 2 coth 2t = tanh t+ coth t. Thus, our

assertion for η ∈ D(+,+)
< follows from that for η ∈ D(+,+)

> immediately. �

The second part of the main result is:

Theorem (6.2). Define subsets D
(−,−)
< and D

(−,−)
> of R̂ by

D
(−,−)
< := {Dl1 �Dl2 ; 0 > l2 � l1 + d},
D

(−,−)
> := {Dl1 �Dl2 ; 0 > l1 � l2 + d}.
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If η belongs to D
(−,−)
< or D

(−,−)
> , then there are no non-zero spherical func-

tions of type (π, η, τ).

Proof. Our first task is to establish the following lemma.

Lemma. (1) (i) Suppose that η ∈ D(−,−)
< . Then φ(t) ∈ C∞

η,τ (A) can be

written as

(∗3) φ(t) =
d∑

k=0

−∞∑
i=0

φi,k(t)vi ⊗ vj(i)+k ⊗ wk,

where j(i) := (l1 − l2 − d)/2 + i.

(ii) Suppose that η ∈ D(−,−)
> . Then φ(t) ∈ C∞

η,τ (A) can be written as

(∗4) φ(t) =
d∑

k=0

−∞∑
j=0

φj,k(t)vi(j)−k ⊗ vj ⊗ wk,

where i(j) := (−l1 + l2 + d)/2 + j.

(2) Define a C∞-function u(t) on R by u(t) := φ0,d(t) or φ0,0(t) according

as η ∈ D(−,−)
< or D

(−,−)
> . Then φ(t) is uniquely determined by u(t).

(3) u(t) satisfies the following differential equation:

{( d
dt

+ (d+ 2) tanh 2t+
1

cosh 2t
(c1 tanh t− c2 coth t

+ 2(c3 − 1) coth 2t))

(D-2) : (
d

dt
+ 2 tanh 2t+ c1 tanh t− c2 coth t+ 2c3 coth 2t)

+ (
1

cosh 2t
− 1)(

A

cosh 2t
−B)}u = 0,

with the constants :

(c1, c2, c3) := (l1, l1 + d, λ1) (resp. (l2 + d, l2, λ2))

if η ∈ D(−,−)
< (resp. D

(−,−)
> ).

Here A is given by

A :=

{
(−l1 + l2 − d+ 2)(l1 + l2 + d) if η ∈ D(−,−)

<

(l1 − l2 − d+ 2)(l1 + l2 + d) if η ∈ D(−,−)
> .
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and B is the same value as in Theorem (6.1).

(4) Put ε(π, η) := l1 + λ2 (resp. l2 + λ2) if η ∈ D(−,−)
< (resp. D

(−,−)
> ). Then

u(t) is an even or odd function on R according as ε(π, η) ≡ 0 or 1 (mod 2).

Proof of Lemma. (1) We can prove this in the same way as Theorem

(6.1)(1).

(2) This can be proved in the same manner as Theorem (6.1)(2) by using

(A-3), (B-1) (B-2) or (C-4)k (C-5)k, according as d = 0, d = 1 or d � 4 to

obtain our assertion.

(3) Suppose that η ∈ D(−,−)
< . In order to get the differential equation (D-2),

it is enough to apply (A-4), (B-6) or (C-9) to φ according as d = 0, d = 1

or d � 4. Next we suppose that η ∈ D(−,−)
> . Then we use (A-4), (B-8) or

(C-11) according as d = 0, d = 1 or d � 4.

(4) This can be proved in the same manner as Theorem (6.1)(4). �

Return to the proof of Theorem (6.2).

(i) The case of η ∈ D(−,−)
< . Suppose that ε(π, η) ≡ 1 (mod 2). Then

u1(t) := (tanh t)−1u(t) is an even function on R. We make changes of vari-

ables from t to z = (tanh t)2. Then u1(z) satisfies the differential equation

(H) in the proof of Theorem (6.1) with the constants:

α−1 = 2 + c2, α0 = 1− c2 + λ1, α1 = −1− λ1, β−1 = (−A+ 4c2)/4,

β0 = (c2 − λ1 − 1)(c2 − λ1 + 1)/4, β1 = (4 +B − d2 + 4λ1 + 2dλ1)/4,

γ−1 = (−4−A+B + 8c2 + 4c22 − 2c2d− 4λ1)/8,

γ0 = (c2 − λ1 − 1)(−c2 − λ1 − 3)/2,

γ1 = (−8 +A−B + 2c2d− 12λ1 − 4λ2
1)/8.

Here we use the relation c1 = c2− d. The characteristic exponents at z = 0

are (c2−λ1−1)/2 and (c2−λ1 +1)/2. Keeping in mind 0 > l2 � l1 +d and

λ1 � 2 (see §2), we know (c2− λ1 + 1)/2 � (l2− λ1 + 1)/2 � −1. Hence we

have our assertion in this case. The case of ε(π, η) ≡ 0 (mod 2) is similar.

(ii) The case of η ∈ D(−,−)
> . If we interchange l1 with l2 in the differential

equation (D-2) for η ∈ D(−,−)
< , we get the differential equation (D-2) for
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η ∈ D(−,−)
> . Here we use the identity 2 coth 2t = tanh t+ coth t. Thus, our

assertion for η ∈ D(−,−)
> follows from that for η ∈ D(−,−)

< immediately. �

Remark. We can prove by virtue of Proposition (A3) in Appendix

2 that the singularity of (H) at z = 0 is apparent. That is, if we put

ũ(z) := z(c2−λ1)/2u(z), then ũ(z) satisfies the differential equation of the

same form as (H) with α0 = β0 = γ0 = 0.

The third part of the main results is:

Theorem (6.3). Define subsets D(+,−) and D(−,+) of R̂ by

D(+,−) := {Dl1 �Dl2 ; l1 > 0 > l2}, D(−,+) := {Dl1 �Dl2 ; l1 < 0 < l2}.

Suppose that η belongs to one of these subsets and that φ ∈ C∞
η,τ (A) is a

spherical function of type (π, η, τ). Then we have the following assertions:

(1) If η belongs to D(+,−) (resp.D(−,+)), then φ ∈ C∞
η,τ (A) can be written

in the same form as (∗1) (resp. (∗3)) with j(i) := (l1 − l2 − d)/2 + i. In

particular, we may assume |l1 − l2| � d and d � 4.

(2) Define a C∞-function u(t) on R by u(t) := φ0,−j(0)(t). Then φ(t) is

uniquely determined by u(t).

(3) u(t) satisfies the following differential equation

(D-3) : { d
dt

+ c1 tanh t− c2 coth t+ c3 tanh 2t+ c4 coth 2t}u(t) = 0,

with the constants:

(c1, c2, c3, c4) :=




(l1, l2, 2 + d− l1 + l2, λ1 + λ2 − l1 + l2)

if η ∈ D(+,−);

(l1, l2, 2 + d+ l1 − l2, λ1 + λ2 − l1 + l2)

if η ∈ D(−,+).

(4) If we put ε(π, η) := (−2c2 + c4)/2, then u(t) is an even or odd function

on R according as ε(π, η) ≡ 0 or 1 (mod 2).

(5) Put α−1 := c3/2, α0 := (−2c2 + c4)/4, α1 := (−c1 + c2 − c3 − c4)/2.
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(i) If α0 � 0 (that is, l1 + l2 � λ1 +λ2), then the differential equation (D-3)

has a unique, up to constant multiple, C∞-solution u(t) on R satisfying the

parity condition in (4), which is given by

u(t) = (tanh2 t+ 1)−α−1(tanh t)−2α0(tanh2 t− 1)−α1 .

(ii) If α0 > 0, then there are no non-zero spherical functions of type (π, η, τ).

Proof. (1) We can prove this in the same way as Theorem (6.1)(1).

(2) This can be prove by using the formulae from (C-4)k to (C-7)k.

(3) Suppose η ∈ D(+,−)(resp. D(−,+)). Applying (C-4)−j(0)(resp.

(C-5)−j(0)−1), we have the differential equation (D-3).

(4) This can be proved in the same manner as Theorem (6.1)(4).

(5) Suppose ε(π, η) ≡ 0 (mod 2). By changing variables from t to z =

(tanh t)2, we obtain

{ d
dz

+
∑

a=−1,0,1

αa
(z − a)}u = 0.

Here the constants are as in the theorem. The unique, up to constant

multiple, solution of this differential equation is given by

u(z) = (z + 1)−α−1z−α0(z − 1)−α1 .

Hence we have the desired assertion in this case. The case of ε(π, η) ≡ 1

(mod 2) is similar. �

The fourth part of the main results is:

Theorem (6.4). Define subsets D
(+,+)
∼ , D

(−,−)
∼ of R̂ by

D(+,+)
∼ := {Dl1 �Dl2 ; l1, l2 > 0, |l1 − l2| < d},
D(−,−)

∼ := {Dl1 �Dl2 ; l1, l2 < 0, |l1 − l2| < d}.

Suppose that η belongs to D
(+,+)
∼ ∪D(−,−)

∼ and that φ ∈ C∞
η,τ (A) is a spherical

function of type (π, η, τ). Then we have the following assertions:
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(1) Suppose that η belongs to D
(+,+)
∼ (resp. D

(−,−)
∼ ), then φ(t) ∈ C∞

η,τ (A)

can be written in the same form as (∗2) (resp. (∗4)) with i(j) := (−l1 + l2 +

d)/2 + j.

(2) If we define a C∞-function u(t) on R by u(t) := φ0,i(0)(t), then φ(t) is

uniquely determined by u(t).

(3) u(t) satisfies the following differential equation:

(D-4) : { d
dt

+ (d+ 2) tanh 2t

− 1

cosh 2t
(c1 tanh t− c2 coth t+ c3 coth 2t)}u(t) = 0,

with the constants

(c1, c2, c3) :=

{
(l1, l2,−l1 + l2 + λ1 + λ2) if η ∈ D(+,+)

∼ ,

(−l1,−l2, l1 − l2 − λ1 − λ2) if η ∈ D(−,−)
∼ .

(4) If we put ε(π, η) := (−l1 − l2 + λ1 + λ2)/2, then u(t) is an even or odd

function on R according as ε(π, η) ≡ 0 or 1 (mod 2).

(5) We put α−1 := (2 + d − c1 − c2)/2, α0 := (2c2 − c3)/4 and α1 :=

(−2− d)/2.
(i) If α0 � 0, then the differential equation (D-4) has a unique, up to

constant multiple, C∞-solution on R satisfying the parity condition in (4),

which is given by

u(t) = (tanh2 t+ 1)−α−1(tanh t)−2α0(tanh2 t− 1)−α1 .

(ii) If α0 > 0 (in particular, if η ∈ D(−,−)
∼ ), then there are no non-zero

spherical functions of type (π, η, τ).

Proof. (1) This can be proved in the same way as Theorem (6.1)(1).

Remark that we may assume d � 4 by Assumption (3.3)

(2) The coefficient functions φi,j are determined from u(t) by means of the

formulae (C-4)k and (C-7)k.

(3) If η ∈ D(+,+)
∼ (resp. D

(−,−)
∼ ), then in order to get the differential equa-

tion (D-4) we have only to apply (C-6)i(0)+1 (resp. (C-7)i(0)−1) to φ .

(4) We can prove this in the same way as Theorem (6.1) (4).
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(5) Suppose ε(π, η) ≡ 0 (mod 2). If we make changes of variables from t to

z = (tanh t)2, then u(z) satisfies the differential equation

{ d
dz

+
∑

a=−1,0,1

αa
(z − a)}u = 0.

Here the constants α−1, α0 and α1 are as in the theorem. From this, our

assertion follows easily. The case of ε(π, η) ≡ 1 (mod 2) is similar. �

The fifth part of the main results is:

Theorem (6.5). Suppose that η is the trivial representation of R.

Then there are no non-zero spherical functions of type (π, η, τ).

Proof. Firstly we should notice that d must be an even integer by

Assumption (3.3). Thus, a spherical function φ ∈ C∞
η,τ (A) of type (π, η, τ)

can be written as

φ(t) = u(t)wd/2.

(i) The case of d = 0. Put τ = τ(λ,λ) (λ � 2). From the differential

equations (A-1) and (A-2), we know u(t) satisfies the system of differential

equations consisting of (∗) and (∗∗) below:

(∗) : {( d
dt

+ 4 tanh 2t+ 2(λ− 1) coth 2t)(
d

dt
+ 2λ coth 2t)}u(t) = 0,

(∗∗) : {( d
dt

+ 4 tanh 2t− 2(λ− 1) coth 2t)(
d

dt
+ 2λ coth 2t)−A}u(t) = 0,

where A := −2(λ− 2)2 + 2ν2
J . Subtracting (∗∗) from (∗), we have

(∗ ∗ ∗) : { d
dt

+
A

4(λ− 1)
tanh 2t+ 2λ coth 2t}u = 0.

The unique, up to constant multiple, solution of (∗ ∗ ∗) is given by

u(t) = (tanh2 t+ 1)−A/(8λ−8)(tanh t)−λ(tanh2 t− 1)λ+A/(8λ−8).

However, since λ � 2, this is not smooth at t = 0. Thus our assertion

follows for the case of d = 0.
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(ii) The case of d � 4. From (C-2)d/2−1 and (C-4)d/2, we have the following

system of differential equations satisfied by u(t) consisting of (I) and (II)

below:

(I) { d
dt

+ (d+ 2) tanh 2t− (λ1 + λ2) coth 2t}u = 0;

(II) { d
dt

+ (d+ 2) tanh 2t+ (λ1 + λ2) coth 2t}u = 0.

Subtracting (I) from (II), we obtain {(λ1 + λ2) coth 2t}u = 0. On the other

hand, λ1 + λ2 � 2 (see §2.3). Hence our assertion follows for the case of

d � 4, too. �

The last part of the main results is:

Theorem (6.6). Define subsets TD+, TD−, DT+ and DT− of R̂ by

TD+ := {1 �Dl2 ; l2 > 0}, TD− := {1 �Dl2 ; l2 < 0},
DT+ := {Dl1 � 1; l1 > 0}, DT− := {Dl1 � 1; l1 < 0}.

Suppose that η belongs to one of these subsets and that φ ∈ C∞
η,τ (A) is a

spherical function of type (π, η, τ). Then we have the following assertions:

(1) (i) Suppose that η belongs to TD+ or TD−. Then φ ∈ C∞
η,τ (A) can be

written as

(∗5) φ(t) =
d∑

k=0

φk(t)vj(k) ⊗ wk,

where j(k) := (−l2 − d)/2 + k.

(ii) Suppose that η belongs to DT+ or DT−. Then φ ∈ C∞
η,τ (A) can be

written as

(∗6) φ(t) =
d∑

k=0

φk(t)vi(k) ⊗ wk,

where i(k) := (−l1 + d)/2− k.
(2) Define a C∞-function u(t) on R by u(t) := φ−j(0)(t) or φi(0)(t) according

as η ∈ TD+ ∪ TD− or η ∈ DT+ ∪DT−. Then φ(t) is uniquely determined

by u(t).
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(3) (i) Suppose that η ∈ TD+ (resp. DT+), d � 4 and λ1 + λ2 = l2
(resp. λ1 + λ2 = l1). Then u(t) satisfies the differential equation (D-3)

in Theorem (6.3) with the constants :

(c1, c2, c3, c4) :=

{
(0, λ1 + λ2,−2λ2 + 2, 2(λ1 + λ2)) if η ∈ TD+;

(λ1 + λ2, 0,−2λ2 + 2, 0) if η ∈ DT+.

This differential equation has a unique, up to constant multiple, C∞-

solution on R, which is given by

u(t) = (tanh2 t+ 1)λ2−1(tanh2 t− 1)(λ1−λ2−2)/2.

(ii) In the other cases, u(t) is identically zero. Therefore, there are no

non-trivial spherical functions of type (π, η, τ).

Proof. (1)(2) We can prove these in the same way as Theorem

(6.1)(1)(2). Remark that we may assume d � 1 by Assumption (3.3).

(3) (i) Suppose η ∈ TD+ and d � 4. Applying (C-5)−j(0)−1 and

(C-6)−j(0)+1, we have

(H) : { d
dt

+ (−l2 + d+ 2) tanh 2t− l2 coth t

+ (l2 + λ1 + λ2) coth 2t}u(t) = 0,

(HH) : {( d
dt

+ (d+ 2) tanh 2t

− 1

cosh 2t
(−l2 coth t+ (l2 + λ1 + λ2) coth 2t)}u(t) = 0

Subtracting (H) from (HH), we get

(−l2 + λ1 + λ2) coth t u(t) = 0.

Thus we conclude that u(t) must be identically zero unless l2 = λ1 + λ2.

Inserting this relation to (H), we obtain the desired differential equation and

its solution. The case of DT+ can be proved in the same manner by using

(C-4)i(0) and (C-6)i(0)+1.

(ii) (ii-a) The case of d = 1. If η belongs to TD+, then it follows from

Assumption (3.3) l2 = 1. Applying (B-2) to φ, we know that u(t) satisfies
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the differential equation (D-3) with (c1, c2, c3, c4) := (0, 1, 2, 2λ). By the

proof of Theorem (6.3), u(t) is smooth only when α0 := (−2c2 + c4)/4 =

(λ − 1)/2 � 0. But this contradicts λ � 2 (see §2.3). The proofs for the

case of η ∈ TD− ∪DT+ ∪DT− are quite analogous.

(ii-b) The case of d � 4. Suppose that η ∈ TD−. Applying (C-4)−j(0)

to φ(t), we conclude that u(t) satisfies the differential equation (D-3) in

Theorem (6.3) with the constants:

(c1, c2, c3, c4) := (0, l2, d+ l2 + 2, l2 + λ1 + λ2).

Again, by the proof of Theorem (6.3), u(t) is smooth only when α0 :=

(−2c2 + c4)/4 = (−l2 +λ1 +λ2) � 0. But this is impossible (see §2.3). The

proof for the case of η ∈ DT− is quite analogous. �

From the main theorems proved above, we can know the upper bounds

of the dimensions of the intertwining spaces. For an irreducible half-size

standard representation π of G and an irreducible unitary representation η

of R, we put

m(π, η) := dimC Hom(g,K)(π
0, C∞

η (R\G)0).

Corollary (6.7). Let η = Dl1 � Dl2 be a ( limit of ) discrete series

representation of R.

(1) If η satisfies one of the following conditions, then we have m(π, η) � 1.

(i) η ∈ D(+,+)
> ∪D(+,+)

< and l1 + l2 ≡ d (mod 2);

(ii) η ∈ D(+,−)∪D(−,+), l1+l2 ≡ d (mod 2), |l1−l2| � d and l1+l2 � λ1+λ2;

(iii) η ∈ D(+,+)
∼ ∪D(−,−)

∼ , l1 + l2 ≡ d (mod 2) and l1 + l2 � λ1 + λ2.

(2) In the other cases, we have m(π, η) = 0.

Proof. This follows from the theorems from (6.1) to (6.4). �

Remark. (1) By “Frobenius reciprocity”, our result should be related

to the problem of the spectral decomposition of the restriction π|R of π

to R. There is a result of Harris and Kudla[2,Theorem (2.4.1)] on the

multiplicities of the discrete part of π|R when π is a large discrete series

representation. Our result in Corollary (6.7) is compatible with theirs to a

certain extent.

(2) Hayata [14] investigates the same problem as this paper for the semisim-

ple symmetric pair (SU(2, 2), Sp(2,R)).
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Appendix 1

In this appendix, we shall give parallel results on the spherical functions

of type (π, η, τ) for other irreducible unitary representations η, which we do

not treat in §6.

Theorem (A1). Define subsets DP+, TP , PD+ and PT of R̂ by

DP+ := {Dl1 � P−1+it,±; l1 > 0}, TP := {1 � P−1+it,±},
PD+ := {P−1+it,± �Dl2 ; l2 > 0}, PT := {P−1+it,± � 1}.

Suppose that η belongs to one of these subsets and that φ ∈ C∞
η,τ (A) is a

spherical function of type (π, η, τ). Then we have the following assertions:

(1) (i) If η ∈ DP+, then φ ∈ C∞
η,τ (A) can be written in the same form as

(∗1) with

j(i) := (l1 − d)/2 + i (resp. (l1 − d− 1)/2 + i), if η2 = P s,+ (resp. P s,−).

(ii) If η ∈ TP , then φ ∈ C∞
η,τ (A) can be written in the same form as (∗5)

with

j(k) := (−d)/2 + k (resp. (−d− 1)/2 + k), if η2 = P s,+ (resp. P s,−).

(iii) If η ∈ PD+, then φ ∈ C∞
η,τ (A) can be written in the same form as (∗2)

with

i(j) := (l2 + d)/2 + j (resp. (l2 + d− 1)/2 + j), if η1 = P s,+ (resp. P s,−).

(iv) If η ∈ PT , then φ ∈ C∞
η,τ (A) can be written in the same form as (∗6)

with

i(k) := d/2− k (resp. (d− 1)/2− k), if η1 = P s,+ (resp. P s,−).

(2) Define a C∞-function u(t) on R by u(t) := φ0,0(t), φ0(t), φ0,d(t) or φd(t)

according as η ∈ DP+, TP , PD+ or PT . Then φ(t) is uniquely determined

by u(t).
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(3) u(t) satisfies the differential equation (D-1) in Theorem (6.1) with the

constants:

(c1, c2, c3) :=




(l1, l1 − d, λ2) if η ∈ DP+;

(0,−d, λ2) if η ∈ TP ;

(l2 − d, l2, λ1) if η ∈ PD+;

(−d, 0, λ1) if η ∈ PT.

The constant A in (D-1) is defined by the equations{
4n−2 n

+
2 vj(0) = Avj(0) if η ∈ DP+ ∪ TP ;

4n−1 n
+
1 vi(0)−d = Avi(0)−d if η ∈ PD+ ∪ PT,

and B is as in Theorem (6.1).

(4) If u(t) does not vanish identically, then it must be a constant multiple

of

u(t) :=(tanh t)|κ|(tanh2 t+ 1)−µ0(tanh t · tanh 2t− 1)µ1

× 2F1(a, b, 1 + |κ|; tanh t · tanh 2t),

where the constant µ1 are the same as in Theorem (6.1)(5) and

(κ, µ0) :=




(c2 − λ2,max{(−λ1 − λ2)/2, (−2c2 − d)/2})
if η ∈ DP+ ∪ TP ;

(c2 − λ1,max{(−λ1 − λ2)/2, (−2c2 + d)/2})
if η ∈ PD+ ∪ PT ;

Here a, b are given by

(a, b) :=




((l1 − s− d− 2)/2 + µ0 + µ1, (l1 + s− d)/2 + µ0 + µ1)

if η ∈ DP+;

((−s− d− 2)/2 + µ0 + µ1, (s− d)/2 + µ0 + µ1)

if η ∈ TP ;

((−s+ l2 − d− 2)/2 + µ0 + µ1, (s+ l2 − d)/2 + µ0 + µ1)

if η ∈ PD+;

((−s− d− 2)/2 + µ0 + µ1, (s− d)/2 + µ0 + µ1)

if η ∈ PT.
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Proof. The proof is quite analogous to Theorem (6.1). �

Theorem (A2). Define subsets DP− and PD− by

DP− := {Dl1 � P−1+it,±; l1 < 0}, PD− := {P−1+it,± �Dl2 ; l2 < 0}.

Suppose that η belongs to DP− or PD− and that φ ∈ C∞
η,τ (A) is a spherical

function of type (π, η, τ). Then we have the following assertions:

(1) (i) If η ∈ DP−, then φ ∈ C∞
η,τ (A) can be written in the same form as

(∗3) with

j(i) := (l1 − d)/2 + i (resp. (l1 − d− 1)/2 + i), if η2 = P s,+ (resp. P s,−).

(ii) If η ∈ PD−, then φ ∈ C∞
η,τ (A) can be written in the same form as (∗4)

with

i(j) := (l2 + d)/2 + j (resp. (l2 + d− 1)/2 + j), if η1 = P s,+ (resp. P s,−).

(2) Define a C∞-function u(t) on R by u(t) := φ0,d(t) (resp. φ0,0(t)) if

η ∈ DP− (resp. PD−). Then φ is uniquely determined by u(t).

(3) u(t) satisfies the differential equation (D-2) in the proof of Theorem

(6.2) with the constants :

(c1, c2, c3) := (l1, l1 + d, λ1) (resp. (l2 + d, l2, λ2)) if η ∈ DP− (resp. DP−).

The constant A in (D-2) is defined by the equations

{
4n+

2 n
−
2 vj(0)+d = Avj(0)+d if η ∈ DP−;

4n+
1 n

−
1 vi(0) = Avi(0) if η ∈ PD−.

and B is the same value as in Theorem (6.1).

(4) If we put ε(π, η) := l1 +λ2 (resp. l2 +λ2) if η ∈ DP− (resp. PD−), then

u(t) is an even or odd function on R according as ε(π, η) ≡ 0 or 1 (mod 2).

(5) Let s(π, η) be the dimension of the space of C∞-functions satisfying the

differential equation (D-2) with the parity condition in (4). Then we have

(i) if η belongs to DP−, then s(π, η) = 2, 1 or 0 according as l1 − λ2 �
0, l1 − λ2 = −1,−2 or l1 − λ2 � −3;
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(ii) if η belongs to PD−, then s(π, η) = 2, 1 or 0 according as l2 − λ2 �
0, l2 − λ2 = −1,−2 or l2 − λ2 � −3.

Proof. The proof is quite analogous to Theorem (6.2). �

Remark. From Theorem (A2), we knowm(π, η) � 2 for an irreducible

generalized principal series representation π of G and η ∈ DP− ∪DT−. It

seems beyond the scope of our method to answer the question whether this

estimate is best possible or not.

Appendix 2

In this appendix we collect some basic facts about the second-order

differential equations of the Fuchsian type, which we use in the proof of

Theorem (6.1).

Proposition (A3). Let S := {a1, a2, · · · , an} be a finite subset of C.

Consider the following second-order ordinary differential equation on P1(C):

(;) {( d
dz

)2 +
∑
a∈S

αa
z − a

d

dz
+
∑
a∈S

(
βa

(z − a)2 +
γa

(z − a))}u = 0,

with αa, βa, γa ∈ C.

(1) The differential equation (;) is of the Fuchsian type if and only if the

relation
∑

a∈S γa = 0 holds.

From now on, we assume
∑

a∈S γa = 0.

(2) Set

α∞ := 2−
∑
a∈S
αa; β∞ :=

∑
a∈S

(βa + aγa); γ∞ :=
∑
a∈S

(2aβa + a2γa).

Then the characteristic exponents at a ∈ S ∪{∞}are given by the solutions

of the indicial equation

ρ2 + (αa − 1)ρ+ βa = 0.

(3) If we put ũ(z) := (z − a1)−κu(z), then ũ(z) satisfies the following dif-

ferential equation

(;;) {( d
dz

)2 +
∑
a∈S

α′a
z − a

d

dz
+
∑
a∈S

(
β′a

(z − a)2 +
γ′a

(z − a))}ũ = 0,
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with

α′a1
:= αa1 + 2κ; α′ai := αai (2 � i � n);

β′a1
:= βa1 + κ(αa1 + κ− 1); β′ai := βai (2 � i � n);

γ′a1
:= γa1 +

n∑
i=2

αaiκ

a1 − ai
; γ′ai := γai −

αaiκ

a1 − ai
(2 � i � n).

(4) Put

α′∞ := 2−
∑
a∈S
α′a; β′∞ :=

∑
a∈S

(β′a + aγ′a); γ∞ :=
∑
a∈S

(2aβ′a + a2γ′a).

Then we have

α′∞ = α∞ − 2κ; β′∞ := β∞ + κ(1− α∞ + κ);

γ′∞ = γ∞ + 2a1κ(κ− 1) +
n∑
i=1

(a1 + ai)αaiκ.

(5) If there exists a constant κ ∈ C such that α′∞ = β′∞ = γ′∞ = 0

(resp. α′a1
= β′a1

= γ′a1
= 0), then z = ∞ (resp. z = a1) is an appar-

ent singularity of the differential equation (;).

Proof. (1) This is well-known. (2) Rewrite the differential equation

(;) in the coordinate w = 1/z. (3) (4) These can be proved by direct

computation. (5) This is clear. �

Remark. We call z0 ∈ S ∪ {∞} an apparent singularity of (;) if the

fundamental system of solutions around z0 is spanned by meromorphic func-

tions.
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