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Strict Convexity of Hypersurfaces in Spheres

By Naoya Ando

Abstract. This paper investigates compact, embedded, strictly
convex hypersurfaces in the unit sphere and gives several conditions
equivalent to the strict convexity of hypersurfaces. Particularly it is
seen that the local strict convexity is equivalent to the strict convexity.

1. Introduction

Let M be a connected, compact, n-dimensional differentiable manifold(n

� 1) and ι : M → Sn+1 an immersion of M into the unit (n + 1)-sphere

Sn+1. For any p ∈ M , we denote by Sp the totally geodesic hypersphere

in Sn+1 with ι(p) ∈ Sp and with Tι(p)(Sp) = dι(Tp(M)), and by Hp either

of the two open hemispheres determined by Sp. An immersion ι is said to

be locally convex (resp. locally strictly convex ) at a point p ∈ M if there

exists some neighborhood Up of p in M such that ι(Up \ {p}) is contained

in Hp(resp. Hp). Moreover, ι is said to be convex (resp. strictly convex ) at

p if ι(M \ {p}) is contained in Hp(resp. Hp). With respect to convexity of

an immersion, the following is known([2]):

Theorem (do Carmo-Warner). If M is orientable and if n� 2, then

the following are mutually equivalent:

(1) An immersion ι is locally convex at each point of M ;

(2) An immersion ι is convex at each point of M ;

(3) All sectional curvatures of M are greater than or equal to one.

Moreover, one of the conditions above implies that ι is an embedding.

In this paper, we study the strict convexity of an embedding. We call a

pair of two points p, q ∈ M an antipodal pair in relation to ι if ι(q) is the
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antipodal point of ι(p) in Sn+1. Then our main result, proved throughout

Section 2, is stated as follows:

Theorem 1.1. Let M be a connected, compact, n-dimensional differ-

entiable manifold (n� 1) and ι : M → Sn+1 an embedding of M into Sn+1.

Then the following are mutually equivalent:

(1) An embedding ι is locally strictly convex at each point of M ;

(2) An embedding ι is strictly convex at each point of M ;

(3) A hypersurface M does not have any antipodal pair in relation to ι

and we can choose either of two components of Sn+1 \ ι(M) which,

denoted by Ω, satisfies

γ \ {ι(p), ι(q)} ⊂ Ω

for p, q ∈ M with p �= q, where γ is the minimal geodesic segment in

Sn+1 joining ι(p) and ι(q);

(4) A hypersurface M does not have any antipodal pair in relation to ι,

and for p, q ∈ M with p �= q,

Γ ∩ ι(M) = {ι(p), ι(q)},
where Γ is the great circle in Sn+1 containing ι(p) and ι(q).

Remark 1.1. We would like to express our thanks to Professor K.

Enomoto for informing us of the existence of [2]. Considering the above

theorem of do Carmo-Warner, we see that (1) and (2) in Theorem 1.1 are

equivalent for n� 2, even if ι : M → Sn+1 is an immersion. For, if an im-

mersion ι is locally strictly convex at each point, then M is orientable(refer

to Lemma 2.1 in Section 2).

Remark 1.2. It is easily seen that an immersion ι with the definite

second fundamental form at p ∈ M is locally strictly convex at p. Therefore

it follows from Remark 1.1 that if n� 2 and if ι is an immersion with the

definite second fundamental form at each point, then ι is strictly convex at

each point. Notice that the local strict convexity of ι at p does not imply

that the second fundamental form of ι is definite at p.

The author is grateful to Professor T. Ochiai and to Doctor Y. Otsu for

helpful advices and for constant encouragement.
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2. Proof of Theorem 1.1

If there is not any danger of confusion, then we shall treat properties of

an embedding ι as those of M and denote merely by M the image ι(M). For

example, we call M a (locally) strictly convex hypersurface in Sn+1 at p ∈ M

instead of saying that ι is (locally) strictly convex at p. Throughout this

section, suppose that M is a connected, compact, embedded hypersurface

in Sn+1. Then Sn+1 \M has just two connected components.

If M satisfies (1), then we can choose one direction of normal vectors at

each p ∈ M by the following way: A normal vector ξ(p) at p pointing to the

direction is an inner normal vector of Hp. Moreover we immediately obtain

the following, so we omit the proof.

Lemma 2.1. If M satisfies (1), then there exists some continuous nor-

mal vector field ξ defined globally on M such that ξ(p) is the nonzero inner

normal vector of the open hemisphere Hp at each p ∈ M . In particular, M

is orientable.

Now, we shall prove (3) from (2). Since M is locally strictly convex at

each point of M , we can choose either of the two connected components of

Sn+1 \M as the domain of which ξ(p) as in Lemma 2.1 is an inner normal

vector. We denote by Ω the connected component. Then take arbitrary

two points p, q ∈ M with p �= q and let γ be the minimal geodesic segment

joining p and q in Sn+1, and suppose that on γ \ {p, q}, there exists some

point x ∈ M . If M and γ cross transversely in Sn+1 at x, then we find that

p is contained in one side of Sx and that q is contained in the other side of

Sx. Therefore it is easily seen that M and Sx have at least two common

points, which contradicts (2). If γ is tangent to M at x, then Sx contains γ.

Therefore Sx contains three points p, q and x of M , which also contradicts

(2). Thus (2) implies (3).

Next, to prove (4) from (3), we need the following lemma.

Lemma 2.2. If M satisfies (3) and if there exists a great circle Γ such

that Γ ∩M consists of not less than three points, then Γ ⊂ Ω.

Proof. There exist different three points a, b, c ∈ Γ ∩ M . Then it

follows from (3) that the minimal geodesic segment joining arbitrary two

points of {a, b, c} does not contain any point of Γ ∩ M except these two
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points. On the other hand, it immediately follows that these segments are

contained in Γ. Therefore we immediately obtain that Γ∩M = {a, b, c} and

that the sum of the three segments are just the great circle Γ. Therefore it

follows that Γ is contained in Ω. �

If M satisfies (3) and does not satisfy (4), then by Lemma 2.2 it is easily

seen that Ω in (3) has some antipodal pair {p,−p} of Sn+1. By the proof

of Lemma 2.2, M and any great circle Γp through p and −p have at most

three common points, and Γp is contained in Ω in spite of the number of

the common points. Therefore it immediately follows that Ω = Sn+1, which

causes the contradiction.

To prove (2) from (4), it suffices to show the following lemma.

Lemma 2.3. If M satisfies (4), then Γ and M cross transversely in

Sn+1 at each point of Γ ∩M .

Proof. Suppose that Γ is tangent to M at p ∈ M . We separate the

proof of Lemma 2.3 into two case.

Case 1. n = 1.

Let C be a connected, simply closed curve C in S2. In this case, we find

that Γ = Sp. If C is locally strictly convex at p, then C is also locally strictly

convex at q and the set C \ {p, q} is contained in Hp. Since M does not

have any antipodal pair, we can find the Euclidean coordinates (x1, x2, x3)

satisfying

Sp = S2 ∩ {x3 = 0},
C ⊂ {x3 � 0},
p ∈ {x1 > 0}

and

q = (0, 1, 0).

Hence, for a sufficiently small number θ > 0, the great circle

Γθ := S2 ∩ {(cos θ)x3 = (sin θ)x1}

contains q, and at least two points of C near p, that is,

�{Γθ ∩ C}� 3,
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which contradicts (4).

If C is not locally strictly convex at p, then we set the Euclidean coor-

dinates (x1, x2, x3) satisfying

Sp = S2 ∩ {x3 = 0}

and

p = (0, 1, 0).

Then Γθ as above contains p, and at least two points of C near p for some

θ > 0 or for some θ < 0, which also contradicts (4).

Case 2. n� 2.

As in Case 1, suppose that Γ is tangent to M at p. Taking the great circle

Γ⊥ perpendicular to M in Sn+1 at p, we find that Γ and Γ⊥ determine the

two dimensional totally geodesic sphere S. Since S and M cross transversely

in Sn+1 at p, there exists some open smooth curve C such that p ∈ C and

C ⊂ S ∩M . Noticing that C is tangent to Γ and arguing as in Case 1, we

can find a great circle Γ′ in S such that Γ′ contains p or q, and at least two

points of C near p. �

By the above argument, we find that (2), (3) and (4) are mutually equiv-

alent. Since (2) implies (1), we need show (2) from (1).

Case 1. n = 1.

Let C be a connected, simply closed curve in S2. If there exists some

point p ∈ C such that Sp ∩C �{p}, then there exists some point q ∈ Sp ∩C

such that one of two subarcs of C joining p and q, denoted by L, does not

contain any point of Sp except p and q. Let s, t be arc-length parameters of

C, Sp respectively such that

C(0) = Sp(0) = p, C ′(0) = S′
p(0),

and that for some s0 > 0, L = C([0, s0]). We find that C(s0) = q and that

for some 0 < t0 < 2π, Sp(t0) = q. Then, with respect to t0, exactly one of

the following happens:

(a) t0 ∈ (0, π) (b) t0 = π (c) t0 ∈ (π, 2π).



428 Naoya Ando

Firstly, in Case (a), we can set the coordinates (x1, x2, x3) of R3 such

that

Sp = S2 ∩ {x3 = 0},
p, q ∈ {x2 > 0},

and

Up ⊂ {x3 � 0},
where Up is some open neighborhood of p in C. Let D1, D2 be two domains of

the upper hemisphere S2∩{x3 > 0} obtained from L such that Sp([0, t0]) ⊂
D1. Then it immediately follows that for the normal vector field ξ of C in

S2 determined by Lemma 2.1, ξ(p) is an inner normal vector of D2 at p. For

this Euclidean coordinates, set the polar coordinates (r, ϕ, ψ) as follows:



x1 = r cosψ,

x2 = r sinϕ sinψ,

x3 = r cosϕ sinψ.

In particular, it follows that r ≡ 1 on S2. We can suppose that on L,

ϕ ∈ (−π/2, π/2] and ψ ∈ (0, π). Then it follows that the points on L

corresponding to ϕ = π/2 are only p and q. Therefore

ϕ0 = inf{ϕ ; l ∈ L}

can be attained, so take a point p0 at which ϕ = ϕ0. Then the great circle

Γ(ϕ0) determined by ϕ = ϕ0 is tangent to L at p0. Hence, by the way of

determining ξ, it is easily seen that ξ(p0) is an inner normal vector of D1,

which causes the contradiction.

In Case (b), if C is not tangent to Sp at q, then we can find a point

of Sp ∩ C \ {p} which is not antipodal point of p in Sp. Therefore we can

suppose that C is tangent to Sp at q and that

Sp ∩ C = {p, q}.

However, in this case, we obtain the contradiction by the way as in Case

(a). In Case (c), retaking parameters s, t brings our discussion to Case (a).

Therefore we have proved (2) from (1) for n = 1.

Case 2. n� 2.

Firstly, set
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Xm(p) := {Πm ; an m-dimensional totally geodesic

sphere perpendicular to Sp at p in Sn+1}

for any p ∈ M and for 2�m�n. To prove (2) from (1), we need some

lemmas. The following lemma is immediately obtained.

Lemma 2.4. If M satisfies (1), then for any Πm ∈ Xm(p), the con-

nected component MΠm(p) of M ∩Πm containing p is a compact, embedded

hypersurface in Πm locally strictly convex at each point of MΠm(p).

Next, we shall prove

Lemma 2.5. For p ∈ M , there exists some point q ∈ M \{p} such that

for any Π1,Π2 ∈ X2(p) with Π1 �= Π2,

MΠ1(p) ∩MΠ2(p) = {p, q}.

Proof. We separate the proof of Lemma 2.5 into two cases.

Case 1. n = 2.

From (1) in Theorem 1.1 and the equation of Gauss(see [4, pp. 23]),

we find that at each point of M , Gaussian curvature is not less than one,

which implies that M is homeomorphic to S2. And notice that for any

Π ∈ X2(p), Γ0 := Π1 ∩ Π2 is a great circle in Π. Particularly, Γ0 is a great

circle in Π1 and in Π2. By Lemma 2.4, MΠi(p) is simply closed and locally

strictly convex at each point of MΠi(p) in Πi(i = 1, 2). Hence noticing (4)

in Theorem 1.1 for n = 1, we find that

�{MΠi(p) ∩ Γ0}� 2.

Since MΠi(p) and Γ0 cross transversely in Πi at p, it follows that �{MΠi(p)∩
Γ0} = 2. On the other hand,

MΠ1(p) ∩MΠ2(p) ⊂ MΠi(p) ∩ Γ0 ⊂ Γ0.

for i = 1, 2. Therefore, noticing that MΠ1(p) and MΠ2(p) cross transversely

in M at p and that M is homeomorphic to S2, we find that MΠ1(p) ∩
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MΠ2(p) = MΠ1(p) ∩ Γ0 and that there exists some point q ∈ M \ {p}
independent of Π1 and Π2 such that

MΠ1(p) ∩MΠ2(p) = MΠ1(p) ∩ Γ0 = MΠ2(p) ∩ Γ0 = {p, q}.

Case 2. n� 3.

For Π3 ∈ X3(p), MΠ3(p) is a compact, embedded surface locally strictly

convex at each point of MΠ3(p) in Π3 by Lemma 2.4. Therefore, by Case

1, there exists some point q ∈ M \ {p} such that for any Π1,Π2 ∈ X2(p) in

Π3 with Π1 �= Π2,

MΠ1(p) ∩MΠ2(p) = {p, q}.
From the argument in Case 1, it is easy to see that the way of choosing q

does not depend on Π3, but depends only on M . Hence it follows that

MΠ1(p) ∩MΠ2(p) = {p, q}

for any Π1,Π2 ∈ X2(p) in Sn+1 with Π1 �= Π2. �

Using Lemma 2.4, Theorem 1.1 for n = 1 and the following lemma, we

can prove (2) from (1) for n� 2.

Lemma 2.6. For any p ∈ M ,

M = �Π∈X2(p)MΠ(p).

That is, for any p and for any Π ∈ X2(p),

MΠ(p) = M ∩ Π.

Proof. Firstly, by Lemma 2.4 and by Theorem 1.1 for n = 1, if p ∈ M ,

then −p /∈ MΠ(p) for any Π ∈ X2(p). Therefore, the image of MΠ(p) by

the stereographic projection from −p

π−p : Sn+1 \ {−p} → Rn+1

is a simply closed curve in Rn+1. Noticing −p ∈ Sp, we can set the coordi-

nates (x1, . . . , xn+1) of Rn+1 such that

π−p(Sp \ {−p}) = {xn+1 = 0}.
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Notice that for any Π ∈ X2(p), there exists some nonzero vector (r1, . . . ,

rn) ∈ Rn, determined up to constant multiplication, such that a 2-plane

π−p(Π\{p}) is generated by (0, . . . , 0, 1), (r1, . . . , rn, 0) ∈ Rn+1, and notice

that any nonzero vector of Rn determines some Π in this way. Then it is

easy to see that for p, there exists some open neighborhood Up in M such

that for any point a ∈ Up, there exists some Π such that a ∈ MΠ(p), i.e.,

Up ⊂ �MΠ(p).

Similarly, it follows that for q in Lemma 2.5, there exists some open neigh-

borhood Uq in M such that

Uq ⊂ �MΠ(p).

On the other hand, take any Π0 ∈ X2(p) and any point a0 ∈ MΠ0(p)\{p, q}.
Corresponding to a0, there exists some vector (a1, . . . , an+1) ∈ Rn+1 such

that π−p(a0) = (a1, . . . , an+1). Since

π−p(Γ0 \ {−p}) = {(0, . . . , 0, r) ∈ Rn+1 ; r ∈ R},

where Γ0 is in the proof of Lemma 2.5, and since MΠ0(p) ∩ Γ0 = {p, q} by

the proof of Lemma 2.5, it follows that (a1, . . . , an) �= (0, . . . , 0). So set

r = (r1, . . . , rn) =
1√

a2
1 + . . . + a2

n

(a1, . . . , an) ∈ Sn−1
0

where Sn−1
0 is the unit sphere centered at the origin in a hyperplane {xn+1 =

0}, and let (Ur ; (θ1, . . . , θn−1)) be a local coordinate neighborhood of r in

Sn−1
0 . Functions θ1, . . . , θn−1 can be extended to the domain

{(x1, . . . , xn+1) ∈ Rn+1 ; (x1, . . . , xn) �= (0, . . . , 0),
1√

x2
1 + . . . + x2

n

(x1, . . . , xn) ∈ Ur}

in Rn+1. Then, since M and Π0 cross transversely in Sn+1 at a0, it is

easy to see that there exist some neighborhood U ′
a0

of a0 in M and some

smooth funciton θn on U ′
a0

such that (U ′
a0

; (θ1, . . . , θn)) is a local coordinate

eighborhood of a0 in M . From U ′
a0

, we obtain a ‘rectangular neighborhood’

Ua0 , i.e.,

Ua0 = {x ∈ U ′
a0

; bi < θi < ci}
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where bi and ci(i = 1, . . . , n) are real numbers satisfying a0 ∈ Ua0 . Notice

that for any

(θ1, . . . , θn−1) ∈ (b1, c1) × . . .× (bn−1, cn−1),

the set

{(θ1, . . . , θn−1, rn) ; rn ∈ (bn, cn)} ⊂ Ua0

is contained in some Π ∈ X2(p). Since MΠ0(p) is a compact set of M , there

exists a finite set {Ui}ki=1 where each Ui is such an open set as Ua0 , such

that the set

{Up, Uq, U1, . . . , Uk}

is an open covering of MΠ0(p). Then, we easily find that for a0 ∈ MΠ0(p) \
{p, q}, there exists some open neighborhood Va0 such that for any a ∈ Va0 ,

there exists some Π such that a ∈ MΠ(p), i.e.,

Va0 ⊂ �MΠ(p).

Moreover, as Va0 , we can take an open neighborhood whose closure is still

contained in �MΠ(p). Hence it follows that the subset �MΠ(p) of M is

open, closed and, needless to say, not empty in M . Since M is connected,

it follows that

M = �MΠ(p). �

Remark 2.1. The local strict convexity of ι implies the local convexity

of ι. Therefore Lemma 2.6 can also be obtained from the theorem of do

Carmo-Warner in Section 1. However, notice that our proof of Lemma 2.6

is independent of the theorem of do Carmo-Warner.
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