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Abstract. We consider microhyperbolic equations degenerated
precisely on a hyperplane, and study the propagation of the singulari-
ties.

0. Introduction

In this paper we study the propagation of the singularity for some class of
microhyperbolic operators, containing the case of non-involutive character-
istics. As for microhyperbolic operators with non-involutive characteristics,
there are many papers for the case of order two (c.f. [1,2,4,5,6,10,11,12,14,
15]), and some papers for the case of higher orders (c.f. [16,17,18]). In these
cases it is well-known that the propagation of the singularity is closely re-
lated to the classical theory for ordinary differential equations. In this
paper, we generalize such a result, and give a general representation of the
elementary solution: It is the composite of holomorphic microlocal oper-
ators and quantized contact transformations. As a natural consequence,
we obtain the notion of Stokes operators. Such operators were previously
known only for a very special case. Using these operators, we can study the
branching of the singularity. Note that we do not assume any restrictive
conditions for the lower order terms.

Let P(z, D) be a microdifferential operator defined at * = (0;0,--- ,0,
v/—1) € T*C" of order m, written in the form

(1) P(z,D)=D"+ Y. Pj(z,D")D].
0<;j<m—1
Here we have written D' = (Da, - -+, D,,) as usual. Sometimes we also write
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as D" = (Dy, -+ ,Dp_1) and D" = (Dg,--- ,D,_1). We assume that

there exist real holomorphic functions ¢ (z,&’),- -+, pm(x, )
(2) ¢ homogeneous in & of degree 1, vanishing at z*, and the principal

symbol of P is equal to (§&1 + ¢1(z,&')) -+ (&1 + pm(x,E)).
We also assume that
if 1 # j, and (z,&) belongs to a small complex neighborhood

(3) ¢ of z*, then we have

@i(magl) = 80](1’,5/) — T = 07

and
for some ¢; € N ={1,2,3,---} and some a;(z,&') € Oy we have

(4) (pj(xvgl) = w({jaj(xagl)? aj(x*) 7& 0 (1 <J< m)a and

i = (¢ @) # (g5, a5(z")).
In this paper we assume (1)-(4). It is easy to see that (4) is a sufficient
condition of (3). Therefore in fact we assume (1), (2), and (4).

We denote by C (resp. &) the sheaf of microfunctions (resp. microdif-
ferential operators). Let us consider the Cauchy problem

5) { Pu =0,
D{flu((),:n’) =vj(z’), 1<j<m,

where u € Crn o+ and v; € Crn-1 g (z*' = (0;0,---,0,y/—1) € T*C"1).
We rewrite (5) in the following form:

(6) Li =0, 4(0,2") = #(z).
Here L(x, D) is an m X m matrix written in the form
901($a D/)a -1, O
902('%‘7 Dl)a
L(z,D) = D11, +
0 om(z, D)

bl(va/)7 Ty bm(wal)
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with some b;(z, D’) € £, of order at most m — j. Here ¢;(z, D’) denotes
the microdifferential operator whose complete symbol is equal to ¢;(z,¢’),
and I,, denotes the unit matrix. Furthermore we have written

U1 U1
. Uy . vy
i(x) = . , v(a) = ,
Um Um

where

{ Uy =u
Ujy1 = (D1 + (,Oj(CU,D/))uj, 1<7<m-—1.

According to the general theory of microhyperbolic operators
in [9] , there uniquely exists an elementary solution E(z,y’) €

(Cr2n—1,(gr,—qwry) ™™ satisfying

{ L(z, D)E(z,y') =
E(0,2',y) = pé(ﬂr—y)f
Here A™*™ denotes the set of m x m matrices whose components belong

to a set A. Note that we are regarding x; as a parameter, because P and
L are of Kowalewski type. It is easy to see that

E: (Croo)™ 3 i(z) — [E(z,y)i(z1,y)dy € (Crn o)™

is well-defined, and the solution of (6) is @(z) = Ev(a").
We can calculate supp E easily. Let j € {1,---,m}. Let ¢;(x,n) be the

solution of
Oz, ¥j(w,m) — 1 + @j(x, Opibj(z,m)) = 0,
Yi(0,2,m) = Y0 Tk

2<k<m

If yo = Oy i(x,m), & = Op¥j(z,m), 1 <k <m, then k; : T*C" >
(z,€) — (y,m) € T*C™ is a real homogeneous symplectic transformation
defined around z*. Note that y1 = z1, m =& + ¢j(, ), kj(z*) =a* It
is easy to see that

(1) suwpp E(z,y) = U {(,4/;6,7)00; &1+ pj(x,€) =0

1<j<m
Yk = Kj(@k), e = —K; (&), 2 <k <m}.

In the next section we shall give a complete expression of E.
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2. Main Results

We first discuss about a well-known result for quantized contact trans-
formation. For each number j € {1,--- ,m}, let k;(z,y") € Cran—1 5+ 51
be the solution of

{ (Dl + Soj(an,))]%j(l‘ay/) = Oa
k;(0,2',y") = spé(a’ —y').

We can define k; : Crn o+ 3 u(x) — [kj(z, v )u(z1,y')dy’ € Crn g+, and it
is a quantized contact transformation (i.e. Fourier integral operator) asso-
ciated to ;. In fact we can calculate the complete symbol k;(x,&’) of the
operator k; in the form exp (¢}(z,’))e;(z, €') with some elliptic amplitude
function ¢; of order at most 0 and the phase function ¢ (z,£’), defined by

1<k<m

(See [7] ). Note that the kernel function k; is the microfunction defined by
@my/=1)7"* [exp (2" —y) - €)k;(x,€)dE'.
Let K : (Crnz+)™ — (Crng+)™ be defined by

0 ko
Our first result is the following

THEOREM 1. There exist a neighborhood w' C /—1S*R"™ of x*00, a
neighborhood w C /—1S*R?"~ 1 of (x*, —2*')oo, and m x m invertible ma-
trices

Y:E(x7D/)a Z:t(x/7D/) € (ER(w,i))mxmv

such that E is the kernel function of Yo KZ+ on wy . Here E® denotes the
sheaf of holomorphic microlocal operators, and

wt = {(z,y';&,1)o0 € w; £x1 > 0},
W =A{(x,&)00 € W5 21 > 0}
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Holomorphic microlocal operators are some class of analytic pseudodif-
ferential operators. They are defined by [13], and [3] gave a symbol theory
for them. They have microlocal property, i.e., if A € E&,| u € Crn 4+, then
we have supp(Au) C supp u.

Note that Yy (resp. Zi) are independent of D; (resp. x; and Dj).
Therefore Z4 are in fact defined for any xi. Z4+ are the most important
and we call them Stokes operators.

From (7) it follows that the singularity of the solution @ of (6) propagates
along the union of the bicharacteristic strips of P. Let us discuss about it
in detail. Let b; be the bicharacteristic strip associated to & + ¢;(z,&’)
through xz*oco, and let by ; = {(x,&)oo € bj; 21 > 0}. It is easy to see that

L(z,D)ii(x) =0 ii(z) = Ev(a') for some #(x’)

=
= i(x) = E; 04 (2") for some ¥y (z')
=

i(x) = E_¥_(2") for some 7_(z'),

where By = Y. K = FE(Z4)~!. Using the last statement of these equivalent

conditions, the propagation in w_ is of trivial type. If @(x) = *(u1, -+ , um),
then we define suppd = |J suppu;. It follows that
1<j<m

supp(E_U_ (")) = supp(Y_K7_(a")) = supp(K7_(a"))

k:lv,,l
kg?)_g
= supp ) = U supp(kju_;)
: 1<j<m
kmv_ m

on w_. Let Li = 0. Since supp(kjv_ ;) is contained in {x;(z,&) € w_;
(z,€) € suppv_}, we have, for instance,

(8) suppd Nw_ =b_1
<= the components of ¥_ vanish except for v_;
and suppv_ 1 = {z*'cc}.

More generally supp 4 contains b_ ; if, and only if, suppv_; contains
{z*o0}.
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On the other hand, E_ =Y, KZ,(Z_)"! on wy. In this expression £_
does not have such a diagonal property because of the additional factor
Zy = Z.(Z_)7! composed from the right, and the situation in w, is
not so simple. In fact we have supp(E_v_(z')) = supp(YL K Z;_9_(2)) =
supp(KZ,_v_(2")) on w,. For instance assume the equivalent conditions
in (8). As is well-known in the case m = 2, the singularity may branch into
different bicharacteristic strips on wy. We denote the (u, v)-component of
Zi— by Z,_ (uv)- Then we have

k12, (11) v-1
koZ_ (2,1) v—1

supp(E_v_(z")) = supp
ka+—,(m,1) V-1

= U {xj(z,8) ew_; (2,) €supp Z,_ (1) v-1}
1<j<m

on wy.

More generally, k;jZ, _ ; ;) (a, D’)k‘;1 denotes the operator transporting
the singularity on {(z,&) € w_;& + pi(z, &) = 0} into {(z,£) € wy; &1 +
wj(z,&) = 0}. We want to study how the singularity, which propagated
along a simple bicharacteristic strip in the past, will branch in the future.
For that purpose we need to calculate Z;_. This is not so easy in general,
but we have the following

THEOREM 2. Let J be the set of those j € {1,---,m} which satisfy
qj =1, and let jo € J. We assume that either

{ Imaj,(z*) <0,
Jj € J\{jo} = Imaj,(z*) < Ima;(z*)

(9)

(10) { Imaj,(z*) > 0,

J € J\{jo} = Imaj,(z*) > Ima;(z*).
Then Z, _ (j, o) (@', D') is invertible.
COROLLARY. Under the above assumption we have

i € Crn g \ {0}, Li =0, suppidNw_ =b_j, = suppd Nwy D by .
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Ezxample. If m =4 and

Y1 = wlgna Y2 = 2~T1€n7 Y3 = x%&na Y4 = xi)gnv

then J = {1,2}. If jo = 2, we have (10), and the above Corollary is true
for this number.

The assumption (9) (resp. (10)) means that the characteristic root
©jo(z, &) is the most negative (resp. positive), and for such a dominant
root, at least some part of the singularity penetrates (from the past to the
future) along the corresponding strip. We do not know whether the as-
sumption (9) or (10) is indispensable or not. To the contrary, if jo & J, the
above conclusion is not always true. See [10] for examples of this fact.

3. Transformation by Holomorphic Microlocal Operators

Let ¢ = max(q1, -+ ,qm). Let C > 1, 0 €[0,27], i € Zy ={0,1,2,---}.
We define

QC)={(z, &Y eC"xC" L Olzy| < 1, C|2'| <1,
C|&"| < Im &,, C|Re &,| <Im &,, C™ <Im &,},

0(C) = {(z,¢) € UC); C*"™(i+1) <Im &},

Q(C) = {(z,¢) € UC); 21 #0, Clargz; — 0] < 1},

V7(C) ={(z,¢) € U(0); |x1| > C(Im &,)"/™4, Clargz, — 6| < 1},

"i(C) = {(2,¢) € U(O); |21] < C~'(Im &,)~1/2ma},

07(C) = Q7 (C)uQ"i(C).

Let M(z,D) = D11, + M(x,D’) € (E4«)™ ™, where
Qpl(va,)a O

M(z, D) =
0 om(z, D"

Then we have the following
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PROPOSITION 1. Let § € [0,2n] .  There exist Y%z, D) €
(ER(QO(C)))™™ such that

{ L(z, D)Y (2, D") = Y (2, D")M(, D),
YO (2, DY (x, D) =Yz, D')Y 0 (x, D) = 1d

on Q9(C).

REMARK. In Theorem 1, the inferior sign + of Yi(x, D') means that
this is an operator defined on w4. In Proposition 1 the superior sign of
Y*9(x, D) stands for a different meaning. In this case Y*¢(z, D) is some
operator, and Y 9(z, D’) is its inverse. We shall always use such a distinc-
tion.

To prove Proposition 1, we need to prepare a symbol theory for holo-
morphic microlocal operators containing x; as a parameter. It is the same
as [3], but we resume the result for the sake of reader’s convenience. We
denote by S(Q%(C)) the set of formal series f = > fi(x,¢’) satisfying

i€Zy
(i) fi € OQI(C)), i€ Zs.,
(ii) there exists some R € (0,1), and for any € > 0 there exists some
C. > 0 such that

| fi(z,€")| < C.R'exp(elm &,) on QY(C), for each i.

To emphasize that this is a formal series, we write as f = > “f;. If
i€y

f = 3*fi, we define a formal series ff = *ff by ff = > fj, and
i i€Z 0<j<i

N(Q°(C)) by
N(Q(O)) = {f € S(Q(C)); f* € SQ(O)}.
We identify a function fo with fo+0+0+--- € S(Q%(C)), if it satisfies (i)

and (ii) for i = 0.
Finally we define

§% = lim §(Q°(0)), N’ = lim N(Q°(0)).
>0 C>0



Stokes Operators 515

REMARK. (i) We write >." fi = > " g; if, and only if, f; = g; for any i.
This does not simply mean that the sums of these two series are the same.

(ii) Let 32* f; € S(Q9(C)), let go = 0 and g; = f;_1 for i > 1. Then we
have Y*(fi — g:) € N(Q°(C)).

(iii) A function fy belongs to N (Q(C)) if, and only if, it is exponentially
decreasing.

(iv) If f € 8% then f(0,2',¢') € SY is well-defined.

(v) For a formal series f = " f; we define 0., f = >." 0y, fi-

Let f =" fi(z,¢) € S(Q°(C)) . We define F(f)(x,y’) by

F(F)w,y) = @rv=1)""3 [ 5, fi(w, &)de,

where A; = {¢ € V-1R"1; C]¢"| <Im &,, C(i+1) <Im &,}. Then we
have the following

LEMMA 1. Let f =" fi(z, &) € S(Q(C)) . F(f) is holomorphic on
{(z,y) e C* x C" L C'|(x,9)]| <1, 21 # 0, C'|argxy — 0] < 1, Re(¢ -
(@' =) <0 for any & € Ag} for 0 < C << C’, and it defines the kernel
function of a holomorphic microlocal operator on Q°(C') (We denote this

operator by M(f)(x,D") ). If f € NY, then M(f) = 0.
LEMMA 2. Let f =" fi(x, &), g =3 "gi(z,&) € S’ . We can define
fogeS? by

IRV
(fegli= > —08 [;0% g,
kel =i @

and we have

M(f)(, DYM(g)(z, D) = M(f o g)(x, D).

If A(z,D) = > A,D* € &;+, then we define 0;(A)(z,§) = > A&
«a |ar|=2

The complete symbols of L(x,D') = L(z,D) — D1I,, and M(z,D’) are
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graded as follows:

(pl(l‘,gl), -1, 0
Li =6, pa(z,¢),
-1
0 om(z,¢")

Om-1-i(b1)(x,§), - o_i(bm)(x, &)

and
M; =6;0M (z,¢").

Note that L; may not be homogeneous in & of degree i. Now Proposition
1 is a corollary of the following

PROPOSITION 2. Let € [0,2n] . Then there exist Y50 (x,¢")(x,¢') €
(SPYym*™ such that

00, Y0 (2, &) + L(z,&) o YT (,¢) = YO (2,8) 0o M (z,¢) = O,
{ YO (2, ) o YT (2,¢) = I,,.

In the next section we shall give of the proof of Proposition 2.

Now we can prove Theorem 1 as follows. Let 0 < 01 < 0y < --- < 6y <27
be such that, Proposition 1 is true for each ¢; with C' = Bj respectively,

Bl —1

and [0,27] C 1§LJJ§£(HJ B;",0;+ B; ). Note that we can always choose
such numbers. Let K = K(z,£’) be the complete symbol of the Fourier
integral operator K, and let Z% (2/,¢') = Y% (0,2',¢) for each 6;. We
may assume that 0,, K + MoK =0, K(0,2',¢') = I, without any modulo
classes. Then we have (Y% o K o Z% (2/, &)y = (Y% o K o Z% (', &)1,

on QY (B;) N sz(Bj) . In fact, we have

Oz, (Y+’0i oKo Zei(xl,fl)) + Lo (Y+’9" oKo Zei(x',él))
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:(amly+’6i + Z} o Y"rﬂi) oK o Zei(ifl,(s,) + Y+,9i o aa:l (K Ie) Zei(x/7§/)>
=Y 0o MoK o2%(a, &)+ YT 00, (K o 2%(x/,¢))
=Y+t (0, K+ MoK)oZ%a &) =0,

and
Y% 0 Ko Z%(a' €] p—0 = Y TY(0,2",€) 0 Iy, o Y 9(0, 2, &) = L.

It follows that
{&UW%&OKOTW%8»+EoO*ﬂoKo%W%€»ZO’
[YJﬁei oK oZ% (1’/75/)]3&1:0 =Im

for each 6;. It is easy to see that such a symbol is unique, and we obtain
(V+ 0 K 0 22!, €)= (Y* 0 K 0 2% (2, )y
on in(Bi)ﬁQZj(Bj). Therefore {(Y 0% o K(x,&") 0 Z% (2, &))p; 1 <i < 4}

defines a holomorphic function on | J sz (Bj). Increasing C' > 0 if nec-
1<5<e

essary, the last set contains Q4(C). Since 0 € (6; — Bj*l,ﬁj + Bj’l) and
€ (0 — Bk_l, O + Bk_l) for some j and k, we obtain Theorem 1 by setting

Y—‘r(x? fl) = Y+70j (IE, 5/)7 Z_|_("17, fl) = Yiﬂj (Oa xlv gl)a
Yo(2,8) =Y 0(2,¢),  Z-(x,) =Y %(0,2,¢).

4. Miscellanea

In this section we give some lemmas necessary for the proof of Proposi-
tion 2. Without loss of generality, we may assume that the characteristic
roots are aligned in such a way that

(11) G <G < < gms,
and if ¢; = ¢;, © < j, then we have either

Ima;(z*) - Ima;(z*) <0



518 Keisuke UCHIKOSHI

or
Ima;(z*) - Ima;(z*) > 0, [Ima;(x*)]| > [Ima;(z*)|.

Let g = [Jax g;. Therefore ¢ = ¢, under the above assumption. Consid-
<j<m

ering an arbitrary 6 we omit the index 6 of Yi+’9 for the moment. Let us
solve

(12) 0p, YT+ LoYT —YToM=0.

As in [8] , to obtain an asymptotic expansion of the solution of (12), we
had better consider the following two cases separately:

(i) |21 | < Jconstant(Im gn)—l/mq,
(i)  |x1| > Jconstant(Im &,)~ /™4,
We first consider the case (i). Let a >> 1. In this section we define

w(a) = {(z,¢) € C"x C"}; @*(Im &,)7V/™I < |z | <a”', ala'| < 1,
alg”| <Im &,, a|Re&,| <Im &,}.

Let f(z,&) = kzz: *fe(z, &) be a formal series where fi(z,&') € O(w(a)),
€4

and let 4,5 € R. We say that f(z,) belongs to 7; j(w(a)) if there exists
some b > 0 such that

| iz, &) < 6"kl 2y [{(Im &,)7 % on w(a).

We define 7; j(w(a)) + Tre(w(a)) = {3 (fa(x,&) + gn(x.&)); D" fn €

Tij(w(a) X gn € Tre(w(a))}, Ti(wla) = {f(z,&) = X" ful(z.&) €
Tij(w(a)); fo = 0}, and T(w(a)) = U’E i(w(a)). It is easy to see that

Tyt (@(@) C Ty(w(a). I f € Ty(w(a). g € Tre(w(a)), then we

have fog € Tity j+e(w(a)). Now we have the following

LEMMA 3. Let a >> 1. There exist UF(x, &), L' (x, &) €
(T (w(a)))™ ™ such that

(i) LoUt=UTL, U*oUT =1,
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(m—1)p

(ii) { (1, & ’
U( v) € 7 —q; %((m 1)H_1)(w(a)), W v,
(iii) U(FW) Suvén ™ eTq S (e 1)V+1)( w(a)),

. {i(ﬂ,ﬂ)—LO,we%?l( (a)) + T, mes (w(a)),
v _
L, € Td (w(a)), .

ProOF. We first look for U(xz,¢) = Ut (z,¢') € (O(w(a)))™ ™. Let
p # v. We define U, ) by

(13) (EO,(u,u) - ‘EO,(V,V))U( /.L,l/) Z fn LO (v, I{)U(H V)

7 (m— 1)
— 2 Lo,(um)Utsw) = Lo, fn :
KAV

We can solve (13) as follows: Let U((;)V), i € Zy, u # v be successively
determined by

- - (i
(LO (b)) — LO (v, V))U(,u v)

(m— 1)1/ (i—1)
y 1/) H;ygn Lo (v,k) U(n,r/)
(m—-1)v
= Y LoguoUlh - Logune ™,
KF W,V

where UCY = 0. If U® = U — (=1 then we have

- N
(Lo(ua) = Lo, Ui

( v i—1)5,(i—1 i Fr (4 i—1
=2 " Do) Oy Uy + Ul Un) = > Lo Uins)
K#AV K,V

for ¢ € N. By induction on ¢, we can easily prove

08) )1 < (@21 [~9(Im &))"+ (Im &,)m e,
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replacing a if necessary. We define

%(m—l)u —
n ) H="2
Ulpw) = 3 U E’) ) (convergent sum) , pF v
i€Z+ 1o

(These are not formal series but holomorphic functions). It follows that

(14) U | < 201 |79(Im &,)m (m=De=1 0y o4y,

1
. —=—(m—1 . . .
Since | &, m (m )VUW, — 6M,,,| << 1, U is a non-singular matrix. We can

inductively define U~ = >-"U;” by

1 . /
U =6i0U") " = 5 —S0gU 0nU(U)™
i’+|o/|:z' (0%
i’

Here (U*)~! denotes the usual inverse matrix of U+, and U~ denotes the
matrix (of formal series) satisfying U* o UT = I,,. Tt is easy to see that

Lim-1)w

Ul = Suwn ™ €T 4 L (m-1wi1)(@(@)),

replacing a if necessary.
We next define

= —m(m=Dp =
Ly = Loup + 2 én 0 L) © U,y

K#E
i — —%(m—l)u E U U f,
(/”’7’/) - "Sn o} {( 07(/"’7/“") ] (,LL,V) (H?V) o (V,l/)
T ¥ Lim—1)v
" ; Ly © Una + Ly o &0 ), n#tw.
K7V

From (14) it follows that

Liup) € Lo g + T_g, m=2(w(a)),

m

L) € T2, o (wl@), p#v,



Stokes Operators 521

and
(LoU)uu = (UoL),y modulo To(? H%(m_l)u(w(a)),
(Lo U)(W,) =Uo f,)(w,) modulo qu’ %(mil)(ﬂﬂ)(w(a)), [T =72

replacing a if necessary.

We finally define L' = U~ oLoU™. It follows that D(u ») = L,y modulo

’26?1 (w(a)), and we obtain the lemma. O

COROLLARY. Leta >>1andlet " =U~00,,U"+L'. Then we have

m

(15) { Ly = Do) € Th(0(@) + T s (w(@)),
L, €Tr(w(@) + Ty _1(w(a),  p#v,

and 0y, Ut + LoUT — Ut o L" = 0.

We next define some complex domains which will be necessary in the
next section. Let 67, "7 € R, (1 < j < m) be such that
(i) 0 c (G/m’ 9//m) C (elm—l’ 9//m—1) C.---C (9/1, 0//1)’
(i) m/(g;+1) <0 —07 <21/(2¢;+1), 1 <j<m,
(iii)  there uniquely exists some k; belonging to ZN((g;+1)60"7 /7, (¢;+
10" /7) for 1 < j < m.

Note that for any 6 we can always choose such numbers. In fact it
is trivial if m = 1. Assume that mg > 2 and that we can choose the
above numbers if m = mg — 1. Let m = mgy. By assumption we can
choose 0'7,0"7 suitably for 1 < j < m — 1. If ¢,, = ¢yu—1, then we may take
g'm — le—l’ gr'm — 0//m—1. Ime > Gm_1, then W/(Qm‘*'l) < Qﬂm_l—elm_l,
and we can choose a subset (8™, 6”™) of (¢'™~1, §”™~1) such that (i) — (iii)
are true.

It is easy to see that in each interval [#"/, 0"J] the function f(7) =
+sin((¢; +1)7) attains its maximum (resp. minimum) at a uniquely deter-
mined point 7 = 077 (resp. 677).

Let 1l <<a<<1l/r<<(C) << << Cp,. We define

QY(r,C;) = {(z,&) € C* x C"; Tm &, > 2*10]5"“17
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(—1)% Re(z¥*) 4 1| Im(«2 )|

>271CH(Im &,) (@ HD/ma

[Re(z{ ™) |+ ImP ™) | < €797, argay € (67, 0),

1 1 1

CHlola'| <1, CJO|&"| <Tm &, CP°|Re & | <Im &},
QI(r,Cj) = {(z,§) € C" x C"\; Im &, > C7™,

(=1)% Re(@¥™) + r HIm(=¥") | > CH(Im &,)~@+1/ma,

[Re(z{ ) |+ Im@P )| < €797, argay € (607, 0),

Cj’IL‘,| < 1, Cj‘f/”| < Im §n7 Cj|Re §n’ < Im fn}

for 1 < j < m. Tt is easy to see that Q7 (r,C;) C Q' (r, C;), and Q7 (r, Ch) C
Q(r, Cy) if C} > C;. Furthermore we may assume

Q™(r,Cp) C X" Y, Cry) € --- C QY (r, CY)

(See the figure below).

1 Im (=P

argz; = 0" i+1
r CJ‘-IJ

Qi(r,C;)

Sy k; q;+1
. — (=1)* Re(z" ")
RS e ( h
Ci(lm &,)" s l/C;

argz; =07
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We define ¢j7k(x1,§,§’) = - fl(ig’(jvj)(s,x’,f’) - Z_Lg’(k,k)(s,x’, ¢'))ds for
1<j,k<m. Let xf’] be the point defined by

{ [Re((a})o )| + 7t Im((@7)ot) | = €77

arg xf’] = 0FJ,

LEMMA 4. Letx; be a complex number such that (x,€') € QU (r, Cj) for
some (2',&"). We can connect :Uli’J and x1 by a continuous curve 67 (1)
with length at most C’j_g/lo such that

() if (2,€) € 9(r,Cy) (resp. V(1 C3) ) and ¢ € 553(a) \ {7,
then we have (t,2',¢') € Q7(r,Cj) (resp. Q7(r,Cj) ),
(ii) if (x,&) € QI(r,Cy), t € §TI(x1), £Imaj(z*) < 0, and j < k,
then Re ¢ i(x,t, &) <0,
(iit) if (z,&) € Q*(r,Cy), t € 65F(xy), £Imag(z*) < 0, and k < 7,
then Re ¢j p(x,t,§") < 0.

PrOOF. If £Ima{’ > 0, we let v*(z;) be the line segment between
(zE9)u 1 and 21! If £Ima® < 0, we define d € R by Re(2¥™) +
(=R Im(2% )| = d, and let 49 (z;) be the union of the two line
segments, one from (acic’j)qj+1 to d, and the other from d to x(fﬁl. In both
cases we define 657 (z1) = {t € C; t%T! € y5J(x1)} (See the figure below).

~ Im (.'Egj+1)

(x}",j)qj+1

— (—1)% Re (z¥*1)
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Then statement (i) is trivial, and we prove (ii). We have Re ¢; i (z,t,&’)
=1+ 11+ III + IV, where

g B i+ il — gautl
I=Im 1T -Im aj((); 33/7 E,) —Im 1T : Imak(oa I/a 5/)7
q;+1 i+1
— 1%
Il = — Re xqu -Rea;(0,2',¢)
J
$Qk+1 $ar+1
+ Re 1(]]<;T ‘Re ak(oa LL’/, 5/)’

Il =—Re ([} Y(sVaj (s, 2, &) — stay'(s,2',€))ds),

IV =- Re( fl (Lg,/(j,j)(sa T 75 ) - Lé)/j(k,k) (57 x/7 él))ds)

Here aj/($ 5/) = aj ((E, 5/) - aj(07 xla 5/)7 and ‘Eg,l(j,j) ($7 5,) LE)/ ,(4,9) ( 7"5,) -
za;(x,¢"). If j = k, the statement is trivial, so we consider the case j < k.
We want to show that

(16) I<—a|ay —tl(J1] + [t])¥Tm &,

We remind the reader that ¢; < g. If ¢j = g, then (16) is trivial, and we
consider the case ¢; < gx. Let 0 < ¢ < g;. Since argxy, argt € (07, "),
we have

(9//j79/j)

arg (aP e 2T ) € (—qim/(2+ 1), g7/ (2q5 +1) ),

and thus

a;(0"7—0'7)

hleT T )

| > @l > Y Re(a?
0<¢<q; 0<t<g;
q;7 q;i—4 0
>cos(=———) > |z .
2q5 + 17 9<i<y; !
It follows that

+Im (2P ) < [T - 40t 120 < —a 7@y — t] (| |+ )Y,
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and
[T (@ — £96H1)| < [ — 0| < oy — t] (1| + ).
It follows that

[<|oy —t|(|zo]| +[t])D
(—a?Ima;j(0,2',&) + a(lz1| + [t]) Imag (0,2, )
< —a 3|z —t|(|z1 ] + [t))¥Im &,.

On the other hand, it is easy to see that
ILILIV < a *z; — t|(Jz1 |+ |t])%Im &,,
and we obtain (ii). The proof of (iii) is similar. [J

COROLLARY. Assume one of the following conditions:
(i) (z,&) € Q9(r,Cy), t € 679 (x1), £Imaj(z*) <0, and j < k.
(ii) (x,&) € Q*(r,Cy), t € 6Tk (xy), £Imag(2z*) <0, and j > k.

Then we have

o'gf’ . ' slo 81 gy -18'|
|09/0¢cr exp (¢ (2,1, &) < C; o158 (Im. &) ™71,

5. Study of Ordinary Differential Equations

We can find a solution YT of (12) in several steps. We formally define
Co = C1 and Q°(r, Cy) = Q'L(r,C1). The essential part is the following

PROPOSITION 3. Let 0 < X <m. Then there exist
VA WL MR € (O (r,O0)™ ™, i€ Zy
such that on Q'*(r,Cy\) we have

(1) 10900 (Vi) — 100u0)|, 0505 (W)

’Lv(.u':l’) o 6@"06“7,}) |
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<300m2r?(3m)* S (i — k + | o/ + 3!
k<i

. 1.7 /! . /
XCiZ 2k+ 7o'+ |rk(m—|—1—)\) (Im é&n)—z-&-k—w |7
(i) 10508 (M) = L o)

i— 1.7 ’ ) ,
SZ (Z — k4 |a/ + ﬁ/ |)!C§z 2k+zla’'+p \+1rk(m+1—>\)<1m gn),wrk,m |
k<i

x(1 = 6;0 + |21 |77 (Tm &,) "),
(iii) le’\(“’y) = 61-’05%1,3/07(%,,), w<Aorv <\
(iv) V2VoWA=W?oV* =1,
(V) 0n,V 4+ L' oV} -V o M*=0.

Here V* denotes the formal series V* = >"*V* and V* transforms L”
i

into M?*, where
TN
Lo,y 0

U = LG ()

* m—A

— A — — m—-\ —

In other words, V* diagonalizes L” up to the A-th column and the A-th
row. Note that M™ is a diagonal matrix. Therefore we can diagonalize
L" if Proposition 3 is true for 1 < A < m. We can prove Proposition 3 by
induction on A. If A = 0, then we may choose V* = W* = I,,, M* =
L", and the statements are trivial. Assume that 1 < \g < m and that the
statements are true if 0 < A < Ao — 1. Let £Imay,(2*) < 0. Then we can
prove the case A = A\ in two steps. Roughly speaking, we first diagonalize
the A-th column, and then the A-th row. The first step is the following
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LEMMA 5. There exist
VAW MY € (O 1, C)))™ ™, i € Zy

such that on Q'*(r,Cy) we have

(i) |8aaﬁ (VI)\(/J ,) — i Oéu V) | ’ax 8?, (W/;\(M » 67;,06/1,7y) ’
<100m*r2 > (i — k + |/ + B )\C 2z 2k+1|a’+3|
k<i

v (4Tm+27)\)k(]:m fn)_i+k_|6l|a
(i) 0208 (M2, ) = L uw) |

3= kot ol Iy gy o191
k<i

X (1= 80+ |@1 |77 (Im &) 7).

(1) V2 Wiw) = 0000w, p<A—Tlorv#),

(iv) M”.\( V):(SZ-O(SM L, 0,(1,)> p<A—lorv<)\

(V) V/)\ W//\ W//\ VI)\ — I

(vi) 05,V + MA 1o VA -V o M = 0.

This means that we have

V/)\ — * )
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and
Ij!/ T
0,(1,1)°
O A—1
I\ l
M _

L§ oy 1
%k m—A+1

0 l

— A — — m-)\ —

In other words, V' diagonalizes the A-th column of M*~!. Calculating the
(1, A)-component of (vi) for A < p < m, it follows that

17 9, V', A)+1<§; MoV = Viay o ooy = 0.

If 4w > XAorv>A+1, calculating the (u,v)-component of (vi) we obtain

1 TA—1 I\ I\
(18) My = 20 Viguw © M) =
Note that the other components of the left hand side of (vi) always vanish.
We shall see that if V'* satisfies (17) and it is invertible, we can define M'*
by (18). We can rewrite (17) in the form

1
2N o irA—1 o’ Y71
8$1V i,(ﬂ,)\) + )\<Hz<m M’L (/J/ K, a V ( )
i +i 4o |=i

//_'_la/l Z
Let us solve (17) by successive approximation:

SUBLEMMA 1. Leti,j € Zy, A < p<m. We denote by pEA (1) the
length of 6% (x1). There exists V’j"] € (O(QMr,Cy)))™™, i € Z,, such
that

‘ L / aN
(19) |oop (V'/\kj )~ 810800,0) | < 77270 2 ok |? s
2 kE<i ¢

o Cii—Qk—%(—i—% o/ +4| (2rm T2 (pEN (1)) (Im €,) iR 18]



Stokes Operators 529

on QN1 Cy), and V' = 3 VM satisfies
0<5'<j

)\’ = = A A, _ )‘7 '7k
0u V' 7y L0,y = L0000V i guny = Fliluny = 2 Filiny

1<k<4
where
/)‘7,j71 _ A—1 TN /A,j 1
Fliony == 2 (Mg, = Lo, um) Ve
A<k<m
ING2 o 1 o Tra—1 ol T AN
F%(M) o > o1 € M&(W)aﬂv’vi”,(m\)?
A<k<m :
//+|a/|_2
//#,[/
7,3 A—1 'Y
F/.J’ — Z _aaM 804‘/‘
A i ’ " (K,A)?
i,(1,A) A<REm (k) T i (K,A\)
i+ +|o! | =i
i’ #£0
A 1 "I "Tn
Fl 2Jy4 — Z _~ Ha V ) aa L
A N Vi () Y H0,(AA)
(‘u ) ”+|o¢'|:i v '
i//#i

on Y(r,Cy). Here we define V'*»~1 = 0.

Proor. If i = j = 0, then we may take f/’;\’j = I,,. Assume that
(i0, j0) € Z42\ {(0,0)} and that if (i,5) € Z,? satisfies either i < iy — 1 or
1 =1g, j < jo— 1, then the statements are true. Let us consider the case
(4,4) = (i0, jo). We can prove

. LAy
(20) ‘aaaﬁ (F/)\,(JhA)_F/;\,(J lh)‘<r 27 ¥ (i—k+|a + 3!
g o k+0<i 14

ok_ 3741048 . )
XCiZ 2k—50+5|a’'+8 |(2Tm+2—>\)k(p:|:,)\(m1))é(lm gn)—z+k+ﬁ—\6|

1 1 _31
) {OF (1= 80+ |oa |77 (Im €,)7%) + dmnCy (1~ 6pg)Tm £}

for 1 <h <4. Let us prove (20) for the case h = 2,3 (The proof of the
other cases are easier). Since Cy_; << C), from (15) and the assumption
of induction (on \) we may assume

(21) ’8048[3 M)\ 1 ’ < a/,/@/'czoﬂa +6'[+1) (IHI én)l_lﬁ/‘

x/ E/
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on XA 1(r, C\_1) (D Q(r,Cy)). Let (z,&) € Q*r,Cy). Summing up (19)
for j € Zy (for each " <i— 1), we obtain

'//_ / /'
Py — Bmobun) [ <207 % (" —k+ | + 5))

(22) |02 65 %
k+0<i—1 14

2'“—2k—§€+l /+5/ _ o A
CAZ S+l |(2Tm+2 A)k(pi,A(ml))Z(Im &) +k40—|3'|

if |@’| # 0. From (21) and (22), we have
[0} )‘7
|08 72|
<> SR L Al VFor N s A E N
_(23)o/(l)!o/@)!ﬁ/(l)!ﬂ’(z)!’y’! ¢ 0,(p,k) "’ J(k,A)
ol B!
<
z g:;) k+;<wa /@13 @

k4 [0+ 4D 4|
2!

/(1)!/6/(1) !7/!(20/\2%)|a/(1)+ﬁ/(l)+7/|+l

-/
% (Im £,)1-19+1

sz'”fzkfgui lo/ (D) 45 (2) 4]
A

x(2rm 2 (A (1)) (T &) R

where the first summation is taken for

(23) "+ || =i, i" #i, D +/@ =0/, WL =5 A<k <m.
It follows that

A,J,2
0205 F'02 )|
2 sl W8 D=2y 1+ (i — k£ [o' + §'])
<> > 20y T

(23) k+4<i—1

» Ciz‘—2k—§£+i o'+ (2rm 22k (A (1)) (Im €)1 +h+—19

_3 ) — / "I
< > 4mnr20/\ (1 = Opppri)Im &, (i—k+ ]'oz + o)
k+0<i £

X(jii_%_%eﬁ‘a/%/l(2rm+2_A)k(pi”\(ac1))g(Im é&n)—i-&-k-ﬁ-f—\ﬂ/‘
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. W R INj—1,h WA
ilnCZF iy~ Flifun) = G50F Gy

On the other hand, from (15) and the assumption of induction (on \)
we have

for 2 < h <4, we obtain (20) for

i (i' —k'+|o/+ 3 /
/_Z'/

x (Im gn)*@"ﬂv*lﬂ’lu 1z |7 (Im &) + S o(Im &) " }
if ¢/ > 1. It follows that
>\? b
10208 3|
ol Bl 5o/ WgB D+ A1 ga P 47gB )

S(%)a/(l)!a/@)wl )13/ )1 /|| 3 M ! (ks )8, 8 Vi (’f)\)‘
< o't B D13 W ]

>0 (i N1

(24)(25) D1/ @15/ W13/ 21411
X(?CF )z "~k 4|/ D43/ D) 4 |41
sk (m2=0) (I ¢, )= +k=18" 0 +7')
x{1+ |x; |—q—1(1m £,) " m + Sk o(Tm )"}

(,L'// _ K 4 |C¥ + ﬁ/ (2) _’_,-y |) 2i"72k”7%€"+i|o/(2)+ﬂ’(2)+’y’\
X o C)\

_ " " o 1"yt _137(2)
><(2’I“m+2 )\)k (pi,)\(zl))é (Im gn) i K0 —| 3 (2]
100Ky 000+ 1-1) (i = K = K+ ! + B!

<> yac; ¢ .
(24)(25) E .

2i—2(k'+k" —éé” 1.7 /
XC; (K'+k")— 50"+ 2o/ +03 |(2Tm+2—/\)k’+k”(pi,/\(xl))f”
X(Im én)_z+k/+k//+£//_‘ﬁl‘

—qg— _1 m—1
) {14 |21 |79 (Im &,) "™ 4 S o(Im &,) = }.
Here the summations are taken for

(24) i'+i" |y | =i, i' £ 0, /D +/@ = o/, FOLFE = 5 A<k <m
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and
(25) k/ S i/, k//+£// S i//7

respectively. We let k' + %" =k, " = £. Note that if 6r o = 1, then we have
i'—k =i >1, k+{¢#iand 1 —6p4¢; = 1. It follows that 6 o < 1— k14,
and we obtain

/ / ; L —k / / '
yaaaﬁF/A7373)‘§8mc/\1o Z (i + o + ')

z' Ve 1, (A k< YAl
i—2k—30+ Y10/ 43 . /
Xciz 2k— 50+ 7|+ |(27_m+27)\)k(pi,)\(l,l))£(1m Sn)—z-i—k—&-f—\ﬁ \

_9
{1+ a1 |77 (Im &) + O ° (1 = 6ppe0)Im &}

In this way we can prove (20) for 1 < h < 4.
We have assumed that +Imay,(z*) < 0, and now we define

VD (€)= 6506508+ [ 52 (0r) &P (B (.1, ) F3E (127, &) dt,

where F’ij)\ = FIf;J)\ - F’ﬁ’{\fl. From (20) and Corollary of Lemma 4, it
follows that

‘8a/8ﬂ/(‘~//\’j ( §,) 5 0808 )| < Oé,! ﬁ/'
2% Vi (i) \ T 1,005,00u,A) | = D@D a/(1)!a/(2)!6/(1)!/8/(2)!
,8/(1)+ﬂ/(2>:/8,

’ /(1) , 2) =y
<o 208 exp ate . ) 108 0F 0,57,
. /| ﬂ/'
< 20— Q' !
<r<2 &5 o Da/@1gM15@))

LMD e
ngi,x(l,l)c)?'a |a’(1)!5/(1)!(1m £,)"18 M)

y (i—k+|/® 4+ 3@ 22k il @1 @)
0 A

—itkl—|B®)| g ~E —g—1 _1

X (Im &)~ FRHTIHOE (1 + |t (Im &,)"m)

(27,m+27)\)k(pi,)\(t))f

_31
+4mnC\ *° (1 = Opqp,)Im & }| dt |
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2i—2k—30+1]a/+6|

/ / J— /
<p2grt2ys oy ml Wi —k+ |+ 5 (o

X(27’m+2_/\)k(1m gn)7i+k+57|ﬁ’|f5iﬂ\(xl)(pi,)\(t))é

1 _31
) {CP (1 +[¢]797 (Im &)~ m) 4 4mnCy 2 (1 — 8kp5)Im &, }| dt |
where the summation is taken for
(26) o/ 4o/ AW L =f k40 <

It is easy to see that f(;i,x(xl)([)i’)‘(t))th’ =4+ 1)" (pTA(z1)), and

L s oy (P O) [0 (I &) |t |
<(p™Na >> (I &) [ gan 170 dt |
< (P (1)) O |y |~ (Im &) < O ().

_9
Since pTA (z1) < C, %, we also have

St (P 0)°
AACT 1117 (m )75+ 4mnCy B (1 = 8 )
<203 W (oA (@)’ + (€4 1) mnCy (1= b (05 (1))
We obtain (19) immediately from this. OJ
We define V'A% = 30 VA9 and VI = jlim VA Then we have the
0<5'<j e

following

COROLLARY. Leti,j € Zy. We have

|08 (V! (1) — 0i08) | < 417 Z(i—k+]a + )

. 1 f , . /
(20320220 (1 )17

on YN(r, Cy).
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Proor. If u < X\ or v # A, the statement is trivial. Let A < pu < m,
5
v = ). Since pi’A(xl) < C, ' we obtain

0208 (V12 ay — 0100ua) | <272 30 (i =k — £+ [+ §'])
Y k+£<i

. . 3 1 9
y 2z—k+\a’+ﬁ’\cil_2k_§g+z o/ +p'] (2Tm+2—>\)kc; ﬁf(lm gn)—i+k+é—|ﬁ’|

<Ar?S (i — k4 o 4 B')(2CF)F
k<i

1oy : ,
X(gcﬁ)la +6 |(2rm+2—)\)k(1m £,) =18, O

Increasing C) (but not replacing r > 0) if necessary, we obtain the
following

SUBLEMMA 2. There exist
W', M € (O Mr, Cy)™ ™, i€ Zy

such that on Q'*(r,Cy) we have (18) and

(1) | ?’I(W/;:(u,u) - 6i,05y,1/) |

L -

<100m?r? Y (i — k + [of IOy T (4rm 22k gyl
k<i

() (M7, = iguay | < X (0 = RO (422 (I g,) 7

k<i
1

X(1—= 60+ 21|79 (Im &,) ),
(i) V2oW*r=W"?roV™=1,.

PROOF. Since |V’3’(W/) —Sup| <A, (V)= X (Im — V) s
JEZy

well-defined . Here (V’))~! denotes the usual inverse matrix of V'), and
we denote it by W'3. We have |W’)
necessary, we have

() Oup| < 8r2. Increasing C) if

o (TA7/A . 2 1 5l +1) —|o]
108 (WS () — Ouw) | < 8r7a’lCy (Im &)
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(We do not change other constants such as r, 6y, 67). If i > 1, then we
define W' inductively by

1 ,
wWri=— 3 08 W oS ViAW
1’+i"+\a’\—i [0 '
7:”751'

Let p > A, v > A+ 1. From (18) it follows that M’f‘uy) = (Wo
M)\—l)

(uv)- Sublemma 2 follows immediately from these relations. [J

Therefore we have proved Lemma 5, replacing C >> 1 if necessary.
The second step of the proof of Proposition 3 is the following

LEMMA 6. Let C) >> 1. There exist
VI W MY € (O (r,C\)™ ™, i€ Zy

such that on Q' (r,Cy) we have
: B’ (1A
(i) |8a8 V"

<100m*r? Y (i — k + |/ + B'])!IC)

x(16rm+2_)‘)k(1m§ )*”k’*'ﬁ/',
(ii) |a aﬁ (M) = L)) |

_ 105,u V)| ‘895 a?/ (W//A(“ )

2i— 2k—|— |a’+03|

6@',05 ,V) |

<Z(Z —k+ |O[ + ﬁ/‘) 2’L 2k+1 |a +8 |+1(4rm+27)\)k(]:m é—n),i+k7‘[3/‘
k<i

x(1— 60+ |21 |7 (Im &,) "),
iii) V”A( W”;‘,(W) = 0i00uy, pFENOrv <A,
iv) M”Z’\(M ) = 8,06 L"o Oy H<Aor v <,
V) V//A W//A W//A V//A — Im
Vi) BMV//)\ + M/,\ o V//A o V//AM///\ =0.

)
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The proof is almost the same as Lemma 5, and we only point out some
differences. We first note that

1, ) 0

V//)\,j —

0 .'1

If A+ 1 <v < m, calculating the (A, v)-component of (vi) in the statement
we obtain

" Wi A D)\ Wil _
27 0Vt <;m(M O) OV o) = Vim © M7 ) = 0
If u>A+1, v > X+ 1, calculating the (u, v)-component of (vi) we obtain
M — M
(sv) (wsv) -
vanish. Therefore we need to solve (27) and define M"}

(nv)
w>A+1, v> XA+ 1. We can rewrite (27) in the form

. The other components of the left hand side of (vi) always

— A

(u) fOr

Oz, V”(AA,V) + M'(AA,V) + E”?A,A) ° V/’(AA,V) - X V”(Am) o M, 0.

(kv) —
A1<k<m

We can solve this equation by successive approximation.

y . ) N N Ak
0, V") + L0000 = L0,0)V7 000 = F it = o<Z Py

<k<4
where
//)\,j,O _ I\
F 7;7()‘7’}) B M i,(A,l/)’
nagl o _ nNG—1 [ A B =y
FUho = 2 VideMG . =0l wy),
A+1<k<m
25,2 1 o .
F/I‘a.% — Z T aV ) 8O‘M
A / " (A K ’ 0,(k,v)’
i,(Av) AISh<m o 13 A\k) Yz (k,v)
'+’ [=i

il £
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"xg,3 i o 1A o A
F i,(A,I/) - A+1<z;@<m a/!aé'/ V i”,(>\7"<’)81"M@'/7(I{,V)7
i’ i o |=i
i’ #£0

//A,j 4 1 o TN o Y
F ()‘ V) - Z _/lafl L 07(>‘7A)8$, V i//,(A,ll)
i’/+|0/|:i (0%
’L‘”#i

— 0. Let us define VM Frd

on Q' (r, Cy). Here we define yra-l i) T ()

i,(p,v)
as before. This time we obtain a solution

‘7”27{)\,1/)(% 5,) = 6i7061’06)\7V + f(SqE’A(m) eXp (¢>"”(x’ 2 5/))F”;\7(j/\ v) (t l'/ £l)dt.

We can also define V" = lim V"I, and the inverse asymptotic series W/*

j—oo
as before. In this way we can prove Lemma 6. We also obtain Proposition
3 by taking

V)\ — V)\—l o V/)\ o Vl/)\’ W)\ W//)\ W/)\ o W)\_l, M)\ M///\

We remind the reader that U (resp. V™) transforms L into L” (resp.
L" into M™) on Q™(r,C,,). We next want to transform M™ into M.
But this is very easy because they are diagonal matrices this time. Let
1 << a(<< 1/r). In this section we define

w(a) ={(z,) € C" x C"7; a®(Im &) V/™ < |21| <a™', al2'| <1,
largz1 | < 37, al€”| <Im &, a|Re &, | <Im &,, a” <Im &,}

Note that we have w(a) D Q7(r,C;) for 1 <j<m. Let 2§ = 1/2a. If
(x,&") € w(a), then we define

Yo(z1) = {s|z1|+(1—5)2];0 < s < 1}U{|z1 |exp(vV—1sargz;);0 < s < 1}

It is easy to see that if (z,&') € w(a), t € vo(z1), then we have (t,2,¢’) €
w(a). We define M*-M M =M, M~ = M"™™ = M™. Then we have
the following

LEMMA 7. There exist diagonal matrices X= € (O(w(a)))™ ™ such
that on w(a) we have
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/ / 1\ i , )
0 logolxt, <3 UL EFD! bt
NM 1<t Vi

x (po(1))! (Im &)= exp{apo (1) (Im &,)ma=D/ma},
(i) X*oXTF =1, 0,X*+M*"X* _ *oXx*t=0.

PRrROOF. Let N = M — M™. We need to solve

85’31Xi%(u7 ) F Ny (1, u)Xii(u m Gi(u 1)

Gl = o +z"§Taf|—z .(aa MO X ey — 08 X )08 M),
i ki

X oo (71,7 €) = Big

for each ¢ € Z. Since we have |N07 \ < Va(Im &,)ma=1/m4 we have

(i) for X(f(“#)(m,{f’) = exp{:l:féo(xl) 0. () (b 2, ¢)dt}. Let ig > 1, and
assume that (i) is true if 1 <4 <4y — 1. Since M(”J w = L, (up)» We have

(28) |00 M (2, |, 1008 M, (2,€)]

Sa,!ﬂ,!a%(|a/+ﬂ/|+l) (Im §n)1*|5 |

It follows that

,‘Bl'
o’qb" v+
|8 8 X () | (%)Oz (1),@ ﬁ/(l 'ﬁ/ ',8,(3)!’}/’!

/(1) (1) —
X [ soen) | 0% aﬁ exp ifwl ooty No,ug (5,7, €)ds) |
x{| 0 Wl E (1o €00 L XE L (a €)]

("
(ot €0 L ME (1 €)Y dt .

a/<3) 634 x=
(#s18)

+9; 5’ i, (ks 1)

where the summation is taken for

(29) " +17| =4, i" #i, @D+ D 4a/®) = !, FO4FO 43O = g
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Using (28) and the assumption for 0 < i” < iy — 1, it follows that
0200 X5, 1<% Z 0= 25 10/ D4/ @ 1314 g @) (L4 |0+ F])!
xas Al O (g (1)) +1(Im &)! 7" explapo (21) (T &,)(ma=1)/ma}

Let j = 7" + 1. Since j” <" <i— 1, we obtain Lemma 7. [J

Let C >> C,,. Wedefine YT =UtTo V"o X+, Y- =X"oWmoU".
Using the notation in section 3, Y* are defined on g(C) for each 6, so
we denote them Y*f (Precisely speaking, the number C' and the symbol
M™ depend on the choice of #). Finally we need to calculate Y+ also on
y(C), but this is easy because x; is very small on this domain. We define

:Egk) = (3/4C%)(k + 2)~1/"™ exp(v/—10) for each k € Z,. It is easy to see
that if (z,¢) € V(C) \ Q7. ,(C), then we have (xgk),a:’,g) e (V(C)\
Q"42(C)) N Q'Y(C). Now we have the following

LEMMA 8. Let oy(p,v) = (m—1)u/m and o_(p,v) = —(m — 1)v/m.
(i) We have

0200 Y0, | < Tli=g+lal+ et o'+ 11
Xa,_%(hn gn)_Z—H_lﬁ [to() exp{C(Im &,)ma—1)/ma}

on Q4(C).

(ii) We have

|03 8’6Yi9 nl < Z(z—]+|a + B |)I2C%-2+lo B +1 -

’L

x (Im gn)—w—\ﬂ’\m(w exp{C3(Im &,)ma=D/ma 1 4| z) — 2 Im &,}
on Q" (C)\ Q" k42(C).

PROOF. (i) is already proved. We prove (ii). Let LT = M~ =L, L~ =
M* = M. We have 0,, Y*¢ + LEo Y0 — y0E o [+ = OonQ’H(C) e
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can uniquely extend Y ¢ on Q7 (C) \ Q"42(C) by this equation and we

. 0 0,5
can write as Yl-i’ = > Yii’ 7 where
JE€Zy

(80) Vi@ 5’> = 610Y 0y (1 2'.€)
- > f <k){ a Li b ', £os, Yi(eﬂ )l(t»ﬂ?',il)
e

Y?/: (97] )l(t ZE’ f)aa /(H )(tvx,)fl)}dt

(Here Y*9~1 = 0). We can prove that

(31) |00 Y0

is(psv)

<29 (i £+ o/ + F))!

<4
« O2i—20+3 o/ +8|+1 (Im gn)—Hﬁ—lﬂ’l—&-oi (1,v)

X exp{C’3(Im En)(mq_l)/mq + 04\ r1 — Ty (k) Im &,}

on Q" (C)\ Q" 2(C). If j = 0, (31) is a direct consequence of (30). If
j > 1, we can easily prove (31) by induction on j. Summing up (31) for
J € Z, we obtain (ii). O

PROOF OF PROPOSITION 2. Let (z,£) € Q"(C). Then we have
(2,&) € Q"L(C)\ Q"k12(C) for some k € Z;. We have

21 — 2| < (3/4C%) (k +2)"V/™ 4 C~}(Im &,)~/>ma
SQCil(Im gn)—1/2mq

on Q" (C)\ "12(C). From Lemma 8 it follows that

Y| < (0= R0 a6 (Im &) 7700
1<t

x exp{2C3(Im &,)?ma=1)/2mq}

on Q4(C). Since (i — j)!/(Im &,) "7 < C=343J for 0 < j < i on QY(C) , we
have

]Y \ < ACa~ 6 exp(C*(Im §n)(2mq_1)/2mq)

J(p,v)
on Q/(C). O
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6. Calculation of Stokes Operators

In this section we prove Theorem 2. We assume that jo € J satisfies
(10) (The case (9) is similar). We may assume jo = 1 and then from
(11) it follows that ¢ = 1. In Proposition 1 we may choose an arbitrary
6 € [0,27], and we may choose @', §"! arbitrarily as far as they satisfy
0t <0 < 0" 1/2 <" — @' < 21/3. Note that for such §'* and 61,
we can always complement some 67, 6”7, 2 < j < m. Let us consider the
following three cases:

(32.1) 0=0, O'=—-7r/24, 0" =17r1/24,
(32.2) 0=m/2, 0'=5n/24, 0" =1971/24,
(32.3) 0=n, O'=17r/24, 0" =31r/24.

In each case, it follows that

(33.1) k=0, 071 =—n/4, 00! =7x/4,
(33.2) ky=1, 0> =3n/4, 0! =1x/4,
(33.3) ky =2, 07! =3r/4, 60! =5n/4,

respectively. In any case of (32./), we may choose common constants
r, Cq, ---,Ch, and calculate V™, W™. To distinguish them each other,
we denote each of them by V™l W™l Let C >> C,. These asymptotic
series are defined on Q'™ (r,C) for the corresponding 0, 8™, "™, and we
denote each of these domains by Q7 (r,C'). We remind the reader that
we have

Vm,[é] — V/l,[f] o V//l,[ﬂ o Vlz,[f] o VI/Q,[Z} 0--+0 V/m,[f] o V//m,[f],
Wl — prmld o o Lo 2l o 2 o e

In the proof of Proposition 3 we have V’{’m) =61 for2<j<m, yrald

(k1) —
6y for 1 < j <m, and thus V(u 1[? V’z [Zl]) for 1 < p < m. Similarly we
have W™ — bl g5 1 < v < m. Therefore we have V" mll - pymild

(1Ly) — " (1w) (1) (1,v)
[«;ﬂ( Vll (3]

QU (r,C). Let us compare V' [2]( yrhi2 ])) nd V" (1)

() (n (n ) They
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are calculated by integration along 6!(x1), where the path 6—!(x1) is a
curve from xl_’l to x1, which depends on the choice of §7°'. However, in
(32.2) and (32.3) we use the same 6! (and thus y~!(z1)). Therefore we

have V(le[?] = V(u [i] and they define a symbol on Q' (r, C)UQ LB (1, O).

Let us denote Y+ for the case (32.¢) by Y=, respectively. Since we can
take common symbols U, U’, X for any ¢ and X+ are diagonal matrices,
we have

(v =H(,2', &) o yH(0,2,¢)) 11
=X~ o W™H o U o U o V™Il o X+) 4 1)(0,2,€)

= > X027, o Wi 0,2/, o v/ (0,47, €) 0 X[ (0,07,€).

1<k<m
Zi(2,&) (resp. Z_(2',€') ) is calculated by considering # = 0 (resp.

0 = 7), and we have Z, (2/,¢') = Y=U(0,2,¢) (vesp. (Z_)"'(a/,¢&) =
Y HBl(0,27,¢"). It follows that

Zy_ @, &)= (Zyo(Z) ', €)

= 5 X (0.0€) o W04, €) o VIEEN (0,4',€) 0 XF ) (0,4',€)
= 2 Xapn0,&)e Wi (0,2, €) o V! 0,0/, ) 0 X5 1) (0,4/,€)

on /L (r,C) N /L2 (r,C)(# ¢). We define
V[1,2,m] (x7£/) _ W(ll[i] (.17 5 ) o Vll [2 ((L‘ f )
V[LZ} (117, 5/) — z V[LZK],

1<k<m

v, ) = X ) (@) o VI (@,€) 0 X ) (2,€).
Let (z,£') € C™ x C™ ! satisfy

C3<|m|<C2 Clargz; — (n/4)| < 1, C|2'| < 1,

34.1
(341 { C&") < Im &, C|Re&y| < Im &, CM(i +1) < Im &
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Then we have (z,¢') € QU C) N B(r, C). From Proposition 3 it is
easy to see that ]Vi[l’z"{] —6i00k1 | < riL It follows that if

(35.1) { 3 < |x1] < Cc—2, Clargz; — (7/4)] < 1, C’2|1:’| <1,
.1
C?|¢"| < Im &,, C*Re&,| <Im &,, C199(i +1) < Im &,,

then Wo[l’z] =1/ ‘/0[1’2} is well-defined, and we have

10208 (VI — 810) | < mr™ 10271013 (T g,) 717,
10205 (W = 1)| < 2mrC2 #1015 (Im &,)719'.
We define

1
o'l

Wit = - Wi Aog whiZloe vt i e N.

'i’+i”+|o/|:i [0
i £

It is defined on the domain (35.i), satisfies (W2 o VIL2), = (V2 o
Wh2), = §; ¢ there, and on the domain (35.j) with j =i 4 |a/| we have

108/ (WM = 8i0) | < 2mr2 DO/ (I &) 71,
Furthermore, if (33.i), then we have
0208 Xy 1) < a” s CH a1 3 (Im &,)7 1 exp (C(Tm &,)ma-1/ma).
Therefore we obtain the following

ProprosiTION 4. If

{ C3 <|m|<C72 Clargr — (r/4)| < 1,
Co|E"| < 1, C5|Re&,| <Im &,, Im &, > C?™I(i 4 1),

then there exists some holomorphic function Y’ELQ} such that

(i) lozal v, ozl v )
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§a_2%05|°‘/+ﬂ/|+50/!ﬁ'!(1m &) P lexp (C°(Im &,)(ma—1/ma),
(ii) (Y[l,Q] ° Y/[1,2])i _ (YI[I,Q] oY[172])~ _ 6“)’
(i) 00 Y o (' an) o Y = (Y120 (atar))s = 0,
(iv) 0p Y 4 ((2%ay) o V'IM2), — (/12 o (2%ay)); = 0.

The proof is easy, and we only sketch it. We can solve (iii) and (iv) on
(36.1) |z1]| < C72, C°|¢"| < 1, C°Re &, < Im &,, Im &, > C?™(j 4+ 1).

For instance, we can rewrite (iii) as

oY IZ\ { & (@ )0 Y P — 0g' v o2 (2 ar) } = 0.
il |=i &

i i

By induction on i, it is easy to see that we can extend Yi[l’Q], Y’ EI’Q} to
(36.i) and we have (i) there. Since Z,_ 1)(2',¢') = Y210, 27, ¢"), we
obtain also Theorem 2.
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