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Pricing of Passport Option

By Izumi NAGAYAMA

Abstract. Passport options are derivatives on actively managed
funds. There is no known explicit formula for the price of passport
options in general. We estimate and analyze the value function, and
give the condition that the optimal strategy becomes trivial. We also
show an approximation theorem which enables us to compute the value
function numerically. Finally we give the explicit formula for the value
function in the case that the interest rate is zero by using stochastic
analytic approach. This is somehow done in symmetric case by Hyer,
Lipton-Lifschitz, and Pugachevsky using partial differential equation
approach.

1. Introduction

Many traded securities are managed in the trading account. The value
of the trading account is the wealth accumulated by trading the securities
following to some trading strategies. The derivative security called “Pass-
port option” is the contract that an option holder has the right to gain the
positive part of trading account at maturity. The option holder executes
a trading strategy (fictitiously) which is chosen by himself in the class of
strategies specified in the contract, and whenever the option holder changes
the position, he has to report the amount of security to the option writer.

In this paper we suppose that there is one traded security whose value
process S; follows Black & Scholes model [1], i.e. under the risk neutral
measure P, S; satisfies

(11) dSt = St(Tdt+UdBt),

where r and o are constants and B is a P-Brownian motion. The value
Xta * of trading account at time t under the strategy 6 with initial value x
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748 Izumi NAGAYAMA

is expressed as

t
(1.2) X0 =y +/ 0,dSs.
0

Let k1 < k2. We denote by O(k1, k2) the set of predictable processes 6
satisfying k1 < 0; < kg for any ¢ > 0. The passport option whose pay-off is
a positive part of trading account at maturity 7T is evaluated by

(1.3) C(T,z)= sup E[e_TT(X%x)ﬂ.
96@(&1,,‘{2)

We define Z; as a process which satisfies
dZt = Zt(Tdt + O‘dBt), Zo =1

and define

t
ro ef
Uty) = s Bly+ [ 0.2)")
0€O(k1,k2) 0

Then, we have C(T,z) = Soe "L 1)(T, Si)
0

The optimal strategy which attain the supremum in (1.3) does not al-
ways exist in the strategy class ©(k1, k2), and the explicit formula of (1.3)
is not known in general.

In Section 2 we give the definition of passport option and show that its
price is given by (1.3).

In Section 3 we assume that » > 0, k1 = —1, and k2 = 1. And letting

olt,y) = 037 (1) & y+/dz El(y+ Z — 1)*).

we estimate ¥(t,y) and examine the conditions for ¢ = . Let ¢(x) =
2 T

e~ 7 and O(x) = / #(y)dy. We have the following theorem as the
Vv 2T —00

estimation of ¥(¢,y).

THEOREM 1.1. Foranyc>0,t >0, andy € R,

w(t> y) - ¢0 (tv y)

1
1

e |

=

< (7t 1)
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For each T > 0, we define

loa def . * 7,0 r,a
R7(T) = inf{r* > 0: 4" (t,y) = ¥ (t, y)
for all > r*,t € [0,T], and y € R}.
We show the following results.

THEOREM 1.2. Let ¢ be the solution of c¢®(v/1—¢) = V1—c X
¢(v/1—c). Then

RO(T) = o%c+

2 3 2
L [ Eo(1—2¢) 1313 — 270¢2 + 168¢ — 32
- T+ o(T
7 { 16(1 — 2 48(1 — )2 +o(T),
as T | 0.

2 2
o log(2mo°T) ( 1 )

THEOREM 1.3. RO(T) =0 — — 2"~ — T :

(T)=o0 2002 + 1) +o T2) 6 1 o0

THEOREM 1.4. For any r, there exists Ty = Ty(r,0%) > 0 such that

Yo(t,y) =(t,y), foranyt e [0,To] andy > 1.

In Section 4, we prove that the value function of passport option can be
derived as the limit of discrete time approximation.

In Section 5, we consider the case that r = 0. Hyer, Lipton-Lifschitz
and Pugachevsky [2] derived the explicit formula in the case that k1 =
—kg using partial differential equation approach. We derive the explicit
formula in general case that ki < k9 using stochastic analytic approach.
By introducing the Equivalent Martingale Measure P with respect to the
numeraire Sy, we show that the problem of passport option valuation comes
down to the problem of calculation of an expected value E[(Y2)T] where
Y/ is the solution of

dY, = o(1+ |[Yi[)dB,, Yo =y.
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Using Skorohod’s Theorem, we derive the explicit formula for valuation of
passport options (see Theorem 5.6).

In Section 6, by numerical calculations we illustrate the functions r*(t)
and n(r*(t),t) introduced in Section 3. Furthermore numerical experiences
in the discrete time framework discussed at Section 4 are reported.

The author expresses her sincere thanks to Professors Shigeo Kusuoka
and Freddy Delbaen for their kind advice and discussion.

2. Notation and Problems

Let (Bt)o<t<oo be a Brownian motion defined in a probability space
(Q,F, P) and (F;)o<t<oo be the Brownian filtration generated by (Bt)o<t<oo-
Let S; be the price at time ¢ of the security. We assume that S; satisfies the
following S.D.E.

(21) dSt = St(Tdt+UdBt),

where r and o are constants. To simplify the notation, we assume that the
probability measure P is risk neutral with respect to the numeraire €.

A trading strategy is defined as a predictable stochastic process. For
fixed k1 < k2, we define © = O(k1, k2) by the set of predictable processes 6

satisfying k1 < 0; < kg for all 0 <t < 0o. For any 0 € © and = € R, let
) t
(2.2) X0 — o +/ 0,dS,.
0

The processes {Xta “Yo<t<oo are called trading accounts. For any 6 € O,
x € R, and t > 0, we have E[|Xt9’x|2] < 0.

In this paper, a passport call option with maturity T is defined as a
contract that an option holder has the right to gain the positive part of the
trading account at time 7" under the trading strategy in © chosen arbitrarily
by him. The option holder has to report the current value of the strategy 6
to the option writer at every moment.

ProposiTION 2.1. Let C(T,x,S, Kk1,k2) be the value of the passport
call option of maturity T, where x is current value of the trading account
and S is the current price of the security. Then

O(T,x,8,k1,62) = sup B |e"(X3")F

96@(/@1,){2)

SOS] '
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To prove this proposition, we need some preparations. Let Z; be a
process given by the following S.D.E.

dZ, = Z,(rdt + 0dB,), Zo =1,

T
ie. Zy = exp(oB;— %0’2t—|—’l"t). Let Ute’ = sup E [ Xf’x +/ %dSu)ﬂft]
o' ¢
for0 € ©, 2 € R, and t € [0,T]. Let

t
o def
Uty) =i ()Y swp Elly+ [ 0,42,
0€O(Kk1,K2) 0

Then it is easy to see that 0 < (¢, y2) — ¥ (t,y1) < y2 — y1 for y1 < yo and
that Ute " = Sup(T X—) Then we have the following.

LEMMA 2.2. {Ute’x}OStST is a non-negative supermartingale.

Proor. FE [|U794x |=E [|X76~x|} < 00. So the assertion follows from

fs]

] ng s <t.

I t T
E[UP|F,) < s (e / 0,dS, + / 0. dS,)*

< sup E x+/ 0, dS —i—/ 0!,dS,)
0'c©

Here the first inequality is derived as follows. For any y € R and n € N there
- 1

exists a 0¥ € O such that 0 < (T —t,y) — E|(y +/ 0Y"dZ,) ) < .

0 n

Then there is a predictable measurable function F¥" : [0, 00) x C([0,00)) —

R such that §¥" = F¥"(., B.). Define 6" such as 0" = it KZ, s <t and
0,x

k X/ (w) - kE+1

on — pk27"n _ if - <
9t+u(w) F (u, B.yt(w) — Bi(w)), if on = T 5,(w) on

(Xfx /9%12)

. Then

6" € ©, and

X0
St

)_

1

n 2"

] 1 1
| < —+ = a.s.
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+
Xf)x /T -~
+ [ 6raz,
( St t

by the dominated convergence theorem we have

]’S].D

X@,x
“L )= lim E
t

n—oo

Therefore (T —t,

.7-}] , a.s. Then

E[U”

T .
F] = limE[(Xf’x+ / 0rdsS,)*
t

n—oo

T
< sup E [(Xf’x —l—/ 0,.dS,)"
0'cO t

PROOF OF PROPOSITION 2.1. Suppose that C(T,z,S,k1,k2) <
E e_TT(:U—i—fOT 05dSs)T| for some § € ©. The representation theorem
of Brownian martingale implies that the European call option of the ma-
turity 7' with pay-off (z + fOT 05dSs)T is replicable with initial cost
Ele T (x+ fOT 0sdSs)*|. If we think of the strategy to buy a passport
option by value C (T, z, S, K1, ko) and to take trading strategy 6 while repli-
cate the short position of that European call option with initial gain
EleT(z+ fOT 0sdSs)*|, we see that it is an arbitrage strategy. There-

T
fore C(T,z, S, Kk1,K2) > sup E [erT(az +/ 93d55)+].
fcO 0

XY

Suppose that C(T,z, S, k1,k2) > sup F
0cO

] . Then we
So=S

sell the passport option by value C(T,x,S,k1,K2). Suppose the option
holder takes a trading strategy #. From Lemma 2.2, {e_TTUf’m}OStST is a
non-negative supermartingale, so it has a unique decomposition e‘TTUf —
MP® — A" where {M!""} is a square integrable martingale and {A?"} is
a non-decreasing predictable process with Ag = 0. Let S, = e~ "S,, then
we have dgt = agtdBt and S is a P-martingale. From the representation
theorem of Brownian martingales, there exists an adapted process { H;} such
that E[fOT H?252ds] < oo and

0 0 t o
MO = MO* +/ H.dS,.
0
H; can be determined at time ¢ from F; and {6, : s < ¢t} which has been

reported by the option holder. Then by taking the position of H; units of .S;
and e"th * — HyS; amount of saving account, we can replicate e"TMrfJx =
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US™ 4T A% = (X2t +eT A%". Then we will have the gain 7 A%* > 0
at time T. Since the initial gain was C(T,x, S, K1, Kk2) — Mg’m > 0, it is an
arbitrage. [

For any positive constant A, by considering the passport option
whose underlying is A times the original underlying, we have that
C(T, Az, S, A\c1, Ak2) = \C(T, x, S, k1, k2). And by changing time, we have
C™(T,x,S, k1, k2) = CT/U2’1(O'2T,£C, S, K1, K2).

PROPOSITION 2.3. (t,y) is convez, increasing, and Lipschitz with re-
spect to y. Moreover if k1 <0 < kg, (t,y) is increasing in t.

PRrROOF. For any convex function g and 0 < A < 1, we have

t
sup E[g(Ax 4+ (1 = Ny + / 0.,dZ,)]
0co 0

< sup {AE[g(m + /t 0.dZ,)] + (1 — N E[g(y + /t eudzu)]}

< Asup Elg w+/0dZ + (1= X)sup Elg(y + QdZ
0cO 0coO

Therefore 1(t,-) is convex. We can easily see that (¢, y) is increasing and
Lipschitz with respect to y. Let k1 <0 < k9 and s < t, then

Y(t,y) =sup E| y+/ 0,dZ,) "] > sup E| y+/ 0,dZ,)"] = Y(s,y). O
0O (IS

3. The Estimation of the Value Function

In this section, we assume r > 0, k1 = —1, and k2 = 1. By Proposition
2.1, C(t,x,S) = Se "(t, 5). Let

t
Yolt,y) = ¥5° (ty) < El(y+ /0 dZ,)*] = Elly+Z:~1)*], t>0, yeR.

Then obviously we have ¥(t,y) > 1o(t,y). Let

qﬁ(m):\/%e_% and  P(x / o(y
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THEOREM 3.1. For any c > 0,

w(tv y) - ¢0 (tv y)

R,

PrOOF. For each § € ©, let 7% = inf{t > 0:y+ fg 0sdZs = 0}. First,
let us assume that y > 0. Then we have

=

S (eO'Qt _ 1)

t t
_ ~ s 0
Y(ty) = sup <E[y+/0 Osts]JrE[(er/o 0sdZs) "t > ])

t
< wolty) +swp Elly + [ 0:dZ,)7t > 1)
0cO 0

Recall that dZ; = Z;(rdt+odB;). Define a P-equivalent probability measure
Q by (%)t = py def exp(—Z By — %t) Since W, def Zt+ By is a Q-Brownian
motion, Z is a (-square integrable martingale. Then, for each § € ©, we

have
t t
E{(y%— / HSdZS)_,t>T9} < E[ / 0,dZ, I{MG}}
0 0
E“ ta dZg| 1 1
- [/0 slsis {t>79}E}
t 2% 1 1 %
< B9 / 0sdZ,| | B[l s 03 EC [4} .
0 Py

1 1 3 3r? or2
Here we have E© {4] =F {3} =F lexp (TBt + 70273)1 = 6602 b Let
Pt Pt g 20
t
M; = / 0sdZ, then we have
0

t t t
[M, M]; = / 02d[Z, 7], < / 02 Z%ds = o / exp(20W, — o%5)ds.
0 0 0

t
/ 0.d7.
0

Therefore we have
2

¢
E¢ < 02/ e ds = (e”zt —1).
0
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By Knight’s theorem (see Ikeda and Watanabe [3]) there exists a Q-
Brownian motion {Wt}te[o o) such that M = W[ m,M),- Therefore we have
for any ¢ > 0

Q _ ol I Vi<~
E9rey] = Q Og;qu < y} Ql0<s<1&§7M]th< y]

< Q inf{Ws 0<s<(1- e_”2t) exp(20 Jnax, Wy} < —y}

< @ maxW >c}+Ql inf W, < —yl.

0< Dgsé(lie—o’Qt)GQ(xf

It is well known that Q[Orgai(t Wy > a] =29 <—i> for a > 0. So we have

Vi

EQ[I{t>79}] <29 (—i) +29 | — Y . Therefore we have
\/1? eco (1 _ 670216)

our assertion in the case that y > 0.
We can prove the case of y < 0 similarly. [

By Theorem 3.1, we can easily prove that for any p > 0, there exists
¢p > 0 such that ¥(t,y) < ¥o(t,y) + cply| /2, |y| > 1. Therefore we have

1
lim ¢(t,y) =0, lm —¢(t,y) =1, and
y——00 y—0o0 y

lim iw(t ) = hrn Z@D(t )=1
y—oo Qyt Y oo Oy~ Y=
In the rest of this section, we examine the condition such that ¥ = g
is satisfied.

REMARK 3.2. We can easily see the following.

22

Yolt,y) / ) (y +eVirzottrt _)© € ify <1
Y =1 Joatryto) V2m
y+et—1 ify>1

—log(1 —y) — 30%t +rt

oVt

where a(r,y,t,0) =

fort >0,y <1.
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For each T' > 0 and o > 0, define

R7(T) = inf{r* >0 : 4"7(t,y) = 5" (t,y)
for all r > r*,t € [0,7], and y € R}.

0,z
X/’
Let V7" = yfore def Siihy” (T —t, é), for €O, z2cR, 0<t<T.
t

Then {V,""}o<i<r is a martingale. Let

0, 8%
F(Tvyvta 0) =T 8y (tvy) yo ayg (t7y)

LEMMA 3.3. ForanyT >0 and o > 0,

R(T) =inf{r: F(r,y,t,0) >0, for any y € (0,1), t € (0,7]}.

T +
Proor. Noting that Vﬁ’x = (x + / QtdSt> , we have the following
0

from the proof of Proposition 2.1.

R°(T) =inf{r* >0 : {Vta,x,r,a}OStST is a P-supermartingale,
for all > r*,z € R, and 6 € ©}.

So it is sufficient to show that {%O’x’T’U}OStST is a P-supermartingale for
all # € © and = € R if and only if F(r,y,t,0) > 0 for all y € (0,1) and
t € (0,T]. Let

XG,CE
3.1 yiv e oe
( ) t St ’

x = ySp.
Then by Ito’s formula we have
dYY = (6, — YY) (rdt + odB; — o2dt)

and

avimre = V(S VY 60, T — t)dBy + puV (Sy, Y'Y, 6, T — t)dt,
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where
SV (S,.0) = S0~ ) 5 (t.9) + oSbalt.y)
WV (8,000 = 8O- 950 (0) - 5500y
5500~ y)%? wo 0 (t,) + rSvo(t, ).

Since {V;""""}o<y<r is a martingale, we have V(S,y,1,t) = 0 for all
t € (0,7]. Note that {Vte’x’r’a}OStST is supermartingale if and only if
(S, y,0,t) <0=pu"(S,y,1,t) forany y € R, S >0, t € (0,7], |0] < 1.
This is equivalent to

0o o’ 52¢o
2 — — 1—-2y >
foryER,tE( T],10] < 1.
%o

Since 1 (t,y) is convex in y, we have ——5- > 0, and so the condition (3.2)

is equivalent to that

(3.3)  F(ry,t,o) = rﬂ(t y) — y0282w0 (t,y) >0, te(0,T]
Y ay ) ay2 Y — Y )
for all y € R. Here we have
%(t ) = { 1 ify>1
Dy YT 1 e(alr,y,t o) ify <1
92y 0 ify>1
Dy (ty) = a(ljy)\/igb(a(r, y,t,o)) ify<1.

So in the case that y > 1 or y < 0, condition (3.3) is satisfied for all
€ (0,T). This proves our assertion. [J

REMARK 3.4. From Remark 3.2, we have the following.

= - 721/0' alr o
(34) F(Tv y7t7 U) - r@(a(r,y,t,a)) (1 _y)\/%qs( ( 7y7t7 ))

(3.5) (?9 (r,y,t,0) = ®(a(r,y,t,0))
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+o(a(r,y,t,0)) {ﬁT + La(r, vy, t, 0)}

o 11—y
¢(a(r,y,t,0))

(3.6) 2—1;(7", y, t,o) = {(r — %)t — %azty —ylog(1 — y)}

o(1—y)2Ve3
o = al\r o ¥y
37 Zry.t.0) = oalry.t.0) {2<1 o
n ( yoo(r, y,t,a)) log(1 —y) — 10%t —i—rt}
11—yt 203 :

LEMMA 3.5. RO(T) < o2

OF
PrROOF. From (3.5), we have a—(r,y,t, o) >0forallr > o2 ye(0,1)
r

and t € (0,7]. So it is sufficient to show that F(o2,y,t,0) > 0 for all
y € (0,1) and t € (0,7]. From (3.6), we have

OF  , ){go o<y <1—e 39

—(c%,y,t,o
ay( Y >0 ifl—e 37t <y< 1,

It is sufficient to show that Fy(t) e F(o%,1— e_%azt, t,o) >0 for all t > 0.
(eéazt —1)o

2/13

Since Fj(t) =
Also,

d(o\/t) > 0, Fy(t) is an increasing function.

2

152¢
. o _oo(ez77—1) _ o
lim Fy(t) = ltllIgO' ®(aV/1) 1211(1)17(;5(0\/%) =5

t10 Vit
Therefore F(o?,1 — e_%g%,t, o) > %2 for all ¢ > 0.

LEMMA 3.6. Let r < o2. Then for each t > 0, there exists a unique

n(r,t) € (0,1) such that F(r,n(r,t),t,0) = H%(i)nl)F(r,y,t, o).
ye I’

¢(Q(T,y,t,0')) OF
T o /= . f 6). —
(1 — )2V > 0. So from (3.6), ay(r,y,t,a)>0

1
(< 0) if and only if f(y) = (r — o)t — 50’2ty —ylog(l —y) > 0 (< 0,

Proor. Note that
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1
1
increasing in y € (0,1). Also we have f'(0) = —§U2t < 0, li%rllf'(y) = 00,
y
f(0) = 7t — ¢%* < 0, and ligl f(y) = oo. So we see that the equation
y
OF

—(r,y,t,0) = 0 in y has a unique solution and it gives the minimum of

Jy
F(r,-,t,0). O

1
respectively). Note that f'(y) = —502t —log(l —y) + %y So f'(y) is

REMARK 3.7. The proof of Lemma 3.6 shows that n(r,t) is a solution
OF

of a—(r, y,t,0) = 0. Therefore n(r,t) is characterized as a solution of
Y
(38)  log(l—nrt)="1"%0 Lo g <1
. og(1 —n(r,t)) = -0 T .
g mr, n(r, 1) 57 b nr,
Then we have ) Y
o —r V1
3.9 t),t = —Vi+ —.

By (3.8) we see that lgﬁ)l{n(r,t)log(l — n(r,t))} and 1%iTm{n(r,t) .
log(1 —n(r,t))} = —oo. This implies

1 li = li = 1.
(3.10) i y(r,t) = 0 and lim n(r, t)

LEMMA 3.8. Forr € (0,02), n(r,t) = \/t(c?2 — 1) + %t—i— o(t) ast | 0.

PRrOOF. Note that we have log(1 —z) = —z(1 + R(x)), where R(x) =
o0
1.
Z T 1:102, for |z| < 1. From Equation (3.8), we have
— j
i=1

10,0 (1 4 RO1(r,0))) — 50%n(r, 1) — (0> = 1)t = 0.

Since n(r,t) € (0,1), we have

B o2Vt + /ot +16(c% — r)(1 + R(n(r,1)))
(3.11)  n(rt) =Vt 4(1 + R(n(r,1))) '
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So }ir% n(r,t) = Vo2 —r. Let f(t) = n(r,t) — Vo? —ry/t. Then from (3.8)

Vi
(il =) + £ (1)) log(1 = \/1(o* = 1) — (1)

1
+50%t(fto? =)+ f() + (0" — )t =0.

we have

Since we have

log(1—1/t(c2 —r)— f(t)) = log(1—/t(c? — 1)) —

~ t
where R(t) = R /) , f(t) is the solution of the following
1—/t(c?—r)

equation.
Af(O)? + B f(t) +Ce = 0,
~ 14R()
1—/t(c?2—r)
By = log(1—4/t(c?2—1))

Ho? —r)(L+R(t) 1,
1—/tle2—r) 2

Cy = Jt(e? —r)log(l —4/t(c? — 1))
+502t\/t(02 —7)+ (o —r)t.

where A; =

Ct 1
Since lim A4; = —1, hm — = —2v0% —r, and hm = ——(c?2 =13 4
t—0 t—0 \/7 t—0 ,/ 2
1 t
—o%\V/ 02 — r, we have hm& -'no
2 tlo t 4

We can show the following lemma similarly to Lemma 3.8.

LEMMA 3.9. Forr € (0,02),

r o 3r2—12r(c? —r) —16(c% —1r)?
r,t) = yJtlo2—1r)+ ~t+ +3/2
() SR 96vo2 — 1
+o(tVt) ast | 0.
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Let G(r,t) = F(r,n(r,t),t,0). Then we have the following.
PROPOSITION 3.10. For each t > 0, the equation G(r,t) =0 inr has a

unique solution r*(t) in (0,0?). Moreover r*(t) is continuous in t € (0, 00).

PrOOF. Note that by (3.5) we have

aa_f(r,t) = ®(a(rn(r,t),t,0))

T‘*O’2
\/Z 77(73 t) B n(r,t) b+t
o "1 oVt

+¢(a(7"777(7“at)77570)) {T +
> 0 for0<r<o?

(r—o?t 1, )
From (3.8) we have n(r,t) = 1—exp ETOR Pl t¢. Since 0 < n(r,t) <
mr,
1 we have 0 < limi%nfn(r,t) < limsupn(r,t) < 1. Therefore 11&)1 G(r,t) <O0.
T TJ,O T
We also have lim iglfn(r, t) > 0 from (3.8), so l%rr% n(r,t)=1- e 2

rlo

o**, This
9 1,2, o?
implies that l%rr% G(r,t) = F(o*,1 —e 279" t,0) > - (see the proof of
T|o

Lemma 3.5). So we have the first assertion and we complete the proof by
implicit function theorem. [

COROLLARY 3.11. R°(T) = Orilta<xT'r*(t). In particular, R°(T) < o?.

PROPOSITION 3.12. ltil%lr*(t) = co? , where ¢ is the solution of

c®(v/1—c) =+1—cop(+/1—c).

PROOF. Let Go(r) = ltil%l G(r,t). Then we have
Go(r) =rd <l\/02 - r> —ovVo2—ro¢ <£\/02 - r) ,
o o

and

Go(co?®) = ca®®(V1 —¢) — o*V1 — cop(v/1 —¢) = 0.
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1

Since G(r) = ® (—\/ o? — r> > 0, we have Go(co? —¢€) < 0 < Go(co? +e),
o

for any € > 0. So by Proposition 3.10 ltil%l r*(t) = co?. O

We get ¢ = 0.2945... by numerical calculation.

a3c(l— 3¢)
ﬁﬁ—FO(ﬁ), as T l 0.

PROOF. Let H(t,a) = G(co? + av/t,t), where c is the value defined in
Proposition 3.12. By Lemma 3.8 we have

PROPOSITION 3.13. R?(T) = o%c+

n(co? +avt,t) = o1 — eVt — (20\/% — %) t+ o(t).

Therefore we have from (3.9)

alco?® + av't,n(co® + av't,t),t, o)

o%(1 —c) —ay/t
= S + covt + o(V)
VT (i =)V
= VI—c+h(a)Vt+o(WV1),
a 3
where h(a) = N + 1% And we have
on(co? + av/'t,t) _ o*V1—c— (2\/% - %) Vi +o(vA)
(1 —n(co? +avt 1)Vt 1—ovT—evi+ (b= — )t
= o*V1—c+k(a)Vt+o(Vt),
a 3co® .
where k(a) = ENier: + 0% — S Since ®(z + z) = ®(z) + ¢(x)z +

o(z) as z | 0 and ¢(x + z) = ¢(x) — xzp(x)z + o(2) as z | 0, we have

H(t,a) = (co®+avVi){®(V1—c)+ ¢(V1—c)h(a)Vt+ o(Vi)}
—(02VI =+ k(a)V?)
{s(V1—¢) = V1= cp(vV1 = c)h(a)Vt + o(V)}.
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Therefore from the definitions of ¢, we have

H(t Vv1-—
Ho(a) = lim 228D (T o) {eo?h(a)+ Y= 4 02 (1) h(a)—k(a) ).
t0 \/t c
Noting that H)(a) = (V1= ¢)——2 > 0 and H el =59\ _
oting tha a) = —c an 27 ) =
& 0 cvl—c 0 v1i—c ’
0’30(1—§C) 030(1—§c) %
we see HO(TE —€e) <0< HO(T? +¢) for any € > 0. So r*(t) =
30(1 = 3
co? + O-i;l——CZC)\/E+ o(v/t). By Corollary 3.11, we have our assertion. [J

We can also show the following. Although we need finer computation,
the idea of the proof is similar and so we omit the proof.

THEOREM 3.14.

a3c(l — 3¢)
R(T) = oc+ ——2-VT
(T) oc+ ¢
1 c2o(1—2c) 131 — 270¢% + 168c — 32 T
—0
16(1 — ¢)5/2 48(1 — ¢)?

+o(T), asT|O.

We also have the following theorem.

?log(2mo®T 1
THEOREM 3.15. R(T) = o? — o log(2r0"T) | <

22T + 1) ﬁ>,asTToo.

2log(2mo?t) h
PROOF. For each h € R, set r(h,t) = 0% — m + 2 Then,

(3.8) yields

_o? o?tlog(2mo?t) h
h t == = 1 — 2 t —
it = atro(0.0) = 4= e eXp( 207 + o(h.t) bl

o2
=1-o(e 2% ast] oo,
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and we have from (3.9)
ao(h,t) = alro(h,t),m(h,t),t,0)

_ a*Vilog(2mo®)  h L
= 0\/7?‘*‘( 20(0’2t+1> 01\/%) (Uo(h,t) 1)

— oo ast] oo.

Then we have

gb(Oéo(h, t))
V(L —mo(h, 1))

log(2mo?
— exp (_ og(2mo t)_h)

N 2002t +1) ¢

1 (o%Vtlog(2mo?t) o\ 1—no(h,t)\?
PN T2\ 200 T ot (no(h,t)> '

Therefore we have

G(ro(h,t),t) = ro(h, t)®(ao(h, 1)) — omo(h, t) \/E(?foi)(%’(?t))

5 o%log(2mo?t) h o0
{a — —2(02t+ 1 + t_2} (1 — /ao(h,t) ¢(x)dx>

log (2702
_Jano(hﬁexp(_ log(2ma”t) h)

2(0%t+1) ¢
1 { 02y/log(2m0t) h\?/1- mo(h, )\
PN 2\ T 200 ) ot < mo(h:?) >

Siofl) wir

So we have tG(ro(h,t),t) —

log(2mo?t 1
o2 — m <t2> as t T oo, since G is increasing in r by Propo-
sition 3.10. So Corollary 3.11 implies our assertion. [J

— o%h as t T co. Consequently, we have r*(t)

THEOREM 3.16.  For any r > 0, there exists Ty = Ty(r,0?) > 0 such
that

wO(tvy):d}(t)y)a OStST[)v ?/2 1.
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In order to prove this theorem, we show some propositions. Let Yte’y be
the process given by (3.1). Note that we have the following by Ito’s formula.

d(e"S; ) = —e" S (0dBy — o?dt).

Let p¢ def exp (aBt — %O'2t> and define the probability measure P by

dpP

ertsy lis a martingale under the measure P, P is EMM with respect to the

dP - N
( ) = p¢. Then B; def —ot + B; is a P - Brownian motion. Since
t

numeraire S;. By applying Ito’s formula to (3.1), we have
(3.12) vV = (0, = YV)(0dBy +rdt), YV =y.

Moreover by definition of P, we have E[e~"" X] = SoE[S;'X] for any Fr
measurable random variable X, where E[ | denotes the expectation under
P. So we have

(3.13) C(T,x,8) = Ssup B (v "/*)*].
0cO
Let 9(t,y) = SE(EE [(v7)*] and o(t,y) = E [(V;*)*]. Then (t,y) =

eNTtQZ)(t7y) E%Ild wO(tvy) = ertqz)[)(tvy)a SO 1/1(7572/) = wO(tay) if and Only if

ProprosITION 3.17. Y;l’y >1, P-a.s, forally > 1.

PROOF. From (3.12) we have that ;" = 1+ (y— 1)e oB—rt=30% > |
ify>1.0

PROPOSITION 3.18. (1) E[Y,"Y — VY] = r [Ter—DE[(1 — 0,)]ds, for
all 9~€ © andt > 0. .
(2) E[(Y,"Y — YY) < 202e20°t [LE[(1 - 0,)2)ds, for all 6 € © and t > 0.
PROOF. (1) Let Uy = Y'Y — VY. Then

{ dU; = {(1 — 6,) — U;}(0dB; + rdt)
Uy = 0.
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d - . . . t "
Therefore — E[U;] = rE[1L — 6] = rE[UY] . So E[U}] = r / e"CTVE[(1 —

0
0s)]ds.
(2) Similarly we have by Ito’s formula,

—ElU7] = 2rB[{(1~6;) = UU] + 0*E[{(1 ~ 6:) — U}

= (0% = 2r)E[U2] + 0*E[(1 - 6,)%] + 2(r — 0®) E[Us(1 — 6,)]
< {(0® —2r) +|0® = r}E[U] + (0 + |0 — r[) E[(1 — 6,)7).

Therefore we have from Gronwall’s inequality
- t
BUF) < (0% +10* = r)exp({(o* = 20) + o> = rl}t) [ EI(1 - 6.)%/ds
0

< 22"Zt/El— dsl]

PROPOSITION 3.19. There exists a constant K = K (r,0?) such that

P( sup [V — Y[

0<s<t

S 1) < KtE[/Ot(l —6,)%ds),

for any 6 € © and t € [0, 1].

PROOF. Letting U; = ¥;'¥ — Y,"Y, we have

Ut—a/(l—H)dB —a/UdB+r/ (1—-0 S—T/Uds
0

So we have

. - s ~ 1
P(sup |Ug|>1) < P (0 sup | [ (1 —0,)dB,| > —)
0<s<t 0<s<t Jo 4

1
+P<asup| UudB,| > )
0<s<t JO

. ~ t
P(r/ |1—98|ds>>+P(r/ |U3]ds>1).
0 4 0 4
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Note that

- t 1 5 t 2
P<r/ ]1—9$]ds>—> < 16r°E (/ 11—9$de)
0 4 0

16/2 72 [/Otu - 03)2ds] .

IN

Also by Proposition 3.18 (2)

. t 1 _ t
P (7“/ |Us|ds > ) < 16r*E [/ des}
0 4 0

Tt
< 3212022 1E [/ (1-— 95>2d8:| .
0

By Doob’s inequality

IN

- s - 1 [ s -
P (a sup | [ UudBy| > —> 160%E | sup | UudBu\Ql
o<s<t Jo 4 lo<s<t Jo
~ T [t -
640°F || USdBSﬂ
L' Jo

IA

ot
= 640’F / des}
LJo
Tt
< 128042 HE [ / (1— 95)2615} .
0
By Burkholder’s inequality there exists some constant Cy such that

. s N 1 - s -
P <0 sup | [ (1 —6,)dBy| > ) < 4'%'E [ sup | [ (1— Qu)dBu|4]
0<s<t Jo 4 0<s<t Jo

< Cuo'E [(/Ot(l - 95)2ds)2} < 4C,0ME [/Otu - 95)%13} O

PrOOF OF THEOREM 3.16. If x > 1 and y € R, then
eyt = —y—lgy<oylyl =2 —y — Loyl — yl
Therefore for each 6 € O, if e~ "'r — (802K 20 1)1/241/2 >

E[(Y,"")"] - E[(Y,"")"]
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> B -y - B - v - v >
> E[Y YG,y] EHY;l’y—}/;O’y‘2]1/2p(|}/;l’y—yf’y’21)1/2
ot
> rE[/ =0 (1 — 0,)ds]
0

- {202177{@20275 /Ot(l — 95)20[8]}1/2 {KtE[/Dt(l _ 95)2d5]}1/2

- t
(e—rtr _ (802K€202t)1/2t1/2)E{/ (1 — Qs)ds} > 0.0
0

We can obtain similar results in the case of r < 0 similarly.
4. Discrete Time Approximation

Let us fix T > 0 and assume r > 0. We introduce the discrete time
framework. Let N be any positive integer, and let

A=dy=1,
N—{0ecO:0,=0,a, forte[nA, (n+1)A),n=0,1,---,N —1},
n=0
{0 (Bintnrna — Biana) + 7t A (n+1)A — t AnA)},
and

N (m,y) = sup B[VNET )T,
N coN

We will consider the optimal trading strategy in the case of discrete time
framework.

PROPOSITION 4.1. 9N (m,-) is convez and

PN(m,y) = max{E [N (m—1,y+ (k2 —y)(0Ba +74))],

E [wN (m — 1,y + (k1 —y)(0Ba +7“A))]} )
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PROOF. This can be shown inductively. Let us assume that ¢~ (m —
1,y) is convex in y. Then we have

oN(m,y)= sup E[ sup Elly+ (k—y)(oBa+7A)
k1<k<r2  0€ON fo=k

m—1
+ 3 (Ona = V) (0 (Blugaya — Boa) +7A)T|FA]]
n=1
= sup EQN(m—1,y+ (k—y)(0cBa+rA))

r1<k<k2

< max { B[V (m — L,y + (s1 — y)(0Ba + rA))]

B[N (m =1,y + (k2 = y)(0Ba +rA)]}.

The opposite side of the inequality is trivial. And so PN (m,y) is convex in
y. U

LEMMA 4.2, sup E[(Y?¥)?] < (4 + 202 max{/ﬁ%,n%}t)e%zt.
0co

PRrOOF.  Since d(Y{"")? = 2Y,"¥(0,~Y,"")(0dBy+rdt) +02(0, Y dt
for any 0 € ©, we have the following similarly to Proposition 3.18 (2).

d -~ - -
EEHYf’y!Q] < {(0® = 2r) + |0 = r[}E[(Y")] + (02 + |0? — r|) E[67].
Therefore we have

E[Y Y

IN

t
(y* + 202/ E[0%]ds) exp(20°t)
0

(y* + 20% max(k?, H%)t)6202t. d

IN

LEMMA 4.3. Letb >0, c> 0 and let {a,}n>0 be a sequence of numbers
such that ap = 0 and

n—1

an§b+cZak, n > 1.
k=0

Then a, < b(1 4 c)" L.
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PROOF. We show our assertion by induction. It is easy to verify it in
n—1

case of n =1. Let a, < b+c Z ar < b(1+ ¢)" 1. Then we have
k=0

api1 < b+cZak <b(1+e)" P +ca, <b1+ce)" O
k=0

LEMMA 4.4. There exists a sequence {Cn} such that Cy — 0 as N —
oo such that

~ ~ T N-1
B[y - Y] < <1 +4(0% + rzT)N> Cn,
for any 6 € OV,

PROOF. Let # € ©V. From the definitions of YY{V’H’y and Yﬁ’y we have

E||Yy4 - YA P

IN

(n+1)A .
2(0? + r°T)E [Z/ me,y_ynz\ge,ypdt]
(n+1)A
= 40 +r°7T) Z/ B[y = Y| dt

+4(o% +1°T) ZAE (v = 0P

~ ~ 02
Since we have Yta’y = Yne’Ay + (0N, — Yf’Ay)(l — 0B Bra)= (G +1)(t=nl)) for
nA <t < (n+1)A, we have

(n+1)A |
/ E [D/t&y _ Y9 Y
nA

_ /("“) B0 V)20 - BB g
n.
2
T

2} dt

A

- __—rA # (=2r+o2)A >
K(a-Ta-emd)s e D).

IN

where K = 2(y2 + 202 max{x2, k2}T)e2’'T 42 > SUpPgceN E[(yﬂy ON, ).
Therefore

B [[YyX - Yya P
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_ —TrA (—2r+02)A _
<A(e? +r®T)KEN (A — 20— | e L
r —2r + o2

N-1
+4(02 +07T) 3 AB [V - VRV

n=0

So by Lemma 4.3

B[ivéx - ]

_ —TrA (—2r+02)A _
< 4(c% +r*T)KN (A _ =) e 1)

(14400 + r2T)A)N_1 .

2(1 —e8) e(2r+oNA g

Since A—
m r —2r 4 o2

=0 (Az) , we have our assertion. [

PROPOSITION 4.5, lim PN (t,y) = D(t,y).
—00

PROOF. Lemma 4.4 and ©N C © imply that

limsup sup E[(¥;""*)"] = limsup sup E[(V;"*)"] < 4)(t,y).
N—oo geeN N—oo fcoON

On the other hand, for each 8 € O, there exists a sequence of strategies

[T
{6N}35_, such that 0V € ©F and A}im E l/ (0, — 0{V)2dt] = 0. Then,
—00 0
_ ot
B[ =¥/ ] = 260+ TIE | [ (6.~ ) - (v - ¥2" )P
0

4(o* 4 rt) / t

0

IN

B |(0, - 0))?] ds
t N
+4(0% 4+ 121) / B[y -y VP ds.
0
By Gronwall’s inequality

. ot
B[/ v P < a(o 208 [ [[ 6, - 0)Pas| 100 o,
0

as N — oo.
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Lemma 4.2 implies that for each N there exists a sequence {§(N'™ € @"},,
~ (N) A (N,n) . .
such that £ “Yﬁ v Y;}’e ’yﬂ — 0 as n — oo uniformly with respect

to N. Therefore we have subsequence {#(N:" ™)1y such that E |Y7€’y -

~ n(N))
— 0as N — oo. Therefore lim E[(Y;(N)’Q(N " N =

T N—oo

E[(Y£Y)*]. Therefore lim inf ON(T,y) > (T,y). O
5. Closed Form of Valuation in the Case of »r =0

In this section we assume that » = 0. Then, under the measure ]5, we
have
dYY = (6, — YY)odB,.

Letting k1 < ko, we derive the closed form for valuation of passport call

. B Ko + K K9 — K X
option. Let kK = 2 ! , K = 2 ! and fix T > 0. We consider the

discrete time approximation defined in the previous section.

LEMMA 5.1.  For any convex function g, we have

t

sup FE [g (/ 6’5d35>] = Elg(kiBt)],
06@(nl,n2) 0

where ki = {@ Z.f’m| < |ra|

k1 if k1] > [kal.

PROOF. Let B be a Brownian motion independent of B. Then for any
0eo

E {g (/Ot QSdBS)] _ E [g (E [/Ot(esst + (k2 — 0?)1/2d35)|]-}])]

< E [g (/Ot(esst + (k2 — 95)1/26135))]
= FElg(kiBy)]. O
COROLLARY 5.2.
- B E[¢N<m—1,y+(/<a2—y)aBA)} ify <k
v m.y) = { E [@N (m —1Ly+ (k1 — y)aBA)} if y > K.
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ProoF. This follows from Lemma 5.1 and the following.

PN(m,y) = sup ERN(m—1,y+ (0 —y)oBa)]
K1<0' <Ko

= sup EWN(m -1,y +0'0Ba)]. O
k1 —y<O' <ro—y

By Corollary 5.2 the optimal strategy #V* in the discrete framework is
inductively given by the following.

~ N x
‘f YNaa Y -
Hi\f*: K1 1 An]egN* > K ’I’LASt<(n+1)A,
Ko if Y A Y <R,
where

¥ N’ON*7y = Nx ¥ NzeN*vy D, D,

Y, = Y+ Z (OpA — Y A )0 (Bia(n+1)a — Biana)
n=0

= y-— Z [Sign (}A/rf\&gm’y — R) (H +
n=0

A N,QN*, _
20
'U(Bt/\(n-i-l)A - Bt/\nA)}-
SN . . .
Let B; " be given inductively by
BN = BN —sign(VROVY —R)(By — Bua),  nA<t< (n+ 1A,

Then {BY *1 is another P-Brownian motion and we have

VT —R]) o (BYE a — BlAA)) -

N-1
YtNﬁN Y=y+ ZO ((’f + tA(n+1)A tAnA
e

Now let

59 4 3 ([958 = ) B ~ Bova).
n=0
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~ N x ~
Then YtN’e Y and YtN’ﬁ’y have the same distribution and we have

E[(YtN’GN*’y)JF] = E[(YV*¥)H]. And let Y}¥ to be the solution of the fol-
lowing S.D.E.

(5.1) avPY = (k+ |V — &) odB, YV =y,

Then we have A}im E H}A/TN by _ Yiﬁ’ym = 0 by Euler-Maruyama approxima-
— 00
tion (see Kloeden and Platen [5]), and so lim E[(Y)P)F] = EB[(YAY)1).
— 00
Therefore by Proposition 4.5 we have ¢(T,y) = E[(Yﬁ’y)ﬂ.
REMARK 5.3. From the form of §V*, one may guess that the optimal
strategy 0* is given by the following.

0*_{,%1 ifY; >k

= <
) ko Y, <R, nA <t<(n+1)A

where Y is given by
dY; = —sign(Y; — &)(k + |Y; — &|)odB, Yo =vy.

For simplicity, let k1 = —1 and k9 = 1. Then recalling that B; = Bt + ot is
P-Brownian motion, we see that X; = Y;.5; satisfies

(52) dXt = — SigH(Xt)dSt, XO =1,

under the measure P. It is well known as Tanaka’s counter-example that
S.D.E. (5.2) does not have any strong solutions. Therefore such an adapted
process 6* does not exist.

Now we derive the formula for pricing the passport option. Let Y;ﬂ def

1 o
- (Ytﬁ’mﬁn — /%) . Then we have
K

ayy = o(1+|Y}|)dB,.

Let fiio(y . t)dy = P[Y € dy] and q(a,b,t; u)dadb = P[B; + ut € da,

Oréligt(Bs + ps) € db]. It is well known(see Karatzas & Shreve [4]) that

2(a — 2b) exp <_ (a —2b — pt)?

Q(avbat;u) = m 2 +2bM> .
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Skorohod’s Theorem implies the following lemma.

LEMMA 5.4.
v L (log(aly) 1
P = et e V)
1 log(1+1y|) 1
0 (L Vi)

Proor. We have
_ PR 1 - 1
d(log(1 4 |Y,|)) = o sign(Y,°)dB; + dLY — §U2dt = 0dB, + dLY — 5azdt,

where L? is the local time of Y at 0, and B = fg sign(Y)dB;. Define a P-
d _ 2
equivalent probability measure @ by (d—g)t = py ef exp(%Bg - %t). Then
_ 1 _
BY def B, — %t is @Q-Brownian motion, and we have d < log(1 + |Yto|)) =
o

1 _
dBY +dL?. Let W, L 2 log(14|Y;?|). From Skorohod’s Theorem, we have
o

W, = B? — min B9 (See Ikeda and Watanabe [3]). Since
E o<u<t U

QIW; € dw,B® € db] = q(b,b— w,t,0)dwdb
_ Y
_ 2(2w — b) exp (2w dwdb,
Vomt3 2t
we have
def d - d _
w 2
= [m e*é"%*%”bdide[Wt < w, B < bldb
1 w 1 1 w 1
= 20— —F+-0Vt]|+=P|——F+ + —0Vi
e {U\/Ed)( N )+2 ( \/%+20f)},
t,w > 0.
Then,
7 1

0 1
P yat) = mﬂ(; log(1+ |y[) : t)



776 Izumi NAGAYAMA

_ 1 { 1 s (_log(l + |yl) n 10\/%)

(I+1yh? Lovt oVt 2
1 log(1+1y|) 1
#50 (T eV} o

LEMMA 5.5.

C(T, Sk, S, K1, /12)
_g {g {1+ VT (1)@ (T)) + ov/To(dr (1))

it = o))
_ 1 K+ |k oVT B
where di(T) = T log ——— + —— and do(T) = dy(T) — oV/T.

PROOF. Note that C(T, SR, 57 K1, /@2) — SE {(YTQ,R)—F} Then we have
i [y tRy+ 2 (w0, B)T * _\ YO0
E[(v)*] = wE | (7R + :/_E(ny—i—ﬁ)f (y: T)dy
00 _ &l
= [M (ky + R) fYO(y:T)derzﬁ/”’ 7y T)dy
2 0

di(T) T
= / (Fce“’ Tetg0’T _jo 4 R) oV Tz 50T ((15(2) +Z (IJ(Z)> dz

1oV/T
+2R T /2 eoVTz=50°T (gi)(z) + U\Q/Tq)(z)) dz
d

1(T)

S {(14 oVTdy(T)®(di(T)) + oV T(dr(T)) |

2
s
AT - KT‘”’@(@(T)). O

THEOREM 5.6.

C(T,z,S, k1, k2)
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:Smf“ﬁhmné<jhujﬁ—ﬁ@ym++%VT>

—S(k —sign(x — kS)R)P <—f2(x,T) — f3(x, T)* — gﬁ)
—I—Sefgﬁh(x’T)(ﬁ — sign(x — RS)R)
® (foleT) = ol )~ ST
—Skd <f2(x,T) — f3(x, T)" + %\/T) + 2licrs)
+SR(1{R>O} - 1{I<RS})

z _U\/TfQ(er) _ z
-F<hmﬂv+2v?>+e @(h@ﬂU 2%?”

o2 o
(1—aff1< 4% )@ (3 4 o)+ 59T
—S* —oVT(f1(T)+f2(2,1)) <f1( )+f2(x,T)—g\/T)
w5y [ -0 et + 59D
+0\[¢ (fi(t) + \/7)}
where
og FHIEI
ht) = —li\/’;
log (14 ;% — &
folz,t) = — g< Uf/‘; ‘)
B ngw if kK —sign(x — kS)k > 0
fs(w,t) = {_\éo if Kk —sign(x — RS)k <0
@) = f( t) (f2 )+ O'\/_>

PrROOF. Note that C(T,z,S, k1, k2) = SE [(Y:,Q’x/s)ﬂ and let 7¥ =
— K

inf{t >0:Ytﬁ’y:R} = inf{t> 0:}7}’:0}, where § = Z—". Then, we
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have
E~' Yﬁ7y + — E~‘ Yﬁvy + T > Yy E~' Yﬁ7y + T Yy
(Y7%) YT, T =79 + E\(Yp)", T <7Y].
And o
d}—/g , = 0'(1 + X;%Ty)dBt/\Ty if g Z 0
AT o(1 =YY )dBiprw if g <O0.
Therefore

_ 1
Vf\rs = sign(@) | (1 + [g1) exp {sign(@)o Binrs — 50>t n ) | ~1]
Then, we have

, inf{t >0: B =1 (~log(1+9)+30%)} if5>0
T =
inf{t > 0: B, = —1 (~log(1—§) + 30%)} if§<0
1 1
= inf {t >0:B; = sign(?j); <— log(1+ |g|) + 50215)} .
Then

- 4 - __ R\t
E[(YT’y)+,T<Ty]:I<LE (Yff—i—;) I <T¥

0 e’} o
= K‘/ (/ q(aabaTaii)
—Liog(1+lg)) \Jb 2

{sign(a)(1 + [g)e™ = 1)+ 5} da ) db

0 o] =
H/ </ Q(a’b7T;_U){(1+y)ega_H H}da) db
f bV (f+h) 2 K
_ ify >0
o 0 bV (f+h) _
H/ </ q(avbaT;_a){(y_l)eoa‘f‘ﬂ—i_ﬁ}da) db
! b 2 K
ifg<o0

where

fo= = log(1+g)

- 1 log %n(g)r@ if kK —sign(y)k > 0
—00 if k —sign(y)k < 0.
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B 6 o
/ (/ e?q(a,b,T; —)da) db
o \Jy 2

(5 e ()

JT 2 vT
oo (220 D) e (20 2T,

8( 6 o
/ (/ e’q(a,b,T; —)da) db
o b 2

+ ﬂ[@<@+gﬁ>—@(2@%6+g T)} for 3 <6
and
a(a.b T:~3) = e "q(a.b.T: 7)
we have

—(k — sign(y)R)P (—f + AT 9 T)

LR Siin(y)ﬂ(”+ y — &) (f —ht o T)
f—ht o

—K/(I)< \/T + 5@)

ey {—y—k Z(mr R—y)® (% - % T)
+RD (%jtgﬁﬂ
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Next, we have

g7 (T = 1) |5 {1+ o Vi (0)(d1 (1) + 0 Vi (di (1) }

+rt - 2 +2|R‘<I>

(dg(t))}dt
T K K+ R o’
= [frw-o 3o e + ovisa |

bR - ’”2"’”‘@(612(::))} dt
where
v, def d _ log(1+1g]) [ log(1+]g) 1
g ()= Pl <] = T ¢>< e +2a\/¥>
/ fo1
= 7 (e
Since

we have
B[y, T > 1]
Jr

3 (\ff + gﬁ) +(1+g)® (jT - gﬁ)}

- 2
+g (1 “log ™ :‘“‘ + U;) o (dl(T) + jf)

=K
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5 E s ghe (am) + )

k(T o2t
+§/0 g (T—t){T‘I’(dl(t))+U\/z¢(d1(t))}dt-D

6. Remarks and Numerical Calculations

We examined the functions r*(t) and n(r*(t),t) with ¢ = 1
by numerical calculations based on Equation (3.8) and the definition
of r*(t) in Proposition 3.10. Figure 1 depicts the function 7*(¢) and its

c(l—3¢) (1 — 2c)
imation functi () = 27t — {7
approximation functions 7q(t) c + e vVt — ¢ 16(1 — o) 72
131¢3 — 2702 + 168¢ — 32 log(27)

}t and ri (t) = 1 — which are exam-

48(1 — c)2 2(t+ 1)
ined in Theorem 3.14 and 3.15. Figures 2 and 3 show these approximation
errors respectively. In Figure 4, we illustrate the function n(r*(¢), ) with it’s

approximation function ng(r*(t),t) = /t(1 — r*(t)) + T*f)t + {32\71@)2*@) -

02 r
01

0 1 1 1 1 1 J t
0 5 10 15 20 25 30

T MY () N rao (1)

Figure 1.
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0.06 | [Phae
0.04 P

0.02 | T

ro(t) —r*(t)

Figure 2.

0009 r
0008 r
0007 t
0006 |
0005 |
0004 |
0003 |
0002 |
0001 |

0 I L R LR g PP t

0 5 10 15 20 25 30 35 40

() - & (1)

Figure 3.

6
Figure 5 shows approximation error.

T*g(t) I—r*(t) — (1 - r*(t))3/2}tﬂ which are examined in Lemma 3.8.

As numerical experiences we also examined the area where the optimal
trading strategy is —1 in the discrete time framework discussed in Propo-
sition 4.1, when k1 = —1, ko = 1, and o0 = 1. We calculate the value of
Y™ by using numerical integration technique inductively. Figures 6 and 7
show the case of r = 0.35(> ¢) and r = 0.25(< ¢) respectively. The sym-
bol “e” in these figures indicates the points where the optimal strategy is
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0.04

0.035
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0.025

0.02

0.015

0.01

0.005

4 6 8
— n(r*(t),t), ----- no(r* (1), )
Figure 4.
- s :
04 0.6

no(r*(t),t) — n(r*(t), 1)

Figure 5.
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05

04

03

0.225
0.2

0.1

0 0.05 0.075 0.1 0.15

Figure 6.

0.3

0 0.005 0.01 0.015

Figure 7.

—1, in the coordinate (y,t) where y is the value of trading strategy divided
by the current value of the security, and t is the remaining life time of
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passport option. By numerical calculation we have r*(0.075) ~ 0.35 and
7(0.35,0.075) =~ 0.225. The symbol “x” in Figure 6 indicates the point
where y = 0.225 and ¢ = 0.075.
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