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Determination of the Limiting Coefficient for
Exponential Functionals of Random Walks with
Positive Drift

By Katsuhiro HIRANO

Abstract. Let (S,,n > 1) be a random walk satisfying E£S; > 0
and h be a Laplace transform of a non-negative finite measure on
(0,00). Under additional conditions of S; and h, we consider the
asymptotic behavior of Eh(}.;,e%). In particular we determine
the limiting coefficient for asymptotic of this quantity in terms of the
unique solution of the certain functional equation with boundary con-
ditions. This solution corresponds to the Green function of 27 te ™*A
on R. We apply our result to random processes in random media.
Moreover we obtain the random walk analogue of Kotani’s limit the-
orem for Brownian motion.

1. Introduction and the statement of theorem

Let (Sp,n > 1) be a random walk, i.e., S1,S2 — Si,-- - are independent
and identically distributed random variables. The random variable of the
form Y71, eSi, n > 1, appears in various contexts. For example we meet
this type of variable on random difference equation, hitting probability of a
random walk in random media, and non-extinction probability and expected
number of particles of a branching process and birth and death process in
random media.

In [1] Afanas’ev considered the rate of decay of the tail probability of the
maximum of a transient random walk moving in a random environment. To
obtain the rate of decay, he analyzed the mean of a functional of the variable
S, e5 where (S,,n > 1) is generated by i.i.d. random variables of the
environment. To generalize this problem and clarify his proof, the author
considered asymptotic behavior of the mean of exponential functionals of a
random walk. In [6] we showed that there exists a limit of the mean of expo-
nential functionals of a random walk and its limiting constant is positive and
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finite under certain conditions. Applying this to the problem of Afanas’ev,
we could fill a gap in his result. But the probabilistic representation of the
limiting constant was not given there.

As a continuous version of the result of Afanas’ev, Kawazu and Tanaka
[8] considerd the rate of decay of the tail probability of the maximum of a
diffusion in a drifted Brownian environment by using Yor’s exact formula, in
[16], of joint distribution of exp(B;) and [} exp(2Bs)ds where (By,t > 0) is
a one-dimensional Brownian motion. Roughly speaking, they showed that
if 3> a > 0 and sup,-, °|h(z)| < co, then

t
(1.1) Eh (/ eBSJrO‘Sds) ~ ct3/2em0%t/2 as t — oo,
0

where

5
2_ [e.elyilie olyie o]

c:\/—g_/// y*h(4/2)e " sinh x dedydz, uw = (1+y*)/2+y coshz.
mJo Jo Jo

It seems difficult to understand the probabilistic meaning of limiting con-
stant ¢ even if we go back to the proof of Yor’s formula. On the other hand,
if h is the Laplace transform of a non-negative finite measure v on (0, c0),
ie.,

(1.2) h(z) = / T ety ),

0
Kotani [10] showed that

E [f(Bt)h(/ot V(Bs)ds)] ~ e t73? as t — oo,

under additional conditions of f and V > 0. Here ¢ is explicitely repre-
sented as follows:

(13) o= o= [ f@)] T viaNm (-0 g (o0.0),

where gx(x,y) is the Green function of (2V)™!A on R and —oo is the
entrance boundary of the diffusion with generator (2V)~!A. For detail and
strict conditions we refer to [10]. We note that the assumption (1.2) is
valid when we consider the rate of decay of the maximum of a diffusion
in a drifted Brownian environment, and that we can take V(z) = e® and
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f(x) = e**. Therefore, if h has a form (1.2), Kotani’s theorem combined
with Cameron-Martin transform implies (1.1) and gives another expression
of ¢, that is,

c= % /Rdx eo‘x/ooo v(dA)gx(—00,0) ga(—o0, ),

where gy (—o0, z) is defined by setting V' (z) = e* for g\(—o0,z) in (1.3). So
we get a probabilistic representation of the limiting constant in this case.

A random walk analogue of (1.1) was already given in [6]. Hence our
main object in this paper is to obtain the expression of the limiting con-
stant in the random walk case like the second expression of ¢. To be more
concrete, we find function corresponding to gy(—o0,-) and characterize it
as the unique solution of the certain probabilistic functional equation with
boundary conditions.

Now let us state the conditions of S and our main theorem. To give a
condition of S we introduce

Y (6) = log E exp(—051), 0 cR.

Our conditions are the following:

CONDITION (A). 1 is finite on an open interval of (0,00) and '(a) =
0 for some o > 0 which is contained in that interval.

CoNDITION (B). The distribution of Sy is not supported by any non-
centered lattice (i.e., of the form {a+bz;z € Z} with 0 < a < b).

We note that Condition (A) implies 0 < ES; < 400 and e¥(® < 1.
Conditions (A) and (B) appear in [3], [4], [7], [9] and [15], and the random
walk satisfying these conditions has been studied in a number of papers. To
state our main theorem we need some preparations. When Condition (A)
is satisfied, we introduce an associated random walk ((,,n > 1) where the
distribution of (; is given by

(1.4) P(¢ € dy) = eV V@ P(S) e dy).

Let 7 and p be the time of the first entry into the open positive half line
and the closed negative half line by the walk ((,,n > 1) respectively, i.e.,

= min{n > 0;(, > 0},

(1.5) p = min{n > 0;¢, <0}.
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Since E¢; = 0 and E|(1]? < 0o, 7 and p are well defined and the finiteness
of E¢, and E|(,| follows. Our main theorem is

THEOREM. Let Conditions (A) and (B) be satisfied, and let functions
f, h and W satisfy the following:
(1) f is bounded and continuous on R.
(2) h has an expression

h(z) = /OOO e "ty(dt),

where v is a non-negative finite measure on (0, 00).
(3) W is non-negative and continuous on R.
(4) There exist positive numbers (3, and § such that

h(z) = O(zP) as r — +00,
lim sup W(z)e 7* < oo, limJirnf W (z)e™® > 0,

with 66 > a. Then as n — oo,

L [f(Sn)h(i W(Sl-)ﬂ ~ en3/2eb(@n,
=1

where

e= T ) 0 [ e f@) 00
and g¢ is the unique solution of the functional equation
gi(z) = Ey [eftW(CI)gt(Cl)}, reR, t>0,
with boundary conditions

_ogi(x) 1 . _
S T . TR
gt 1s the unique solution of the above equation with E(. and (y are replaced
by E|(,| and —(1 respectively.
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To prove our theorem we need some conditional limit theorems. We
investigate limit law of (S,,n > 1) conditioned to stay negative. Especially
we will show that 2k-dimensional distributions (S,---, Sk, Sn, Sn—1," "+,
Sn—k—1) conditioned on A, = (S < 0,---,5, < 0) converges as n — o0
weakly to a product of two k-dimensional distributions which are identified
as the distributions of harmonic transform of the associated random walk.
Limit theorems of random walks conditioned on A,, have been treated in
many literatures. For example, the convergence of the Laplace transform
of S, conditioned on A, has been shown by Iglehart [7]. The conver-
gence of the law of (Si,---,Sk) conditioned on A, has been studied by
Keener [9] and Bertoin and Doney [3]. But for our purpose we need to
improve and extend their results since we have to know the limit law of
(S1,-+, Sk, Sny Sn—1,"+*,Sp—k—1) conditioned on A,.

This paper is organized as follows. In Section 2 we give notations, fun-
damental lemmas and some asymptotic results of the associated random
walk. Section 3 contains several asymptotic results and conditional limit
theorems of the walk (S,,n > 1). In Section 4 we give a solution of the
functional equation with boundary conditions in Theorem. The proof of
Theorem and counter examples are given in Section 5. In Section 6 we treat
three applications of our theorem.

2. Preliminaries

The purpose of this section is to introduce the notations and to inves-
tigate properties of the associated random walk. For every real number z,
we denote the law of random walks and Markov processes starting at x by
P,. For simplicity we set P = Py. If v is a measure on [0, ), its Laplace
transform will be denoted by 7, that is, for 6 > 0, 7(0) = [3° e % dv(x). Let
((n,n > 1) be a random walk and p,, = maxop<;<, ¢;- ¢ means (; hereafter.
Recalling 7 and p in (1.5), we introduce the following quantities. For n > 1,

up(x) = PG <z, p>n),
vp(x) = P(=(, <z, T>n),

uo(z) = wvo(x) = 1(z>0)-
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For x < 0, these functions are 0. Set
u(z) = Z up (), v(x) = Z Un ().
n=0 n=0

The quantities u(z) and v(x) will play crucial roles in this paper. Other but
equivalent expressions of u(z) and v(x) are well known. We can find them
in Bertoin and Doney [3], Keener [9] and Tanaka [14]. Especially u(z) and
v(z) are the renewal functions of ¢; and —(, respectively. An important
fact for u(z) and v(x) are given by the following general lemma. Essentially
the proof was obtained by Tanaka [14]. But our case somewhat differes from
his similar lemma. We need careful treatment for (2) below.

LEMMA 1. Letx > 0.
(1) If p < 00, a.s., then Eu(x — () = u(x).
(2) If T < o0, a.s., then Ev(z + () = v(x).

PrROOF. We prove only (2). (1) is proved in a similar way and more
easily. The proof is devided into two parts. Set a = Y oo v,(0) =

>oneo P(Gr1 = 0,7 > n).
Step 1. 1+a= Ev(().

By the assumption 7 < oo, a.s.,

1=P(tr<o0) = P(T:1)+iP(T:n+l)

n=1

= P> 0+ Y Pl n G > 0)

n=1

PO+ Y P> Gur 2 0)—a

n=1
— P04 Bun(¢)—a

n=1

= Ev(() —a.

Thus we have v(0) =1+ a = Ev(({). That is, the lemma holds if z = 0.
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Step 2. 1+a=v(z)— Ev(z+()+ Ev((), > 0.

Since vo(z) = 1 if > 0, similar calculations as in Step 1 show
o0
v(ix) =1 = wv(z)+ Z Un41()
n=1

o0
= P(O<—C§x)+ZP(O<—§n+1§x, T>n)+a

= P(O<—ng)+§:E(vn(ﬂc+C)—vn(C))+a
— P(0<—C<a)+ Ev(z+¢) — Pla+C>0)

~{Ev(¢) - P> 0)} +a
= Ev(z+¢) - Bu(¢) +a,

which proves Step 2. Combining Steps 1 and 2, we get the desired result. [

This lemma will be used in the next section when we introduce two
homogeneous Markov processes. In the rest of this section we investigate
some asymptotic properties of ((,,m > 1). To obtain them we use the
following two lemmas without proofs.

LEMMA 2 (see [7] and [15]).
(1) Let 3207 g ant™ = exp(3_52; byt™) for [t| < 1. If by ~ b2, then an ~
(bexp B)n*% with B =37 by,
(2) Let ¢, > 0, dy >0, ¢ ~ en”2 and dp ~ dn~3. If a, = Z?:o Cn—jdj,
3
then a, ~ (¢cD +dC)n™2 with C =372 ¢, and D =302 dy,.

LEMMA 3 (Spitzer-Baxter identity, see [5]). For any 6 >0, |t| < 1,
[ee) oo n
1+ > un(0)t" = exp{z EE(e*"%; Cn > o)} .
n=1 n=1

If we replace U, (0) by U,(0), then E(e=%n;¢, > 0) must be replaced by
E(en; ¢, <0).
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We consider the following conditions of (.

(a) B¢ =0,0< E|¢]? = 0% < 00 and E|¢]? < oo.

(b) The distribution of ¢ is not supported by any non-centered lattice (i.e.,
of the form {a + bz;z € Z} with 0 < a < b).

If (¢n,m > 1) is the associated random walk of (S,,n > 1), it is easy to see
that ( satisfies these conditions with 02 = 9" (a). Lemmas 4, 5 and 6 below
can be proved under the conditions (a) and (b). But we prove lemmas only
in the case where ( is non-lattice random variable and satisfies the condition
(a). Some points to be paid attention in the case where ( is centered lattice
random variable and satisfies the condition (a) are given by REMARK in the
last of this section.

The result below was indirectly shown in [2]. But for the reader’s con-
venience we shall provide its proof.

LEMMA 4. For every 6 > 0,
1
lim VnE(e % ¢, >0) = ——.
n_m\/i ( n ) V2mof

PRrOOF. Let ®,(z) = P({, < xzoy/n) and ®(x) be the standard normal
distribution. If ¢ is non-lattice, under the condition (a), the asymptotic
expansion in the central limit theorem

E¢3 gy 1,2 ( 1 )
D, (z) =P(z) + ————(1 —2")e 2¥ 4ol —=
@ =D e ) 7
holds uniformly on R (see e.g. [5]). Using this and integration by parts, we
have

E(e_OC”;Cn>O) = / e‘agﬁxdq)n(a:)
0+

= fOov/n /OOO eIV (P, (2) — B, (0))d
NG /0 e 00V (D) — B(0))da + o(n3)
_ / T eIV (1) de + o(n )

0
= 65(90\/5)2(1 — ®(fo/n)) + o(nfé).
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Moreover we have the following asymptotic formula of ®(z)
e%x2(1 —®(2)) ~ (V2rz)™!  as z— oo,
which shows the lemma. [

Set
V@) == [“ul)tn. V@) == ["ow.

Then we can prove the following lemma.

LEMMA 5.3 For every 0 > 0 and x > 9, ~
(1) limy, oo n2u,(0) =U(0), lim,_oon2v,(0) =V (0).
V(z).

(2) limy,—.o0 n%un(az) =U(x), limp_eo n%vn(x)

ProOOF. Combining (1) of Lemma 2, Lemmas 3 and 4, we have for
0 >0,

lim n3iiy(0) = —— ub)

> 1
= —BE(e™%; ¢, > 0) p = :
n—00 \V2mol exp{nz:; n (e n )} \V2mol

It is easy to see that the last term of the above is U(f). Using the same
method, we get the assertion for V. By the extended continuity theorem
for Laplace transform (see [5]), (1) yields (2). The proof of the lemma is
complete. [

The next lemma is very useful to obtain various asymptotic results in
the next section.

LEMMA 6. For every 6 >0 and z <0,

lim n%Ex(eGC";T >n) =u(—z)V(0).

n—oo

Proor. If x = 0, the assertion is just Lemma 5. Therefore we prove
the case x < 0. Let k, be the first index k£ at which pu, is attained. Then
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we have
Ey (%7 > n)

n
=" E(e"n i < —, Ky = j)
j=0

— "N B(P oy, G < G < =2, Gty Gn < G)
=0

n
21) =D B¢, G < G < —) BT > n— )
7=0

n —x
= e Z Un—;(0) / eeyduj (y).
§=0 0=

In the last equality we use the duality lemma. (see e.g. [5]). In view of
Lemma 5, applying (2) of Lemma 2 to the last term, we have

lim n%Em(eagn; T>n)= 69”’{17(9) /O:az P du(y) +v(0) /O:w eeydU(y)}.

n—oo

Applying integration by parts to the first term in the above bracket, we see

V(0) /O:I ePdu(y) = V(Q){e_exu(—w) - G/O_x eeyu(y)dy}.

The identity 9(8) = 2700V (8) and the definition of U(x) imply

—x

5(0) /0 :m AU (y) = 6V (6) /O My dy.

Combining the above three results, the proof of the lemma is complete. [

REMARK. To prove Lemmas 4, 5 and 6 in the case where ( is centered
lattice and satisfies the condition (a) (without E|([> < o), we enumerate
the modified points. In this case the support of the distribution of ( is
concentrated on the set {dz;z € Z} with some d > 0, and the local limit
theorem

V2o

N | keZ

VAP(G = db) - o exp{- (k) }H 0

lim [ sup



Limiting Coefficient for Exponential Functionals of Random Walks

holds (see e.g. [5]). Using this, we have for 6 > 0,

o

lim nE(e %" ¢, > 0) =

d —0dk
E e
n—00 Vino ’

which corresponds to Lemma 4. Let U and V' be defined by

g e/t gl
U(z) = &), V()= dj),
)= Zorg Lo M) V(@)= 53l

309

where [z/d] is the integer part in x/d. Then (1) of Lemma 5 holds, and
(2) of Lemma 5 holds at every continuous point. If x takes value on the set

{dz;2 =0, —1,---}, Lemma 6 holds in this case.

3. Conditional limit theorems

Throughout this section, Conditions (A) and (B) are assumed to be
satisfied. In this section we study some asymptotic results and conditional
limit theorems of (Sp,,n > 1). In particular Lemma 10 plays a key role in
the proof of Theorem. From now on X stands for e?¥(®). Let f be a function

on R". By (1.4), we have for z € R,

(3.1) Eof(S1,--+,5n) = AN “E [ f(C1, -+, Cn)l

The relation (3.1) combined with Lemma 6 implies the next two lemmas.

LEMMA 7. Let K € R be fized and M, = maxo<;<n ;.
(1) If x < K, then as n — oo,

P.(M, < K) ~ u(K — z)e®E=2)V (a) nTBA
(2) If 0 > — and © < K, then as n — oo,
By (% M, < K) ~ u(K — 2)e® 520Ky (g 4 o) nT2 A",
(3) If 0 > «, then as n — oo,
E(e M) ~ ()2 X",

where n(y) = V(a)e®u(y).
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ProoF. Since (1) follows from (2) by setting § = 0, we prove (2). Using
the notations in Section 2 and (3.1), we have

Ey(e"5 My, < K) = Ate?KteE=2 gy (0T 7 > ),

Therefore if #+a > 0, Lemma 6 implies (2). Using (3.1) and doing a similar
calculation as in (2.1), we see

Ee Mn = \rEeOtntatn
)\nEe_ (e_a)M7L _a(,un _Cn)

= A" 0(a)in—;(0 — a).
j=0

Taking account of (2) of Lemma 2 and Lemma 5, we find that
limp oo A"02 BeMn exists if 0 > a. Hence (1) combined with the ex-
tended continuity theorem for Laplace transform provides (3). The proof of
the lemma is complete. [

REMARK. The limits of the left hand side of Lemma 7 have been con-
sidered by Afanas’ev [1], Bertoin and Doney [3], Doney [4], Iglehart [7] and
Veraverbeke and Teugels [15]. However their results are not given in explicit
forms nor in appropriate forms for our purpose.

LEMMA 8. Let ¢ < K and f be a bounded continuous function on
(—o0, K. Then

1 K
lim E,[f(Sn) | M, < K] = —/ f(y)v(K —y)e*¥dy,

n—oo o CK J—o0

where cxg = ffoo V(K —y)e*dy.

Proor. It follows from (1) and (2) of Lemma 7 that if 6 > 0,

K V(0+a)
V(a)
JE e u(K — y)dy

lim F, (e’ | M, < K)
n—0o0

JE e (K —y)dy
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In the last equality we used the change of variable. Hence the continuity
theorem for Laplace transform implies the lemma. [J

We make use of the following lemma in the proof of Lemma 10. This
lemma holds for arbitrary random walks.

LEMMA 9. Let f;, 0 <1 <k, be Borel measurable functions. If the left
or right hand side of below exists, then the following equality holds.

[ defo(@) Bl fu(S0yx--x fulSi)) = [ do @) Bal fua(S1) -+ ol 4]
where S| = —S;.

PrOOF. Let k =1 and F(z) = P(S; < z). Using Fubini’s theorem
repeatedly, we have

/dwf(m 29(S1) /dF /dacf g(z +y)

[arw) [ dofia - )
[deg@) [ aF@fa -

[ dag@E.1(81),
which shows the lemma if ¥k = 1. Assume that the lemma holds if &k =

1,---,n. Set g(x) = Ey[fn+1(S1)] and h(z) = Ey[fn-1(S]) x -+ x fo(Sh)]-
By the assumption and the Markov property, we have

/dl’fo(l‘)Em[fl(Sl) Xoeee X fnJrl(SnJrl)]
= [dnh@)Bli(S1) x - x FalS)a(S0)]
_ / da fo(2)g(2) Ea[fa1(S1) x -+ % fo(S},)]

_ / Az fri1 (2) B[ fa(S)R(SY)]
:/d.rfn+1(33)Ex[fn(Si) - X fO( n+1)]
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By induction the lemma is proved. [

To prove the next lemma that is special interest to us, we must define
two homogeneous Markov processes (Yg n,n > 1) and (Zgn,,n > 1) on
(—o0,K]. Let (Yin,n > 1) (respectively (Zg n,n > 1)) has a transition
function pg (respectively qr) as follows.

U(K Y)
v(K — y)
i (x,dy) = v(K—x)P(x_CEdy)l(ySK)’ r < K.

We introduce the initial distribution

(3.2) P(Zk € dx) = ci(e‘”v(K —z)dr 1<)

where c is defined in Lemma 8. Since E¢ = 0, it follows from Lemma 1 that
pi and g certainly are Markov transition functions on (—oo, K. The form
of px means that u(K —-) is a harmonic function for the associated random
walk killed as it enters (K, 00), and that {u(K — (,)1(pn < K);n > 0} is a
Martingale with respect to Py, x < K. The law of (Y ,,n > 1) is connected
with that of ({,,n > 1) in the following identity. Let f be a function on
R™ and x < K. Then

1

Now we prove the main object of this section.

LEMMA 10. Letm € N and x < K. If g is a bounded function on R™
and f is a bounded continuous function on R™1, then as n — oo,

E:E [Q(Sly" 7Sm)f(sna ";Sn—m) ‘ Mn S K}
xg(YK,la e 7YK,m) Ef(ZK,()? R} ZK,m)-

Proor. Let K € R be fixed. To avoid complexities, we omit K in Y ;
and Zg; and set A, = (M,, < K). Without loss of generality, we assume
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0<f,g<1and f(zo, -, xm) = [[I% fi(zi) with f; bounded continuous
on R. Denote ¢g(Si,---,Smn) by ¢g(S). By the Markov property,

(3.4) = Px(lAn)Ex [g(S); A, Es,, [ﬁ)fi(sn—m—i); An_mH

PSm (An—m)

= Ly |:9(S)§Am, Px(An)

()|

where hy,(y) = Ey[[1i~o fi(Sn—i) | An]. Using (1) of Lemma 7, we have for
y < K,

(35) Py(An—m) - )\_mU(K — y)

Set h(y) = Ey[[17" fi(Sm—i); Am]. Then

@Y as s 0.

1

hn(y) = Py(An) Ey [fm(Snfm); Anfma h(Snfm)]
LB, (S H(S1m) | A

Therefore we have by (1) of Lemma 7 and Lemma 8,

(3.6) lim f(y) = 2

K
/ dze**v(K — 2) fm(z)h(z).
—00
Collecting (3.4)-(3.6) and then using Fatou’s lemma, we have
m
lim inf B, [(S) [T £i(Sn-m) | An]
=0

WK = Sm) ae—s,.
(3-7) ZEm[g(S)aAmv)\ me (@5 )}

—-m K
<2 / dy e®v(K —y) fm(y)h(y).
CK J—oco

Using (3.1) and then Lemma 9, we rewrite the last term in (3.7) with obvious
notations as follows.

— /K dy e®v(K —y) fm(y)W(y)
CK J—o0o
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A mo K m—1
=S [ (K ) fu B 1T 7(Sn-i0:0]
1 K m—1
= | ayo(E =) fm)By[ T] JilGn-i)ems pom < K]
> i=0
1 (K i
38) = [ dyefol)By| [T (ColK = Gt < K|
> i=1
1 K

_ 1 dy e™Vv(K — y)fo(?/)Ey{ﬁfi(Zl’)}

CK J—o0
= E{H fi(zi)}
i=0
In the last equality we have used (3.2). Similar calculations show that

_m WK — Sp) _
E, A, m P\ T Pm) o (z—Sm)
9(5). A e
1

(3.9) = mEx[g(Ch s Gm) u(K = Gm)s pan < K]
- a:g(Ylv"'aYm)-

Combining (3.7)—(3.9), we see

(3.10) liminf Ey[g(S) £ (Sns -+ Snem) | An]

n—oo

> Erg(Y1,-- -, Yim) Ef(Zo, -+ Zm)-
Set f =1 on (3.10). Then we get
lim inf Z,[g(S) | A] > Erg(Vi, -~ Yin).
Replacing g by 1 — g in the above, we have

Erg(Vie-.Ym) > 1-lminf E,[(1-g)(S)| A
= limsupEx[g(S)\An].

Thus we have
lim Ex[g(S) | An] - Exg(Yh e 7Ym)'

n—oo
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Replacing f by 1 — f in (3.10) and using the above result, we get

Eacg(Yla"'aYm) Ef(ZOa"'7Zm) > thUPEa:[g(S)f(Sna'"aSnfm) | An]-

n—oo

Thus our lemma is established. [

REMARK. (i) If f =1, Lemma 10 was obtained by Keener [9] for integer
valued random walks and by Bertoin and Doney [3] for general case with
concise proof.

(ii) In [1] Afanas’ev claimed that the limit of the left hand side of Lemma
10 exists, and used it without proof. However he did not show what the
limit is.

(iii) Lemma 10 corresponds to the following fact for Brownian motion
with drift. Let Q = C([0,00) — R) and P, be Wiener measure on {2
satisfying P, (w(0) = z) = 1. Set 7 = inf{t > O;w(t) —at =0}, a > 0. If A
and B are Borel sets of C([0,%y] — (0,00)), then for z > 0,

tlirgon({w(s) —as,s <ty €A, {wlt—s)—alt—s),s<tp}€B|T>1)
= Q.(A) x /000 dy ozzye_o‘yQy(B),

where @, z > 0, is the law of 3-dimensional Bessel process starting at z on

Q.
4. Solution of the functional equation

In this section we assume that W satisfies the conditions in Theorem.
To abbreviate the notations, let us put, for z < K and ¢t > 0,

gr(r) = u(K —x)E, [exp{ - tiW(YKZ)}] ,

Ira(e) = (K = 2)Es [exp{—tivv(ZK,i)}].
i=1

These functions appear naturally in the proof of Theorem in the next sec-
tion. To prove our theorem, we need to investigate the properties of these
functions. We prove lemmas only for gx ;. It is trivial that similar results
hold for gx ;.
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LEMMA 11. Letx < N < K and T](VK) = min{n > 0;Yx,, > N}. Then

u(K — N)

P, (T](VK) < oo) < m

PrROOF. By (3.3), we have

)ZE[E[ (K —¢); Cla"':Cj—1§N<<jSK}

MZPI(Q’W’W <N <)

u(K — N)
u(K —x)°

IN

2

The proof of the lemma is complete. []

LEMMA 12. Let K € R andt > 0 be fized.
(1) For all v < K, grc4(x) = Byle 7™ gx,();¢ < K.
(2) If K' > K, then for allz < K, 0 < gr+(x) < gxr ().
(3) limg——o0 gre (%) / (K — 2) = (E¢) ™

Proor. (1) follows from the Markov property and (3.3). We prove (2).
By Jensen’s inequality,

gK,t(x) > eXp { —1 Z ExW(YK,n)}'
n=1
Therefore if we show that > 02 E,W (Yk ) < oo, the positivity of gk ()
follows. Set ¢1 = sup, <, W(y)e 7. Using this and (3.3), we have

EW(Ykn) < 1By (e7kn)
1

U(K_%‘)Egg[e7 u(K — Cp)s pn < KJ.

= Cl
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However Chebyshev’s inequality shows u(K — z) < u(0)e?®~%) for § > 0.
Hence, setting 6 = v/2 and ca = c1u(0) and calculating as in (2.1), we see

1
EIW(YK,n) S C2 u(K — x) e’YKEw_K(EQCn;T > Tl)
-y = oS ) [ dusty)
u(K —x) = B
1 P
= S Ty (O)uj (K — )
u(K — x) =

Therefore we have

o0
Z EW(Ykn) <c3 A < o,

n=1

where c3 = c1u(6)v(0) does not depend on z. Thus the positivity of gk +(z)
is obtained. Let K’ > K > z. From the definition of gg s,

gre(x) = lim u(K —2)E, [e—tZ’;’W(YK,n]

n—oo

= lim F, {eitzzb W(CI)U(K - Cn)a Hn < K}

n—oo

< lim Byl WDy (K! — (o) pin < K'|

n—oo

= gK’,t(x)7

which proves (2) We turn to the proof of (3). By the renewal theory,
u(y) ~ (BE¢) 'y as y — oo (see e.g. [5]), it is enough to prove that
limg oo g t(z)/u(K — ) = 1. Let N <0 be fixed and z < N. Then

gKt( ) —t> T W(Yk,i)
< _ — _ K,i
0<1 u(K ) = Ew[l e 1 }

(4.2)

IN

Py(ri < 00) + 30 Bo(W(Vip)i i) = o0).
n=1
Using the renewal theory and Lemma 11, we see

(K) <U(K—N) - .
(4.3) Px(TN <oo) S WK —2) 0 as 00.



318 Katsuhiro HIRANO

Applying the method in (4.1), we have

E(W(YKn) 1(\1)200) < ClEx( GYKnT )

1 O(K+N)

w(K = N —z).

< o

n

7=0

Therefore we have

(K ) O(K+N) _ 6N
. n - iy - 9
(4.4) E E, ( (Yin);Tn oo) <cze cqe

where ¢4 does not depend on N and z. Combining (4.2)—(4.4) and letting
N — —o0, we get (3). The proof of the lemma is complete. [

To investigate the properties of limg . gx (), we use the following
lemma.

LEMMA 13. Set fr+(x) = grt1,4(x) — grt(x) for x < k. Then

sup fip(@) < u(l) eXp{ —t rsnzigW(S)}-

PROOF. Using the definition of g, and then (3.3), we have
fri(z) = nh_)ngo {u(k +1—2)E, {eft >0 W(Y’““vi)}

—u(k — 2)E, {e‘tZT W(Yk-ﬂ‘)} }

= nli_}rlolo{ et (k;+1—<n)un§k;+1}

B[ SV ©uls - Gu)iun < ]}

~ lim {E [ ZIW ke +1 - G) — ulk — Gu)}ian < A
B[t EW (k+1—§n)k<unék+1]}

= nh_)ngo{Jn + K,}.
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In the third equality we used the fact (u, < k+1) = (un, < k) + (k < pp, <
k+1). We estimate J,, and K,,. Using the property u(y + 2) < u(y) + u(2)
(see e.g. [5]), we have

In <u(l) Pp(pn < k) — 0 as n — 00.
Set T = 7" Then by (3.3),

K, = ulk+1-2x)E, [eft >0 W(Y’““vi); T < n}

< uk+1-2)E, [e*tW(Yk“vT);T < n}

< _ _ .

< wlk+1—2)P(T < ) exp{ tkgrgg+1 W(s)}
< — i .

< 1) exp{ tIsIlZlEW(S)}

The last inequality comes from Lemma 11. Collecting the above results, the
proof of the lemma is complete. [J

From (2) of Lemma 12, we can define g;(x) := limy o0 gn () for all
x € R. If z < n, we express g;(x) as

(4.5) Zf]t + Gnt ().

By Lemma 13, g;(z) is finite for all z. The following lemma shows that g is
a solution of the functional equation with boundary conditions in Theorem.

LEMMA 14. Lett > 0 be fized.
(1) For all z € R, gi(x) = Eyle " g, ().
(2) limg oo gt(x)/|a:| = (ECT)_I
(8) limg— 400 ge(z) = 0.

Proor. (1) and (2) of Lemma 12 combined with the monotone con-
vergence theorem imply (1). (2) and (3) of Lemma 12 yield

lim go’t($)

— < lim fgt( z)
ECT T——00
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By virtue of Lemma 13 and (4.5), (3) of Lemma 12 shows

1
hmsng( z) <hmsup {ant + got(x )} lim g0.4(*) _

Thus (2) is proved. Let = € [n — 1,n]|. Then we have
gnt(z) = u(n—2)E, [e*tZl” W(Yn,i):|
< u(n—x)E, [e—tW(Yn,l)}

= B, [eftw(ou(n —();¢ < n}
Bl 0y - ¢)].

IN

Hence we have

up_gna(e) < B|u(l — exp{ — ¢ min W(a+)}].

n—1<z<n

Applying the dominated convergence theorem to the right hand side, we get

limsup sup gni(x) =0.

n—oo n—1<z<n

In addition we have by Lemma 13,

limsup sup Z fi(x) =

n—oo n—1<zx<n j=n
Two estimates above and (4.5) provide

limsup sup g¢(x) =0,

n—oo n—1<z<n

which shows (3). The proof of the lemma is complete. [J

In the next section we show that g; is uniquely determined by the con-
ditions in Lemma 14.
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5. Proof of Theorem

Firstly we prove the convergence part of Theorem. Secondly we show
the uniqueness of solution of the functional equation in Theorem. We devide
the proof into five parts.

Step 1. Let K > 0 and t > 0. Then as n — oo,
A0S E[f(Sa)e 20 W M, < K]
QK,t(O)

K
~ (@) [ dm e O @) (o).

PrROOF. Taking account of (3.2), (1) of Lemma 7 and the identity
V21" (@) V (a)e® = ¢k, Step 1 is equivalent to
Tim B[ £(S,)e E0 V60 | 0, < K]
—_ E[e_tZTO W(YL):| E[f(ZO)e—tZ;o W(ZL):| ’

where Y; = Yg,; and Z; = Zk ;. With no loss of generality we assume
0< f<1. Form<n,

0 < f(Sp)e t i W) < f(8,)e 20 W=t 0, WS <

By virtue of Lemma 10, letting n — oo and then m — oo, we get

limsup £ {f(Sn)eftZT WS | M, < K]

n—oo

<E [e—tZi” WW} E [f(Zo)e_tzgo W<Zi>].

On the other hand

i=m+1
Thus to obtain the liminf estimate, it suffices to show that
n—m—1

(5.1) lim sup lim sup Z E(W(Sz) | M, < K) = 0.

m—oo n—oo .
i=m+1
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From the assumption of W, W(z) < ¢;e?* for x < K. Using this and the
Markov property, we have
BE(W(S);M, < K) < o1 B M, < K)
= & B[ Ps (M, < K); M; < K|,
Let 6 € (a,« + ). By Chebyshev’s inequality and (3) of Lemma 7,
P,(M, <K)< S E—2) pe—0Mn < ¢y e 0T\,
Combining the two estimates above and (2) of Lemma 7, we have
E(W(Sz-); M, < K) < c3ln—i) 2 A0S M < K)
< ca(n— z)_% T8 AT

Therefore we have

n—m—1 n—m—1
E(W(S) | M, <K)<— 4 _)n (n—i)"%i 3.
i:%;rl ( ) P(M, < K) iz;rl

Applying (2) of Lemma 2 and (1) of Lemma 7 to the right hand side, we
see

n—m—1 0o 5
limsup Y E(W(Si)]MngK)§C5 Y e,
0 =l i=m+1

which shows (5.1). Hence Step 1 is proved. J

Step 2. Let K > 0. Then as n — oo,

A"z E [f(Sn) h(i W(Si)> M, <K

1 0o K
= e )y Y[ et @ 0)ice)

PrOOF. By (1) of Lemma 7, there exists [x such that P(M, < K) <
lx n_%)\”, n > 1. Using this, we have

E[£(S)e 2 WG pr < K| < 1 flloolxen™ 24", n>1.
B[ £(Sn) [| <l
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From the assumption of h,

(2

E[f(Sn)h<

j W(Si)>;Mn < K]

oo n
:/ I/(dt) E{f(sn)e_tzl W(Si); M, < K] .
0
Therefore the dominated convergence theorem and Step 1 yeild Step 2. [

Step 3. The following relation holds.

=0.

K—oo n—oo

lim sup lim sup A" E “f(Sn)’ h(z W(Sl)> s My, > K
i=1

ProOOF. By the assumptions of h and W, there exist positive constants
A, B and K such that h(z) < Az for 2 > 0 and W (z) > Be’® for z > K.
Hence, on (M,, > K), we have

h(SSW(S)) < AWM, < AB exp{-5)M, .
j=1
Using this inequality, we see

< cE(e P M, > K),

E“f(Sn)] h(;m&-));Mn > K

where ¢ = AB7P||f||oo. Assuming 36 > «, we can apply (3) of Lemma 7 to
the right hand side. So we get

limsup A\~"n3 E “f(sn)] h(i W(Sz-)) M, > K
=1

n—oo

< C/ e (da),
K

which shows Step 3. [J

Step 4. Asn — oo,
A3 E lf(Sn) h(Z W(&))]
i=1

- Jﬁ /Oooy(dt) /R da @) £ (2)g,(0)5 ().
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PROOF. Steps 2 and 3 show that

n—oo

lim A\""n3E [f(Sn) h(é}w(&))]

= lim lim )\_”n%E[f(Sn)h(iW(Si));Mn <K

K—oon—o0 i—1
1=

1 [e'¢) K
B H az—tW(x) ~
s | v [ doe F(@)g5.4(0)F 4(x)
and this limit is finite. Without loss of generality we assume f > 0. By (2) of
Lemma 12, for fixed z € Rand t > 0, gx+(0) /" 9:(0) and gx +(z) /" g:(x) as
K — o0. Thus the monotone convergence theorem implies Step 4. Therefore
the first half part of Theorem is proved. [

Step 5. gy is the unique solution of the functional equation in Theorem.

PrROOF. In Section 4, we have already seen that gi/(z) =
limg .00 gi¢(x) is a solution of that equation. Therefore we prove the
uniqueness of solution. It is enough to prove the case t = 1. We assume
that ¢ is another solution of that equation if £ = 1. Let ¢ > 0 and « € R be
fixed. Thanks to the renewal theory and the boundary condition at —oo,
there exists L < x such that |g(y) — g1(y)|/u(—y) < e for y < L. On the
other hand, by the boundary condition at +o0o, we take K > x which sat-
isfies that |g(y) — q1(y)| < € for y > K. Put f = |g — g1|. Using these
estimates, we have

f@) < BleWORCHL << K| + By eV OF(0);¢ < 1]
Ex[e O £(0)i ¢ > K]
E,[eWOF(C)L < ¢ < K|+ By [V u(=);¢ < L]

+

IN

+ekby {e_W(C);C > K}

= EJeWORQL << K|+ alw) + ba).
Iterating the above inequality, we have for all n € N,

f@) < Bulem 2 VOF(G) L <Gy Go S K]
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n—1 ;
+> E, {6_21 W a(G) + b L < Ghe G < K}

J=0

The first term of the right hand side is less than E,(f(¢,); L < ¢ < K).
Since f(y) < C=Ckgif L <y <K,

Hence we have
@) < 3 B VO L < G G < K]
n=0
(5.2) + > Ee(b(Cn)ipn < K) = I + Jk.
n=0

Set T' =Ty, = min{n > 0; Yk, < L}. Then we have

Eelem 20 W @a(G)i L < Gryov 6o < K]

n+1 )
= eB[em 20 u(—Gui1)iGorr < L G G < K]

_\ntl ) u(—YK n+1)
=eu(K —x)E, |e v Wk Bl T'=n+1
( ) [ u(K — Y nt1)

<eu(K —z)E, [ei > WK 7 = n+ 1}.
Using this inequality, we see
(5.3) Ix <eu(K —x)E, [e_ )3 W(YK”')} —egki(xz) as L — —oo.
By the definition of b(y),
Er(b(Cn)ipn < K) = eE, [e_W(C"H);Cla G <K< Cn+1}
< cop{ —minWH}P(G. .G < K < ).
It easily follows from this inequality that

(5.4) JK §5exp{ —?211[1(11/1/(75)}
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Collecting (5.2)—(5.4), we have

9(x) = g1(2)| < limsup I < & g1 (x).

K—oo

Since ¢ > 0 and = € R are arbitrary, this inequality shows ¢ = ¢1. The
proof of Theorem is established. [

From (2) of Lemma 12 we have the positivity of ¢;(0) and g:(x) for each
t > 0 and x € R. Therefore we get the following corollary which is used in
the next section.

COROLLARY. Let f be non-negative and f £ 0 on R. Then the limiting
constant c in Theorem is positive.

Before ending this section, we point out that there are counter examples
for our theorem if 86 > « does not hold. Let Condition (A) be satisfied. Set
f=1, W(z) =e® and h(z) ~ ax™® for some a > 0. In this case 86 < a.
By (3.1),

Eh<§esi> = )\"E[e"‘fnh(i eC"'ﬂ :

i=1

Applying the methods in Kozlov [11], we see

(5.5) E{eagnh<269)} ~acn”? as n — 00,

=1

where ¢ = lim,, o RE{> " qe %}~ € (0, 00). Hence we get
n 1
Eh(ZeSi) ~acn 2 \" as n — 00.
i=1

In this caes Theorem does not hold. Next we assume that f(+o00) exists,
W(z) = e® and h(z) ~ az™? for some a > 0 and 0 < § < . Notice 88 < a.
Define the random walk (¢, n > 1) where the distribution of (} is given by

P(Ct e dy) = e P VB p(S) e dy).
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It is easy to see that B¢ > 0. Set = e¥(® € (A, 1). Using (¢¥,n > 1) and
the duality lemma, we have

efpsn(ge)] - spraen(5)
- ¢ e
— | (e ge‘g ) {e{ jzi:zz;}g

By our assumptions, the dominated convergence theorem implies

lim. 0‘”E[f(3n)h<§esi)} - af(—l—oo)E{ ge—@*}ﬂ.

This is another counter example.

6. Applications

In this section we give three applications to which our theorem and
corollary can be used. Second one has been treated in [6] with a different
manner.

APPLICATION 1. Let (fn(s),n > 0) be a sequence of i.i.d. random gen-
erating functions, i.e.,

fu(s) = ng)sﬂ', n>0, |s| <1,
§=0

where 7, = (m@,j > 0), n > 0 are i.i.d. random vectors satisfying 7r7(1j) >0,

Z‘;‘;O ng) = 1. Let X9 = 1, Xy, be a branching process in a random

medium {7, }. When Xy, ---, X, and mg, - - -, 7, are given, X,,11 is the sum

of X, random variables which take value k with probability m(lk). In terms

of (fn(s),n > 0),

B [s50 | X, X, - 0] = [fal9)] ¥, m 20,
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Set 7' = min{n > 0; X,, = 0}. It is well known that Elog f}(1) < 0 yields
P(T < o) = 1. When Elog f)(1) = 0 and f,(s) has an expression
an, ans
n =1- )
f(S) 1_ﬁn+1_ﬂn5
where 0 < ap, 0 < B, < 1 and «a,, + B, < 1, Kozlov [11] showed that for
some 0 < ¢ < 00,

P(T >n) ~c/vn as n — oo.

For the special case of f,(s), we consider the rate of decay of P(T' > n)
when Elog f)(1) < 0. Let (p;,i > 0) be i.i.d. random variables with values
in [0, 1] and

anq’ i Pn

1—q,s’

where ¢, = 1 — p,. That is, (X,,,» > 0) has a geometric offspring distribu-
tions. This process is closely related to random walks in random media. In
this case P(T > n) is expressed as

P(T >n)= <+Ze ) ,

where S, = S log(pi—1/gi—1). Set h(z) = [§°e”@Dtat = (1 + 2)~*
Then

P(T >n) = Eh(Ze )

Suppose that log(p1/q1) satisfies Condition (A). If a > 1, there is no § > «
such that h(x) = O(z=?). Thus our theorem can not be applied if o > 1.
In this case the rate of decay of P(T" > n) is deduced from the results
of [1] and [11] (or counter examples in the last section). Let 0 < a < 1.
If we suppose that log(p1/q1) satisfies Condition (B), the rate of decay of
P(T > n) follows from our theorem. Taking W(z) =¢e*,8=~v=6=1 and
f =1 in Theorem, we have

P(T>n)~cnfg)\” as m — oo,
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where A = ming~o F(q1/p1)! and 0 < ¢ < oo. The positivity of ¢ is given by
Corollary. In particular, ¢ has a following form.

1 o N
‘= —\%/0 dt /Rdw eor AP ) g, (0)g, (),
where v = )\_IE[(Q1/p1)a IOgQ((h/pl)]-

APPLICATION 2. Let (p;,i € Z) be a doubly infinite sequence of i.i.d.
random variables with values in [0,1] and F be the o-field generated by
{pi}. Let Xo =0, X1, -- be a random walk in a random medium {p;}, i.e.,

PXip1=Xe + 1| F, Xe=1i) = p;,
P(Xt+1:Xt—1|F,Xt:i) = 1—]97,

Alternatively one can describe (X,,,n > 0) as the sequence of states of a
birth and death process in a randm medium with birth parameter p; and
death parameter ¢4 = 1 — p;. In [13] it was shown that if F'log(qo/po) > 0,
lim; oo Xy = —o00 a.s. In this situation max;>¢o X; < oo a.s. Let T;, =
min{t > 0;X; = n}. We consider the rate of decay of P(T,, < oo) as
n — oo. Set & = log(qi—1/pi—1). P(T,, < o0) is expressed as follows. (see

[1]).
P(T, < ) = EA<A + ie&)l,

i=1
where A = 1+ >0 jexp{—({o + -+ &—n)} and S, = Y11 &. Put
h(z) = [5° e *'v(dt) where v(t) = 1 — E(e~*). Then h(z) = EA(A+x)~ L.
Since A and (S,,n > 0) are independent, we have

n

P(T, < o) = Eh(Zesz‘)

=1

We assume that &; satisfies Condition (A). If @ > 1, it is easy to see that
FA < oo and h(z) ~ (EA)x~!. To our regret Theorem can not be applied
in this case. The rate of decay of P(T,, < o0) is given in [1] in this case.
Let 0 < a < 1 and & satisfy Condition (B). Choosing # > 0 such that
a < f<1and E(e7?) < 1, we have b := EAP < 3% (Ee A" < 0.
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By Chebyshev’s inequality, P(A > y) < by~?. Using this and change of
variable, we see

v(t)=1—E(e) = t/ooo e WP(A > y)dy

IN

bI(1—pB)t°.

Applying similar calculations to h(z), we have

h(z) = x/OOO e My(t)dt < b U z P

sin (8

Therefore if 0 < o < 1 and &; satisfies Condition (B), the rate of decay of
P(T,, < o) follows from our theorem. Indeed taking W (z) =e*, y=6=1
and f =1, Theorem and Corollary imply

P(T, < ) ~ cnTIA" as n — oo,

where A = ming~o E(p1/¢1)! and 0 < ¢ < co. In this case c is expressed as

1 0 e 00 L . R
\/27rv/0 dF(y)/O dt/o dzyz* e W) g,(0)Gy (log 2),

where v = A" E[(g1/p1)*log*(q1/p1)] and F(y) = P(A < y).

CcC =

APPLICATION 3. Now we state the last application. Let ({,,n > 1) be
a random walk satisfying the conditions (a), (b) and Ee®" < oo for some
a > 0. We consider the asymptotic behavior of E[f((,)h(> o1 W((;))] for
suitable f, h and W. Set \™! = Ee®t. We define a random walk (S,,,n > 1)
where the distribution of 57 is given by

P(S1 € dy) = e™P((1 € dy).
Let us define the following:

CONDITION (A’).  For some a > 0, E(e™®%1) < o0, E(S1e™®51) = 0
and E(|S1[2e=2%1) < 0.

It is trivial that Sp satisfies Conditions (A’) and (B) and the following
identity holds.

n

E[f(%%(ZW(Cz))] —ATE [e—aS"ﬂsn)h(ﬁW(si))] .

i=1
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We remark that Theorem holds even if we replace Condition (A) by Condi-
tion (A’). We assume that f is a continuous function such that
sup,er |f(2)]e”** < oo and h and W satisfy the conditions in Theorem.
Applying Theorem to the right hand side, we get

nlggon%E[f(gn)h(iW(Q)ﬂ
— o [ Twan) [ dre VO (@) (0131,

2mo Jo

where g; and g; are unique solutions of functional equations in Theorem.
Comparing (1.3) and the above, we find that this is the random walk ana-
logue of Kotani’s limit theorem for Brownian motion in [10].
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