
J. Math. Sci. Univ. Tokyo
5 (1998), 507–545.

Stokes Operators for Microhyperbolic Equations

By Keisuke Uchikoshi

Dedicated to Professor Hikosaburo Komatsu for his sixtieth birthday

Abstract. We consider microhyperbolic equations degenerated
precisely on a hyperplane, and study the propagation of the singulari-
ties.

0. Introduction

In this paper we study the propagation of the singularity for some class of

microhyperbolic operators, containing the case of non-involutive character-

istics. As for microhyperbolic operators with non-involutive characteristics,

there are many papers for the case of order two (c.f. [1,2,4,5,6,10,11,12,14,

15]), and some papers for the case of higher orders (c.f. [16,17,18]). In these

cases it is well-known that the propagation of the singularity is closely re-

lated to the classical theory for ordinary differential equations. In this

paper, we generalize such a result, and give a general representation of the

elementary solution: It is the composite of holomorphic microlocal oper-

ators and quantized contact transformations. As a natural consequence,

we obtain the notion of Stokes operators. Such operators were previously

known only for a very special case. Using these operators, we can study the

branching of the singularity. Note that we do not assume any restrictive

conditions for the lower order terms.

Let P (x,D) be a microdifferential operator defined at x∗ = (0; 0, · · · , 0,√
−1) ∈ T∗Cn of order m, written in the form

(1) P (x,D) = Dm
1 +

∑
0≤j≤m−1

Pj(x,D
′)Dj

1.

Here we have written D′ = (D2, · · · , Dn) as usual. Sometimes we also write
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as D′′ = (D1, · · · , Dn−1) and D′′′ = (D2, · · · , Dn−1). We assume that


there exist real holomorphic functions ϕ1(x, ξ
′), · · · , ϕm(x, ξ′)

homogeneous in ξ′ of degree 1, vanishing at x∗, and the principal

symbol of P is equal to (ξ1 + ϕ1(x, ξ
′)) · · · (ξ1 + ϕm(x, ξ′)).

(2)

We also assume that


if i �= j, and (x, ξ) belongs to a small complex neighborhood

of x∗, then we have

ϕi(x, ξ
′) = ϕj(x, ξ

′) ⇐⇒ x1 = 0,

(3)

and


for some qj ∈ N = {1, 2, 3, · · · } and some aj(x, ξ
′) ∈ Ox∗ we have

ϕj(x, ξ
′) = x

qj
1 aj(x, ξ

′), aj(x∗) �= 0 (1 ≤ j ≤ m), and

i �= j =⇒ (qi, ai(x
∗)) �= (qj , aj(x

∗)).

(4)

In this paper we assume (1)-(4). It is easy to see that (4) is a sufficient

condition of (3). Therefore in fact we assume (1), (2), and (4).

We denote by C (resp. E) the sheaf of microfunctions (resp. microdif-

ferential operators). Let us consider the Cauchy problem

(5)

{
Pu = 0,

Dj−1
1 u(0, x′) = vj(x

′), 1 ≤ j ≤ m,

where u ∈ CRn,x∗ and vj ∈ CRn−1,x∗′ (x∗′ = (0; 0, · · · , 0,
√
−1) ∈ T∗Cn−1).

We rewrite (5) in the following form:

(6) L�u = �0, �u(0, x′) = �v(x′).

Here L(x,D) is an m×m matrix written in the form

L(x,D) = D1Im +



ϕ1(x,D

′), −1, 0
ϕ2(x,D

′),
. . .
. . . −1

0 ϕm(x,D′)




+


 0

b1(x,D
′), · · · , bm(x,D′)



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with some bj(x,D
′) ∈ Ex∗ of order at most m − j. Here ϕj(x,D

′) denotes

the microdifferential operator whose complete symbol is equal to ϕj(x, ξ
′),

and Im denotes the unit matrix. Furthermore we have written

�u(x) =



u1

u2
...

um


 , �v(x′) =



v1
v2
...

vm


 ,

where {
u1 = u,

uj+1 = (D1 + ϕj(x,D
′))uj , 1 ≤ j ≤ m− 1.

According to the general theory of microhyperbolic operators

in [9] , there uniquely exists an elementary solution Ẽ(x, y′) ∈
(CR2n−1,(x∗,−x∗′))

m×m satisfying{
L(x,D)Ẽ(x, y′) = O,

Ẽ(0, x′, y′) = sp δ(x′ − y′)Im.

Here Am×m denotes the set of m ×m matrices whose components belong

to a set A. Note that we are regarding x1 as a parameter, because P and

L are of Kowalewski type. It is easy to see that

E : (CRn,x∗)m � �u(x) �−→
∫
Ẽ(x, y′)�u(x1, y

′)dy′ ∈ (CRn,x∗)m

is well-defined, and the solution of (6) is �u(x) = E�v(x′).
We can calculate supp Ẽ easily. Let j ∈ {1, · · · ,m}. Let ψj(x, η) be the

solution of {
∂x1ψj(x, η)− η1 + ϕj(x, ∂x′ψj(x, η)) = 0,

ψj(0, x
′, η) =

∑
2≤k≤m

xkηk.

If yk = ∂ηkψj(x, η), ξk = ∂xk
ψj(x, η), 1 ≤ k ≤ m, then κj : T∗Cn �

(x, ξ) �−→ (y, η) ∈ T∗Cn is a real homogeneous symplectic transformation

defined around x∗. Note that y1 = x1, η1 = ξ1 + ϕj(x, ξ
′), κj(x∗) = x∗. It

is easy to see that

supp Ẽ(x, y′) =
⋃

1≤j≤m
{(x, y′; ξ, η′)∞; ξ1 + ϕj(x, ξ

′) = 0,(7)

yk = κ∗j (xk), ηk = −κ∗j (ξk), 2 ≤ k ≤ m}.

In the next section we shall give a complete expression of Ẽ.
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2. Main Results

We first discuss about a well-known result for quantized contact trans-

formation. For each number j ∈ {1, · · · ,m}, let k̃j(x, y
′) ∈ CR2n−1,(x∗,−x∗′)

be the solution of {
(D1 + ϕj(x,D

′))k̃j(x, y′) = 0,

k̃j(0, x
′, y′) = sp δ(x′ − y′).

We can define kj : CRn,x∗ � u(x) �−→
∫
k̃j(x, y

′)u(x1, y
′)dy′ ∈ CRn,x∗ , and it

is a quantized contact transformation (i.e. Fourier integral operator) asso-

ciated to κj . In fact we can calculate the complete symbol kj(x, ξ
′) of the

operator kj in the form exp (ψ′
j(x, ξ

′))cj(x, ξ′) with some elliptic amplitude

function cj of order at most 0 and the phase function ψ′
j(x, ξ

′), defined by

ψ′
j(x, ξ)(= ψ

′
j(x, ξ

′)) = ψj(x, ξ)−
∑

1≤k≤m

xkξk

(See [7] ). Note that the kernel function k̃j is the microfunction defined by

(2π
√
−1)−n+1

∫
exp ((x′ − y′) · ξ′)kj(x, ξ′)dξ′.

Let K : (CRn,x∗)m −→ (CRn,x∗)m be defined by

K =


 k1 0.. .

0 km


 .

Our first result is the following

Theorem 1. There exist a neighborhood ω′ ⊂
√
−1S∗Rn of x∗∞, a

neighborhood ω ⊂
√
−1S∗R2n−1 of (x∗,−x∗′)∞, and m×m invertible ma-

trices

Y±(x,D′), Z±(x′, D′) ∈ (ER(ω′±))m×m,

such that Ẽ is the kernel function of Y±KZ± on ω± . Here ER denotes the

sheaf of holomorphic microlocal operators, and

ω± = {(x, y′; ξ, η′)∞ ∈ ω; ±x1 > 0},
ω′± = {(x, ξ)∞ ∈ ω′; ±x1 > 0}.



Stokes Operators 511

Holomorphic microlocal operators are some class of analytic pseudodif-

ferential operators. They are defined by [13], and [3] gave a symbol theory

for them. They have microlocal property, i.e., if A ∈ ER
x∗ , u ∈ CRn,x∗ , then

we have supp(Au) ⊂ suppu.

Note that Y± (resp. Z±) are independent of D1 (resp. x1 and D1).

Therefore Z± are in fact defined for any x1. Z± are the most important

and we call them Stokes operators.

From (7) it follows that the singularity of the solution �u of (6) propagates

along the union of the bicharacteristic strips of P . Let us discuss about it

in detail. Let bj be the bicharacteristic strip associated to ξ1 + ϕj(x, ξ
′)

through x∗∞, and let b±,j = {(x, ξ)∞ ∈ bj ;±x1 > 0}. It is easy to see that

L(x,D)�u(x) = �0 ⇐⇒ �u(x) = E�v(x′) for some �v(x′)

⇐⇒ �u(x) = E+�v+(x′) for some �v+(x′)

⇐⇒ �u(x) = E−�v−(x′) for some �v−(x′),

where E± = Y±K = E(Z±)−1. Using the last statement of these equivalent

conditions, the propagation in ω− is of trivial type. If �u(x) = t(u1, · · · , um),

then we define supp�u =
⋃

1≤j≤m
suppuj . It follows that

supp(E−�v−(x′)) = supp(Y−K�v−(x′)) = supp(K�v−(x′))

= supp



k1v−,1

k2v−,2
...

kmv−,m


 =

⋃
1≤j≤m

supp(kjv−,j)

on ω−. Let L�u = �0. Since supp(kjv−,j) is contained in {κj(x, ξ) ∈ ω−;

(x, ξ) ∈ supp v−}, we have, for instance,

supp�u ∩ ω− = b−,1(8)

⇐⇒ the components of �v− vanish except for v−,1

and supp v−,1 = {x∗′∞}.

More generally supp�u contains b−,j if, and only if, supp v−,j contains

{x∗′∞}.
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On the other hand, E− = Y+KZ+(Z−)−1 on ω+. In this expression E−
does not have such a diagonal property because of the additional factor

Z+− = Z+(Z−)−1 composed from the right, and the situation in ω+ is

not so simple. In fact we have supp(E−�v−(x′)) = supp(Y+KZ+−�v−(x′)) =

supp(KZ+−�v−(x′)) on ω+. For instance assume the equivalent conditions

in (8). As is well-known in the case m = 2, the singularity may branch into

different bicharacteristic strips on ω+. We denote the (µ, ν)-component of

Z+− by Z+−,(µ,ν). Then we have

supp(E−�v−(x′)) = supp



k1Z+−,(1,1) v−,1

k2Z+−,(2,1) v−,1

...

kmZ+−,(m,1) v−,1




=
⋃

1≤j≤m
{κj(x, ξ) ∈ ω−; (x, ξ) ∈ suppZ+−,(j,1) v−,1}

on ω+.

More generally, kjZ+−,(i,j)(x
′, D′)k−1

i denotes the operator transporting

the singularity on {(x, ξ) ∈ ω−; ξ1 + ϕi(x, ξ
′) = 0} into {(x, ξ) ∈ ω+; ξ1 +

ϕj(x, ξ
′) = 0}. We want to study how the singularity, which propagated

along a simple bicharacteristic strip in the past, will branch in the future.

For that purpose we need to calculate Z+−. This is not so easy in general,

but we have the following

Theorem 2. Let J be the set of those j ∈ {1, · · · ,m} which satisfy

qj = 1, and let j0 ∈ J . We assume that either

(9)

{
Im aj0(x

∗) < 0,

j ∈ J \ {jo} =⇒ Im aj0(x
∗) < Im aj(x

∗)

or

(10)

{
Im aj0(x

∗) > 0,

j ∈ J \ {jo} =⇒ Im aj0(x
∗) > Im aj(x

∗).

Then Z+−,(j0,j0)(x
′, D′) is invertible.

Corollary. Under the above assumption we have

�u ∈ CRn,x∗ \ {�0}, L�u = �0, supp�u ∩ ω− = b−,j0 =⇒ supp�u ∩ ω+ ⊃ b+,j0 .
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Example. If m = 4 and

ϕ1 = x1ξn, ϕ2 = 2x1ξn, ϕ3 = x2
1ξn, ϕ4 = x3

1ξn,

then J = {1, 2}. If j0 = 2, we have (10), and the above Corollary is true

for this number.

The assumption (9) (resp. (10)) means that the characteristic root

ϕj0(x, ξ
′) is the most negative (resp. positive), and for such a dominant

root, at least some part of the singularity penetrates (from the past to the

future) along the corresponding strip. We do not know whether the as-

sumption (9) or (10) is indispensable or not. To the contrary, if j0 �∈ J , the

above conclusion is not always true. See [10] for examples of this fact.

3. Transformation by Holomorphic Microlocal Operators

Let q = max(q1, · · · , qm). Let C > 1, θ ∈ [0, 2π], i ∈ Z+ = {0, 1, 2, · · · }.
We define

Ω(C) = {(x, ξ′) ∈ Cn ×Cn−1; C|x1 | < 1, C|x′ | < 1,

C|ξ′′′ | < Im ξn, C|Re ξn | < Im ξn, C
4mq < Im ξn},

Ωi(C) = {(x, ξ′) ∈ Ω(C); C4mq(i+ 1) < Im ξn},
Ωθ(C) = {(x, ξ′) ∈ Ω(C); x1 �= 0, C|arg x1 − θ | < 1},
Ω′θ

i (C) = {(x, ξ′) ∈ Ωi(C); |x1 | > C(Im ξn)−1/mq, C|arg x1 − θ | < 1},
Ω′′

i(C) = {(x, ξ′) ∈ Ωi(C); |x1 | < C−1(Im ξn)−1/2mq},
Ωθ
i (C) = Ω′θ

i (C) ∪ Ω′′
i(C).

Let M(x,D) = D1Im + M̄(x,D′) ∈ (Ex∗)m×m, where

M̄(x,D′) =


ϕ1(x,D

′), 0.. .

0 ϕm(x,D′)


 .

Then we have the following
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Proposition 1. Let θ ∈ [0, 2π] . There exist Y ±,θ(x,D′) ∈
(ER(Ωθ(C)))m×m such that

{
L(x,D)Y +,θ(x,D′) = Y +,θ(x,D′)M(x,D),

Y +,θ(x,D′)Y −,θ(x,D′) = Y −,θ(x,D′)Y +,θ(x,D′) = Id

on Ωθ(C).

Remark. In Theorem 1, the inferior sign ± of Y±(x,D′) means that

this is an operator defined on ω±. In Proposition 1 the superior sign of

Y ±,θ(x,D′) stands for a different meaning. In this case Y +,θ(x,D′) is some

operator, and Y −,θ(x,D′) is its inverse. We shall always use such a distinc-

tion.

To prove Proposition 1, we need to prepare a symbol theory for holo-

morphic microlocal operators containing x1 as a parameter. It is the same

as [3], but we resume the result for the sake of reader’s convenience. We

denote by S(Ωθ(C)) the set of formal series f =
∑

i∈Z+

fi(x, ξ
′) satisfying

(i) fi ∈ O(Ωθ
i (C)), i ∈ Z+,

(ii) there exists some R ∈ (0, 1), and for any ε > 0 there exists some

Cε > 0 such that

|fi(x, ξ′) | ≤ CεR
i exp(εIm ξn) on Ωθ

i (C), for each i.

To emphasize that this is a formal series, we write as f =
∑

i∈Z+

∗fi. If

f =
∑
i

∗fi, we define a formal series f � =
∑

i∈Z+

∗f �i by f �i =
∑

0≤j≤i
fj , and

N (Ωθ(C)) by

N (Ωθ(C)) = {f ∈ S(Ωθ(C)); f � ∈ S(Ωθ(C))}.

We identify a function f0 with f0 + 0 + 0 + · · · ∈ S(Ωθ(C)), if it satisfies (i)

and (ii) for i = 0.

Finally we define

Sθ = lim−→
C>0

S(Ωθ(C)), N θ = lim−→
C>0

N (Ωθ(C)).
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Remark. (i) We write
∑∗ fi =

∑∗ gi if, and only if, fi = gi for any i.

This does not simply mean that the sums of these two series are the same.

(ii) Let
∑∗ fi ∈ S(Ωθ(C)), let g0 = 0 and gi = fi−1 for i ≥ 1. Then we

have
∑∗(fi − gi) ∈ N (Ωθ(C)).

(iii) A function f0 belongs to N (Ωθ(C)) if, and only if, it is exponentially

decreasing.

(iv) If f ∈ Sθ, then f(0, x′, ξ′) ∈ Sθ is well-defined.

(v) For a formal series f =
∑∗ fi we define ∂x1f =

∑∗ ∂x1fi.

Let f =
∑∗ fi(x, ξ′) ∈ S(Ωθ(C)) . We define F(f)(x, y′) by

F(f)(x, y′) = (2π
√
−1)n−1∑

i

∫
∆i
eξ

′·(x′−y′)fi(x, ξ
′)dξ′,

where ∆i = {ξ′ ∈
√
−1Rn−1; C|ξ′′′ | < Im ξn, C(i+ 1) < Im ξn}. Then we

have the following

Lemma 1. Let f =
∑∗ fi(x, ξ′) ∈ S(Ωθ(C)) . F(f) is holomorphic on

{(x, y′) ∈ Cn × Cn−1; C ′|(x, y′) | < 1, x1 �= 0, C ′|arg x1 − θ | < 1, Re(ξ′ ·
(x′ − y′)) < 0 for any ξ′ ∈ ∆0} for 0 < C << C ′, and it defines the kernel

function of a holomorphic microlocal operator on Ωθ(C ′) (We denote this

operator by M(f)(x,D′) ). If f ∈ N θ, then M(f) = 0.

Lemma 2. Let f =
∑∗ fi(x, ξ′), g =

∑∗ gi(x, ξ′) ∈ Sθ . We can define

f ◦ g ∈ Sθ by

(f ◦ g)i =
∑

j+k+|α′|=i

1

α′!
∂α

′
ξ′ fj∂

α′
x′ gk,

and we have

M(f)(x,D′)M(g)(x,D′) = M(f ◦ g)(x,D′).

If A(x,D) =
∑
α
AαD

α ∈ Ex∗ , then we define σi(A)(x, ξ) =
∑

|α|=i

Aαξ
α.

The complete symbols of L̄(x,D′) = L(x,D) − D1Im and M̄(x,D′) are
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graded as follows:

L̄i = δi,0



ϕ1(x, ξ

′), −1, 0
ϕ2(x, ξ

′),
. . .
. . . −1

0 ϕm(x, ξ′)




+


 0

σm−1−i(b1)(x, ξ
′), · · · σ−i(bm)(x, ξ′)


 ,

and

M̄i =δi,0M̄(x, ξ′).

Note that L̄i may not be homogeneous in ξ′ of degree i. Now Proposition

1 is a corollary of the following

Proposition 2. Let θ ∈ [0, 2π] . Then there exist Y ±,θ(x, ξ′)(x, ξ′) ∈
(Sθ)m×m such that{

∂x1Y
+,θ(x, ξ′) + L̄(x, ξ′) ◦ Y +,θ(x, ξ′)− Y +,θ(x, ξ′) ◦ M̄(x, ξ′) = O,

Y ±,θ(x, ξ′) ◦ Y ∓,θ(x, ξ′) = Im.

In the next section we shall give of the proof of Proposition 2.

Now we can prove Theorem 1 as follows. Let 0 ≤ θ1 < θ2 < · · · < θ� ≤ 2π

be such that, Proposition 1 is true for each θj with C = Bj respectively,

and [0, 2π] ⊂
⋃

1≤j≤�

(θj − B−1
j , θj + B−1

j ). Note that we can always choose

such numbers. Let K = K(x, ξ′) be the complete symbol of the Fourier

integral operator K, and let Zθj (x′, ξ′) = Y −,θj (0, x′, ξ′) for each θj . We

may assume that ∂x1K+M̄ ◦K = 0, K(0, x′, ξ′) = Im without any modulo

classes. Then we have (Y +,θi ◦K ◦ Zθi(x′, ξ′))k = (Y +,θj ◦K ◦ Zθj (x′, ξ′))k
on Ωθi

k (Bi) ∩ Ω
θj
k (Bj) . In fact, we have

∂x1(Y
+,θi ◦K ◦ Zθi(x′, ξ′)) + L̄ ◦ (Y +,θi ◦K ◦ Zθi(x′, ξ′))
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=(∂x1Y
+,θi + L̄ ◦ Y +,θi) ◦K ◦ Zθi(x′, ξ′) + Y +,θi ◦ ∂x1(K ◦ Zθi(x′, ξ′))

=Y +,θi ◦ M̄ ◦K ◦ Zθi(x′, ξ′) + Y +,θi ◦ ∂x1(K ◦ Zθi(x′, ξ′))

=Y +,θi ◦ (∂x1K + M̄ ◦K) ◦ Zθi(x′, ξ′) = O,

and

[Y +,θi ◦K ◦ Zθi(x′, ξ′)]x1=0 = Y +,θi(0, x′, ξ′) ◦ Im ◦ Y −,θi(0, x′, ξ′) = Im.

It follows that{
∂x1(Y

+,θi ◦K ◦ Zθi(x′, ξ′)) + L̄ ◦ (Y +,θi ◦K ◦ Zθi(x′, ξ′)) = O,

[Y +,θi ◦K ◦ Zθi(x′, ξ′)]x1=0 = Im

for each θi. It is easy to see that such a symbol is unique, and we obtain

(Y +,θi ◦K ◦ Zθi(x′, ξ′))k = (Y +,θj ◦K ◦ Zθj (x′, ξ′))k

on Ωθi
k (Bi)∩Ω

θj
k (Bj). Therefore {(Y +,θi ◦K(x, ξ′)◦Zθi(x′, ξ′))k; 1 ≤ i ≤ 4}

defines a holomorphic function on
⋃

1≤j≤�

Ω
θj
k (Bj). Increasing C > 0 if nec-

essary, the last set contains Ωk(C). Since 0 ∈ (θj − B−1
j , θj + B−1

j ) and

π ∈ (θk−B−1
k , θk +B−1

k ) for some j and k, we obtain Theorem 1 by setting

Y+(x, ξ′) = Y +,θj (x, ξ′), Z+(x, ξ′) = Y −,θj (0, x′, ξ′),

Y−(x, ξ′) = Y +,θk(x, ξ′), Z−(x, ξ′) = Y −,θk(0, x′, ξ′).

4. Miscellanea

In this section we give some lemmas necessary for the proof of Proposi-

tion 2. Without loss of generality, we may assume that the characteristic

roots are aligned in such a way that

q1 ≤ q2 ≤ · · · ≤ qm,(11)

and if qi = qj , i < j, then we have either

Im ai(x
∗) · Im aj(x∗) < 0



518 Keisuke Uchikoshi

or

Im ai(x
∗) · Im aj(x∗) > 0, | Im ai(x∗) | > | Im aj(x∗) |.

Let q = max
1≤j≤m

qj . Therefore q = qm under the above assumption. Consid-

ering an arbitrary θ we omit the index θ of Y +,θ
i for the moment. Let us

solve

(12) ∂x1Y
+ + L̄ ◦ Y + − Y + ◦ M̄ = O.

As in [8] , to obtain an asymptotic expansion of the solution of (12), we

had better consider the following two cases separately:

(i) |x1 | < ∃constant(Im ξn)−1/mq,

(ii) |x1 | > ∃constant(Im ξn)−1/mq.

We first consider the case (i). Let a >> 1. In this section we define

ω(a) = {(x, ξ′) ∈ Cn ×Cn−1; a3(Im ξn)−1/mq < |x1 | < a−1, a|x′ | < 1,

a|ξ′′′ | < Im ξn, a|Re ξn | < Im ξn}.

Let f(x, ξ′) =
∑

k∈Z+

∗fk(x, ξ′) be a formal series where fk(x, ξ
′) ∈ O(ω(a)),

and let i, j ∈ R. We say that f(x, ξ′) belongs to Ti,j(ω(a)) if there exists

some b > 0 such that

|fk(x, ξ′) | ≤ bk+1k!|x1 |i(Im ξn)j−k on ω(a).

We define Ti,j(ω(a)) + Tk,�(ω(a)) = {
∑∗(fh(x, ξ′) + gh(x, ξ

′));
∑∗ fh ∈

Ti,j(ω(a))
∑∗ gh ∈ Tk,�(ω(a))}, T 0

i,j(ω(a)) = {f(x, ξ′) =
∑∗ fk(x, ξ′) ∈

Ti,j(ω(a)); f0 = 0}, and T (ω(a)) =
⋃
i,j
Ti,j(ω(a)). It is easy to see that

Ti−q,j− 1
m

(ω(a)) ⊂ Ti,j(ω(a)). If f ∈ Ti,j(ω(a)), g ∈ Tk,�(ω(a)), then we

have f ◦ g ∈ Ti+k,j+�(ω(a)). Now we have the following

Lemma 3. Let a >> 1. There exist U±(x, ξ′), L̄′(x, ξ′) ∈
(T (ω(a)))m×m such that

(i) L̄ ◦ U+ = U+L̄′, U± ◦ U∓ = Im,
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(ii)

{
U+

(µ,µ) = ξ
1
m

(m−1)µ
n ,

U+
(µ,ν) ∈ T−q, 1

m
((m−1)µ−1)(ω(a)), µ �= ν,

(iii) U−
(µ,ν) − δµ,νξ

− 1
m

(m−1)ν
n ∈ T−q, − 1

m
((m−1)ν+1)(ω(a)),

(iv)

{
L̄′

(µ,µ) − L̄0,(µ,µ) ∈ T 0
0,1(ω(a)) + T0,m−1

m
(ω(a)),

L̄′
(µ,ν) ∈ T 0

0,1(ω(a)), µ �= ν.

Proof. We first look for U(x, ξ′) = U+(x, ξ′) ∈ (O(ω(a)))m×m. Let

µ �= ν. We define U(µ,ν) by

(L̄0,(µ,µ) − L̄0,(ν,ν))U(µ,ν) = U(µ,ν)

∑
κ �=ν

ξ
− 1

m
(m−1)ν

n L̄0,(ν,κ)U(κ,ν)(13)

−
∑

κ �=µ,ν

L̄0,(µ,κ)U(κ,ν) − L̄0,(µ,ν)ξ
1
m

(m−1)ν
n .

We can solve (13) as follows: Let U
(i)
(µ,ν), i ∈ Z+, µ �= ν be successively

determined by

(L̄0,(µ,µ) − L̄0,(ν,ν))U
(i)
(µ,ν)

= U
(i−1)
(µ,ν)

∑
κ �=ν

ξ
− 1

m
(m−1)ν

n L̄0,(ν,κ)U
(i−1)
(κ,ν)

−
∑

κ �=µ,ν

L̄0,(µ,κ)U
(i−1)
(κ,ν) − L̄0,(µ,ν)ξ

1
m

(m−1)ν
n ,

where U (−1) = O. If Ũ (i) = U (i) − U (i−1) then we have

(L̄0,(µ,µ) − L̄0,(ν,ν))Ũ
(i)
(µ,ν)

=
∑
κ �=ν

ξ
− 1

m
(m−1)ν

n L̄0,(ν,κ)(Ũ
(i−1)
(µ,ν) U

(i−1)
(κ,ν) + U

(i−2)
(µ,ν) Ũ

(i−1)
(κ,ν) )−

∑
κ �=µ,ν

L̄0,(µ,κ)Ũ
(i−1)
(κ,ν)

for i ∈ N. By induction on i, we can easily prove

| Ũ (i)
(µ,ν) | ≤ (a2|x1 |−q(Im ξn)−

1
m )i+1(Im ξn)

1
m

(m−1)µ,
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replacing a if necessary. We define

U(µ,ν) =



ξ

1
m

(m−1)µ
n , µ = ν,∑

i∈Z+

Ũ
(i)
(µ,ν) (convergent sum) , µ �= ν

(These are not formal series but holomorphic functions). It follows that

(14) |U(µ,ν) | ≤ 2a2|x1 |−q(Im ξn)
1
m

((m−1)µ−1), µ �= ν.

Since |ξ−
1
m

(m−1)ν
n Uµ,ν − δµ,ν | << 1, U is a non-singular matrix. We can

inductively define U− =
∑∗ U−

i by

U−
i = δi,0(U

+)−1 −
∑

i′+|α′|=i
i′ �=i

1

α′!
∂α

′
ξ′ U

−
i′ ∂

α′
x′ U

+(U+)−1.

Here (U+)−1 denotes the usual inverse matrix of U+, and U− denotes the

matrix (of formal series) satisfying U± ◦ U∓ = Im. It is easy to see that

U−
(µ,ν) − δµ,νξ

− 1
m

(m−1)ν
n ∈ T−q, − 1

m
((m−1)ν+1)(ω(a)),

replacing a if necessary.

We next define

L̃(µ,µ) = L̄0,(µ,µ) +
∑
κ �=µ

ξ
− 1

m
(m−1)µ

n ◦ L̄(µ,κ) ◦ U(κ,µ)

L̃(µ,ν) = ξ
− 1

m
(m−1)µ

n ◦ {(L̄0,(µ,µ) ◦ U(µ,ν) − U(µ,ν) ◦ L̃(ν,ν)

+
∑

κ �=µ,ν

L̄(µ,κ) ◦ U(κ,ν) + L̄(µ,ν) ◦ ξ
1
m

(m−1)ν
n }, µ �= ν.

From (14) it follows that

L̃(µ,µ) ∈ L̄0,(µ,µ) + T−q, m−2
m

(ω(a)),

L̃(µ,ν) ∈ T 0
−q,m−1

m

(ω(a)), µ �= ν,
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and

(L̄ ◦ U)(µ,µ) ≡ (U ◦ L̃)(µ,µ) modulo T 0
0, 1+ 1

m
(m−1)µ

(ω(a)),

(L̄ ◦ U)(µ,ν) ≡ (U ◦ L̃)(µ,ν) modulo T 0
−q, 1

m
(m−1)(µ+1)

(ω(a)), µ �= ν,

replacing a if necessary.

We finally define L̄′ = U−◦L̄◦U+. It follows that L̄′
(µ,ν) ≡ L̃(µ,ν) modulo

T 0
0,1(ω(a)), and we obtain the lemma. �

Corollary. Let a >> 1 and let L̄′′ = U− ◦∂x1U
+ + L̄′. Then we have

(15)

{
L̄′′

(µ,µ) − L̄0,(µ,µ) ∈ T 0
0,1(ω(a)) + T0,m−1

m
(ω(a)),

L̄′′
(µ,ν) ∈ T 0

0,1(ω(a)) + T−q−1,− 1
m

(ω(a)), µ �= ν,

and ∂x1U
+ + L̄ ◦ U+ − U+ ◦ L̄′′ = O.

We next define some complex domains which will be necessary in the

next section. Let θ′j , θ′′j ∈ R, (1 ≤ j ≤ m) be such that

(i) θ ∈ (θ′m, θ′′m) ⊂ (θ′m−1, θ′′m−1) ⊂ · · · ⊂ (θ′1, θ′′1),
(ii) π/(qj + 1) < θ′′j − θ′j < 2π/(2qj + 1), 1 ≤ j ≤ m,
(iii) there uniquely exists some kj belonging to Z∩((qj+1)θ′j/π, (qj+

1)θ′′j/π) for 1 ≤ j ≤ m.

Note that for any θ we can always choose such numbers. In fact it

is trivial if m = 1. Assume that m0 ≥ 2 and that we can choose the

above numbers if m = m0 − 1. Let m = m0. By assumption we can

choose θ′j , θ′′j suitably for 1 ≤ j ≤ m− 1. If qm = qm−1, then we may take

θ′m = θ′m−1, θ′′m = θ′′m−1. If qm > qm−1, then π/(qm+1) < θ′′m−1−θ′m−1,

and we can choose a subset (θ′m, θ′′m) of (θ′m−1, θ′′m−1) such that (i)− (iii)

are true.

It is easy to see that in each interval [θ′j , θ′′j ] the function f(τ) =

± sin((qj +1)τ) attains its maximum (resp. minimum) at a uniquely deter-

mined point τ = θ+,j (resp. θ−,j).

Let 1 << a << 1/r << C1 << · · · << Cm. We define

Ω̃′j(r, Cj) = {(x, ξ′) ∈ Cn ×Cn−1; Im ξn > 2−1C5mq
j ,
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(−1)kj Re(x
qj+1
1 ) + r−1| Im(x

qj+1
1 ) |

> 2−1C4
j (Im ξn)−(qj+1)/mq,

|Re(x
qj+1
1 ) |+ r−1| Im(x

qj+1
1 ) | < C−qj−1

j , arg x1 ∈ (θ′j , θ′′j),

C
1
10
j |x′ | < 1, C

1
10
j |ξ′′′ | < Im ξn, C

1
10
j |Re ξn | < Im ξn},

Ω′j(r, Cj) = {(x, ξ′) ∈ Cn ×Cn−1; Im ξn > C
5mq
j ,

(−1)kj Re(x
qj+1
1 ) + r−1| Im(x

qj+1
1 ) | > C4

j (Im ξn)−(qj+1)/mq,

|Re(x
qj+1
1 ) |+ r−1| Im(x

qj+1
1 ) | < C−qj−1

j , arg x1 ∈ (θ′j , θ′′j),

Cj |x′ | < 1, Cj |ξ′′′ | < Im ξn, Cj |Re ξn | < Im ξn}

for 1 ≤ j ≤ m. It is easy to see that Ω′j(r, Cj) ⊂ Ω̃′j(r, Cj), and Ω′j(r, C ′
j) ⊂

Ω′j(r, Cj) if C ′
j ≥ Cj . Furthermore we may assume

Ω′m(r, Cm) ⊂ Ω′m−1(r, Cm−1) ⊂ · · · ⊂ Ω′1(r, C1)

(See the figure below).
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We define φj,k(x1, t, ξ
′) = −

∫ x1

t (L̄′′
0,(j,j)(s, x

′, ξ′)− L̄′′
0,(k,k)(s, x

′, ξ′))ds for

1 ≤ j, k ≤ m. Let x±,j
1 be the point defined by{

|Re((x±,j
1 )qj+1) |+ r−1| Im((x±,j

1 )qj+1) | = C
−qj−1
j ,

arg x±,j
1 = θ±,j .

Lemma 4. Let x1 be a complex number such that (x, ξ′) ∈ Ω̃′j(r, Cj) for

some (x′, ξ′). We can connect x±,j
1 and x1 by a continuous curve δ±,j(x1)

with length at most C
−9/10
j such that

(i) if (x, ξ′) ∈ Ω̃′j(r, Cj) (resp. Ω′j(r, Cj) ) and t ∈ δ±,j(x1) \ {x±,j
1 },

then we have (t, x′, ξ′) ∈ Ω̃′j(r, Cj) (resp. Ω′j(r, Cj) ),

(ii) if (x, ξ′) ∈ Ω̃′j(r, Cj), t ∈ δ∓,j(x1), ± Im aj(x
∗) < 0, and j ≤ k,

then Reφj,k(x, t, ξ
′) ≤ 0,

(iii) if (x, ξ′) ∈ Ω̃′k(r, Ck), t ∈ δ±,k(x1), ± Im ak(x
∗) < 0, and k ≤ j,

then Reφj,k(x, t, ξ
′) ≤ 0.

Proof. If ± Imx
qj
1 ≥ 0, we let γ±,j(x1) be the line segment between

(x±,j
1 )qj+1 and x

qj+1
1 . If ± Imx

qj
1 ≤ 0, we define d ∈ R by Re(x

qj+1
1 ) +

(−1)kjr−1| Im(x
qj+1
1 ) | = d, and let γ±,j(x1) be the union of the two line

segments, one from (x±,j
1 )qj+1 to d, and the other from d to x

qj+1
1 . In both

cases we define δ±,j(x1) = {t ∈ C; tqj+1 ∈ γ±,j(x1)} (See the figure below).
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Then statement (i) is trivial, and we prove (ii). We have Reφj,k(x, t, ξ
′)

= I + II + III + IV, where

I = Im
x
qj+1
1 − tqj+1

qj + 1
· Im aj(0, x′, ξ′)− Im

xqk+1
1 − tqk+1

qk + 1
· Im ak(0, x′, ξ′),

II =− Re
x
qj+1
1 − tqj+1

qj + 1
· Re aj(0, x

′, ξ′)

+ Re
xqk+1

1 − tqk+1

qk + 1
· Re ak(0, x

′, ξ′),

III = − Re (
∫ x1

t (s
qj
1 aj

′(s, x′, ξ′)− sqk1 ak ′(s, x′, ξ′))ds),
IV =− Re (

∫ x1

t (L̄′′′
0,(j,j)(s, x

′, ξ′)− L̄′′′
0,(k,k)(s, x

′, ξ′))ds).

Here aj
′(x, ξ′) = aj(x, ξ

′) − aj(0, x′, ξ′), and L̄′′′
0,(j,j)(x, ξ

′) = L̄′′
0,(j,j)(x, ξ

′) −
x
qj
1 aj(x, ξ

′). If j = k, the statement is trivial, so we consider the case j < k.

We want to show that

(16) I ≤ −a−3|x1 − t |(|x1 |+ | t |)qj Im ξn.

We remind the reader that qj ≤ qk. If qj = qk, then (16) is trivial, and we

consider the case qj < qk. Let 0 ≤ 4 ≤ qj . Since arg x1, arg t ∈ (θ′j , θ′′j),
we have

arg (x
qj−�
1 t�e

qj(θ′′j−θ′j)

2
√

−1 ) ∈ ( −qjπ/(2qj + 1), qjπ/(2qj + 1) ),

and thus

|
∑

0≤�≤qj

x
qj−�
1 t� | ≥

∑
0≤�≤qj

Re (x
qj−�
1 t�e

qj(θ′′j−θ′j)

2
√

−1 )

≥ cos (
qjπ

2qj + 1
)

∑
0≤�≤qj

|xqj−�
1 t� |.

It follows that

± Im (x
qj+1
1 − tqj+1) ≤ −|xqj+1

1 − tqj+1 |/2a ≤ −a−2|x1 − t |(|x1 |+ | t |)qj ,
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and

| Im (xqk+1
1 − tqk+1) | ≤ |xqk+1

1 − tqk+1 | ≤ |x1 − t |(|x1 |+ | t |)qj+1.

It follows that

I ≤ |x1 − t |(|x1 |+ | t |)qj

· (−a−2 Im aj(0, x
′, ξ′) + a(|x1 |+ | t |) Im ak(0, x

′, ξ′))

≤ −a−3|x1 − t |(|x1 |+ | t |)qj Im ξn.

On the other hand, it is easy to see that

II, III, IV ≤ a−4|x1 − t |(|x1 |+ | t |)qj Im ξn,

and we obtain (ii). The proof of (iii) is similar. �

Corollary. Assume one of the following conditions:

(i) (x, ξ′) ∈ Ω′j(r, Cj), t ∈ δ∓,j(x1), ± Im aj(x
∗) < 0, and j ≤ k.

(ii) (x, ξ′) ∈ Ω′k(r, Ck), t ∈ δ±,k(x1), ± Im ak(x
∗) < 0, and j ≥ k.

Then we have

|∂α′
x′∂

β′

ξ′ exp (φj,k(x, t, ξ
′)) | ≤ C

1
5
|α′+β′|

j α′!β′!(Im ξn)−|β′|.

5. Study of Ordinary Differential Equations

We can find a solution Y + of (12) in several steps. We formally define

C0 = C1 and Ω′0(r, C0) = Ω′1(r, C1). The essential part is the following

Proposition 3. Let 0 ≤ λ ≤ m. Then there exist

V λ
i , W

λ
i , M̄

λ
i ∈ (O(Ω′λ(r, Cλ)))

m×m, i ∈ Z+

such that on Ω′λ(r, Cλ) we have

(i) |∂α′
x′∂

β′

ξ′ (V
λ
i,(µ,ν) − δi,0δµ,ν) |, |∂α

′
x′∂

β′

ξ′ (W
λ
i,(µ,ν) − δi,0δµ,ν) |
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≤300m2r2(3m)λ
∑
k≤i

(i− k + |α′ + β′ |)!

×C2i−2k+ 1
4
|α′+β′|

λ rk(m+1−λ)(Im ξn)−i+k−|β′|,

(ii) |∂α′
x′∂

β′

ξ′ (M̄
λ
i,(µ,ν) − L̄′′

i,(µ,ν)) |

≤
∑
k≤i

(i− k + |α′ + β′ |)!C2i−2k+ 1
4
|α′+β′|+1

λ rk(m+1−λ)(Im ξn)−i+k−|β′|

×(1− δi,0 + |x1 |−q−1(Im ξn)−
1
m ),

(iii) M̄λ
i,(µ,ν) = δi,0δµ,νL̄

′′
0,(µ,ν), µ ≤ λ or ν ≤ λ,

(iv) V λ ◦W λ =W λ ◦ V λ = Im,

(v) ∂x1V
λ + L̄′′ ◦ V λ − V λ ◦ M̄λ = O.

Here V λ denotes the formal series V λ =
∑
i

∗V λ
i , and V λ transforms L̄′′

into M̄λ, where

M̄λ =




L̄′′
0,(1,1), 0

.. .

L̄′′
0,(λ,λ),

*
0




↑

λ

↓
↑

m−λ
↓

.

←− λ −→ ← m− λ →

In other words, V̄ λ diagonalizes L̄′′ up to the λ-th column and the λ-th

row. Note that M̄m is a diagonal matrix. Therefore we can diagonalize

L̄′′ if Proposition 3 is true for 1 ≤ λ ≤ m. We can prove Proposition 3 by

induction on λ. If λ = 0, then we may choose V λ = W λ = Im, M̄
λ =

L̄′′, and the statements are trivial. Assume that 1 ≤ λ0 ≤ m and that the

statements are true if 0 ≤ λ ≤ λ0 − 1. Let ± Im aλ0(x
∗) < 0. Then we can

prove the case λ = λ0 in two steps. Roughly speaking, we first diagonalize

the λ-th column, and then the λ-th row. The first step is the following
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Lemma 5. There exist

V ′λ
i ,W

′λ
i , M̄

′λ
i ∈ (O(Ω′λ(r, Cλ)))

m×m, i ∈ Z+

such that on Ω′λ(r, Cλ) we have

(i) |∂α′
x′∂

β′

ξ′ (V
′λ
i,(µ,ν) − δi,0δµ,ν) |, |∂α

′
x′∂

β′

ξ′ (W
′λ
i,(µ,ν) − δi,0δµ,ν) |

≤100m2r2
∑
k≤i

(i− k + |α′ + β′ |)!C2i−2k+ 1
4
|α′+β′|

λ

×(4rm+2−λ)k(Im ξn)−i+k−|β′|,

(ii) |∂α′
x′∂

β′

ξ′ (M̄
′λ
i,(µ,ν) − L̄′′

i,(µ,ν)) |

≤
∑
k≤i

(i− k + |α′ + β′ |)!C2i−2k+ 1
4
|α′+β′|+1

λ (4rm+2−λ)k(Im ξn)−i+k−|β′|

×(1− δi,0 + |x1 |−q−1(Im ξn)−
1
m ),

(iii) V ′λ
i,(µ,ν), W

′λ
i,(µ,ν) = δi,0δµ,ν , µ ≤ λ− 1 or ν �= λ,

(iv) M̄ ′λ
i,(µ,ν) = δi,0δµ,νL̄

′′
0,(µ,ν), µ ≤ λ− 1 or ν ≤ λ,

(v) V ′λ ◦W ′λ =W ′λ ◦ V ′λ = Im,

(vi) ∂x1V
′λ + M̄λ−1 ◦ V ′λ − V ′λ ◦ M̄ ′λ = O.

This means that we have

V ′λ =




1, 0.. .

1,

∗
∗ 1,
...

. . .

0 ∗ 0 1



,

A

λ
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and

M̄ ′λ =




L̄′′
0,(1,1), 0

.. .

L̄′′
0,(λ,λ),

*
0




↑
λ−1

↓
↑

m−λ+1

↓

.

←− λ −→ ← m− λ →

In other words, V̄ ′λ diagonalizes the λ-th column of M̄λ−1. Calculating the

(µ, λ)-component of (vi) for λ ≤ µ ≤ m, it follows that

(17) ∂x1V
′λ
(µ,λ) +

∑
1≤κ≤m

M̄λ−1
(µ,κ) ◦ V

′λ
(κ,λ) − V ′λ

(µ,λ) ◦ L̄′′
0,(λ,λ) = 0.

If µ ≥ λ or ν ≥ λ+ 1, calculating the (µ, ν)-component of (vi) we obtain

(18) M̄λ−1
(µ,ν) −

∑
1≤κ≤m

V ′λ
(µ,κ) ◦ M̄ ′λ

(κ,ν) = 0.

Note that the other components of the left hand side of (vi) always vanish.

We shall see that if V ′λ satisfies (17) and it is invertible, we can define M̄ ′λ

by (18). We can rewrite (17) in the form

∂x1V
′λ
i,(µ,λ) +

∑
λ≤κ≤m

i′+i′′+|α′|=i

1

α′!
∂α

′
ξ′ M̄

λ−1
i′,(µ,κ)∂

α′
x′ V

′λ
i′′,(κ,λ)

−
∑

i′′+|α′|=i

1

α′!
∂α

′
ξ′ V

′λ
i′′,(µ,λ)∂

α′
x′ L̄

′′
0,(λ,λ) = 0, i ∈ Z+.

Let us solve (17) by successive approximation:

Sublemma 1. Let i, j ∈ Z+, λ ≤ µ ≤ m. We denote by ρ±,λ(x1) the

length of δ±,λ(x1). There exists Ṽ ′λ,j
i ∈ (O(Ω′λ(r, Cλ)))

m×m, i ∈ Z+, such

that

|∂α′
x′∂

β′

ξ′ (Ṽ
′λ,j
i,(µ,λ) − δi,0δj,0δµ,λ) | ≤ r

22−j ∑
k+�≤i

(i− k + |α′ + β′ |)!
4!

(19)

×C2i−2k− 3
2
�+ 1

4
|α′+β′|

λ (2rm+2−λ)k(ρ±,λ(x1))
�(Im ξn)−i+k+�−|β′|
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on Ω′λ(r, Cλ), and V ′λ,j =
∑

0≤j′≤j

Ṽ ′λ,j′ satisfies

∂x1V
′λ,j
i,(µ,λ) + (L̄′′

0,(µ,µ) − L̄′′
0,(λ,λ))V

′λ
i′′,(µ,λ) = F ′λ,j

i,(µ,λ) =
∑

1≤k≤4

F ′λ,j,k
i,(µ,λ),

where

F ′λ,j,1
i,(µ,λ) = −

∑
λ≤κ≤m

(M̄λ−1
0,(µ,κ) − δµ,κL̄

′′
0,(µ,µ))V

′λ,j−1
i′′,(κ,λ),

F ′λ,j,2
i,(µ,λ) = −

∑
λ≤κ≤m
i′′+|α′|=i

i′′ �=i

1

α′!
∂α

′
ξ′ M̄

λ−1
0,(µ,κ)∂

α′
x′ V

′λ
i′′,(κ,λ),

F ′λ,j,3
i,(µ,λ) = −

∑
λ≤κ≤m

i′+i′′+|α′|=i
i′ �=0

1

α′!
∂α

′
ξ′ M̄

λ−1
i′,(µ,κ)∂

α′
x′ V

′λ
i′′,(κ,λ),

F ′λ,j,4
i,(µ,λ) =

∑
i′′+|α′|=i

i′′ �=i

1

α′!
∂α

′
ξ′ V

′λ
i′′,(µ,λ)∂

α′
x′ L̄

′′
0,(λ,λ)

on Ω′λ(r, Cλ). Here we define V ′λ,−1 = 0.

Proof. If i = j = 0, then we may take Ṽ ′λ,j
i = Im. Assume that

(i0, j0) ∈ Z+
2 \ {(0, 0)} and that if (i, j) ∈ Z+

2 satisfies either i ≤ i0 − 1 or

i = i0, j ≤ j0 − 1, then the statements are true. Let us consider the case

(i, j) = (i0, j0). We can prove

|∂α′
x′∂

β′

ξ′ (F
′λ,j,h
i,(µ,λ) − F ′λ,j−1,h

i,(µ,λ) ) | ≤ r22−j ∑
k+�≤i

(i− k + |α′ + β′ |)!
4!

(20)

×C2i−2k− 3
2
�+ 1

4
|α′+β′|

λ (2rm+2−λ)k(ρ±,λ(x1))
�(Im ξn)−i+k+�−|β′|

×{C
1
5
λ (1− δi,0 + |x1 |−q−1(Im ξn)−

1
m ) + 4mnC

− 31
20

λ (1− δk+�,i)Im ξn}

for 1 ≤ h ≤ 4. Let us prove (20) for the case h = 2, 3 (The proof of the

other cases are easier). Since Cλ−1 << Cλ, from (15) and the assumption

of induction (on λ) we may assume

(21) |∂α′
x′∂

β′

ξ′ M̄
λ−1
0,(µ,κ) | ≤ α

′!β′!C
1
20

(|α′+β′|+1)

λ (Im ξn)1−|β′|
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on Ω′λ−1(r, Cλ−1)(⊃ Ω′λ(r, Cλ)). Let (x, ξ′) ∈ Ω′λ(r, Cλ). Summing up (19)

for j ∈ Z+ (for each i′′ ≤ i− 1), we obtain

|∂α′
x′∂

β′

ξ′ (V
′λ
i′′,(µ,λ) − δi′′,0δµ,λ) | ≤ 2r2

∑
k+�≤i−1

(i′′ − k + |α′ + β′ |)!
4!

(22)

×C2i′′−2k− 3
2
�+ 1

4
|α′+β′|

λ (2rm+2−λ)k(ρ±,λ(x1))
�(Im ξn)−i′′+k+�−|β′|

if |α′ | �= 0. From (21) and (22), we have

|∂α′
x′∂

β′

ξ′ F
′λ,j,2
i,(µ,λ) |

≤
∑
(23)

α′! β′!

α′(1)!α′(2)!β′(1)!β′(2)!γ′!
|∂α′(1)

x′ ∂β
′(1)+γ′

ξ′ M̄λ−1
0,(µ,κ)∂

α′(2)+γ′

x′ ∂β
′(2)

ξ′ V ′λ
i′′,(κ,λ) |

≤2r2
∑
(23)

∑
k+�≤i′′

α′! β′!

α′(1)!α′(2)!β′(1)!β′(2)!γ′!
α′(1)!β′(1)!γ′!(2C

1
20
λ )|α

′(1)+β′(1)+γ′|+1

×(Im ξn)1−|β′(1)+γ′| (i
′′ − k + |α′(2) + β′(2) + γ′ |)!

4!

×C2i′′−2k− 3
2
�+ 1

4
|α′(2)+β′(2)+γ′|

λ

×(2rm+2−λ)k(ρ±,λ(x1))
�(Im ξn)−i′′+k+�−|β′(2)|

where the first summation is taken for

(23) i′′ + |γ′ | = i, i′′ �= i, α′(1) +α′(2) = α′, β′(1) +β′(2) = β′, λ ≤ κ ≤ m.

It follows that

|∂α′
x′∂

β′

ξ′ F
′λ,j,2
i,(µ,λ) |

≤
∑
(23)

∑
k+�≤i−1

2r2C
− 1

10
|α′(1)+β′(1)|− 33

20
|γ′|+ 1

10
λ

(i− k + |α′ + β′ |)
4!

×C2i−2k− 3
2
�+ 1

4
|α′+β′|

λ (2rm+2−λ)k(ρ±,λ(x1))
�(Im ξn)1−i+k+�−|β′|

≤
∑

k+�≤i

4mnr2C
− 31

20
λ (1− δk+�,i)Im ξn

(i− k + |α′ + β′ |)!
4!

×C2i−2k− 3
2
�+ 1

4
|α′+β′|

λ (2rm+2−λ)k(ρ±,λ(x1))
�(Im ξn)−i+k+�−|β′|
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Since F ′λ,j,h
i,(µ,λ) − F ′λ,j−1,h

i,(µ,λ) = δj,0F
′λ,j,h
i,(µ,λ) for 2 ≤ h ≤ 4, we obtain (20) for

h = 2.

On the other hand, from (15) and the assumption of induction (on λ)

we have

|∂α′
x′∂

β′

ξ′ M̄
λ−1
i′,(µ,κ) | ≤

∑
k′≤i′

(i′ − k′)!α′!β′!C
1
20

(i′−k′+|α′+β′|+1)

λ rk
′(m+2−λ)

×(Im ξn)−i′+k−|β′|{1 + |x1 |−q−1(Im ξn)−
1
m + δk′,0(Im ξn)

m−1
m }

if i′ ≥ 1. It follows that

|∂α′
x′∂

β′

ξ′ F
′λ,j,3
i,(µ,λ) |

≤
∑
(24)

α′! β′!

α′(1)!α′(2)!β′(1)!β′(2)!γ′!
|∂α′(1)

x′ ∂β
′(1)+γ′

ξ′ M̄λ−1
i′,(µ,κ)∂

α′(2)+γ′

x′ ∂β
′(2)

ξ′ V ′λ
i′′,(κ,λ) |

≤
∑
(24)

∑
(25)

α′! β′!

α′(1)!α′(2)!β′(1)!β′(2)!γ′!
(i′ − k′)!α′(1)!β′(1)!γ′!

×(2C
1
20
λ )i

′−k′+|α′(1)+β′(1)+γ′|+1

×rk′(m+2−λ)(Im ξn)−i′+k−|β′(1)+γ′|

×{1 + |x1 |−q−1(Im ξn)−
1
m + δk′,0(Im ξn)

m−1
m }

×(i′′ − k′′ + |α′(2) + β′(2) + γ′ |)!
4′′!

2C
2i′′−2k′′− 3

2
�′′+ 1

4
|α′(2)+β′(2)+γ′|

λ

×(2rm+2−λ)k
′′
(ρ±,λ(x1))

�′′(Im ξn)−i′′+k′′+�′′−|β′(2)|

≤
∑
(24)

∑
(25)

2C
− 19

10
(i′−k′)− 1

10
(|α′(1)+β′(1)+γ′|−1)

λ 2−k′ (i− k′ − k′′ + |α′ + β′ |)!
4′′!

×C2i−2(k′+k′′)− 3
2
�′′+ 1

4
|α′+β′|

λ (2rm+2−λ)k
′+k′′(ρ±,λ(x1))

�′′

×(Im ξn)−i+k′+k′′+�′′−|β′|

×{1 + |x1 |−q−1(Im ξn)−
1
m + δk′,0(Im ξn)

m−1
m }.

Here the summations are taken for

(24) i′+i′′+|γ′ | = i, i′ �= 0, α′(1)+α′(2) = α′, β′(1)+β′(2) = β′, λ ≤ κ ≤ m
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and

(25) k′ ≤ i′, k′′ + 4′′ ≤ i′′,

respectively. We let k′+k′′ = k, 4′′ = 4. Note that if δk′,0 = 1, then we have

i′−k′ = i′ ≥ 1, k+ 4 �= i and 1− δk+�,i = 1. It follows that δk′,0 ≤ 1− δk+�,i

and we obtain

|∂α′
x′∂

β′

ξ′ F
′λ,j,3
i,(µ,λ) | ≤ 8mC

1
10
λ

∑
k+�≤i

(i− k + |α′ + β′ |)!
4!

×C2i−2k− 3
2
�+ 1

4
|α′+β′|

λ (2rm+2−λ)k(ρ±,λ(x1))
�(Im ξn)−i+k+�−|β′|

×{1 + |x1 |−q−1(Im ξn)−
1
m + C

− 9
5

λ (1− δk+�,i)Im ξn}.

In this way we can prove (20) for 1 ≤ h ≤ 4.

We have assumed that ± Im aλ0(x
∗) < 0, and now we define

Ṽ λ,j
i,(µ,λ)(x, ξ

′) = δi,0δj,0δµ,λ +
∫
δ±,λ(x1) exp (φµ,λ(x, t, ξ

′))F̃ ′λ,j
µ,λ(t, x

′, ξ′)dt,

where F̃ ′λ,j
µ,λ = F ′λ,j

µ,λ − F ′λ,j−1
µ,λ . From (20) and Corollary of Lemma 4, it

follows that

|∂α′
x′∂

β′

ξ′ (Ṽ
λ,j
i,(µ,λ)(x, ξ

′)− δi,0δj,0δµ,λ) | ≤
∑

α′(1)+α′(2)=α′

β′(1)+β′(2)=β′

α′! β′!

α′(1)!α′(2)!β′(1)!β′(2)!

×
∫
δ±,λ(x1)|∂α

′(1)
x′ ∂β

′(1)

ξ′ exp (φµ,λ(x, t, ξ
′)) ||∂α′(2)

x′ ∂β
′(2)

ξ′ F̃ λ,j
λ,ν (t, x′, ξ′) ||dt |

≤r22−j ∑
(26)

α′! β′!

α′(1)!α′(2)!β′(1)!β′(2)!

×
∫
δ±,λ(x1)C

1
5
|α′(1)+β′(1)|

λ α′(1)!β′(1)!(Im ξn)−|β′(1)|

×(i− k + |α′(2) + β′(2) |)!
4!

C
2i−2k− 3

2
�+ 1

4
|α′(2)+β′(2)|

λ (2rm+2−λ)k(ρ±,λ(t))�

×(Im ξn)−i+k+�−|β′(2)|{C
1
5
λ (1 + | t |−q−1(Im ξn)−

1
m )

+4mnC
− 31

20
λ (1− δk+�,i)Im ξn}|dt |
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≤r22−j+2 ∑
(26)

C
− 1

20
|α′(1)+β′(1)|

λ

(i− k + |α′ + β′ |)!
4!

C
2i−2k− 3

2
�+ 1

4
|α′+β′|

λ

×(2rm+2−λ)k(Im ξn)−i+k+�−|β′|∫
δ±,λ(x1)(ρ

±,λ(t))�

×{C
1
5
λ (1 + | t |−q−1(Im ξn)−

1
m ) + 4mnC

− 31
20

λ (1− δk+�,i)Im ξn}|dt |

where the summation is taken for

(26) α′(1) + α′(2) = α′, β′(1) + β′(2) = β′, k + 4 ≤ i.

It is easy to see that
∫
δ±,λ(x1)(ρ

±,λ(t))�|dt | = (4+ 1)−1(ρ±,λ(x1))
�+1, and

∫
δ±,λ(x1)(ρ

±,λ(t))�| t |−q−1(Im ξn)−
1
m |dt |

≤(ρ±,λ(x1))
�(Im ξn)−

1
m

∫
δ±,λ(x1)| t |

−q−1|dt |

≤(ρ±,λ(x1))
�C

1
10
λ |x1 |−q(Im ξn)−

1
m ≤ C−1

λ (ρ±,λ(x1))
�.

Since ρ±,λ(x1) ≤ C
− 9

10
λ , we also have

∫
δ±,λ(x1)(ρ

±,λ(t))�

×{C
1
5
λ (1 + | t |−q−1(Im ξn)−

1
m ) + 4mnC

− 31
20

λ (1− δk+�,i)Im ξn}|dt |

≤2C
− 7

10
λ (ρ±,λ(x1))

� + (4+ 1)−14mnC
− 31

20
λ (1− δk+�,i)(ρ

±,λ(x1))
�+1.

We obtain (19) immediately from this. �

We define V ′λ,j =
∑

0≤j′≤j

Ṽ ′λ,j′ , and V ′λ = lim
j→∞

V ′λ,j . Then we have the

following

Corollary. Let i, j ∈ Z+. We have

|∂α′
x′∂

β′

ξ′ (V
′λ
i,(µ,ν) − δi,0δµ,ν) | ≤ 4r2

∑
k≤i

(i− k + |α′ + β′ |)!

×(2C2
λ)

i−k(2C
1
4
λ )|α

′+β′|(2rm+2−λ)k(Im ξn)−i+k−|β′|

on Ω′λ(r, Cλ).
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Proof. If µ < λ or ν �= λ, the statement is trivial. Let λ ≤ µ ≤ m,

ν = λ. Since ρ±,λ(x1) ≤ C
− 9

10
λ we obtain

|∂α′
x′∂

β′

ξ′ (Ṽ
′λ
i,(µ,λ) − δi,0δµ,λ) | ≤ 2r2

∑
k+�≤i

(i− k − 4+ |α′ + β′ |)!

×2i−k+|α′+β′|C
2i−2k− 3

2
�+ 1

4
|α′+β′|

λ (2rm+2−λ)kC
− 9

10
�

λ (Im ξn)−i+k+�−|β′|

≤4r2
∑
k≤i

(i− k + |α′ + β′ |)!(2C2
λ)

i−k

×(2C
1
4
λ )|α

′+β′|(2rm+2−λ)k(Im ξn)−i+k−|β′|. �

Increasing Cλ (but not replacing r > 0) if necessary, we obtain the

following

Sublemma 2. There exist

W ′λ
i , M̄

′λ
i ∈ (O(Ω′λ(r, Cλ)))

m×m, i ∈ Z+

such that on Ω′λ(r, Cλ) we have (18) and

(i) |∂α′
ξ′ (W

′λ
i,(µ,ν) − δi,0δµ,ν) |

≤100m2r2
∑
k≤i

(i− k + |α′ |)!C2i−2k+ 1
4
|α′|

λ (4rm+2−λ)k(Im ξn)−i+k−|α′|,

(ii) |M̄ ′λ
i,(µ,ν) − L̄′′

i,(µ,ν) | ≤
∑
k≤i

(i− k)!C2i−2k+1
λ (4rm+2−λ)k(Im ξn)−i+k

×(1− δi.0 + |x1 |−q−1(Im ξn)−
1
m ),

(iii) V ′λ ◦W ′λ =W ′λ ◦ V ′λ = Im.

Proof. Since |V ′λ
0,(µ,ν) − δµ,ν | ≤ 4r2, (V ′λ

0)−1 =
∑

j∈Z+

(Im − V ′λ
0)j is

well-defined . Here (V ′λ
0)−1 denotes the usual inverse matrix of V ′λ

0 , and

we denote it by W ′λ
0 . We have |W ′λ

0,(µ,ν) − δµ,ν | ≤ 8r2. Increasing Cλ if

necessary, we have

|∂α′
ξ′ (W

′λ
0,(µ,ν) − δµ,ν) | ≤ 8r2α′!C

1
10

(|α′|+1)

λ (Im ξn)−|α′|
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(We do not change other constants such as r, θ′λ, θ
′′
λ). If i ≥ 1, then we

define W ′λ
i inductively by

W ′λ
i = −

∑
i′+i′′+|α′|=i

i′′ �=i

1

α′!
∂α

′
ξ′W

′λ
i′′∂

α′
x′ V

′λ
i′W

′λ
0 .

Let µ ≥ λ, ν ≥ λ + 1. From (18) it follows that M̄ ′λ
(µ,ν) = (W ′λ ◦

M̄λ−1)(µ,ν). Sublemma 2 follows immediately from these relations. �

Therefore we have proved Lemma 5, replacing Cλ >> 1 if necessary.

The second step of the proof of Proposition 3 is the following

Lemma 6. Let Cλ >> 1. There exist

V ′′λ
i , W

′′λ
i , M̄

′′λ
i ∈ (O(Ω′λ(r, Cλ)))

m×m, i ∈ Z+

such that on Ω′λ(r, Cλ) we have

(i) |∂α′
x′∂

β′

ξ′ (V
′′λ
i,(µ,ν) − δi,0δµ,ν) |, |∂α

′
x′∂

β′

ξ′ (W
′′λ
i,(µ,ν) − δi,0δµ,ν) |

≤100m2r2
∑
k≤i

(i− k + |α′ + β′ |)!C2i−2k+ 1
4
|α′+β′|

λ

×(16rm+2−λ)k(Im ξn)−i+k−|β′|,

(ii) |∂α′
x′∂

β′

ξ′ (M̄
′′λ
i,(µ,ν) − L̄′′

i,(µ,ν)) |

≤
∑
k≤i

(i− k + |α′ + β′ |)!C2i−2k+ 1
4
|α′+β′|+1

λ (4rm+2−λ)k(Im ξn)−i+k−|β′|

×(1− δi,0 + |x1 |−q−1(Im ξn)−
1
m ),

(iii) V ′′λ
i,(µ,ν), W

′′λ
i,(µ,ν) = δi,0δµ,ν , µ �= λ or ν ≤ λ,

(iv) M̄ ′′λ
i,(µ,ν) = δi,0δµ,νL̄

′′
0,(µ,ν), µ ≤ λ or ν ≤ λ,

(v) V ′′λ ◦W ′′λ =W ′′λ ◦ V ′′λ = Im,

(vi) ∂x1V
′′λ + M̄ ′λ ◦ V ′′λ − V ′′λM̄ ′′λ = O.
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The proof is almost the same as Lemma 5, and we only point out some

differences. We first note that

V ′′λ,j =




1, 0.. .

1, ∗ · · · ∗
1, 0.. .

0 1




( λ
.

If λ+ 1 ≤ ν ≤ m, calculating the (λ, ν)-component of (vi) in the statement

we obtain

(27) ∂x1V
′′λ
(λ,ν) +

∑
1≤κ≤m

(M̄ ′λ
(λ,κ) ◦ V

′′λ
(κ,ν) − V ′′λ

(λ,κ) ◦ M̄ ′′λ
(κ,ν)) = 0.

If µ ≥ λ+ 1, ν ≥ λ+ 1, calculating the (µ, ν)-component of (vi) we obtain

M̄ ′λ
(µ,ν) = M̄ ′′λ

(µ,ν). The other components of the left hand side of (vi) always

vanish. Therefore we need to solve (27) and define M̄ ′′λ
(µ,ν) = M̄ ′λ

(µ,ν) for

µ ≥ λ+ 1, ν ≥ λ+ 1. We can rewrite (27) in the form

∂x1V
′′λ
(λ,ν) + M̄ ′λ

(λ,ν) + L̄′′λ
(λ,λ) ◦ V

′′λ
(λ,ν) −

∑
λ+1≤κ≤m

V ′′λ
(λ,κ) ◦ M̄ ′λ

(κ,ν) = 0.

We can solve this equation by successive approximation.

∂x1V
′′λ,j
i,(λ,ν) + (L̄′′

0,(λ,λ) − L̄′′
0,(ν,ν))V

′′λ,j
i,(λ,ν) = F ′′λ,j

i,(λ,ν) =
∑

0≤k≤4

F ′′λ,j,k
i,(λ,ν),

where

F ′′λ,j,0
i,(λ,ν) = −M̄ ′λ

i,(λ,ν),

F ′′λ,j,1
i,(λ,ν) =

∑
λ+1≤κ≤m

V ′′λ,j−1
i,(λ,κ)(M̄

′λ
0,(κ,ν) − δκ,νL̄

′′
0,(ν,ν)),

F ′′λ,j,2
i,(λ,ν) =

∑
λ+1≤κ≤m
i′′+|α′|=i

i′′ �=i

1

α′!
∂α

′
ξ′ V

′′λ
i′′,(λ,κ)∂

α′
x′ M̄ ′λ

0,(κ,ν),
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F ′′λ,j,3
i,(λ,ν) =

∑
λ+1≤κ≤m
i′+i′′+|α′|=i

i′ �=0

1

α′!
∂α

′
ξ′ V

′′λ
i′′,(λ,κ)∂

α′
x′ M̄ ′λ

i′,(κ,ν),

F ′′λ,j,4
i,(λ,ν) = −

∑
i′′+|α′|=i

i′′ �=i

1

α′!
∂α

′
ξ′ L̄

′′
0,(λ,λ)∂

α′
x′ V

′′λ
i′′,(λ,ν)

on Ω′λ(r, Cλ). Here we define V ′′λ,−1
i,(µ,ν) = 0 . Let us define Ṽ ′′λ,j

i,(µ,ν), F̃
′′λ,j
i,(µ,ν)

as before. This time we obtain a solution

Ṽ ′′λ,j
i,(λ,ν)(x, ξ

′) = δi,0δj,0δλ,ν +
∫
δ∓,λ(x1) exp (φλ,ν(x, t, ξ

′))F̃ ′′λ,j
i,(λ,ν)(t, x

′, ξ′)dt.

We can also define V ′′λ = lim
j→∞

V ′′λ,j , and the inverse asymptotic seriesW ′′λ

as before. In this way we can prove Lemma 6. We also obtain Proposition

3 by taking

V λ = V λ−1 ◦ V ′λ ◦ V ′′λ, W λ =W ′′λ ◦W ′λ ◦W λ−1, M̄λ = M̄ ′′λ.

We remind the reader that U (resp. V m) transforms L̄ into L̄′′ (resp.

L̄′′ into M̄m) on Ω′m(r, Cm). We next want to transform M̄m into M̄ .

But this is very easy because they are diagonal matrices this time. Let

1 << a(<< 1/r). In this section we define

ω(a) = {(x, ξ′) ∈ Cn ×Cn−1; a3(Im ξn)−1/mq < |x1 | < a−1, a|x′ | < 1,

|arg x1 | < 3π, a|ξ′′′ | < Im ξn, a|Re ξn | < Im ξn, a
5mq < Im ξn}

Note that we have ω(a) ⊃ Ω′j(r, Cj) for 1 ≤ j ≤ m. Let xo1 = 1/2a. If

(x, ξ′) ∈ ω(a), then we define

γ0(x1) = {s|x1 |+(1−s)xo1; 0 ≤ s ≤ 1}∪{|x1 | exp(
√
−1s arg x1); 0 ≤ s ≤ 1}

It is easy to see that if (x, ξ′) ∈ ω(a), t ∈ γ0(x1), then we have (t, x′, ξ′) ∈
ω(a). We define M̄+ = M̄−,m = M̄ , M̄− = M̄+,m = M̄m. Then we have

the following

Lemma 7. There exist diagonal matrices X±
i ∈ (O(ω(a)))m×m such

that on ω(a) we have
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(i) |∂α′
x′∂

β′

ξ′ X
±
i,(µ,µ) | ≤

∑
j≤i

(i+ |α′ + β′ |)!
j!

a
i
2
+ 1

4
|α′+β′|+1

×(ρ0(x1))
j(Im ξn)−i+j−|β′| exp{aρ0(x1)(Im ξn)(mq−1)/mq},

(ii) X± ◦X∓ = Im, ∂x1X
± + M̄±,mX± − M̄± ◦X± = O.

Proof. Let N̄ = M̄ − M̄m. We need to solve

∂x1X
±
i,(µ,µ) ∓ N̄0,(µ,µ)X

±
i,(µ,µ) = G±

i,(µ,µ),

G±
i,(µ,µ) = −

∑
i′+i′′+|α′|=i

i′′ �=i

1

α′!
(∂α

′
ξ′ M̄

±,m
i′,(µ,µ)∂

α′
x′X

±
i′′,(µ,µ) − ∂α

′
ξ′ X

±
i′′,(µ,µ)∂

α′
ξ′ M̄

±
(µ,µ)),

X±
i,(µ,µ)(x

o
1, x

′, ξ′) = δi,0

for each i ∈ Z+. Since we have |N̄0,(µ,µ) | ≤
√
a(Im ξn)(mq−1)/mq, we have

(i) for X±
0,(µ,µ)(x, ξ

′) = exp{±
∫
δ0(x1)N̄0,(µ,µ)(t, x

′, ξ′)dt}. Let i0 ≥ 1, and

assume that (i) is true if 1 ≤ i ≤ i0 − 1. Since M̄m
(µ,µ) = L̄′′

0,(µ,µ), we have

|∂α′
x′∂

β′

ξ′ M̄
±,m
(µ,µ)(x, ξ

′) |, |∂α′
x′∂

β′

ξ′ M̄
±
(µ,µ)(x, ξ

′) |(28)

≤α′!β′!a 1
10

(|α′+β′|+1)(Im ξn)1−|β′|.

It follows that

|∂α′
x′∂

β′

ξ′ X
±
i,(µ,µ) | ≤

∑
(29)

α′!β′!

α′(1)!α′(2)!α′(3)!β′(1)!β′(2)!β′(3)!γ′!

×
∫
δ0(x1)|∂α

′(1)
x′ ∂β

′(1)

ξ′ exp(±
∫
δ0(x1)−δ0(t)N̄0,(µ,µ)(s, x

′, ξ′)ds) |

×{|∂α′(2)
x′ ∂β

′(2)+γ′

ξ′ M̄±,m
(µ,µ)(t, x

′, ξ′)∂α
′(3)+γ′

x′ ∂β
′(3)

ξ′ X±
i′′,(µ,µ)(t, x

′, ξ′) |

+|∂α′(3)
x′ ∂β

′(3)+γ′

ξ′ X±
i′′,(µ,µ)(t, x

′, ξ′)∂α
′(2)+γ′

x′ ∂β
′(2)

ξ′ M̄±
(µ,µ)(t, x

′, ξ′) |}|dt |,

where the summation is taken for

(29) i′′+ |γ′ | = i, i′′ �= i, α′(1)+α′(2)+α′(3) = α′, β′(1)+β′(2)+β′(3) = β′.
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Using (28) and the assumption for 0 ≤ i′′ ≤ i0 − 1, it follows that

|∂α′
x′∂

β′

ξ′ X
±
i,(µ,µ) | ≤

∑
(29)

∑
j′′≤i′′

2a−
1
20

(|α′(1)+α′(2)+β′(1)+β′(2)+γ′|) (i+ |α′ + β′ |)!
(j′′ + 1)!

×a i
2
+ 1

4
|α′+β′|+1(ρ0(t))

j′′+1(Im ξn)1−i+j′′−|β′| exp{aρ0(x1)(Im ξn)(mq−1)/mq}

Let j = j′′ + 1. Since j′′ ≤ i′′ ≤ i− 1, we obtain Lemma 7. �

Let C >> Cm. We define Y + = U+ ◦ V m ◦X+, Y − = X− ◦Wm ◦ U−.

Using the notation in section 3, Y ± are defined on Ω′θ
0(C) for each θ, so

we denote them Y ±,θ (Precisely speaking, the number C and the symbol

M̄m depend on the choice of θ). Finally we need to calculate Y ±,θ also on

Ω′′
0(C), but this is easy because x1 is very small on this domain. We define

x
(k)
1 = (3/4C5)(k + 2)−1/mq exp(

√
−1θ) for each k ∈ Z+. It is easy to see

that if (x, ξ′) ∈ Ω′θ
k(C) \ Ω′θ

k+2(C), then we have (x
(k)
1 , x

′, ξ′) ∈ (Ω′′
k(C) \

Ω′′
k+2(C)) ∩ Ω′θ

k(C). Now we have the following

Lemma 8. Let σ+(µ, ν) = (m− 1)µ/m and σ−(µ, ν) = −(m− 1)ν/m.

(i) We have

|∂α′
x′∂

β′

ξ′ Y
±,θ
i,(µ,ν) | ≤

∑
j≤i

(i− j + |α′ + β′ |)!Ci−j+ 1
4
|α′+β′|+1

×a−
j
6 (Im ξn)−i+j−|β′|+σ±(µ,ν) exp{C(Im ξn)(mq−1)/mq}

on Ω′θ
0(C).

(ii) We have

|∂α′
x′∂

β′

ξ′ Y
±,θ
i,(µ,ν) | ≤

∑
j≤i

(i− j + |α′ + β′ |)!2C2i−2j+ 1
4
|α′+β′|+1a−

j
6

×(Im ξn)−i+j−|β′|+σ±(µ,ν) exp{C3(Im ξn)(mq−1)/mq + C4|x1 − x(k)
1 |Im ξn}

on Ω′′
k(C) \ Ω′′

k+2(C).

Proof. (i) is already proved. We prove (ii). Let L̄+ = M̄− = L̄, L̄− =

M̄+ = M̄ . We have ∂x1Y
±,θ + L̄± ◦ Y ±,θ − Y θ,± ◦ M̄± = O on Ω′θ

k(C). We
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can uniquely extend Y ±,θ on Ω′′
k(C) \ Ω′′

k+2(C) by this equation and we

can write as Y ±,θ
i =

∑
j∈Z+

Y ±,θ,j
i , where

Y ±,θ,j
i,(µ,ν)(x, ξ

′) = δj,0Y
±,θ
i,(µ,ν)(x

(k)
1 , x

′, ξ′)(30)

−
∑

i′+i′′+|α′|=i
1≤κ≤m

1

α′!

∫ x1

x
(k)
1

{∂α′
ξ′ L̄

±
i′,(µ,κ)(t, x

′, ξ′)∂α
′

x′ Y
±,θ,j−1
i′′,(κ,ν) (t, x′, ξ′)

−∂α′
ξ′ Y

±,θ,j−1
i′′,(µ,κ) (t, x′, ξ′)∂α

′
x′ M̄

±
i′,(κ,ν)(t, x

′, ξ′)}dt

(Here Y ±,θ,−1 = O). We can prove that

|∂α′
x′∂

β′

ξ′ Y
±,θ,j
i,(µ,ν) | ≤ 2−j∑

�≤i

(i− 4+ |α′ + β′ |)!(31)

×C2i−2�+ 1
4
|α′+β′|+1a−



6 (Im ξn)−i+�−|β′|+σ±(µ,ν)

× exp{C3(Im ξn)(mq−1)/mq + C4|x1 − x(k)
1 |Im ξn}

on Ω′′
k(C) \ Ω′′

k+2(C). If j = 0, (31) is a direct consequence of (30). If

j ≥ 1, we can easily prove (31) by induction on j. Summing up (31) for

j ∈ Z+, we obtain (ii). �

Proof of Proposition 2. Let (x, ξ′) ∈ Ω′′
0(C). Then we have

(x, ξ′) ∈ Ω′′
k(C) \ Ω′′

k+2(C) for some k ∈ Z+. We have

|x1 − x(k)
1 | ≤ (3/4C5)(k + 2)−1/mq + C−1(Im ξn)−1/2mq

≤2C−1(Im ξn)−1/2mq

on Ω′′
k(C) \ Ω′′

k+2(C). From Lemma 8 it follows that

|Y ±,θ
i,(µ,ν) | ≤

∑
j≤i

(i− j)!2C2i−2j+1a−
j
6 (Im ξn)−i+j+σ±(µ,ν)

× exp{2C3(Im ξn)(2mq−1)/2mq}

on Ωθ
0(C). Since (i− j)!(Im ξn)−i+j ≤ C−3i+3j for 0 ≤ j ≤ i on Ωθ

i (C) , we

have

|Y ±,θ
i,(µ,ν) | ≤ 4Ca−

i
6 exp(C4(Im ξn)(2mq−1)/2mq)

on Ωθ
i (C). �
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6. Calculation of Stokes Operators

In this section we prove Theorem 2. We assume that j0 ∈ J satisfies

(10) (The case (9) is similar). We may assume j0 = 1 and then from

(11) it follows that q1 = 1. In Proposition 1 we may choose an arbitrary

θ ∈ [0, 2π], and we may choose θ′1, θ′′1 arbitrarily as far as they satisfy

θ′1 < θ < θ′′1, π/2 < θ′′1 − θ′1 < 2π/3. Note that for such θ′1 and θ′′1,
we can always complement some θ′j , θ′′j , 2 ≤ j ≤ m. Let us consider the

following three cases:

θ = 0, θ′1 = −7π/24, θ′′1 = 7π/24,(32.1)

θ = π/2, θ′1 = 5π/24, θ′′1 = 19π/24,(32.2)

θ = π, θ′1 = 17π/24, θ′′1 = 31π/24.(32.3)

In each case, it follows that

k1 = 0, θ−,1 = −π/4, θ+,1 = π/4,(33.1)

k1 = 1, θ−,1 = 3π/4, θ+,1 = π/4,(33.2)

k1 = 2, θ−,1 = 3π/4, θ+,1 = 5π/4,(33.3)

respectively. In any case of (32.4), we may choose common constants

r, C1, · · · , Cm, and calculate V m, Wm. To distinguish them each other,

we denote each of them by V m,[�], Wm,[�]. Let C >> Cm. These asymptotic

series are defined on Ω′m(r, C) for the corresponding θ, θ′m, θ′′m, and we

denote each of these domains by Ω′m,[�](r, C). We remind the reader that

we have

V m,[�] = V ′1,[�] ◦ V ′′1,[�] ◦ V ′2,[�] ◦ V ′′2,[�] ◦ · · · ◦ V ′m,[�] ◦ V ′′m,[�],

Wm,[�] =W ′′m,[�] ◦W ′m,[�] ◦ · · · ◦W ′′2,[�] ◦W ′2,[�] ◦W 1,[�].

In the proof of Proposition 3 we have V ′j,[�]
(µ,1) = δµ,1 for 2 ≤ j ≤ m, V ′′j,[�]

(µ,1) =

δµ,1 for 1 ≤ j ≤ m, and thus V
m,[�]
(µ,1) = V ′1,[�]

(µ,1) for 1 ≤ µ ≤ m. Similarly we

have W
m,[�]
(1,ν) = W

1,[�]
(1,ν) for 1 ≤ ν ≤ m. Therefore we have V

m,[�]
(µ,1) , W

m,[�]
(1,ν) ∈

Ω′1,[�](r, C). Let us compare V
m,[2]
(µ,1) (= V ′1,[2]

(µ,1)) and V
m,[3]
(µ,1) (= V ′1,[3]

(µ,1)). They
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are calculated by integration along δ−,1(x1), where the path δ−,1(x1) is a

curve from x−,1
1 to x1, which depends on the choice of θ−,1. However, in

(32.2) and (32.3) we use the same θ−,1 (and thus γ−,1(x1)). Therefore we

have V
m,[2]
(µ,1) = V

m,[3]
(µ,1) , and they define a symbol on Ω′1,[2](r, C)∪Ω′1,[3](r, C).

Let us denote Y ± for the case (32.4) by Y ±,[�], respectively. Since we can

take common symbols U, U ′, X± for any 4 and X± are diagonal matrices,

we have

(Y −,[k](0, x′, ξ′) ◦ Y +,[�](0, x′, ξ′))(1,1)

=(X− ◦Wm,[k] ◦ U ′ ◦ U ◦ V m,[�] ◦X+)(1,1)(0, x
′, ξ′)

=
∑

1≤κ≤m
X−

(1,1)(0, x
′, ξ′) ◦W 1,[k]

(1,κ)(0, x
′, ξ′) ◦ V ′1,[�]

(κ,1)(0, x
′, ξ′) ◦X+

(1,1)(0, x
′, ξ′).

Z+(x′, ξ′) (resp. Z−(x′, ξ′) ) is calculated by considering θ = 0 (resp.

θ = π), and we have Z+(x′, ξ′) = Y −,[1](0, x′, ξ′) (resp. (Z−)−1(x′, ξ′) =

Y +,[3](0, x′, ξ′)). It follows that

Z+−,(1,1)(x
′, ξ′) = (Z+ ◦ (Z−)−1)(1,1)(x

′, ξ′)

=
∑

1≤κ≤m
X−

(1,1)(0, x
′, ξ′) ◦W 1,[1]

(1,κ)(0, x
′, ξ′) ◦ V ′1,[3]

(κ,1)(0, x
′, ξ′) ◦X+

(1,1)(0, x
′, ξ′)

=
∑

1≤κ≤m
X−

(1,1)(0, x
′, ξ′) ◦W 1,[1]

(1,κ)(0, x
′, ξ′) ◦ V ′1,[2]

(κ,1)(0, x
′, ξ′) ◦X+

(1,1)(0, x
′, ξ′)

on Ω′1,[1](r, C) ∩ Ω′1,[2](r, C)(�= φ). We define

V [1,2,κ](x, ξ′) =W
1,[1]
(1,κ)(x, ξ

′) ◦ V ′1,[2]
(κ,1)(x, ξ

′),

V [1,2](x, ξ′) =
∑

1≤κ≤m
V [1,2,κ],

Y [1,2](x, ξ′) = X−
(1,1)(x, ξ

′) ◦ V [1,2](x, ξ′) ◦X+
(1,1)(x, ξ

′).

Let (x, ξ′) ∈ Cn ×Cn−1 satisfy

(34.i)

{
C−3 < |x1 | < C−2, C|arg x1 − (π/4) | < 1, C|x′ | < 1,

C|ξ′′′ | < Im ξn, C|Re ξn | < Im ξn, C
5mq(i+ 1) < Im ξn.
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Then we have (x, ξ′) ∈ Ω′1,[1](r, C) ∩ Ω′1,[2](r, C). From Proposition 3 it is

easy to see that |V [1,2,κ]
i − δi,0δκ,1 | ≤ ri+1. It follows that if

(35.i)

{
C−3 < |x1 | < C−2, C|arg x1 − (π/4) | < 1, C2|x′ | < 1,

C2|ξ′′′ | < Im ξn, C
2|Re ξn | < Im ξn, C

10mq(i+ 1) < Im ξn,

then W
[1,2]
0 = 1/V

[1,2]
0 is well-defined, and we have

|∂α′
x′∂

β′

ξ′ (V
[1,2]
i − δi,0) | ≤ mri+1C2|α′+β′|α′!β′!(Im ξn)−|β′|,

|∂α′
x′∂

β′

ξ′ (W
[1,2]
0 − 1) | ≤ 2mrC2|α′+β′|α′!β′!(Im ξn)−|β′|.

We define

W
[1,2]
i = −

∑
i′+i′′+|α′|=i

i′′ �=i

1

α′!
W

[1,2]
0 ∂α

′
ξ′W

[1,2]
i′′ ∂α

′
x′ V

[1,2]
i′ , i ∈ N.

It is defined on the domain (35.i), satisfies (W [1,2] ◦ V [1,2])i = (V [1,2] ◦
W [1,2])i = δi,0 there, and on the domain (35.j) with j = i+ |α′ | we have

|∂α′
ξ′ (W

[1,2]
i − δi,0) | ≤ 2mr

1
2
(i+1)C3|α′|α′!(Im ξn)−|α′|.

Furthermore, if (33.i), then we have

|∂α′
x′∂

β′

ξ′ X
±
i,(1,1) | ≤ a

− i
2
+1C3|α′+β′|α′!β′!(Im ξn)−|β′| exp (C(Im ξn)(mq−1)/mq).

Therefore we obtain the following

Proposition 4. If

{
C−3 < |x1 | < C−2, C|arg x1 − (π/4) | < 1,

C5|ξ′′′ | < 1, C5|Re ξn | < Im ξn, Im ξn > C
25mq(i+ 1),

then there exists some holomorphic function Y ′[1,2]
i such that

(i) |∂α′
x′∂

β′

ξ′ Y
[1,2]
i |, |∂α′

x′∂
β′

ξ′ Y
′[1,2]
i |
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≤a− i
20C5|α′+β′|+5α′!β′!(Im ξn)−|β′| exp (C5(Im ξn)(mq−1)/mq),

(ii) (Y [1,2] ◦ Y ′[1,2])i = (Y ′[1,2] ◦ Y [1,2])i = δi,0,

(iii) ∂x1Y
[1,2]
i + ((xq11 a1) ◦ Y [1,2])i − (Y [1,2] ◦ (xq11 a1))i = 0,

(iv) ∂x1Y
′[1,2]
i + ((xq11 a1) ◦ Y ′[1,2])i − (Y ′[1,2] ◦ (xq11 a1))i = 0.

The proof is easy, and we only sketch it. We can solve (iii) and (iv) on

(36.i) |x1 | < C−2, C5|ξ′′′ | < 1, C5Re ξn < Im ξn, Im ξn > C
25mq(i+ 1).

For instance, we can rewrite (iii) as

∂x1Y
[1,2]
i +

∑
i′′+|α′|=i

i′′ �=i

1

α′
{∂α′

ξ′ (x
q1
1 a1)∂

α′
x′ Y

[1,2]
i′′ − ∂α′

ξ′ Y
[1,2]
i′′ ∂α

′
x′ (x

q1
1 a1)} = 0.

By induction on i, it is easy to see that we can extend Y
[1,2]
i , Y ′[1,2]

i to

(36.i) and we have (i) there. Since Z+−,(1,1)(x
′, ξ′) = Y [1,2](0, x′, ξ′), we

obtain also Theorem 2.
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