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1 Introduction

Reaction-diffusion equations are used extensively for modelling pattern formation
observed in natural and social phenomena. The equations are deduced from the
simple idea that concentration changes of a material in a system are caused by
reactions between the materials contained in the system and by diffusion of each
material. Numerical solutions of the equations show a variety of patterns, and they
are used widely in various fields such as chemistry, biology, medical science ete. [1].

An alternative approach to modelling pattern formation is to use a cellular au-
tomaton (CA) [2, 3]. CAs are mathematical models with discrete time, space and
state variables, and are defined by simple time evolution rules. They are able to
reproduce complex patterns, and therefore have a lot of applications. For exam-
ple, the lattice gas CAs represent very well the various features of fluid dynamics
- and reaction-diffusion phenomena [4]. In general, CAs have the advantage of being
able to simulate phenomena at lower computational cost than when using partial
differential equations.

A lot of models for cooperative phenomena of excitable media, derived by using
partial differential equations or cellular automata have been proposed. The so-
called ”oregonator” model [6, 7, 8] expressed in terms of differential equations can
explain the Belousov-Zhabotinsky(BZ) reaction [5] known as a typical example of a
reaction-diffusion system. On the other hand, some approaches by means of cellular
automata for excitable media have been proposed in [9, 10, 11]. However, these
early CA models featured update rules based on nearest neighbour connections, and
hence, faced several serious shortcomings [12]. The most serious of these is the lack
of curvature and dispersion effects and unwanted anisotropy of the front motion [13,
14]. To overcome these problems, several automata models have been proposed [13,
15, 16, 14, 18, 19]. Gerhardt, Shuster and Tyson introduced bigger neighbourhoods
to model the curvature effects and make the threshold a linear function to take
dispersion into account [13, 15, 16]. Weimar, Tyson and Watson improved the
models by introducing a mask, i.e. a weighted summation of automaton values over
large neighbourhoods [18, 19], and Henze and Tyson extended it to three spatial
dimensions [20]. These models recover curvature and dispersion effects well, but the
anisotropy of wave propagation is not completely eliminated.

In cellular automata, to recover the isotropy of the time-evolution patterns is in

fact a difficult problem. If the adopted lattice used in the modelling has periodicity,



such as a square lattice or a hexagonal lattice, then, due to this periodicity the time-
evolution patterns obtained from the model become anisotropié. In [17] Markus and
Hess have proposed an isotropic model for excitable media. In their model, they use
a square lattice, but instead of placing each grid point at the center of a unit cell,
they assign each grid point to a random location within its unit cell. The isotropy is
recovered by taking a large number of neighbouring cells within a circular area with
radius R. As other CA models for excitable media which seem to recover anisotropy
to some extent, one can cite the "Moving Average CA” method by Weimar [22], the
lattice gas method CAs by Raymond et al. [23] or Chen [24] et al., the isotropic CA
model for the growth process of a bacterial colony by using a Voronoi lattice [25]
proposed in [26].

However, the work that addressed the anisotropy of cellular automata are hardly
known. We focus on the isotropy of the model and want to address this problem.
In the present thesis, we discuss the isotropy of model, and propose some isotropic
cellular automata. ‘

In chapter 2, we propose a cellular automaton model, which reproduces isotropic
time-evolution patterns observed in the Belousov-Zhabotinsky reaction. Although
several CA models have been proposed exhibiting isotropic patterns of the reaction,
most of them need complicated rules and a large number of neighbouring cells. Our
model can produce isotropic patterns from a simple probabilistic rule among a few
(4 or 8) neighbouring cells.

In chapter 3, we propose a new method to construct an isotropic cellular au-
tomaton corresponding to a reaction-diffusion equation. The method consists of
replacing the diffusion term and the reaction term of the reaction-diffusion equation
with a random walk of microscopic particles and a discrete vector field which defines
the time evolution of the particles. The cellular automaton thus obtained can retain
isotropy and therefore reproduces the patterns found in the numerical solutions of
the reaction-diffusion equation. As a specific example, we apply the method to the
Belousov-Zhabotinsky reaction in excitable media.

In chapter 4, we present a model which aims at describing the morphology
of colonies of Proteus mirabilis and Bacillus subtilis. Our model is based on the
isotropic cellular automaton introduced in chapter 3. The cellular automaton which
is obtained by the adequate discretisation of a diffusion-like equation, describing
the migration of the bacteria, to which we have added rules simulating the consoli-

dation process. Our basic assumption, following the findings of the group of Chuo



University, is that the migration and consolidation processes are controlled by the
local density of the bacteria. We show that it is possible, within our model to re-
produce the morphological diagrams of both bacteria species. Moreover we model

some detailed experiments of the precited group, obtaining a fine agreement.



2 An isotropic cellular automaton model for ex-
citable media

In this chapter, we propose an isotropic cellular automaton for excitable media.

Firstly, we explain two approaches modelling excitable media.

2.1 Modelling of excitable media

The Belousov-Zhabotinsky (BZ) reaction observed in excited media is a typical
example of oscillatory phenomena in reaction-diffusion systems. It exhibits interest-
ing behaviour such as target patterns and spiral patterns under certain conditions
[5]. Figures 1 (a) and 1 (b) show the target pattern and the spiral pattern in the
Belousov-Zhabotinsky reaction respectively [27]. Excitable media are often mod-
eled by so-called reaction-diffusion equations, described as simultaneous differential

equations,

u = f(u,v) + DyAu 1)
v = g(u,v) + DyAv,

where u(z,y,t), v(z,y,t) are state variables corresponding to the concentrations of
two kinds of medium. D, and D, are diffusion coefficients. The functions f(u,v)
and g(u,v) are reaction terms which describe the interaction between u and v [28].
Figure 2 shows a typical phase diagram for the BZ reaction. The phase diagram has
an equilibrium point at the intersection of two nullclines f(u,v) = 0 and g(u,v) = 0.
Although the state at the equilibrium point is stable under weak perturbation,
if the strength of the perturbation due mainly to the diffusion effects exceeds a
certain threshold, it becomes unstable and changes along the line shown in the phase
diagram until it returns to the equilibfium point again. Hence, the state variables
determined by the above reaction-diffusion equations reproduce the specific patterns
of excitable media quite well.

An alternative approach to model excitable media is by means of a cellular
automaton (CA) [2]. CAs are mathematical models with discrete time, space and
state variables, and are defined by simple evolution rules. Accordingly, CAs have
the benefit of being able to reproduce cbmplex patterns at low computational cost.

An isotropic model for excitable media was proposed by Markus and Hess[14]. In

their model, they use a rectangular lattice, but instead of placing each grid pbint at
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the center of a unit cell, they assign each grid point to a random location within its
unit cell. The isotropy is recovered by taking a large number of neighbouring cells
within a circular area with a radius R (Figure 3). This CA succeeded in describing
the isotropic nature of the observed phenomena (Figure 4). However, the practical
calculation of the model requires large computational resources, because it needs
lookups of the random points and additions of state variables over wide-ranging
neighbouring cells.

The purpose of the present chapter is to propose an isotropic CA model with only
a few (4 or 8) neighbouring cells. We shall show that it reproduces the behaviour of

excitable media with less computational time than the model by Markus and Hess.

2;2 The CA model

In this section, we describe a CA rule which reproduces isotropic patterns for
excitable media. Our isotropic model is constructed in two steps. Firstly, an
anisotropic square lattice model is shown in section 2.2.1. It is an improvement
for a model which was proposed in [29]. We discuss the nature of the patterns and
obtain some important results regarding the construction of an isotropic pattern.
Secondly, the method to recover isotropy is proposed in section 2.2.2. on the basis

of the results presented in section 2.2.1.

2.2.1 Simple square lattice model

Firstly, we introduce a simple square lattice model which gives some anisotropic
patterns. It models the dynamics of reaction-diffusion equation already introduced
in section 2.1. The model is defined on a 2-dimensional square lattice. Each cell has
two state variables uf,, and v! , where m, n, and t denotes the column number,
row number, and the time step, respectively. Each of the state variables takes a
value from 0 to N — 1. The time-evolution rule is defined by the sum of values of

the states uf,,, at the time ¢ over the Moore neighbouring cells;

t - t t t t
Smn T um—l,n—l + um,n—l + um+1,n—1 + um—l,n

t t t t
+ u’m+1,n + um—l,n-!-l + um,n+1 + um—|—1,n+1‘

Figure 5 explains the time-evolution rule for each cell. The state of each cell at
time ¢+ 1 is determined by the following rules. (1) If uf,, =%, =0and St > A,
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then !, is excited to uf,, = 1, while v}, stays v¢,, = 0. Else, if ul,, = v}t =0
and S? < A each state stays u,, = v, =0. (2) If u},, + v}, # 0 then the values
at the cell automatically transit to the next point along the line indicated by the
arrow in the diagram (Fig.5) (and finally return to uf, = !, = 0). The Ais a
threshold for the excitation, and is a positive constant (A > 0). This rule can be
interpreted as saying that if there is a flow larger than a threshold into a cell, then
the cell oscillates only once. It is a simple emulation of the dynamics described by
the phase diagram in Fig.2. The model described above gives a variety of patterns,
such as ring patterns, target patterns and spiral patterns, for appropriate initial
conditions. Figure 6 shows an example of target patterns obtained from the above
rule. These two patterns are computed using different thresholds, (a) A = 3 and
(b) A = 6. At this stage, these patterns are not isotropic yet. However, there are
some remarkable relationships between the threshold A and the obtained pattern,
that are important for constructing isotropic patterns in the next section.

(i) The symmetry (and therefore the anisotropy) of the obtained pattern only
depends on the value of the threshold A, not on the number of states N. For
example, an octagonal pattern is obtained for A = 3, and a dodecagonal pattern for
A = 6 as shown in Fig.6. Table 1 shows the threshold dependency of the shape of
the pattern.

(ii) The propagation speed of the wave front for the obtained patterns is deter-
mined by the value of the threshold A but not by N. The patterns in Fig.6 (a) and
(b) were obtained after the same number of time steps, with A = 3 and A = 6,
respectively. This indicates that the lower threshold triggered a faster excitation.
Figure 7 shows the propagation speed of the wave front plotted as a function of the
threshold A. It is inversely proportional to the threshold A, and can be approxi-
mated by the equation v = 1/(0.59577 4+ 0.32493 A). Note that as the propagation
speed in fact depen'ds/ on the direction, we defined an average propagation speed by
averaging the measurements over the angle. v

(iii) There are two control parameters A and N in this model. To generate a
pattern, it is necessary to choose a threshold in the range 0 < A < 2N, otherwise
the excitation does not take place over the whole range of cells. Thus the number
of state values N is relevant only when deciding the range of the thresholds A, and
it does not have a dominant influence on the system. We can control the shape and
propagation speed of the generated patterns by choosing an appropriate value of the
threshold.



2.2.2 Isotropic square lattice model

In this section, we introduce a CA model that generates an isotropic pattern us-
ing the features discussed in section 2.2.1. This is accomplished by introducing
a randomness into the model. We prepare two different thresholds A; and A,
(A1 > Ay #0). These are distributed randomly over the cells at the beginning of
the simulation and are kept constant during the simulation (Fig.8(a)). The proce-

dure is summarized as follows,

N L (2)

Ay g=1-p
where p is the probability that A; is assigned to a cell. The time-evolution rule is
the same as that for the model described in section 2.2.1, except for replacing the
threshold A with A,,,. Namely, the excitation condition is replaced by St = A
(Fig.8(b)). This results in each cell possessing one of two different transition speeds,
according to the threshold randomly assigned to the cell. It is expected that this

difference breaks the anisotropy resulting from the periodicity of the original lattice.

2.3 Numerical results

In this section, we show some numerical results obtained from our isotropic model
and discuss them.

First we compare the computational time required for updating a cell of our
model and that of the model by Markus and Hess. Let T;, T}, T, and T be
computational times for a step of conditional bifurcation, multiplication, addition

and substitution respectively. Then our model requires about
~ 5T; + 2T + 8T,
for updating one cell. On the other hand, their model requires
~ (T + Ty + T,)7R? + 2T + Ty + T,

where R is the radius of the circular region of neighbouring cells. In general, we can
assume T; > Tp,, T}, T, the ratio of computational time is approximately 5 : TR2.
Since the radius R is typically taken from 6 to 10, our model is more than 20 times

faster than their model.



Figures 9 ~ 14 show some typical examples of patterns obtained by numerical
computation. They are plotted in grey scale according to the value of ut  from 0
(black) to N — 1 (white).

The first example is a single ring pattern (Fig.9(a)). It is produced by the initial
condition u),, = 1 and v9,,, = 0 on 3 x 3 cells at the center and u%,, = 1°_ = 0 on
the other cells. From the central 3 x 3 cells, a ring-shaped wave spreads outward.
We evaluated the anisotropy of the pattern by measuring the residual error when
compared to the average radius of the ring, and plotted it as a function of the
propagation direction in Fig.9(b). We can see that the wave fronts of the ring
pattern propagate uniformly in each direét‘ion. In Fig.10 we plotted the variation
from the circle as a function of the radius of the ring pattern. It shows that the
ring pattern indeed grows closer to a complete circle as the radius (and therefore
the time step) increases.

The next example is a target pattern (Fig.11). The initial condition is u%,, = 1
and vJ,, = 0 on the central cell and u2, = v% = 0-on the other cells. From the
central cell, ring-shaped waves are produced that spread repeatedly with a spatial
period of 4(N — 1), and a target pattern is formed. In order to generate a spiral
pattern, app‘ropriate initial conditions are needed. Firstly, we generate a single ring
pattern like the one in Fig.9(a). Then we cut off one part of the ring pattern as
shown in Fig.12(a) and use the remainder as the initial state. In fact, spiral patterns
are also observed cutting a part of ring patterns in experiments on the Belousov-
Zhabotinsky reaction [6]. The spiral pattern obtained from our model is shown in
Fig.12(b). The isotropic feature of the pattern is apparent.

When we take random initial conditions, in general many target patterns appear.
An example is shown in Fig.13. Figure 14 shows an example of a target pattern for
a large value of N (N = 200), with A; = 10, A, = 400. The boundaries of the

pattern exhibit complicated shapes like the DLA cluster [31].

2.4 Summary

In this chapter, we proposed a simple CA model for excitable media which can gener-
ate isotropic patterns though it is defined on the square lattice and its time-evolution
rule depends only on the Moore neighbourhood. The key to isotropy is to introduce
spatial randomness of the excitation threshold in the model. As the propagation

speed and direction of the patterns are strongly affected by changes in the values of



the thresholds, the randomness of the threshold at each cell causes fluctuations in
the pattern formation, which seem to make the pattern isotropic. Using this model,
we have successfully reproduced isotropic patterns observed in excitable media such
as target patterns and spiral patterns. Application to higher dimensional CA models

and application to inverse ultradiscretization [32] are important problems we wish

to address in future.



(b)
Figure 1: The patterns observed in the Belousov-Zhabotinsky reaction [27]. (a)

Target pattern. (b) Spiral pattern.
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0

Figure 3: Geometry of Markus’s cellular automaton[30]. The plane is divided into
square cells and one point is placed randomly in each cell. The circular neighbour-
hood of a cell is defined by all cells whose point is within a circle centered at that

point.
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Figure 4: The spiral waves obtained from Markus’s cellular automaton (128 X 128

cells) [30].

Figure 5: Phase diagram which gives the time-evolution rule for uf , and v?, . This

diagram is simply an imitation of the phase diagram of Fig.2.
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(b)

Figure 6: Anisotropic target patterns obtained from the simple square lattice model.
(a) 150 x 150 cells, t = 100, N = 4, A = 3. (b) 150 x 150 cells, t = 100, N = 4,
A =6. '
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Table 1: Threshold A dependency on the symmetry of the obtained patterns.

Threshold A

The symmetry of the pattern

quadrilateral

quadrilateral

octagon

octagon

octagon
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Figure 7: The average propagation speed v of the patterns as a function of the

threshold A. It can be approximated by v = 1/(0.59577 + 0.32493 A).
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Figure 8: (a) Example of an arrangement of thresholds A,,,. The thresholds A; or
A, are distributed randomly over the lattice. (b) The time-evolution rules almost
the same as for, the model in section 2.2.1: The excitation condition is however

replaced by St > Apn.
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Figure 9: (a) Single ring pattern for 500 x 500 cells, t = 450, N =5, A; =3, Ay =T,
p=1/2. (b) Plot of the anisotropy of the model, measured as the residual error of

the ring pattern in (a).
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Figure 11: Target pattern. 150 x 150 cells, t = 128, N = 4, A; = 3, Ay = 6,
p=1/2.
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(b)
Figure 12: (a) A cut ring pattern. 150 x 150 cells, t = 70, N =5, A; =3, Ay =T,
p = 1/2. (b) Spiral pattern. 150 x 150 cells, t = 187, N =5, A; = 3, Ay =T,
p=1/2.
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Figure 14: Target pattern in case of a huge number of state values for 400 x 400

cells, t = 2952, N = 200, A; = 10, A, = 400, p = 1/2.
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3 General method to construct the isotropic cel-

lular automaton for reaction- diffusion system

In the present chapter, we propose a new method to construct a CA model corre-
sponding to a reaction-diffusion system. The method is based on the random walk
and on the phase diagram of reaction equations. We require the method to satisfy
the following two conditions: (i)The time evolution pattern of the CA preserves the
isotropy of the reaction-diffusion equation. (ii)The CA model explicitly contains the
control parameters corresponding to the reaction terms and diffusion terms in the

reaction-diffusion equation.

3.1 Methodology

In this section, a method to construct the CA corresponding to a given reaction-
diffusion equation is introduced. The idea is very simple: to replace the diffusion
term by a random walk process and the reaction terms by time evolution along a
discrete vector field obtained from the phase diagram. First, we explain the reaction-

diffusion equation in brief, then we introduce our CA model.

3.1.1 Reaction-diffusion equation

Suppose that there are N different reactive materials Uy, Us, - - -, Uy in some spatial
region. Let the densities of these materials at position r and time ¢ be u(r,t),
ug(r,t), -+, un(r,t) respectively, and put w :=(uz, ug, ---, uny)? € RN. The

reaction-diffusion equation is given as

T flu)+ DV, 3)
where D = diag(dy,ds, - ,dy) ie. Disa N x N diagohal matrix which has the
diffusion coefficient d; for each material as a diagonal element. The vector f(u) =
(fi(u), fo(u), --+, fn(u))T expresses the interactions between the materials and
V= % is the nabla symbol, in particular V2 = 8‘9—;2 + g—;z in two spatial dimension:

r = (z,y).
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3.1.2 The CA model

We now introduce our cellular automaton model for the reaction-diffusion equation
(3). For simplicity, we assume that the equation is defined in two spatial dimensions
and that the CA model is defined on a two dimensional square lattice. Generalisation
to higher dimensional systems and different types of lattices will be straightforward.
In the reaction-diffusion equation (3), the variable u represents the density of re-
active material. In our CA model, we replace the density of material u(r,t) by
the number of microscopic particles u € Z," at the corresponding lattice point
(m,n) € 72 at time step t € Z/2. Then the time evolution of our CA model is

determined by

t+1/2 _ ..t ~1
umn - umn + R(umn)’

t+1 __ , t+1/2 t+1/2
umn - u’mn +F(umn )7

(4)

where ﬂfnn denotes a set of concentration variables around (m,n) at time step t,
R(4},,) and F(u!,,) denote discrete vector fields which are obtained by replacing
the diffusion and reaction terms of the reaction-diffusion equation respectively with
the following processes:

(i) The diffusion term DV?u corresponds to a random walk of particles. Let
us consider a random walk of particles defined in the Neumann neighbourhood

.t t t t t
(1, m-1m Wini1ns Ymn_1> Wmap1)- One can equally adopt the Moor

= {ufn,na u
neighbourhood or other neighbourhoods. We denote by U% the stochastic variable

which defines the number of particles moving from the (m,n) site to the (m + 1,n)

—t
m—1,n

site due to the random walk of the particles, by U that from from (m — 1,n)
to (m,n), and so on. Then R(d@!, ) equals the difference between the number of
outgoing particles and that of the incoming particles due to the random walk at

position (m,n) and time ¢:

R('&’fnn) sz'r:t—.l,n + U;fl-l,n + U'Irf,,n—l + Uiri,'n+1

If we define p; as the transition probability of particles to one neighbouring cell

in the random walk, 1 — 4p; is the probability of particles to stay on site and the

t

expectation of Ut U*, ~etc. are given respectively by (U;ﬁ,) = Puj,_,,,

mn) m—1,n
(U;*,,) = Put

min ro1n With a diagbnal matrix P = diag(p1,ps,- - ,pn). We can see

that P corresponds to the diffusion coeflicient D of the reaction-diffusion equation.
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(ii) The reaction term f(u) is replaced with an appropriate discrete function

F(ul,,) = (Fi(ul,,), Fx(ul,,), -, Fn(ul,,))T € ZV. In equation (3), the reaction
term f(u) is the vector field that defines the velocity vector 2%. Hence F(z) should

be so chosen such that the time evolution of @ is consistent with the typical orbits

in the phasé diagram of the ordinary differential equation

du
— = f(u).
o = flu) |
Since F'(ul,,) sometimes returns a negative number, it is practically convenient
to use the discrete vector field, G(ut,,) := ul,, + F(u,,) > 0. Then our CA model

1s rewritten as

Unin’? = Upn, + R(8,,),

mn

Uy = Glu, ).

(6)

We can obtain the time evolution pattern by successive substitution of R(4’ ) and
G(ul,,) for appropriate initial conditions. '

It is well known that the continuous limit of the random walk is equivalent to
a diffusion equation, and that in the large scale limit, isotropy of the distribution
function of the particles is guaranteed by a-random walk. Since the discrete vector
field F(u) is chosen such that it is essentially equivalent to the vector field f(u)
in the continuous limit, we expect that the patterns obtained from our CA model
become almost isotropic in certain large systems. It should be noted that our model
naturally contains the parameters {pi} which correspond to the diffusion coefficients
and all other control parameters for reactions, which are necessarily contained in

the discrete vector field.

3.2 Application to the Belousov-Zhabotinsky reaction

In this section, we apply the method introduced in previous section to the Belousov-
Zhabotinsky (BZ) reaction as a specific example. First, we briefly explain the BZ
reaction and oregonator known as a mathematical model for this reaction. Next, we

introduce our CA model of the BZ reaction.

3.2.1 BZ reaction

Here, we detail the Belousov-Zhabotinsky reaction again. The BZ reaction is known

as an oscillating oxidation-reduction reaction which occurs by mixing some chemical

25



compounds (such as Ce**, BrO3~, CHy(COOH),, HySOy4). If the BZ reaction is
spread spatially, then it forms trigger waves, spiral waves or target patterns [5]. The
BZ reaction is often modeled by using partial differential equations. Among them,
the oregonator, which is a system of simultaneous ordinary differential equations
with two variables, is widely considered to be the simplest possible model [7]. The
time evolution of the spatial patterns in the BZ reaction is described by the following

equation which adds diffusion terms to the oregonator:

1 _
L BBl Chut )} R
ot € u+a (7)
o u—v 4+ d, Vv,

ot
where b and € (or 1/¢) are, respectively, a threshold which gives the excitation and
a parameter which defines the excitability of reaction respectively. Depending on
the parameters a, b and €, Eq. (7) shows two typical states: an excitable state with
one stable equilibrium point and an oscillatory state with one unstable equilibrium
point. Here we consider only the excitable state (or excitable media).

Let f(u,v) := Lfu(l —u) — %2] and g(u,v) := u — v. Figure 15 shows the
phase diagram for the excitable state of the BZ reaction. The null clines that are
obtained from f(u,v) = g(u,v) = 0 are shown by solid lines and a typical orbit for
the excitable state is shown by a dashed line. The intersecting point of f = 0 and
g = 0 is a stable point if there is no diffusion, however it becomes unstable when the
strength of the perturbation (mainly due to the diffusion effects) exceeds a certain
threshold 4. Then the state of the medium becomes unstable and changes along the -
dashed line shown in the phase diagram, until it returns to the equilibrium point
once again. The repetition of this process induces spacial patterns such as spiral

waves.

3.2.2 The CA model

Our CA model for Eq. (7) is described in the form of Eq. (6), introduced in
section 3.1.2. According to Eq. (7), we put ut,, = (u},,,v5,)T, G(ul,,) =
(Gultthyn), Gty )T and R(@,,) = (Ru(itty,), Rul6,))7-

First, we define the discrete vector field G(uf,,) by imitating the solution orbit
of the phase diagram shown in Figure 15. The discrete vector field we configured
is shown in Table 2 and illustrated in Figure 16. We can see that Figure 16 is a

simplification of the phase diagram of Figure 15. Let u!,, € Z,, ¢¢, € {0,1} in
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this example of an excitable BZ reaction. Parameters a, 3 and « control the rate of
reaction, and A is the threshold which determines whether the excitation occurs or
not. Parameter N € Z, denotes the expected maximum value of variable u . All
of these five parameters are positive integers.

The value of the discrete vector field G(uf,,, vt ) is determined in function of

the values of u!,, and v, as shown in Table 2. For 0 < ul, < Ao = 0,

1 Umn
the state of the medium returns to the equilibrium point with velocity «, because
the state cannot exceed the threshold A due to inadequate diffusion effects. For
A<, <N-1-8, =0, the varlable ut . increases at the rate § until -
ub,, > N —1— (. In the range v < ul,,, vt = 1, the variable u!  decreases at
the rate of . In the two remaining ranges, the variable v}, changes between 0 and
1. Here we assumed v}, € {0,1}, because two states are sufficient to separate the
phases, according to the medium, corresponding to the variable o},
In Eq. (7), the excitation of excitable media is determined by the diffusion of
u, i.e., d, > d,. Hence, in this example, we only consider the random walk of the
variable u,, and we simulate the time evolution by putting P = diag(py, 0).

Consequently, our CA model for the excitable BZ reaction is given as:

t+1/2 __
mn - Um'n’

t+1 =G (ut+1/2)

U = Go(upi?).

(Y

3.2.3 Numerical results

In this section, we show several time evolution patterns obtained from Eq. (8) and
discuss the results.

(i) Patterns. The first example is a single trigger wave (Figure 17). It is
produced by the initial condition 2, = [h-exp(—((m — L/2)* + (n — L/2)?)/w?)]
and v2,, = 0 on a 2-dimensional square area with L x L cells. Here [] is Gauss’
symbol, i.e.: [z] is the largest integer that is less than or equal to  and h and w
are positive real numbers. We observed that from a pulse triggered at the center, a
ring-shaped wave spreads outwards in an almost isotropic fashion.

In order to generate a spiral wave, appropriate initial conditions are necessary.
Firstly, we generate a single trigger wave like the one shown in Figure 17. Then we

cut off one part of the ring pattern as shown in Figure 18 (a) and use the remainder
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as the initial state. The spiral wave obtained from our model is shown in Figure 18
(b).

The third example is a target pattern (Figure 19). The initial condition is the
same as in the case of the trigger wave, but with different parameters. From the
central pulse, ring-shaped waves are produced repeatedly.

(ii) Anisotropy. We evaluate the anisotropy of the trigger wave in Figure 17
by measuring the residual error when compared with the average radius of the ring,
and plot it in Figure 20 as a function of the propagation direction. We ﬁnd that
the wave fronts of the trigger wave propagate in each direction with an anisotropy
in the range of £2.5 percent. In Figure 21 we plot the variation from the circle as
a function of the radius of the trigger wave. It shows that the trigger wave indeed
grows closer to a complete circle as the radius (and therefore time) increases.

Next, we evaluate the parameter dependency of the anisotropy for the patterns
observed from our model. In Figures 22 and 23, the variations of the wavefronts of
trigger waves propagated‘ to radius 450, are plotted as a function of the transition
probability p, of particles by changing parameters 8 (Fig. 22) and A (Fig. 23). We
find that the patterns become more isotropic when diffusion becomes stronger, and
that they tend to be isotropic for smaller 3, but depend less on A.

(iii) Parameters. Our CA model has six parameters N, p,, A, a, 8 and . The
parameter A corresponds to b in Eq. (7) and defines the threshold of excitation; [
corresponds to 1/e which defines the excitability of reaction. Figure 24 is the phase
diagram of our model obtained by changing the values of A and 3. The remaining
parameters are chosen as N = 50, p, = 0.1, = v = 1. We confirm that spiral waves
can be generated in a wide region‘ of the parameters. In an even iarger parameter
range, we find there exist three different regions; one without propagating waves,
one allowing for trigger waves (or broken trigger waves), and one chaotic pattern
region.

The parameter range for the spiral waves obtained from Eq. (7) has been exam-
ined in detail by Jahnke and Winfree [8]. The general tendency is that, when b is
sufficiently large, the spiral wave does not appear and for 1/e¢ > 1 the spiral wave
destabilizes and chaotic behaviour is observed. As shown in Figure 24, the phase
diagram of our model has the same feature as that for Eq. (7), and we may conclude
that the parameters A and § play the same role as the control paralheters of the

reaction terms in the reaction-diffusion equation.
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3.3 Summary

We have proposed a method to construct a CA model corresponding to a reaction-
diffusion equation, in which the diffusion effect is replaced by a random walk with
transition probability matrix P and the reaction by discrete vector fields. The model
can include control parameters for both diffusion and reaction, as is the case in the
reaction-diffusion equation. As an example, we have shown that our model can
successfully reproduce the patterns of BZ reaction. Applications to other reaction-
diffusion systems such as FitzHugh-Nagumo equation [33] are interesting future
problems. In the present method, however, there are still various candidates for the
time evolution rules, depending on the choice of the discrete vector fields that are
supposed to have similar features to those of the continuous vector fields, given by
the reaction-diffusion equation. Of course we can also adopt discrete vector fields
by investigating the reaction process from a microscopic point of view. The deter-
mination a suitable time evolution rule will depend on the individual phenomenon

and we will investigate this problem extensively in the future.
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Figure 15: The phase diagram for the excitable BZ reaction.

Table 2: Example of discrete vector field G(ul,,) for an excitable medium.

e (Gu(tn), Go(Unn)) = G(ury,)
(0<ut, <A, =0) (max[u?,, — «,0],0)
(A<up, <N-1-pv,,=0) (U + 6,0)
(N—-1-p8<udt, v, =0) (N -1,1)
(7 < Uy U = 1) (Upn =7, 1)
O< U <1 =1) (0,0)
Voun
A
I .

Figure 16: Outline of the discrete vector field G(ul,,) in Table2.
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Figure 17: Single trigger wave. 500 x 500 cells, ¢t = 5850, N = 100, p, = 0.2, A = 21,
a=1,0=1~v=1.
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Figure 18: (a) A cut trigger wave. 200 x 200 cells, t = 250, N - 30, p, = 0.2,
A=6,a=1,0=2,v=1 (b) Spiral wave. 200 x 200 cells, t = 963, N = 30,
pu=02A=6,a=10=2v=1
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Figure 19: Target pattern. 300 x 300 cells,
a=10=10,v=1.
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Figure 20: Plot of the anisotropy of the model, measured as the residual error of
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4 Application to the growth model of bacterial
colonies

In the present chapter, we apply the method introduced in previous chapter to the

growth patterns of bacterial colonies.

4.1 Modelling of bacterial colonies

Modelling the patterns observed in bacterial colonies is one of the most interesting
applications of a physical approach to biological systems. Colonies of migrating
bacteria are characterised by a great variety of behaviour. The latter manifests itself
through the patterns that the colony exhibits during their spatio-temporal evolution
and which can be observed and studied at a macroscopic level. The particular
interest, from a physical point of view, of migrating bacteria is that they can be
analysed as systems the collective behaviour of which is controlled by a moderate
number of parameters. This makes possible to set up and conduct experiments where
all the important parametersﬁ are precisely controlled, leading to results which can
be most useful in the construction of models.

Two different approaches can be (and have been) used for the morphological
description of bacterial colonies. The first is an approaéh based on differential sys-
tems [36, 39, 40, 44, 45, 46, 51, 47, 52, 42] (for thorough reviews one can consult
[37, 48]). This continuous approach has the definite advantage of familiarity. The
mathematical models which encode the laws of physics are cast in differential form
and thus the abecedary of modelling is comprised in large part of differential sys-
tems. However, the use of a differential formulation is usually associated with the
introduction of a macroscopic description of the system where one follows the evo-
lution of a few collective variables. This is a mixed blessing. While the macroscopic
approach condenses the information into a few, hopefully pertinent and in any case
easy to follow, parameters, it may sometimes lead to over-simplifications and an
inadequate description of the dynamics of the systerh. At the antipodes of the con-
tinuous lies the “discrete” formulation of the model. It is usually associated with a
fully microscopic description of the system where the basic dynamical entities are
the objects (represented by their physical properties) the dynamics of which one
intends to model. The advantage of the discrete approach is that it offers a clear

visual representation of the situation. To borrow an example from the domain in
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which this chapter is situated, in a diécrete model of migrating bacterial colonies
the elementary objects are the bacteria (or a group of them) represented through
their positions and the model consists in a set of rules for their temporal evolution
[38, 26]. The main disadvantage of discrete models compared to continuous ones is
in fact the profusion of information. When the discrete model is not a deterministic
but a stochastic one, as is often the case, the plethora of information is tainted
by the fluctuations due to the random character of the evolution and the initial
data. It becomes then mandatory to prune the meaningless details and extract the
meaningful information, a task that may sometimes prove quite arduous.

Discrete models and more specifically those aiming at the description of migra-
tion (be it of bacteria or other elementary entities such as migrating tumour cells)
are often based on cellular automata [34, 35, 26]. The advantage of the latter is that
it offers a natural spatial representation of the situation in particular when each cell
of the automaton represents a single bacterium (or a group of them). The deriva-
tion of a cellular automaton model for the description of migration may proceed in

“two different ways. The first is an ab initio construction where one must choose
the geometry and the rules of the automaton (using also a dose of intuition). In
the second approach the automaton is essentially a convenient tool for performing
the simulation. Here one starts from a continuous model and introduces an appro-
priate discretisation. For instance, if one considers that the collective motion of
migrating bacteria can, during certain phases of the process, be described by a dif-
fusion equation, the corresponding cellular automaton could consists either in a set
of random-walk-type rules (in the ab initio construction) or in an effective discreti-
sation of the diffusion equation. The ab initio approach presents the advantage that
one can choose freely the geometry of the automaton. In a studies by Badoual et al.
[26] it was shown that a Voronoi tessellation constructed on a set of points obtained
from the (small) random deformation of a triangular lattice is quite adequate for the
simulation of the dynamics of migrating bacterial colonies. On the other hand the
approach based on the discretisation of a continuous system does present a certain
difficulty. As a matter of fact the discretisation of a partial differential equation is
straightforward when performed on a regular lattice. The drawback of this approach
is that a regular lattice breaks the isotropy of space and introduces privileged direc-
tions of propagation. Fortunately this can be remedied in a simple way. As shown
in chapter 2 it is possible, through the introduction of a simple probabilistic rule

among neighbouring cells to obtain isotropic time-evolution patterns in a cellular
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automaton based on a square lattice [21].

The present chapter is devoted to the modelling of migrating colonies of the
bacteria Bacillus subtilis and Proteus mirabilis. The acid test of the validity of the
model is to reproduce the morphological diagrams of both species ( [49, 41, 56, 61]
for Bacillus subtilis and [53, 64] for Proteus mirabilis). Despite a different detailed
biological behaviour, we can reasonably assume that the physical principles are
the same for Bacillus subtilis and Proteus mirabilis, a view supported also by the
statement of Yamazaki et al: “We expect that there exists a universal mechanism
of the bacterial colony growth into concentric ring pattern irrespective of bacte-
rial species” [64]. Once this is established we proceed to the modelling of subtler
properties experimentally investigated in a recent study of the team of Chuo Uni-
versity, well-known for its pioneering studies on bacterial colonies. We show that,
with reasonable assumptions, it is possible with our simple model to reproduce the

experimental findings.

4.2 The CA model

In order to model the time evolution of the bacterial colony we have chosen a cellular
automaton model. The geometry of the automaton is a two-dimensional square
lattice. The use of a regular lattice usually results to artificially anisotropic patterns
necessitating the use of a very small lattice step and huge domains in order to attain
some semblance of isotropy. In order to remedy this one can use a non-regular
lattice, for instance a Voronoi lattice resulting from a Delaunay triangulation [25],
used already by Badoual et al. in the modelling of bacterial colonies [26]. However
as shown in previous chapter there exists an alternative approach [54]. It is indeed
possible, by introducing the adequate randomness in the rules defining the discrete
diffusion process, to obtain an isotropic cellular automaton model over a regular
lattice. This is the approach we shall follow in this chapter.

We start by introducing two populations of bacteria, active and inactive, the
related variables being b} ; and s ;. Here (i, ) correspond to the lattice points,
while ¢ is the time variable (given in discrete time steps). Moreover we introduce
a variable nj ; corresponding to the quantity of nutrients (in arbitrary units). (We
remind here that since we are dealing with a cellular automaton all the variables

take integer values).

40



The time evolution of our automaton can be schematically expressed as

i =l + R, pa) (9a)
uft = Fu3?) | (95)

The variable u stands for the triplet b, s, n. The tilde in ﬂf ; indicates a set of variables
in the immediate vicinity of (¢, ). The two equations model the two phases of the
evolution i.e. migration (through a diffusion process) for (9a) and consolidation
for (9b). During the migration phase the active bacteria, as well as the nutrients,
perform a random walk in their neighbourhood, encoded by R, with transition
probability p,. During the consolidation phase the number of active and inactive
bacteria and the quantity of nutrient increase or decrease due to local nonlinear
interactions (represented by F'). Two variants of the model should be distinguished
at this point. The first corresponds to a nutrient-poor case where the effect of the
nutrient scarcity plays a crucial role. The second corresponds to a nutrient-rich case.
Here the variations of the quantity of nutrient are not playing any role and thus we

simplify the model by ignoring the evolution of n altogether. We have thus:

4.2.1 Model A

In this model, we introduce three integer parameters Aroy,, Apmign and A‘n (ALow <
Agign) as threshold values for the evolution, and two parameters p, and p, which
are the transition probabilities of the random walk for the variables b} ; and n;
respectively. The random walk is defined in a neighbourhood comprising the “parti-
cle” represented by u and its four nearest neighbours on the two-dimensional square
lattice. Thus R(% ;) is equal to the difference between the number of outgoing and
incoming particles due to the random motion at position (7, j) and time ¢. Then the
~ time evolution rule is defined by the following two steps:

(i) The migration phase

If Apow < b} ;, then

b:,-;l/z = bf,j + R(Eg,jvpb)

t+1/2 ¢ ~t

Mo ' = Mg+ R 5, Pn)
t+1/2 ¢t
Sig = Sij

Otherwise,

t4+1/2 ¢
b " = by
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t+1/2
ni,j / n +R( ]7pn)

t+1/2 _ ¢
Sig = Sig

Here the random walk for the variable bt is not uniform, but is directed in the sense
that the bacteria are allowed to move only to a site with lower number of neighbours
compared to those of the site on which the are.

(ii) The consolidation phase

If A, <nf; and b::;lﬂ + 8t ; < AHigh, then

bf;l—max[btﬂm-l— bH'l/2 ﬁbt+1/2 0]

t+1 __

ntt t+1/2 b;-gl/z 0]

= max(n, ;

g+l — t+1/2 n ﬁbt+1/2

l]

or, if A, < n - and le/2 +s t+1/2 > Apigh, then

b¢+1_max[bt+1/2 ﬁbt+1/2 ]

t+1

12 t+1/2
o P2 g2 o)

n;; = max[n, ;

sf;l — t+1/2 +,8bt+1/2
Otherwise,
1 t4+1/2 t4+1/2 t4+1/2
biy' = max[b;; / — fb; ; / /\bi,j / , 0]
t+1
i

st — t+1/2 +ﬂbt+1/2 +)\bt+1/2

(2

nt 41/2 _ gt1/2 0]

= max|n, ; i

Here ab is a random variable which takes an integer value n; (0 < n, < b) with

probability ,(b—n),a""(l —a)b ™ (0 < a < 1), the random variables 3b, vb and \b
being similarly defined. The coefficients «, 3, 7, and A are the proliferation rate of
active bacteria, the conversion rate from active to inactive bacteria, the consumption
rate of nutrients and the conversion rate to inactive bacteria due to starvation of

active bacteria, respectively.
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4.2.2 Model B

As explained above the variable n is neglected here since the initial quantity is large
enough for variations to have a negligible effect on the colony. Here we introduce a
transition probability p!; € {prow, PHigh}, Where 0 < prow < 1 and prow < prigh <
0.25. The time evolution rule is defined by the following two steps:

(i) The migration phase /

If ALow < b, then
boEMYE = bt + R(bE,pt)
8221/ ?= st
Otherwise,
bt’-;-l/Q _ bt
3::‘1/2 =5i;

Here, the random walk for the variable b} ; is a directed random walk as in Model
A.

(i) The consolidation phase

If Apow < b57% and 6752 + sTE2 < Agig, and 0 < 65> — 512, then

b:j—l _ max[bt+1/2 + bt+1/2 ﬁbt+1/2 0]

p::;l = PLow
Otherwise,
b:;i?—l _ max[bt+1/2 ﬁth/Z 0]

tjl t+1/2 i ﬁth/z

Pf,);l = PHigh
As in Model A, the coefficients a and [ are the proliferation rate of active bacteria

and the conversion rate from active to inactive bacteria respectively.
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4.3 The morphological diagrams

In what follows we shall present results of the application of our model to the de-
scription of patterns observed in migrating colonies of the bacteria Proteus mirabilis
and Bacillus subtilis. The first species of bacteria has a very simple morphological
pattern [53, 64] . When one inoculates a seed on an agar plate the colony grows
through successive consolidation and swarming phases forming always (at least over
a wide range of substrate hardness and nutrient concentration) concentric circles
(which materialise a locally higher density of bacteria). The effect of agar concen-
tration, which regulates the substrate hardness, is to lead to circles that are packed
more and more tightly as the substrate becomes harder. Thus the morphology of
colonies of Proteus mirabilis is rather simple. Moreover, as explained in [57, 63], the
effect of nutrient availability on the colony aspect is insignificant (although it does
have a major effect on the total biomass of the colony).

The situation concerning Bacillus subtilis is quite different. The colonies of
the latter exhibit a particularly rich behaviour [49, 41, 56, 61] . This situation
is best represented through the morphological diagram for this bacterium. The
diagram, given in figure 25, delimits the various regions where specific forms of the
bacterial colony are encountered, as a function of substrate hardness and nutrient
availability. It must be stressed here that the regions are separated by zones of
crossover where the shapes go smoothly from one form to the next one [55] (note that
the region C can have a slightly different shape in other publications [41, 56, 61]).
Two main areas should be distinguished in the morphological diagram, the ones
with nutrient abundance and the ones under nutrient scarcity. In tThe latter we
observe always a branch-like organisation of the colony due to the fact that the
bacteria are always seeking regions where the nutrient is not yet depleted. When
the agar concentration is large (hard substrate) the branches are short and thick,
since the colony expands very slowly. This is represented in the zone A of the
morphological diagram. When the substrate becomes softer the branches become
longer and thinner and eventually we obtain the situation of zone E. The upper part
of the morphological diagram corresponds to the nutrient rich situation. Here the
behaviour of the colony is essentially dictated by the hardness of the substrate. Thus
when the agar concentration is very large the colony is compact: it grows essentially
through proliferation (zone B). On the contrary, when the substrate is very soft

(zone D) the colony is dilute and isotropic with a very low density. The interesting‘

44



feature is the one encountered in zone C, of intermediate substrate hardness. There
the migration and consolidation phases are in competition and they result in a ring-
like structure of the colony. The reproduction of this special structure is a particular
challenge in modelling approaches.

We start with the results on Proteus mirabilis. In figure 26a,b,c we show three
characteristic ring structures obtained for parameters of the model which are meant
to model a substrate becoming progressively softer (from figure c to a). We observe
indeed rings that are more and more wide apart as the medium becomes softer
leading to a growing colony extension. Figure 26e shows correéponding experimental
results [57].

Next we turn to the case of Bacillus subtilis. Zone A corresponds to figure
27. The branch-like structure is apparent and one can clearly see that the colony
grows by tip-splitting of the branches. The growth of this colony is the slowest one.

For instance in our model it takes four times longer than the growth of a colony

corresponding to region B. Figure 28a shows such a colony. We remark that the ,,

frontier of the colony is smooth and does not show the structure which is often
referred to as Eden-like. This is something that we can easily reproduce provided
we use model A, which lets the nutrient concentration to play some role. We obtain
then figure 28b where we notice a richly structured colony frontier. In both cases the
growth of the colony is mainly due to the proliferation of bacteria. Zone D, figure
29, on the other hand corresponds to a diffuse colony where the bacteria move very
easily due to the softness of the substrate. This is the fastest growing colony (in
agreement with experiment). The qualitatively same result is obtained in this case
with both models, i.e. whether we take into account the role of the nutrients or we
consider them sufficiently abundant. The density profiles corresponding to cases B
and D are shown in figure 30. The same facilitated, random-walk-like, movement
of bacteria prevails in zone E as well. Figure 31 shows the shape of such a colony.
Again, due to nutrient paucity the bacteria move along branches, the tips of which
are repeatedly split as the bacteria seek the scarce nutrient. Finally in figure 32
we present a case where ring-like structure are evident. Here the colony grows
alternating (fast) migration and (slow) consolidation phases. ‘

We can conclude, based on the results presented just above, that the overall
agreement with the experimental data is quite satisfactory and thus the model is
quite efficient in reproducing the various experimental situations. It is thus natural

to try to confront our model with more detailed experimental results.
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4.4 Modelling more detailed experiments

In this section we are going to use our model in order to reproduce experimental
results on colonies of Bacillus subtilis. We shall focus on the study of the group
of Chuo University reported in [58]. Previous studies of the same group on the
bacterium Proteus mirabilis have led to a series of observations on the mechanisms
underlying the migration and growth of colonies. It was thus crucial for the exper-
imentalists to analyse the behaviour of colonies of Bacillus subtilis from the same
point of view, since the colonies of this species have a far richer morphology than
those of Proteus mirabilis. |

The existence of a concentric circle structure, common in the two species, stems
from periodically alternating phases of migration and consolidation [57, 53, 43, 50,
63, 58, 64]. Thus the first question asked by the experimental group is what is the
underlying mechanism of this periodicity. External chemical factors, in fact nutrient,
which is the only one in any abundance, could not be at the origin of this mechanism
since it is known that the amount of nutrient does not have a significant influence
on migration and consolidation times [57, 63]. The two hypotheses which were in-
troduced, tested and discarded were those of the existence of a central pacemaker or
of an entrainment of biological origin. Two ingenious experiments were devised in
order to test these hypotheses. In the first a triangular sector of the colony was re-
moved leaving only a thin outermost crown. The result was that the colony pursued
it growth without appreciable modification in the ring structure, confirming thus
the absence of a central pacemaker. The second experiment consisted in implanting
two colonies at different times in such a way so as to induce a phase difference in
the ring formation. When the two expanding colonies came into contact no phase
entrainment was observed ‘at the boundary. They concluded that the origin of the
periodicity observed was not to be sought in a biological synchronisation.

We have performed two simulations aiming to reproduce these experimental find-
ings. We should make clear from the outset that our model has in-built the hypothe-
ses of absence of central pacemaker and of biological phase entrainment. Thus results
similar to the experimental ones should not be surprising. On the contrary had we
found something drastically different this would cast doubts upon our model and
perhaps even the conclusions of the experimentalists. In figures 33a and 33b we
present a simulation were a triangular sector is removed from the colony. We re-

mark that the growth of the colony is not affected by the excision: the ring pattern
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does not present any major alterations. Figures 33c and 33d show corresponding
experimental results. Figure 34a corresponds to the case of two colliding colonies.
A careful examination of the outermost part of the colonies (figure 34b) shows that,
despite the fact that they are in contact to the point of having formed common
rings, they keep their respective phases and no synchronisation occurs. Figures 34c
and 34d show corresponding experimental results.

So what was the conclusion of the Chuo group? In the absence of a either
biological or chemical control factors, they concluded that a physical factor was
operative, the local density of bacteria. According to this line of reasoning, migration
starts when the density of bacteria exceeds some upper threshold and stops when the
density falls below a lower threshold, signaling thus the beginning of consolidation.
This hypothesis, already explored in the model presented in [26], is the one our
model was built upon. It is interesting at this point to show a result obtained in a
situation similar to the experimental one where the role of the low-density threshold
was investigated. After an evolution of the colony leading to the appearance of a
few successive rings we isolate the outermost migrating bacteria from the rest of the
colony and let them evolve. Figure 35a,b shows the “cutting” procedure and the
result. We observe two close-lying consolidation rings, one at the edge of the cut

and one generated by the migrating bacteria. The latter entered a consolidation
| phase earlier than expected because of the lower local density caused by the cut.
Beyond this ring the evolution of the colony proceeds as before and the spacing of
the rings becomes normal again.

Once the hypothesis of density as controlling factor was validated (to be fair we
should say “not invalidated”) the experimental studies concentrated on the details
of bacteria migration, based on the method of replica printing. The latter consists
in excising a sectorial part of the colony and transferring it onto a fresh agar plate.
The behaviour of the implanted Coiony depends on the time of excision. We can
summarise the results thus: when the colony is in early migration phase the bacteria
expand from the front of the sector, while when the colony is in early consolidation
phase the expansion takes place from the sides of the sector. More detailed analyses
suggest that the active bacteria move in the consolidation ring from the inner part
and from there to the front of the colony. We have performed the digital analogue
of these replica-printing experiments. Figures 36a and 36b show the evolution of a
triangular sector where the excision has taken place at early migration phase. We

remark that the bacteria expand from the front of the colony. In fact a colony of
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circular form with an inner ring structure is obtained situated at the front of the last
consolidation terrace. Figures 36¢ and 36d show corresponding experimental results.
The second simulation consists in isolating a triangular sector when the colony is in
consolidation phase at three different moments: early, middle and late consolidation
phase. The results are shown in figures 37a, 37b and 37c respectively. We remark
that when we are in early consolidation phase the expansion is essentially lateral.
On the other hand at a late consolidation the expansion is mainly frontal. Quite ex-
pectedly a intermediate situation is observed for an excision in middle consolidation
phase. Our results are thus compatible with the conclusions of the experimental
group. Figures 37d, 37e and 37f show corresponding experimental results. In con-
clusion our simple model not only reproduces the morphological diagrams of both
species but it allows the simulation of more detailed experiments leading in a quite

satisfactory agreement with the experimental findings.

4.5 Conclusion and outlook

In this chapter we have addressed the question of the evolution of a colony of bacteria
from the point of view of modelling. The model was based on a cellular automaton
and was inspired by a method introduced in previous chapter. As was shown in [54]
it is possible to simulate diffusion effects through a random walk on a regular lattice
without the unphysical anisotropy induced by the lattice regularity. (An alternative
method based on a non-regular lattice was equally explored in [26] by Badoual et
al.). The advantage of the use of a regular lattice is obvious: the algorithm for
the evolution is much simpler since it does not have to include a complex book-
keeping due to geometry. The first test of our model has been the comparison of the
morphologiéal diagrams obtained through simulation to the experimental ones for
the bacteria Proteus mirabilis and Bacillus subtilis. As we have shown it is possible
to reproduce the full morphology of the colonies of the two species with a simple
adjustment of the parameters of our model. It would be interesting in some future
work to confront the results of our model to experimental data in a quantitative
way and, perhaps, extract relations between the parameters of the model and the
experimental ones. |

In this work we took particular care to address, through our simulations, some of
the questions that the group of Chuo University has addressed experimentally [58].

The main question, given the variety of the shapes observed in a migrating colony, is
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what is controlling this variety. Ideas such as the existence of a pacemaker or some
biological mechanism, like chemotaxis, could not obtain experimental confirmation
[58, 64]. Thus observations of the lag time of the growth of a colony seed as well
as the behaviour of an excised colony annulus led to the conclusion that the main
factor responsible for the colony morphology is the local density of bacteria. This is
the basic hypothésis that we have built our model upon. The simulations performed,
mimicking experimental situations, led to a behaviour of the simulated colony very
close to that observed experimentally. Indeed, it has been shown in experiments that
the lag phase time depends on the initial cell density, and that there is an upper
density threshold where migration phase starts [57, 63, 58, 64], for both Bacillus
subtilis and Proteus mirabilis. Parallely, even if further investigations are needed
to clearly confirm it, experiments strongly suggest the existence of a low density
threshold that determines the end of the migration phase [58, 64]. There exist
already continuous models based on the cell density as a control factor for Proteus
mirabilis and for Bacillus subtilis, with thresholds [36, 39, 40, 46] or without [49, 51].
Our approach is to stick to the automaton approach. Moreover, our model is not
only focused on the ring pattern, but is able to reproduce the full variability of the
morphological diagram of Bacillus subtilis. '

In view of the above we may conclude that we are in possession of a quite effi-
cient model for the description of the behaviour of migrating/proliferating bacteria.
Several possibilities offer themselves to us at this stage. A first direction to explore
would be to try to apply our modelling tools to the description of the morphology
of colonies of other bactefial species. The recent experimental progress in this do-
main is quite substantial and it is now possible to establish detailed morphological
diagrams for species not thoroughly studied till recently [59]. Another possibility
would be to push towards more quantitative comparisons. To this end we would
have first to carefully calibrate our model profiting from the existing reliable ex-
perimental data. Once the calibration is successfully completed, we could use the
model for quantitative analyses of experiments and, though this may seem a tall
order, even predictions. Finally, in a completely different setting, our model could
be extended so as to be applicable to the simulation of other processes involving
cells. The one that springs to the mind (and one which two of the present authors
are familiar with) is the modelling of the growth of solid tumours, where migration
plays an important role. Of course, in order to achieve a high degree of realism our

model should first be generalised to a three-dimensional one. However this does not
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appear unfeasible and in fact we may address the question of tumour modelling in

some future work of ours.
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Figure 25: Morphology diagram of Bacillus subtilis.
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Figure 26: Ring-like patterns obtained from model B. The parameters are a = 0.015,
B = 0.0072, Agigh = 300, prigh = 0.11, prow = 0, 400 x 400 cells. (a) Aoy = 10,
4615 time steps. The growth speed is v = 4.1 x 1072 (cell/step). (b) Arew = 14,
3502 time steps. The growth speed is v = 3.7 x 1072(cell/step). (c) Arow = 20,
2631 time steps. The growth speed is v = 3.3 x 1072(cell/step). (d) Experimental
results of effect of agar concentration on colony expansion. The agar concentrations
are 2.0, 2.2, and 2.4% (top, left to right) and 2.6, 2.8, and 3.0% (bottom, left to
right) [57].
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Figure 27: Branch-like structure pattern obtained from model A. The parameters
are a = 0.1, 8 = 0.05, v = 0.015, A\ = 0.05, Apign = 100, Ao = 22, A, = 5,
nﬂj = 20, pp = 0.01, p,, = 0.25, 400 x 400 cells, 6700 time steps. The growth speed
is v = 2.1 x 107%(cell/step).
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(a) ‘ (b)
Figure 28: Eden-like patterns. (a) Model B with the parameters: o = 0.03,
B = 0.007, Agigh = 200, Arow = 65, prigh = 0.1, prow = 0, 400 x 400 cells,
2450 time steps. The growth speed is v = 5.8 x 1072(cell/step). (b) Model A:
a =06 8 =045 v = 002, A = 0.8, Agign = 100, Aroy = 20, A, = 3,
ngj = 20, pp = 0.05, p,, = 0.1, 400 x 400 cells, 1750 time steps. The growth speed is
v = 8.9 x 1072(cell/step).
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Figure 29: The pattern corresponding to zoné D. It is obtained from model A with
the parameters: a = 0.03, 8 = 0.025, v = 0.01, A = 0.1, Aggn = 100, Apg, = 0,
A, =3, ng’j = 20, pp = 0.25, p,, = 0.1, 400 x 400 cells, 1100 time steps. The growth (
speed is v = 14.0 x 1072(cell/step). A similar pattern was obtained with model B.
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Figure 30: Density profiles corresponding to the patterns of Figure 28b and Figure
29.
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Figure 31: The pattern corresponding to zone E. It is obtained from model A with
the parameters: o = 0.6, 8 = 0.45, v = 0.15, A = 0.8, Aggn = 100, Ao, = 10,
A, =3, n?’j = 20, p, = 0.05, p, = 0.1, 400 x 400 cells, 1600 time steps. The growth
speed is v = 9.7 x 1072(cell/step).
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Figure 32: Ring-like pattern obtained from model B with the parameters: oo = 0.015,
B = 0.007, Apignh = 200, Arow = 16, , prigh = 0.1, prew = 0, 400 x 400 cells,
4927 time steps. The growth speed is v = 3.3 x 1072(cell/step).
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Figure 33: The time-evolution of the colony (a) 2478 time steps, (b) 5023 time steps

after the triangular sector was removed. The pattern was obtained from model B
with the parameters: o = 0.015, 8 = 0.007, Agign = 200, Aoy = 16, prigh = 0.1,
PrLow = 0, 400 x 400 cells. The growth speed is v = 3.3 x 1072(cell/step). (c)-(d)
Experimental results for the ring-like pattern that removed the triangular sector

[58].
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Figure 34: Pattern obtained by the collision between two colonies with different

phases. The pattern was obtained from model B with the parameters: a = 0.015,
B = 0.007, Agigh = 200, Arow = 17, prigh = 0.11, prow = 0. The growth speed is
v = 3.3 x 107%(cell/step). The size of Figure 34a is 270 x 220 cells, that of (b), the
closeup of the boundary of collision, is 70 x 70 cells. (c)-(d) Experimental results
for the possibility of phase entrainment between two colonies with different phase

of periodic colony expansion [58].
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(a)
Figure 35: (a) The initial colony obtained by cutting a ring-like pattern at
1827 time steps. (b) The result at 5493 time steps. They are obtained from model
B with the parameters: a = 0.015, 8 = 0.007, Agign = 200, Aoy = 16, prigr = 0.1,
PLow = 0, 400 x 400 cells. The growth speed is v = 3.3 x 1072(cell/step).
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Figure 36: The initial colony obtained by cutting a triangle-like pattern at

2022 time steps. (b) The result at 4092 time steps. They are obtained from model
B with the parameters: a = 0.015, 3 = 0.007, Agign = 200, ALy = 12, prigh = 0.1,
PLow = 0, 200 x 200 cells. The growth speed is v = 3.7 x 1072(cell/step). (c)-(d)

Experimental results [58].
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(d) (e) (f)

Figure 37: (a) Early consolidation phase at 1623 time steps. The colony was cut

just after the beginning of the consolidation phase. (b) Middle consolidation phase
at 1820 time steps. The colony was cut 183 time steps after the beginning of the
consolidation phase. (c) Late consolidation phase at 2101 time steps. The colony
was cut 361 time steps after the beginning of the consolidation phase. The patterns
were obtained from model B with the parameters: a = 0.015, 8 = 0.007, Agjgn =
200, Arow = 12, pHigh = 0.1, prow = 0, 120 x 120 cells. The growth speed is
v = 3.7 x 1072(cell/step). (d)-(f) Experimental results [58].
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