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Determination of the Limiting Coefficient for

Exponential Functionals of Random Walks with

Positive Drift

By Katsuhiro Hirano

Abstract. Let (Sn, n ≥ 1) be a random walk satisfying ES1 > 0
and h be a Laplace transform of a non-negative finite measure on
(0,∞). Under additional conditions of S1 and h, we consider the
asymptotic behavior of Eh(

∑n
i=1 eSi). In particular we determine

the limiting coefficient for asymptotic of this quantity in terms of the
unique solution of the certain functional equation with boundary con-
ditions. This solution corresponds to the Green function of 2−1e−x�
on R. We apply our result to random processes in random media.
Moreover we obtain the random walk analogue of Kotani’s limit the-
orem for Brownian motion.

1. Introduction and the statement of theorem

Let (Sn, n ≥ 1) be a random walk, i.e., S1, S2 − S1, · · · are independent

and identically distributed random variables. The random variable of the

form
∑n
i=1 e

Si , n ≥ 1, appears in various contexts. For example we meet

this type of variable on random difference equation, hitting probability of a

random walk in random media, and non-extinction probability and expected

number of particles of a branching process and birth and death process in

random media.

In [1] Afanas’ev considered the rate of decay of the tail probability of the

maximum of a transient random walk moving in a random environment. To

obtain the rate of decay, he analyzed the mean of a functional of the variable∑n
i=1 e

Si where (Sn, n ≥ 1) is generated by i.i.d. random variables of the

environment. To generalize this problem and clarify his proof, the author

considered asymptotic behavior of the mean of exponential functionals of a

random walk. In [6] we showed that there exists a limit of the mean of expo-

nential functionals of a random walk and its limiting constant is positive and
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finite under certain conditions. Applying this to the problem of Afanas’ev,

we could fill a gap in his result. But the probabilistic representation of the

limiting constant was not given there.

As a continuous version of the result of Afanas’ev, Kawazu and Tanaka

[8] considerd the rate of decay of the tail probability of the maximum of a

diffusion in a drifted Brownian environment by using Yor’s exact formula, in

[16], of joint distribution of exp(Bt) and
∫ t
0 exp(2Bs)ds where (Bt, t ≥ 0) is

a one-dimensional Brownian motion. Roughly speaking, they showed that

if β > α > 0 and supx>0 x
β|h(x)| < ∞, then

Eh

(∫ t
0

eBs+αsds

)
∼ c t−3/2e−α

2t/2 as t → ∞,(1.1)

where

c =
2

5
2

√
π

∫ ∞

0

∫ ∞

0

∫ ∞

0
y2αh(4/z)e−uzx sinhx dxdydz, u = (1+y2)/2+y coshx.

It seems difficult to understand the probabilistic meaning of limiting con-

stant c even if we go back to the proof of Yor’s formula. On the other hand,

if h is the Laplace transform of a non-negative finite measure ν on (0,∞),

i.e.,

h(x) =

∫ ∞

0
e−xtν(dt),(1.2)

Kotani [10] showed that

E

[
f(Bt)h

( ∫ t
0

V (Bs)ds
)]

∼ c1 t
−3/2 as t → ∞,

under additional conditions of f and V ≥ 0. Here c1 is explicitely repre-

sented as follows:

c1 =
1√
2π

∫
R

dx f(x)

∫ ∞

0
ν(dλ)gλ(−∞, 0) gλ(−∞, x),(1.3)

where gλ(x, y) is the Green function of (2V )−1� on R and −∞ is the

entrance boundary of the diffusion with generator (2V )−1�. For detail and

strict conditions we refer to [10]. We note that the assumption (1.2) is

valid when we consider the rate of decay of the maximum of a diffusion

in a drifted Brownian environment, and that we can take V (x) = ex and
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f(x) = eαx. Therefore, if h has a form (1.2), Kotani’s theorem combined

with Cameron-Martin transform implies (1.1) and gives another expression

of c, that is,

c =
1√
2π

∫
R

dx eαx
∫ ∞

0
ν(dλ)gλ(−∞, 0) gλ(−∞, x),

where gλ(−∞, x) is defined by setting V (x) = ex for gλ(−∞, x) in (1.3). So

we get a probabilistic representation of the limiting constant in this case.

A random walk analogue of (1.1) was already given in [6]. Hence our

main object in this paper is to obtain the expression of the limiting con-

stant in the random walk case like the second expression of c. To be more

concrete, we find function corresponding to gλ(−∞, ·) and characterize it

as the unique solution of the certain probabilistic functional equation with

boundary conditions.

Now let us state the conditions of S1 and our main theorem. To give a

condition of S1 we introduce

ψ(θ) = logE exp(−θS1), θ ∈ R.

Our conditions are the following:

Condition (A). ψ is finite on an open interval of (0,∞) and ψ′(α) =

0 for some α > 0 which is contained in that interval.

Condition (B). The distribution of S1 is not supported by any non-

centered lattice (i.e., of the form {a + bz; z ∈ Z} with 0 < a < b).

We note that Condition (A) implies 0 < ES1 ≤ +∞ and eψ(α) < 1.

Conditions (A) and (B) appear in [3], [4], [7], [9] and [15], and the random

walk satisfying these conditions has been studied in a number of papers. To

state our main theorem we need some preparations. When Condition (A)

is satisfied, we introduce an associated random walk (ζn, n ≥ 1) where the

distribution of ζ1 is given by

P (ζ1 ∈ dy) = e−αy−ψ(α)P (S1 ∈ dy).(1.4)

Let τ and ρ be the time of the first entry into the open positive half line

and the closed negative half line by the walk (ζn, n ≥ 1) respectively, i.e.,

τ = min{n > 0; ζn > 0},
ρ = min{n > 0; ζn ≤ 0}.

(1.5)
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Since Eζ1 = 0 and E|ζ1|2 < ∞, τ and ρ are well defined and the finiteness

of Eζτ and E|ζρ| follows. Our main theorem is

Theorem. Let Conditions (A) and (B) be satisfied, and let functions

f , h and W satisfy the following:

(1) f is bounded and continuous on R.

(2) h has an expression

h(x) =

∫ ∞

0
e−xtν(dt),

where ν is a non-negative finite measure on (0,∞).

(3) W is non-negative and continuous on R.

(4) There exist positive numbers β, γ and δ such that

h(x) = O(x−β) as x → +∞,

lim sup
x→−∞

W (x)e−γx < ∞, lim inf
x→+∞

W (x)e−δx > 0,

with βδ > α. Then as n → ∞,

E

[
f(Sn)h

( n∑
i=1

W (Si)

)]
∼ c n−3/2eψ(α)n,

where

c =
1√

2πψ′′(α)

∫ ∞

0
ν(dt)

∫
R

dx eαx−tW (x)f(x)gt(0)ĝt(x)

and gt is the unique solution of the functional equation

gt(x) = Ex
[
e−tW (ζ1)gt(ζ1)

]
, x ∈ R, t > 0,

with boundary conditions

lim
x→−∞

gt(x)

|x| =
1

Eζτ
, lim

x→+∞
gt(x) = 0.

ĝt is the unique solution of the above equation with Eζτ and ζ1 are replaced

by E|ζρ| and −ζ1 respectively.
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To prove our theorem we need some conditional limit theorems. We

investigate limit law of (Sn, n ≥ 1) conditioned to stay negative. Especially

we will show that 2k-dimensional distributions (S1, · · · , Sk, Sn, Sn−1, · · · ,
Sn−k−1) conditioned on Λn = (S1 ≤ 0, · · · , Sn ≤ 0) converges as n → ∞
weakly to a product of two k-dimensional distributions which are identified

as the distributions of harmonic transform of the associated random walk.

Limit theorems of random walks conditioned on Λn have been treated in

many literatures. For example, the convergence of the Laplace transform

of Sn conditioned on Λn has been shown by Iglehart [7]. The conver-

gence of the law of (S1, · · · , Sk) conditioned on Λn has been studied by

Keener [9] and Bertoin and Doney [3]. But for our purpose we need to

improve and extend their results since we have to know the limit law of

(S1, · · · , Sk, Sn, Sn−1, · · · , Sn−k−1) conditioned on Λn.

This paper is organized as follows. In Section 2 we give notations, fun-

damental lemmas and some asymptotic results of the associated random

walk. Section 3 contains several asymptotic results and conditional limit

theorems of the walk (Sn, n ≥ 1). In Section 4 we give a solution of the

functional equation with boundary conditions in Theorem. The proof of

Theorem and counter examples are given in Section 5. In Section 6 we treat

three applications of our theorem.

2. Preliminaries

The purpose of this section is to introduce the notations and to inves-

tigate properties of the associated random walk. For every real number x,

we denote the law of random walks and Markov processes starting at x by

Px. For simplicity we set P = P0. If ν is a measure on [0,∞), its Laplace

transform will be denoted by ν̃, that is, for θ > 0, ν̃(θ) =
∫∞
0− e−θxdν(x). Let

(ζn, n ≥ 1) be a random walk and µn = max0≤i≤n ζi. ζ means ζ1 hereafter.

Recalling τ and ρ in (1.5), we introduce the following quantities. For n ≥ 1,

un(x) = P (ζn ≤ x, ρ > n),

vn(x) = P (−ζn ≤ x, τ > n),

u0(x) = v0(x) = 1(x≥0).
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For x < 0, these functions are 0. Set

u(x) =
∞∑
n=0

un(x), v(x) =
∞∑
n=0

vn(x).

The quantities u(x) and v(x) will play crucial roles in this paper. Other but

equivalent expressions of u(x) and v(x) are well known. We can find them

in Bertoin and Doney [3], Keener [9] and Tanaka [14]. Especially u(x) and

v(x) are the renewal functions of ζτ and −ζρ respectively. An important

fact for u(x) and v(x) are given by the following general lemma. Essentially

the proof was obtained by Tanaka [14]. But our case somewhat differes from

his similar lemma. We need careful treatment for (2) below.

Lemma 1. Let x ≥ 0.

(1) If ρ < ∞, a.s., then Eu(x− ζ) = u(x).

(2) If τ < ∞, a.s., then Ev(x + ζ) = v(x).

Proof. We prove only (2). (1) is proved in a similar way and more

easily. The proof is devided into two parts. Set a =
∑∞
n=1 vn(0) =∑∞

n=0 P (ζn+1 = 0, τ > n).

Step 1. 1 + a = Ev(ζ).

By the assumption τ < ∞, a.s.,

1 = P (τ < ∞) = P (τ = 1) +
∞∑
n=1

P (τ = n + 1)

= P (ζ > 0) +
∞∑
n=1

P (τ > n, ζn+1 > 0)

= P (ζ ≥ 0) +
∞∑
n=1

P (τ > n, ζn+1 ≥ 0) − a

= P (ζ ≥ 0) +
∞∑
n=1

Evn(ζ) − a

= Ev(ζ) − a.

Thus we have v(0) = 1 + a = Ev(ζ). That is, the lemma holds if x = 0.
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Step 2. 1 + a = v(x) − Ev(x + ζ) + Ev(ζ), x > 0.

Since v0(x) = 1 if x > 0, similar calculations as in Step 1 show

v(x) − 1 = v1(x) +
∞∑
n=1

vn+1(x)

= P (0 < −ζ ≤ x) +
∞∑
n=1

P (0 < −ζn+1 ≤ x, τ > n) + a

= P (0 < −ζ ≤ x) +
∞∑
n=1

E
(
vn(x + ζ) − vn(ζ)

)
+ a

= P (0 < −ζ ≤ x) + Ev(x + ζ) − P (x + ζ ≥ 0)

−
{
Ev(ζ) − P (ζ ≥ 0)

}
+ a

= Ev(x + ζ) − Ev(ζ) + a,

which proves Step 2. Combining Steps 1 and 2, we get the desired result. �

This lemma will be used in the next section when we introduce two

homogeneous Markov processes. In the rest of this section we investigate

some asymptotic properties of (ζn, n ≥ 1). To obtain them we use the

following two lemmas without proofs.

Lemma 2 (see [7] and [15]).

(1) Let
∑∞
n=0 ant

n = exp(
∑∞
n=1 bnt

n) for |t| < 1. If bn ∼ bn− 3
2 , then an ∼

(b expB)n− 3
2 with B =

∑∞
n=1 bn.

(2) Let cn ≥ 0, dn ≥ 0, cn ∼ cn− 3
2 and dn ∼ dn− 3

2 . If an =
∑n
j=0 cn−jdj,

then an ∼ (cD + dC)n− 3
2 with C =

∑∞
n=0 cn and D =

∑∞
n=0 dn.

Lemma 3 (Spitzer-Baxter identity, see [5]). For any θ ≥ 0, |t| < 1,

1 +
∞∑
n=1

ũn(θ)t
n = exp

{ ∞∑
n=1

tn

n
E(e−θζn ; ζn > 0)

}
.

If we replace ũn(θ) by ṽn(θ), then E(e−θζn ; ζn > 0) must be replaced by

E(eθζn ; ζn ≤ 0).
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We consider the following conditions of ζ.

(a) Eζ = 0, 0 < E|ζ|2 = σ2 < ∞ and E|ζ|3 < ∞.

(b) The distribution of ζ is not supported by any non-centered lattice (i.e.,

of the form {a + bz; z ∈ Z} with 0 < a < b).

If (ζn, n ≥ 1) is the associated random walk of (Sn, n ≥ 1), it is easy to see

that ζ satisfies these conditions with σ2 = ψ′′(α). Lemmas 4, 5 and 6 below

can be proved under the conditions (a) and (b). But we prove lemmas only

in the case where ζ is non-lattice random variable and satisfies the condition

(a). Some points to be paid attention in the case where ζ is centered lattice

random variable and satisfies the condition (a) are given by Remark in the

last of this section.

The result below was indirectly shown in [2]. But for the reader’s con-

venience we shall provide its proof.

Lemma 4. For every θ > 0,

lim
n→∞

√
nE(e−θζn ; ζn > 0) =

1√
2πσθ

.

Proof. Let Φn(x) = P (ζn ≤ xσ
√
n) and Φ(x) be the standard normal

distribution. If ζ is non-lattice, under the condition (a), the asymptotic

expansion in the central limit theorem

Φn(x) = Φ(x) +
Eζ3

6σ3
√

2πn
(1 − x2) e−

1
2
x2 + o

(
1√
n

)
holds uniformly on R (see e.g. [5]). Using this and integration by parts, we

have

E(e−θζn ; ζn > 0) =

∫ ∞

0+
e−θσ

√
nxdΦn(x)

= θσ
√
n

∫ ∞

0
e−θσ

√
nx(Φn(x) − Φn(0))dx

= θσ
√
n

∫ ∞

0
e−θσ

√
nx(Φ(x) − Φ(0))dx + o(n− 1

2 )

=

∫ ∞

0
e−θσ

√
nxΦ′(x)dx + o(n− 1

2 )

= e
1
2
(θσ

√
n)2(1 − Φ(θσ

√
n)) + o(n− 1

2 ).
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Moreover we have the following asymptotic formula of Φ(x)

e
1
2
x2(1 − Φ(x)) ∼ (

√
2πx)−1 as x → ∞,

which shows the lemma. �

Set

U(x) =
1√
2πσ

∫ x
0

u(y)dy, V (x) =
1√
2πσ

∫ x
0

v(y)dy.

Then we can prove the following lemma.

Lemma 5. For every θ > 0 and x ≥ 0,

(1) limn→∞ n
3
2 ũn(θ) = Ũ(θ), limn→∞ n

3
2 ṽn(θ) = Ṽ (θ).

(2) limn→∞ n
3
2un(x) = U(x), limn→∞ n

3
2 vn(x) = V (x).

Proof. Combining (1) of Lemma 2, Lemmas 3 and 4, we have for

θ > 0,

lim
n→∞

n
3
2 ũn(θ) =

1√
2πσθ

exp

{ ∞∑
n=1

1

n
E(e−θζn ; ζn > 0)

}
=

ũ(θ)√
2πσθ

.

It is easy to see that the last term of the above is Ũ(θ). Using the same

method, we get the assertion for Ṽ . By the extended continuity theorem

for Laplace transform (see [5]), (1) yields (2). The proof of the lemma is

complete. �

The next lemma is very useful to obtain various asymptotic results in

the next section.

Lemma 6. For every θ > 0 and x ≤ 0,

lim
n→∞

n
3
2Ex(e

θζn ; τ > n) = u(−x) Ṽ (θ).

Proof. If x = 0, the assertion is just Lemma 5. Therefore we prove

the case x < 0. Let kn be the first index k at which µn is attained. Then
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we have

Ex(e
θζn ; τ > n)

= eθx
n∑
j=0

E(eθζn ;µn ≤ −x, kn = j)

= eθx
n∑
j=0

E(eθζn ; ζ0, · · · , ζj−1 < ζj ≤ −x, ζj+1, · · · , ζn ≤ ζj)

= eθx
n∑
j=0

E(eθζj ; ζ0, · · · , ζj−1 < ζj ≤ −x)E(eθζn−j ; τ > n− j)(2.1)

= eθx
n∑
j=0

ṽn−j(θ)
∫ −x

0−
eθyduj(y).

In the last equality we use the duality lemma. (see e.g. [5]). In view of

Lemma 5, applying (2) of Lemma 2 to the last term, we have

lim
n→∞

n
3
2Ex(e

θζn ; τ > n) = eθx
{
Ṽ (θ)

∫ −x

0−
eθydu(y) + ṽ(θ)

∫ −x

0−
eθydU(y)

}
.

Applying integration by parts to the first term in the above bracket, we see

Ṽ (θ)

∫ −x

0−
eθydu(y) = Ṽ (θ)

{
e−θxu(−x) − θ

∫ −x

0
eθyu(y)dy

}
.

The identity ṽ(θ) =
√

2πσθṼ (θ) and the definition of U(x) imply

ṽ(θ)

∫ −x

0−
eθydU(y) = θṼ (θ)

∫ −x

0
eθyu(y)dy.

Combining the above three results, the proof of the lemma is complete. �

Remark. To prove Lemmas 4, 5 and 6 in the case where ζ is centered

lattice and satisfies the condition (a) (without E|ζ|3 < ∞), we enumerate

the modified points. In this case the support of the distribution of ζ is

concentrated on the set {dz; z ∈ Z} with some d > 0, and the local limit

theorem

lim
n→∞

[
sup
k∈Z

∣∣∣∣∣√nP (ζn = dk) − d√
2πσ

exp

{
− (dk)2

2nσ2

}∣∣∣∣∣
]

= 0
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holds (see e.g. [5]). Using this, we have for θ > 0,

lim
n→∞

√
nE(e−θζn ; ζn > 0) =

d√
2πσ

∞∑
k=1

e−θdk,

which corresponds to Lemma 4. Let U and V be defined by

U(x) =
d√
2πσ

[x/d ]−1∑
j=0

u(dj), V (x) =
d√
2πσ

[x/d ]∑
j=0

v(dj),

where [x/d ] is the integer part in x/d. Then (1) of Lemma 5 holds, and

(2) of Lemma 5 holds at every continuous point. If x takes value on the set

{dz; z = 0, −1, · · ·}, Lemma 6 holds in this case.

3. Conditional limit theorems

Throughout this section, Conditions (A) and (B) are assumed to be

satisfied. In this section we study some asymptotic results and conditional

limit theorems of (Sn, n ≥ 1). In particular Lemma 10 plays a key role in

the proof of Theorem. From now on λ stands for eψ(α). Let f be a function

on Rn. By (1.4), we have for x ∈ R,

Exf(S1, · · · , Sn) = λne−αxEx[e
αζnf(ζ1, · · · , ζn)].(3.1)

The relation (3.1) combined with Lemma 6 implies the next two lemmas.

Lemma 7. Let K ∈ R be fixed and Mn = max0≤i≤n Si.
(1) If x ≤ K, then as n → ∞,

Px(Mn ≤ K) ∼ u(K − x)eα(K−x)Ṽ (α) n− 3
2λn.

(2) If θ > −α and x ≤ K, then as n → ∞,

Ex(e
θSn ;Mn ≤ K) ∼ u(K − x)eα(K−x)+θK Ṽ (θ + α) n− 3

2λn.

(3) If θ > α, then as n → ∞,

E(e−θMn) ∼ η̃(θ)n− 3
2λn,

where η(y) = Ṽ (α)eαyu(y).
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Proof. Since (1) follows from (2) by setting θ = 0, we prove (2). Using

the notations in Section 2 and (3.1), we have

Ex(e
θSn ;Mn ≤ K) = λneθK+α(K−x)Ex−K(e(θ+α)ζn ; τ > n).

Therefore if θ+α > 0, Lemma 6 implies (2). Using (3.1) and doing a similar

calculation as in (2.1), we see

Ee−θMn = λnEe−θµn+αζn

= λnEe−(θ−α)µn−α(µn−ζn)

= λn
n∑
j=0

ṽj(α)ũn−j(θ − α).

Taking account of (2) of Lemma 2 and Lemma 5, we find that

limn→∞ λ−nn
3
2Ee−θMn exists if θ > α. Hence (1) combined with the ex-

tended continuity theorem for Laplace transform provides (3). The proof of

the lemma is complete. �

Remark. The limits of the left hand side of Lemma 7 have been con-

sidered by Afanas’ev [1], Bertoin and Doney [3], Doney [4], Iglehart [7] and

Veraverbeke and Teugels [15]. However their results are not given in explicit

forms nor in appropriate forms for our purpose.

Lemma 8. Let x ≤ K and f be a bounded continuous function on

(−∞,K]. Then

lim
n→∞

Ex[f(Sn) | Mn ≤ K] =
1

cK

∫ K
−∞

f(y)v(K − y)eαydy,

where cK =
∫K
−∞ v(K − y)eαydy.

Proof. It follows from (1) and (2) of Lemma 7 that if θ ≥ 0,

lim
n→∞

Ex(e
θSn | Mn ≤ K) = eθK

Ṽ (θ + α)

Ṽ (α)

=

∫K
−∞ e(θ+α)y v(K − y)dy∫K

−∞ eαy v(K − y)dy
.
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In the last equality we used the change of variable. Hence the continuity

theorem for Laplace transform implies the lemma. �

We make use of the following lemma in the proof of Lemma 10. This

lemma holds for arbitrary random walks.

Lemma 9. Let fi, 0 ≤ i ≤ k, be Borel measurable functions. If the left

or right hand side of below exists, then the following equality holds.∫
R

dxf0(x)Ex[f1(S1)×· · ·×fk(Sk)] =

∫
R

dxfk(x)Ex[fk−1(S
′
1)×· · ·×f0(S

′
k)],

where S′
i = −Si.

Proof. Let k = 1 and F (x) = P (S1 ≤ x). Using Fubini’s theorem

repeatedly, we have∫
dxf(x)Exg(S1) =

∫
dF (y)

∫
dxf(x)g(x + y)

=

∫
dF (y)

∫
dxf(x− y)g(x)

=

∫
dx g(x)

∫
dF (y)f(x− y)

=

∫
dx g(x)Exf(S′

1),

which shows the lemma if k = 1. Assume that the lemma holds if k =

1, · · · , n. Set g(x) = Ex[fn+1(S1)] and h(x) = Ex[fn−1(S
′
1) × · · · × f0(S

′
n)].

By the assumption and the Markov property, we have∫
dxf0(x)Ex[f1(S1) × · · · × fn+1(Sn+1)]

=

∫
dxf0(x)Ex[f1(S1) × · · · × fn(Sn)g(Sn)]

=

∫
dxfn(x)g(x)Ex[fn−1(S

′
1) × · · · × f0(S

′
n)]

=

∫
dxfn(x)h(x)Ex[fn+1(S1)]

=

∫
dxfn+1(x)Ex[fn(S

′
1)h(S′

1)]

=

∫
dxfn+1(x)Ex[fn(S

′
1) × · · · × f0(S

′
n+1)].



312 Katsuhiro Hirano

By induction the lemma is proved. �

To prove the next lemma that is special interest to us, we must define

two homogeneous Markov processes (YK,n, n ≥ 1) and (ZK,n, n ≥ 1) on

(−∞,K]. Let (YK,n, n ≥ 1) (respectively (ZK,n, n ≥ 1)) has a transition

function pK (respectively qK) as follows.

pK(x, dy) =
u(K − y)

u(K − x)
P (x + ζ ∈ dy)1(y≤K), x ≤ K,

qK(x, dy) =
v(K − y)

v(K − x)
P (x− ζ ∈ dy)1(y≤K), x ≤ K.

We introduce the initial distribution

P (ZK,0 ∈ dx) =
1

cK
eαxv(K − x)dx 1(x≤K),(3.2)

where cK is defined in Lemma 8. Since Eζ = 0, it follows from Lemma 1 that

pK and qK certainly are Markov transition functions on (−∞,K]. The form

of pK means that u(K−·) is a harmonic function for the associated random

walk killed as it enters (K,∞), and that {u(K − ζn)1(µn ≤ K);n ≥ 0} is a

Martingale with respect to Px, x ≤ K. The law of (YK,n, n ≥ 1) is connected

with that of (ζn, n ≥ 1) in the following identity. Let f be a function on

Rm and x ≤ K. Then

Exf(YK.1, · · · , YK.m)(3.3)

=
1

u(K − x)
Ex[f(ζ1, · · · , ζm)u(K − ζm);µm ≤ K].

Now we prove the main object of this section.

Lemma 10. Let m ∈ N and x ≤ K. If g is a bounded function on Rm

and f is a bounded continuous function on Rm+1, then as n → ∞,

Ex
[
g(S1, · · · , Sm)f(Sn, · · · , Sn−m) | Mn ≤ K

]
→ Exg(YK,1, · · · , YK,m) Ef(ZK,0, · · · , ZK,m).

Proof. Let K ∈ R be fixed. To avoid complexities, we omit K in YK,i
and ZK,i and set Λn = (Mn ≤ K). Without loss of generality, we assume
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0 ≤ f , g ≤ 1 and f(x0, · · · , xm) =
∏m
i=0 fi(xi) with fi bounded continuous

on R. Denote g(S1, · · · , Sm) by g(S). By the Markov property,

Ex
[
g(S)f(Sn, · · · , Sn−m) | Λn

]
=

1

Px(Λn)
Ex

[
g(S); Λm, ESm

[ m∏
i=0

fi(Sn−m−i); Λn−m
]]

(3.4)

= Ex

[
g(S); Λm,

PSm(Λn−m)

Px(Λn)
hn−m(Sm)

]
,

where hn(y) = Ey[
∏m
i=0 fi(Sn−i) | Λn]. Using (1) of Lemma 7, we have for

y ≤ K,
Py(Λn−m)

Px(Λn)
→ λ−m u(K − y)

u(K − x)
eα(x−y) as n → ∞.(3.5)

Set h(y) = Ey[
∏m−1
i=0 fi(Sm−i); Λm]. Then

hn(y) =
1

Py(Λn)
Ey[fm(Sn−m); Λn−m, h(Sn−m)]

=
Py(Λn−m)

Py(Λn)
Ey[fm(Sn−m)h(Sn−m) | Λn−m].

Therefore we have by (1) of Lemma 7 and Lemma 8,

lim
n→∞

hn(y) =
λ−m

cK

∫ K
−∞

dz eαzv(K − z)fm(z)h(z).(3.6)

Collecting (3.4)–(3.6) and then using Fatou’s lemma, we have

lim inf
n→∞

Ex
[
g(S)

m∏
i=0

fi(Sn−m) | Λn
]

≥ Ex

[
g(S),Λm, λ−mu(K − Sm)

u(K − x)
eα(x−Sm)

]
(3.7)

×λ−m

cK

∫ K
−∞

dy eαyv(K − y)fm(y)h(y).

Using (3.1) and then Lemma 9, we rewrite the last term in (3.7) with obvious

notations as follows.

λ−m

cK

∫ K
−∞

dy eαyv(K − y)fm(y)h(y)
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=
λ−m

cK

∫ K
−∞

dy eαyv(K − y)fm(y)Ey
[m−1∏
i=0

fi(Sm−i); Λm
]

=
1

cK

∫ K
−∞

dy v(K − y)fm(y)Ey
[m−1∏
i=0

fi(ζm−i)e
αζm ;µm ≤ K

]
=

1

cK

∫ K
−∞

dy eαyf0(y)Ey
[ m∏
i=1

fi(ζ
′
i)v(K − ζ ′m);µ′

m ≤ K
]

(3.8)

=
1

cK

∫ K
−∞

dy eαyv(K − y)f0(y)Ey
[ m∏
i=1

fi(Zi)
]

= E

[ m∏
i=0

fi(Zi)

]
.

In the last equality we have used (3.2). Similar calculations show that

Ex

[
g(S),Λm, λ−mu(K − Sm)

u(K − x)
eα(x−Sm)

]
=

1

u(K − x)
Ex[g(ζ1, · · · , ζm)u(K − ζm), µm ≤ K](3.9)

= Exg(Y1, · · · , Ym).

Combining (3.7)–(3.9), we see

lim inf
n→∞

Ex[g(S)f(Sn, · · · , Sn−m) | Λn](3.10)

≥ Exg(Y1, · · · , Ym)Ef(Z0, · · · , Zm).

Set f = 1 on (3.10). Then we get

lim inf
n→∞

Ex[g(S) | Λn] ≥ Exg(Y1, · · · , Ym).

Replacing g by 1 − g in the above, we have

Exg(Y1, · · · , Ym) ≥ 1 − lim inf
n→∞

Ex[(1 − g)(S) | Λn]

= lim sup
n→∞

Ex[g(S) | Λn].

Thus we have

lim
n→∞

Ex[g(S) | Λn] = Exg(Y1, · · · , Ym).
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Replacing f by 1 − f in (3.10) and using the above result, we get

Exg(Y1, · · · , Ym)Ef(Z0, · · · , Zm) ≥ lim sup
n→∞

Ex[g(S)f(Sn, · · · , Sn−m) | Λn].

Thus our lemma is established. �

Remark. (i) If f ≡ 1, Lemma 10 was obtained by Keener [9] for integer

valued random walks and by Bertoin and Doney [3] for general case with

concise proof.

(ii) In [1] Afanas’ev claimed that the limit of the left hand side of Lemma

10 exists, and used it without proof. However he did not show what the

limit is.

(iii) Lemma 10 corresponds to the following fact for Brownian motion

with drift. Let Ω = C([0,∞) → R) and Px be Wiener measure on Ω

satisfying Px(ω(0) = x) = 1. Set τ = inf{t > 0;ω(t) − αt = 0}, α > 0. If A

and B are Borel sets of C([0, t0] → (0,∞)), then for x > 0,

lim
t→∞

Px({ω(s) − αs, s ≤ t0} ∈ A, {ω(t− s) − α(t− s), s ≤ t0} ∈ B | τ > t)

= Qx(A) ×
∫ ∞

0
dy α2ye−αyQy(B),

where Qz, z > 0, is the law of 3-dimensional Bessel process starting at z on

Ω.

4. Solution of the functional equation

In this section we assume that W satisfies the conditions in Theorem.

To abbreviate the notations, let us put, for x ≤ K and t > 0,

gK,t(x) = u(K − x)Ex

[
exp

{
− t

∞∑
i=1

W (YK,i)
}]

,

ĝK,t(x) = v(K − x)Ex

[
exp

{
− t

∞∑
i=1

W (ZK,i)
}]

.

These functions appear naturally in the proof of Theorem in the next sec-

tion. To prove our theorem, we need to investigate the properties of these

functions. We prove lemmas only for gK,t. It is trivial that similar results

hold for ĝK,t.
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Lemma 11. Let x < N < K and τ
(K)
N = min{n > 0;YK,n > N}. Then

Px
(
τ

(K)
N < ∞

)
≤ u(K −N)

u(K − x)
.

Proof. By (3.3), we have

Px
(
τ

(K)
N < ∞

)
=

∞∑
j=1

Px
(
τ

(K)
N = j

)

=
1

u(K − x)

∞∑
j=1

Ex
[
u(K − ζj); ζ1, · · · , ζj−1 ≤ N < ζj ≤ K

]

≤ u(K −N)

u(K − x)

∞∑
j=1

Px(ζ1, · · · , ζj−1 ≤ N < ζj)

=
u(K −N)

u(K − x)
.

The proof of the lemma is complete. �

Lemma 12. Let K ∈ R and t > 0 be fixed.

(1) For all x ≤ K, gK,t(x) = Ex[e
−tW (ζ)gK,t(ζ); ζ ≤ K].

(2) If K ′ ≥ K, then for all x ≤ K, 0 < gK,t(x) ≤ gK′,t(x).

(3) limx→−∞ gK,t(x)/(K − x) = (Eζτ )
−1.

Proof. (1) follows from the Markov property and (3.3). We prove (2).

By Jensen’s inequality,

gK,t(x) ≥ exp

{
− t

∞∑
n=1

ExW (YK,n)

}
.

Therefore if we show that
∑∞
n=1 ExW (YK,n) < ∞, the positivity of gK,t(x)

follows. Set c1 = supy≤KW (y)e−γy. Using this and (3.3), we have

ExW (YK,n) ≤ c1Ex(e
γYK,n)

= c1
1

u(K − x)
Ex[e

γζnu(K − ζn);µn ≤ K].
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However Chebyshev’s inequality shows u(K − x) ≤ ũ(θ)eθ(K−x) for θ > 0.

Hence, setting θ = γ/2 and c2 = c1ũ(θ) and calculating as in (2.1), we see

ExW (YK,n) ≤ c2
1

u(K − x)
eγKEx−K(eθζn ; τ > n)

= c2
1

u(K − x)
eθ(x+K)

n∑
j=0

ṽn−j(θ)
∫ K−x

0−
eθyduj(y)(4.1)

≤ c2
1

u(K − x)
eγK

n∑
j=0

ṽn−j(θ)uj(K − x).

Therefore we have

∞∑
n=1

ExW (YK,n) ≤ c3 e
γK < ∞,

where c3 = c1ũ(θ)ṽ(θ) does not depend on x. Thus the positivity of gK,t(x)

is obtained. Let K ′ ≥ K ≥ x. From the definition of gK,t,

gK,t(x) = lim
n→∞

u(K − x)Ex
[
e−t

∑n

1
W (YK,i)

]
= lim

n→∞
Ex

[
e−t

∑n

1
W (ζi)u(K − ζn);µn ≤ K

]
≤ lim

n→∞
Ex

[
e−t

∑n

1
W (ζi)u(K ′ − ζn);µn ≤ K ′

]
= gK′,t(x),

which proves (2). We turn to the proof of (3). By the renewal theory,

u(y) ∼ (Eζτ )
−1y as y → ∞ (see e.g. [5]), it is enough to prove that

limx→−∞ gK,t(x)/u(K − x) = 1. Let N < 0 be fixed and x < N . Then

0 ≤ 1 − gK,t(x)

u(K − x)
= Ex

[
1 − e−t

∑∞
1
W (YK,i)

]
≤ Px

(
τ

(K)
N < ∞

)
+ t

∞∑
n=1

Ex
(
W (YK,n); τ

(K)
N = ∞

)
.(4.2)

Using the renewal theory and Lemma 11, we see

Px
(
τ

(K)
N < ∞

)
≤ u(K −N)

u(K − x)
→ 0 as x → −∞.(4.3)
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Applying the method in (4.1), we have

Ex
(
W (YK,n); τ

(K)
N = ∞

)
≤ c1Ex

(
eθYK,n ; τ

(K)
N > n

)
≤ c2

1

u(K − x)
eθ(K+N)

n∑
j=0

ṽn−j(θ)uj(N − x).

Therefore we have

∞∑
n=1

Ex
(
W (YK,n); τ

(K)
N = ∞

)
≤ c3 e

θ(K+N) = c4 e
θN ,(4.4)

where c4 does not depend on N and x. Combining (4.2)–(4.4) and letting

N → −∞, we get (3). The proof of the lemma is complete. �

To investigate the properties of limK→∞ gK,t(x), we use the following

lemma.

Lemma 13. Set fk,t(x) = gk+1,t(x) − gk,t(x) for x ≤ k. Then

sup
x≤k

fk,t(x) ≤ u(1) exp
{
− t min

s≥k
W (s)

}
.

Proof. Using the definition of gk,t and then (3.3), we have

fk,t(x) = lim
n→∞

{
u(k + 1 − x)Ex

[
e−t

∑n

1
W (Yk+1,i)

]
−u(k − x)Ex

[
e−t

∑n

1
W (Yk,i)

]}
= lim

n→∞

{
Ex

[
e−t

∑n

1
W (ζi)u(k + 1 − ζn);µn ≤ k + 1

]
−Ex

[
e−t

∑n

1
W (ζi)u(k − ζn);µn ≤ k

]}
= lim

n→∞

{
Ex

[
e−t

∑n

1
W (ζi){u(k + 1 − ζn) − u(k − ζn)};µn ≤ k

]
+Ex

[
e−t

∑n

1
W (ζi)u(k + 1 − ζn); k < µn ≤ k + 1

]}
= lim

n→∞
{Jn + Kn}.
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In the third equality we used the fact (µn ≤ k + 1) = (µn ≤ k) + (k < µn ≤
k + 1). We estimate Jn and Kn. Using the property u(y + z) ≤ u(y) + u(z)

(see e.g. [5]), we have

Jn ≤ u(1)Px(µn ≤ k) → 0 as n → ∞.

Set T = τ
(k+1)
k . Then by (3.3),

Kn = u(k + 1 − x)Ex
[
e−t

∑n

1
W (Yk+1,i);T ≤ n

]
≤ u(k + 1 − x)Ex

[
e−tW (Yk+1,T );T ≤ n

]
≤ u(k + 1 − x)Px(T < ∞) exp

{
− t min

k≤s≤k+1
W (s)

}
≤ u(1) exp

{
− tmin

s≥k
W (s)

}
.

The last inequality comes from Lemma 11. Collecting the above results, the

proof of the lemma is complete. �

From (2) of Lemma 12, we can define gt(x) := limn→∞ gn,t(x) for all

x ∈ R. If x ≤ n, we express gt(x) as

gt(x) =
∞∑
j=n

fj,t(x) + gn,t(x).(4.5)

By Lemma 13, gt(x) is finite for all x. The following lemma shows that gt is

a solution of the functional equation with boundary conditions in Theorem.

Lemma 14. Let t > 0 be fixed.

(1) For all x ∈ R, gt(x) = Ex[e
−tW (ζ)gt(ζ)].

(2) limx→−∞ gt(x)/|x| = (Eζτ )
−1.

(3) limx→+∞ gt(x) = 0.

Proof. (1) and (2) of Lemma 12 combined with the monotone con-

vergence theorem imply (1). (2) and (3) of Lemma 12 yield

1

Eζτ
= lim
x→−∞

g0,t(x)

|x| ≤ lim inf
x→−∞

gt(x)

|x| .
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By virtue of Lemma 13 and (4.5), (3) of Lemma 12 shows

lim sup
x→−∞

gt(x)

|x| ≤ lim sup
x→−∞

1

|x|
{ ∞∑
n=0

fn,t(x) + g0,t(x)
}

= lim
x→−∞

g0,t(x)

|x| =
1

Eζτ
.

Thus (2) is proved. Let x ∈ [n− 1, n]. Then we have

gn,t(x) = u(n− x)Ex
[
e−t

∑∞
1
W (Yn,i)

]
≤ u(n− x)Ex

[
e−tW (Yn,1)

]
= Ex

[
e−tW (ζ)u(n− ζ); ζ ≤ n

]
≤ E

[
e−tW (x+ζ)u(1 − ζ)

]
.

Hence we have

sup
n−1≤x≤n

gn,t(x) ≤ E

[
u(1 − ζ) exp

{
− t min

x≥n−1
W (x + ζ)

}]
.

Applying the dominated convergence theorem to the right hand side, we get

lim sup
n→∞

sup
n−1≤x≤n

gn,t(x) = 0.

In addition we have by Lemma 13,

lim sup
n→∞

sup
n−1≤x≤n

∞∑
j=n

fj,t(x) = 0.

Two estimates above and (4.5) provide

lim sup
n→∞

sup
n−1≤x≤n

gt(x) = 0,

which shows (3). The proof of the lemma is complete. �

In the next section we show that gt is uniquely determined by the con-

ditions in Lemma 14.
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5. Proof of Theorem

Firstly we prove the convergence part of Theorem. Secondly we show

the uniqueness of solution of the functional equation in Theorem. We devide

the proof into five parts.

Step 1. Let K > 0 and t > 0. Then as n → ∞,

λ−nn
3
2E

[
f(Sn)e

−t
∑n

1
W (Si);Mn ≤ K

]
→ gK,t(0)√

2πψ′′(α)

∫ K
−∞

dx eαx−tW (x)f(x)ĝK,t(x).

Proof. Taking account of (3.2), (1) of Lemma 7 and the identity√
2πψ′′(α)Ṽ (α)eαK = cK , Step 1 is equivalent to

lim
n→∞

E
[
f(Sn)e

−t
∑n

1
W (Si) | Mn ≤ K

]
= E

[
e−t

∑∞
1
W (Yi)

]
E
[
f(Z0)e

−t
∑∞

0
W (Zi)

]
,

where Yi = YK.i and Zi = ZK,i. With no loss of generality we assume

0 ≤ f ≤ 1. For m ≤ n,

0 ≤ f(Sn)e
−t
∑n

1
W (Si) ≤ f(Sn)e

−t
∑m

1
W (Si)−t

∑n

n−m
W (Si) ≤ 1.

By virtue of Lemma 10, letting n → ∞ and then m → ∞, we get

lim sup
n→∞

E
[
f(Sn)e

−t
∑n

1
W (Si) | Mn ≤ K

]
≤ E

[
e−t

∑∞
1
W (Yi)

]
E
[
f(Z0)e

−t
∑∞

0
W (Zi)

]
.

On the other hand

0 ≤ f(Sn)e
−t
∑m

1
W (Si)−t

∑n

n−m
W (Si) − f(Sn)e

−t
∑n

1
W (Si) ≤ t

n−m−1∑
i=m+1

W (Si).

Thus to obtain the liminf estimate, it suffices to show that

lim sup
m→∞

lim sup
n→∞

n−m−1∑
i=m+1

E
(
W (Si) | Mn ≤ K

)
= 0.(5.1)
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From the assumption of W,W (x) ≤ c1e
γx for x ≤ K. Using this and the

Markov property, we have

E
(
W (Si);Mn ≤ K

)
≤ c1 E(eγSi ;Mn ≤ K)

= c1 E
[
eγSiPSi(Mn−i ≤ K);Mi ≤ K

]
.

Let θ ∈ (α, α + γ). By Chebyshev’s inequality and (3) of Lemma 7,

Px(Mn ≤ K) ≤ eθ(K−x)Ee−θMn ≤ c2 e
−θxn− 3

2λn.

Combining the two estimates above and (2) of Lemma 7, we have

E
(
W (Si) ; Mn ≤ K

)
≤ c3(n− i)−

3
2λn−iE(e(γ−θ)Si ;Mi ≤ K)

≤ c4(n− i)−
3
2 i−

3
2 λn.

Therefore we have

n−m−1∑
i=m+1

E
(
W (Si) | Mn ≤ K

)
≤ c4

P (Mn ≤ K)
λn
n−m−1∑
i=m+1

(n− i)−
3
2 i−

3
2 .

Applying (2) of Lemma 2 and (1) of Lemma 7 to the right hand side, we

see

lim sup
n→∞

n−m−1∑
i=m+1

E
(
W (Si) | Mn ≤ K

)
≤ c5

∞∑
i=m+1

i−
3
2 ,

which shows (5.1). Hence Step 1 is proved. �

Step 2. Let K > 0. Then as n → ∞,

λ−nn
3
2E

[
f(Sn)h

( n∑
i=1

W (Si)

)
;Mn ≤ K

]

→ 1√
2πψ′′(α)

∫ ∞

0
ν(dt)

∫ K
−∞

dx eαx−tW (x)f(x)gK,t(0)ĝK,t(x).

Proof. By (1) of Lemma 7, there exists lK such that P (Mn ≤ K) ≤
lK n− 3

2λn, n ≥ 1. Using this, we have∣∣∣E[f(Sn)e
−t
∑n

1
W (Si);Mn ≤ K

]∣∣∣ ≤ ‖f‖∞ lK n− 3
2λn, n ≥ 1.
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From the assumption of h,

E

[
f(Sn)h

( n∑
i=1

W (Si)

)
;Mn ≤ K

]

=

∫ ∞

0
ν(dt)E

[
f(Sn)e

−t
∑n

1
W (Si);Mn ≤ K

]
.

Therefore the dominated convergence theorem and Step 1 yeild Step 2. �

Step 3. The following relation holds.

lim sup
K→∞

lim sup
n→∞

λ−nn
3
2E

[∣∣∣f(Sn)
∣∣∣h( n∑

i=1

W (Si)

)
;Mn > K

]
= 0.

Proof. By the assumptions of h and W , there exist positive constants

A, B and K such that h(x) ≤ Ax−β for x > 0 and W (x) ≥ Beδx for x > K.

Hence, on (Mn > K), we have

h

( n∑
j=1

W (Sj)

)
≤ AW (Mn)

−β ≤ AB−β exp{−βδMn}.

Using this inequality, we see

E

[∣∣∣f(Sn)
∣∣∣h( n∑

i=1

W (Si)

)
;Mn > K

]
≤ cE(e−βδMn ;Mn > K),

where c = AB−β‖f‖∞. Assuming βδ > α, we can apply (3) of Lemma 7 to

the right hand side. So we get

lim sup
n→∞

λ−nn
3
2E

[∣∣∣f(Sn)
∣∣∣h( n∑

i=1

W (Si)

)
;Mn > K

]
≤ c

∫ ∞

K
e−βδxη(dx),

which shows Step 3. �

Step 4. As n → ∞,

λ−nn
3
2E

[
f(Sn)h

( n∑
i=1

W (Si)

)]

→ 1√
2πψ′′(α)

∫ ∞

0
ν(dt)

∫
R
dx eαx−tW (x)f(x)gt(0)ĝt(x).
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Proof. Steps 2 and 3 show that

lim
n→∞

λ−nn
3
2E

[
f(Sn)h

( n∑
i=1

W (Si)

)]

= lim
K→∞

lim
n→∞

λ−nn
3
2E

[
f(Sn)h

( n∑
i=1

W (Si)

)
;Mn ≤ K

]

= lim
K→∞

1√
2πψ′′(α)

∫ ∞

0
ν(dt)

∫ K
−∞

dx eαx−tW (x)f(x)gK,t(0)ĝK,t(x)

and this limit is finite. Without loss of generality we assume f ≥ 0. By (2) of

Lemma 12, for fixed x ∈ R and t > 0, gK,t(0) ↗ gt(0) and ĝK,t(x) ↗ ĝt(x) as

K → ∞. Thus the monotone convergence theorem implies Step 4. Therefore

the first half part of Theorem is proved. �

Step 5. gt is the unique solution of the functional equation in Theorem.

Proof. In Section 4, we have already seen that gt(x) =

limK→∞ gK,t(x) is a solution of that equation. Therefore we prove the

uniqueness of solution. It is enough to prove the case t = 1. We assume

that g is another solution of that equation if t = 1. Let ε > 0 and x ∈ R be

fixed. Thanks to the renewal theory and the boundary condition at −∞,

there exists L < x such that |g(y) − g1(y)|/u(−y) ≤ ε for y < L. On the

other hand, by the boundary condition at +∞, we take K > x which sat-

isfies that |g(y) − g1(y)| ≤ ε for y > K. Put f = |g − g1|. Using these

estimates, we have

f(x) ≤ Ex
[
e−W (ζ)f(ζ);L ≤ ζ ≤ K

]
+ Ex

[
e−W (ζ)f(ζ); ζ < L

]
+Ex

[
e−W (ζ)f(ζ); ζ > K

]
≤ Ex

[
e−W (ζ)f(ζ);L ≤ ζ ≤ K

]
+ εEx

[
e−W (ζ)u(−ζ); ζ < L

]
+εEx

[
e−W (ζ); ζ > K

]
= Ex

[
e−W (ζ)f(ζ);L ≤ ζ ≤ K

]
+ a(x) + b(x).

Iterating the above inequality, we have for all n ∈ N,

f(x) ≤ Ex
[
e−
∑n

1
W (ζi)f(ζn);L ≤ ζ1, · · · , ζn ≤ K

]
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+
n−1∑
j=0

Ex
[
e−
∑j

1
W (ζi){a(ζj) + b(ζj)};L ≤ ζ1, · · · , ζj ≤ K

]
.

The first term of the right hand side is less than Ex(f(ζn);L ≤ ζn ≤ K).

Since f(y) ≤ C = CK,L if L ≤ y ≤ K,

Ex(f(ζn);L ≤ ζn ≤ K) ≤ C Px(L ≤ ζn ≤ K) → 0 as n → ∞.

Hence we have

f(x) ≤
∞∑
n=0

Ex
[
e−
∑n

1
W (ζi)a(ζn);L ≤ ζ1, · · · , ζn ≤ K

]
+

∞∑
n=0

Ex(b(ζn);µn ≤ K) = IK + JK .(5.2)

Set T = TL = min{n > 0;YK,n < L}. Then we have

Ex
[
e−
∑n

1
W (ζi)a(ζn);L ≤ ζ1, · · · , ζn ≤ K

]
= εEx

[
e−
∑n+1

1
W (ζi)u(−ζn+1); ζn+1 < L ≤ ζ1, · · · , ζn ≤ K

]
= εu(K − x)Ex

[
e−
∑n+1

1
W (YK,i)

u(−YK,n+1)

u(K − YK,n+1)
;T = n + 1

]

≤ εu(K − x)Ex
[
e−
∑T

1
W (YK,i);T = n + 1

]
.

Using this inequality, we see

IK ≤ εu(K − x)Ex
[
e−
∑T

1
W (YK,i)

]
→ ε gK,1(x) as L → −∞.(5.3)

By the definition of b(y),

Ex(b(ζn);µn ≤ K) = εEx
[
e−W (ζn+1); ζ1, · · · , ζn ≤ K < ζn+1

]
≤ ε exp

{
− min
t≥K

W (t)
}
Px(ζ1, · · · , ζn ≤ K < ζn+1).

It easily follows from this inequality that

JK ≤ ε exp
{
− min
t≥K

W (t)
}
.(5.4)
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Collecting (5.2)–(5.4), we have

|g(x) − g1(x)| ≤ lim sup
K→∞

IK ≤ ε g1(x).

Since ε > 0 and x ∈ R are arbitrary, this inequality shows g ≡ g1. The

proof of Theorem is established. �

From (2) of Lemma 12 we have the positivity of gt(0) and ĝt(x) for each

t > 0 and x ∈ R. Therefore we get the following corollary which is used in

the next section.

Corollary. Let f be non-negative and f �≡ 0 on R. Then the limiting

constant c in Theorem is positive.

Before ending this section, we point out that there are counter examples

for our theorem if βδ > α does not hold. Let Condition (A) be satisfied. Set

f = 1, W (x) = ex and h(x) ∼ ax−α for some a > 0. In this case βδ ≤ α.

By (3.1),

Eh

( n∑
i=1

eSi
)

= λnE

[
eαζnh

( n∑
i=1

eζi
)]

.

Applying the methods in Kozlov [11], we see

E

[
eαζnh

( n∑
i=1

eζi
)]

∼ ac n− 1
2 as n → ∞,(5.5)

where c = limn→∞
√
nE{∑ni=0 e

−ζi}−α ∈ (0,∞). Hence we get

Eh

( n∑
i=1

eSi
)
∼ ac n− 1

2λn as n → ∞.

In this caes Theorem does not hold. Next we assume that f(+∞) exists,

W (x) = ex and h(x) ∼ ax−β for some a > 0 and 0 < β < α. Notice βδ < α.

Define the random walk (ζ∗n, n ≥ 1) where the distribution of ζ∗1 is given by

P (ζ∗1 ∈ dy) = e−βy−ψ(β)P (S1 ∈ dy).
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It is easy to see that Eζ∗1 > 0. Set θ = eψ(β) ∈ (λ, 1). Using (ζ∗n, n ≥ 1) and

the duality lemma, we have

θ−nE
[
f(Sn)h

( n∑
i=1

eSi
)]

= E

[
f(ζ∗n)e

βζ∗nh

( n∑
i=1

eζ
∗
i

)]

= E

f(ζ∗n)h
(
eζ

∗
n

n−1∑
i=0

e−ζ
∗
i

){eζ∗n n−1∑
i=0

e−ζ
∗
i

}β
{ n−1∑
i=0

e−ζ
∗
i

}β
 .

By our assumptions, the dominated convergence theorem implies

lim
n→∞

θ−nE
[
f(Sn)h

( n∑
i=1

eSi
)]

= af(+∞)E

{ ∞∑
i=0

e−ζ
∗
i

}−β
.

This is another counter example.

6. Applications

In this section we give three applications to which our theorem and

corollary can be used. Second one has been treated in [6] with a different

manner.

Application 1. Let (fn(s), n ≥ 0) be a sequence of i.i.d. random gen-

erating functions, i.e.,

fn(s) =
∞∑
j=0

π(j)
n sj , n ≥ 0, |s| < 1,

where πn = (π
(j)
n , j ≥ 0), n ≥ 0 are i.i.d. random vectors satisfying π

(j)
n ≥ 0,∑∞

j=0 π
(j)
n = 1. Let X0 = 1, X1, · · · be a branching process in a random

medium {πn}. When X0, · · · , Xn and π0, · · · , πn are given, Xn+1 is the sum

of Xn random variables which take value k with probability π
(k)
n . In terms

of (fn(s), n ≥ 0),

E
[
sXn+1 | X0, · · · , Xn, π0, · · · , πn

]
= [fn(s)]

Xn , n ≥ 0.
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Set T = min{n > 0;Xn = 0}. It is well known that E log f ′
0(1) ≤ 0 yields

P (T < ∞) = 1. When E log f ′
0(1) = 0 and fn(s) has an expression

fn(s) = 1 − αn
1 − βn

+
αns

1 − βns
,

where 0 ≤ αn, 0 ≤ βn < 1 and αn + βn ≤ 1, Kozlov [11] showed that for

some 0 < c < ∞,

P (T > n) ∼ c/
√
n as n → ∞.

For the special case of fn(s), we consider the rate of decay of P (T > n)

when E log f ′
0(1) < 0. Let (pi, i ≥ 0) be i.i.d. random variables with values

in [0, 1] and

fn(s) =
∞∑
j=0

pn q
j
ns
j =

pn
1 − qns

,

where qn = 1 − pn. That is, (Xn, n ≥ 0) has a geometric offspring distribu-

tions. This process is closely related to random walks in random media. In

this case P (T > n) is expressed as

P (T > n) = E

(
1 +

n∑
i=1

eSi
)−1

,

where Sn =
∑n
i=1 log(pi−1/qi−1). Set h(x) =

∫∞
0 e−(x+1)tdt = (1 + x)−1.

Then

P (T > n) = Eh

( n∑
i=1

eSi
)
.

Suppose that log(p1/q1) satisfies Condition (A). If α ≥ 1, there is no β > α

such that h(x) = O(x−β). Thus our theorem can not be applied if α ≥ 1.

In this case the rate of decay of P (T > n) is deduced from the results

of [1] and [11] (or counter examples in the last section). Let 0 < α < 1.

If we suppose that log(p1/q1) satisfies Condition (B), the rate of decay of

P (T > n) follows from our theorem. Taking W (x) = ex, β = γ = δ = 1 and

f = 1 in Theorem, we have

P (T > n) ∼ c n− 3
2λn as n → ∞,
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where λ = mint>0 E(q1/p1)
t and 0 < c < ∞. The positivity of c is given by

Corollary. In particular, c has a following form.

c =
1√
2πv

∫ ∞

0
dt

∫
R

dx eαx−t(1+expx)gt(0)ĝt(x),

where v = λ−1E[(q1/p1)
α log2(q1/p1)].

Application 2. Let (pi, i ∈ Z) be a doubly infinite sequence of i.i.d.

random variables with values in [0, 1] and F be the σ-field generated by

{pi}. Let X0 = 0, X1, · · · be a random walk in a random medium {pi}, i.e.,

P (Xt+1 = Xt + 1 | F , Xt = i) = pi,

P (Xt+1 = Xt − 1 | F , Xt = i) = 1 − pi.

Alternatively one can describe (Xn, n ≥ 0) as the sequence of states of a

birth and death process in a randm medium with birth parameter pt and

death parameter qt = 1 − pt. In [13] it was shown that if E log(q0/p0) > 0,

limt→∞ Xt = −∞ a.s. In this situation maxt≥0 Xt < ∞ a.s. Let Tn =

min{t > 0;Xt = n}. We consider the rate of decay of P (Tn < ∞) as

n → ∞. Set ξi = log(qi−1/pi−1). P (Tn < ∞) is expressed as follows. (see

[1]).

P (Tn < ∞) = EA

(
A +

n∑
i=1

eSi
)−1

,

where A = 1 +
∑∞
n=1 exp{−(ξ0 + · · · + ξ1−n)} and Sn =

∑n
i=1 ξi. Put

h(x) =
∫∞
0 e−xtν(dt) where ν(t) = 1−E(e−tA). Then h(x) = EA(A+x)−1.

Since A and (Sn, n ≥ 0) are independent, we have

P (Tn < ∞) = Eh

( n∑
i=1

eSi
)
.

We assume that ξ1 satisfies Condition (A). If α ≥ 1, it is easy to see that

EA < ∞ and h(x) ∼ (EA)x−1. To our regret Theorem can not be applied

in this case. The rate of decay of P (Tn < ∞) is given in [1] in this case.

Let 0 < α < 1 and ξ1 satisfy Condition (B). Choosing β > 0 such that

α < β < 1 and E(e−βξ1) < 1, we have b := EAβ ≤ ∑∞
n=0(Ee−βξ1)n < ∞.
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By Chebyshev’s inequality, P (A > y) ≤ by−β. Using this and change of

variable, we see

ν(t) = 1 − E(e−tA) = t

∫ ∞

0
e−tyP (A > y)dy

≤ bΓ(1 − β) tβ.

Applying similar calculations to h(x), we have

h(x) = x

∫ ∞

0
e−xtν(t)dt ≤ b

πβ

sinπβ
x−β.

Therefore if 0 < α < 1 and ξ1 satisfies Condition (B), the rate of decay of

P (Tn < ∞) follows from our theorem. Indeed taking W (x) = ex, γ = δ = 1

and f = 1, Theorem and Corollary imply

P (Tn < ∞) ∼ c n− 3
2λn as n → ∞,

where λ = mint>0 E(p1/q1)
t and 0 < c < ∞. In this case c is expressed as

c =
1√
2πv

∫ ∞

0
dF (y)

∫ ∞

0
dt

∫ ∞

0
dz yzα−1e−t(y+z)gt(0)ĝt(log z),

where v = λ−1E[(q1/p1)
α log2(q1/p1)] and F (y) = P (A ≤ y).

Application 3. Now we state the last application. Let (ζn, n ≥ 1) be

a random walk satisfying the conditions (a), (b) and Eeαζ1 < ∞ for some

α > 0. We consider the asymptotic behavior of E[f(ζn)h(
∑n
i=1 W (ζi))] for

suitable f , h and W . Set λ−1 = Eeαζ1 . We define a random walk (Sn, n ≥ 1)

where the distribution of S1 is given by

P (S1 ∈ dy) = λ eαyP (ζ1 ∈ dy).

Let us define the following:

Condition (A′). For some α > 0, E(e−αS1) < ∞, E(S1e
−αS1) = 0

and E(|S1|3e−αS1) < ∞.

It is trivial that S1 satisfies Conditions (A′) and (B) and the following

identity holds.

E

[
f(ζn)h

( n∑
i=1

W (ζi)

)]
= λ−nE

[
e−αSnf(Sn)h

( n∑
i=1

W (Si)

)]
.
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We remark that Theorem holds even if we replace Condition (A) by Condi-

tion (A′). We assume that f is a continuous function such that

supx∈R |f(x)|e−αx < ∞ and h and W satisfy the conditions in Theorem.

Applying Theorem to the right hand side, we get

lim
n→∞

n
3
2E

[
f(ζn)h

( n∑
i=1

W (ζi)

)]

=
1√
2πσ

∫ ∞

0
ν(dt)

∫
R
dx e−tW (x)f(x)gt(0)ĝt(x),

where gt and ĝt are unique solutions of functional equations in Theorem.

Comparing (1.3) and the above, we find that this is the random walk ana-

logue of Kotani’s limit theorem for Brownian motion in [10].
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