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On the Discrepancy of the 3-Adic van der Corput

Sequence

By Syoiti NINOMIYA

Abstract. The (-adic van der Corput sequence is constructed.
When g satisfies some conditions, the order of discrepancy of the se-
quence become O(log M/M) or O((log M)?/M).

1. Introduction

It is well known that low-discrepancy sequences and their discrepancy
play essential roles in quasi-Monte Carlo methods [6]. The author con-
structed a new class of low-discrepancy sequences Ng [7] by using the S-adic
transformation [9][11]. Here, 3 is a real number greater than 1; when [ is an
integer greater than or equal to 2, Ng becomes the classical van der Corput
sequence in base 3. Therefore, the class Ng can be regarded as a generaliza-
tion of the van der Corput sequence. Ng also contains a new construction
by Barat and Grabner [1] [7]. The principle of the construction of Ng is that
we can consider the van der Corput sequence to be a Kakutani adding ma-
chine [10]. Pages [8] and Hellekalek [4] also considered the van der Corput
sequence from this point of view. In [7], it is shown that when [ satisfies
the following two conditions:

e Markov condition: 3 is Markov, that is to say, for this 3, the §-adic
transformation becomes Markov,

e Pisot-Vijayaraghavan condition: All conjugates of 3 with respect to
its characteristic equation belong to {z € C | |z| < 1},

the discrepancy of N decreases in the fastest order O(NN “llog N). In this
paper, we consider the case in which 8 is not necessarily Markov. We
introduce the function ¢g(z) from Ito and Takahashi [5]. It is shown that
when [ satisfies the following condition (PV):
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(PV) All zeroes of 1 — ¢g(z) except for z =1 belong to {z € C | |z| > (},

which is a generalization of the above Pisot-Vijayaraghavan condition, the
discrepancy of Ng decreases in the order O(N~!(log N)?). We also remark
that the condition (PV) is considered to be a condition for the second eigen-
value of the Perron-Frobenius operator associated with the §-adic transfor-
mation.

2. Low-discrepancy sequence

First, we recall the notions of a uniformly distributed sequence and the
discrepancy of points [6]. A sequence x1,xg,... in the s-dimensional unit
cube I* = [[7_[0,1) is said to be uniformly distributed in I® when

N g

e S = a0
n=1

holds for all subintervals J C I®, where c; is the characteristic function of

J and )Ag is the s-dimensional Lebesgue measure. If zi,z9,... € I° is a

uniformly distributed sequence, the formula

1
2.1 lim — Tp) = z) dx
(2.1) Jim 3 e = [ )
holds for any Riemann integrable function on I°. The discrepancy of the
point set P = {x1,x9,...,xx} in I® is defined as follows:
A(B; P
(2.2) Dy (B; P) = sup ‘(’) - )\S(B)’
BeB N

where B C p(I°) is a non-empty family of Lebesgue measurable subsets
and A(B; P) is the counting function that indicates the number of n, where
1 < n < N, for which z,, € B. When J* = {[[_1[0,%;),0 < w; < 1},
the star discrepancy D3 (P) is defined by D3 (P) = Dn(J*;P). When
S = {x1,x9,...} is a sequence in I°, we define D} (S) as Dy (Sy), where
Sy is the point set {z1,z2,...,zn}. Let S be a sequence in I*. It is known
that the following two conditions are equivalent:

1. S is uniformly distributed in I%;
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2. limy_o0 D (S) = 0.
The following classical theorem shows the importance of the notion of

discrepancy:

THEOREM 2.1 (Koksma-Hlawka [6]). If f has bounded wvariation
V(f) on I* in the sense of Hardy and Krause, then for any x1,22,..., 2N €
1%, we have

<V(f)Dy(z1,...,zN).

‘szm) - [ t@yda

Schmidt [12] showed that, when s = 1 or 2, there exists a positive
constant C' that depends only on s, and the following inequality holds for
an arbitrary point set P consisting of NV elements:

(log N)*~*
~

If (2.3) holds, then there exists a positive constant C' that depends only on
s, and any sequence S C I satisfies

(2.3) Dy (P)>C

(log N)*
N
for infinitely many N. Taking account of (2.3) and (2.4), we define a low-

(2.4) D} (S) > C

discrepancy sequence for the one-dimensional case as follows:

DEFINITION 2.1. Let S be an one-dimensional sequence in [0,1). If
D3} (S) satisfies
Dy (S) = O(N'log N)

then S is called a low-discrepancy sequence.

Hereafter we consider only the case where s = 1. We now introduce the
classical van der Corput sequence [2] [6].

DEFINITION 2.2. Let p > 2 be an integer. Every integer n > 0 has a
unique digit expansion

n:Zaj(n)pja aj(n) € {0,1,...,p—1} for all j >0,
=0
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in base p. Let 7 = {7;};>0 be a set of permutations 7; of {0,1,...,p — 1}.
Then the radical-inverse function ¢y is defined by

oo
¢p(n) = Z 7j(aj(n))p =71 for all integers n > 0.
j=0
The van der Corput sequence in base p with digit permutations 7 is the
sequence {¢;(n) 2 C [0,1).

THEOREM 2.2 ([2][6]). For an arbitrary integer p > 2, the van der
Corput sequence in base p is a low-discrepancy sequence.

3. [-adic transformation

In this section we define the fibred system and the -adic transformation,
following [5] [13].

C, R, Z, and N are the sets of all complex numbers, all real numbers,
all integers, and all natural numbers, respectively. We also set

R., = {reR|r>a}
Z-, = {i€eZ|i>n}

and so on. For z € R, [z] denotes the integer part of x.

DEFINITION 3.1. Let B be a set and T': B — B be a map. The pair
(B,T) is called a fibred system if the following conditions are satisfied:

1. There is a finite countable set A.
2. There is a map k : B — A, and the sets
B(i) = k™' ({i}) = {v € B k(x) = i}
form a partition of B.

3. For an arbitrary i € A, T'|g(;) is injective.
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DEFINITION 3.2. Let Q = AN and ¢ : Q — Q be the one-sided shift
operator. Let k;(z) = k(T7~'z). We derive a canonical map ¢ : B —
from

p(x) = {kj(2)}nZs-

¢ is called the representation map.

We have the following commutative diagram:

T

B — B
' ]
QO —2- Q

DEFINITION 3.3. If a representation map ¢ is injective, ¢ is called a
valid representation.

DEFINITION 3.4. Let w € Q. If w € Im(p), w is called an admissible
sequence.

DEFINITION 3.5. The cylinder of rank n defined by a1,a9,...,a, € A
is the set

B(ay,ag,...,a,) = B(a;) N T_IB((ZQ) N...N T_"+IB(an).
We define B to be a cylinder of rank 0.

For a sequence a € (2, we write the i-th element of a as a(i), that is,
a = (a(0), a(1),a(2), ..).

DEFINITION 3.6. Let 3> 1and 8 € R. Let fg:[0,1) — [0,1) be the
function defined by

fs(@) = Bz — [Ba].
Let A=7ZnN]0,0). Then we have the following fibred system ([0, 1), f3):

0,1) - [0,1)

(3.1) wi sﬂl

Q SN Q
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The representation map ¢ of this fibred system is defined as follows:

o(@)(n) =k, if %ggm <

(k+1)
B

where fg(m) =z, and fg“(x) = fp(f5(z)). Let Xj be the closure of Im(¢p)
in the product space {2 with the product topology. The lexicographical order
< (resp. ») is defined in Q as follows: w < ' (resp. w > ') if and only if
there exists an integer n such that w(k) = &'(k) for k < n and w(n) < w'(n)
(resp. w(n) > w'(n)). We also define < (resp. ») as < (resp. >) or equal.

In this situation, we set

and

£31) = lim f4(x),

(s = max{Xg} = p(1),

We have the following diagram:

(3.2)

pa(a) = a(m)a~"1,
n=0
0,1 -2~ [0,1]

o, Al

Xﬁ L Xﬁ

This diagram is called a (-adic transformation.

We use the following notation for periodic sequences:

(a1,a9,... Gy, ..

'a’n+m) = (a17a23-~-> Qn; Gn41, - - - s Antm,
Ans Ap415 -+« 3y An+myy
Anys Ap+1y - -9 Antm,

)

We introduce the following proposition from Ito and Takahashi [5].

ProrosiTION 3.1.
hold in (3.2).

For an arbitrary 8 € Rsq the following statements
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1. cop=yo fzgon|0,1).

2. ¢ :[0,1] — Xz is an injection and is strictly order-preserving, i.e.,
t < s implies that p(t) < @(s).

3. pgop =id on [0,1].
4- pgoo = fgops onlm(p).

5. pg : Xz — [0,1] is a continuous surjection and is order-preserving,
i.e., w < w implies that pg(w) < pg(w’).

6. For an arbitrary t € [0,1], pgl(t) consists either of a one point p(t)
or of two points ¢(t) and sup{¢(s) | s < t}. The latter case occurs
only when f§(t) = (0) for some n > 0.

We also remark that the following proposition holds:
PROPOSITION 3.2.

Xg={we|o"w=(3 forall n>0}

DEFINITION 3.7. Let u € Xg. If there exist n € Z>; which satisfies
u(i) = u(i +n) for any ¢ € Z, u is called a periodic sequence. When
u € Xg is periodic, we define the period of u as min{n € Z>q | u(i) =
u(i +n) for any ¢ € Z}.

The following definition is from Parry [9].

DEFINITION 3.8. If (3 has periodic tail whose period is m, that is, UZCB
is periodic for some non-negative integer [ and the period of algg is m, then
B and f-adic transformation (3.2) are called Markov. In this case, (3 is the
unique z > 1 solution of the following equation:

+1 l
(3 3) ml 775 : . mHl—i _ I § : . l—1i
. z ;1% =z ;1%
i=1 i=1

where
Cﬁ = (ao, aiy ... ,al_l,dl, Al415- -+ al+;71_1)
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and
I = min{l € Zsg | 0'¢s is periodic}.

This equation is called the characteristic equation of 3. When [ = 0, 3 is
called simple. When 3 is Markov, p(3) denotes the length of the period of
(g’s periodic tail.

When £ is not necessarily Markov, the notion of the characteristic equa-
tion is generalized as follows. This function was first studied in Takahashi
[14][15] and Ito and Takahashi [5].

DEFINITION 3.9.

o5 = X ot (3)

n>0

We also have the following proposition from Ito and Takahashi [5].

PROPOSITION 3.3. ¢g(2z) converges in a neighborhood of the unit disk
{z € C||z] <1} and the equation 1 — ¢g(z) = 0 has only one simple root
at z =1 in a neighborhood of the unit disk.

REMARK 3.1. When § is Markov, 1 — ¢3(8/2) = 0 becomes the char-
acteristic equation of (3.

4. Constructing the sequence

In this section, a sequence Ng C [0,1) is defined by the use of S-adic
transformation, following [7]. Let 5 € R~ and let ([0,1], f3, X3, 0, ¢, pg)
be a f-adic transformation (3.2). Let B = [0, 1), and A, Q, (g, B(a1,...,an)
be the same as in the previous section.

DEFINITION 4.1. Let n € Z>(. Define
_ {(O>}7 n=>0
Xp(n) = { {weXg|o" lw#(0) and o"w=(0)}, n#0’
Ya(n) = {(w(0),...,w(n—-1)|we Xg},
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and

Yﬁo(n) = {(ag,...,an-1) | (ag,...,an—2,an—1 +1) € Yg(n)}.

Let k € Z>o, u € Yg(k), and v € Yp(l). Define Yg(u;n), Yé)(u;n),
Ya(u;n;v), Yg(usn;v), Ga(n), Ga(usn), Gi(n), Gi(u;n), and Gj(u;n;v)
as follows:

Ya(usn) = {v-wlu-we¥gk+n)}
Yﬁ(un) = {u'w|u'wEY50(k—|—n)}
Ya(usn;v) = {u-w-v|u-w-veYgk+n+1)}
Yﬂ(unv) = {u-w-v\u-w-veYﬁ(k—i—n—i—l)}
Gp(n) = 1Y¥s(n)
Gy(n) = tY7(n)
Gg(u;n) 1Ys(u;n)
Gﬂ(u n) = ﬁYBO(u; n)
Gp(u;nyv) = #Yg(u;n;v)
Gﬁ(u n;v) = j:tYﬂO(u, n;v)

where u - v means the concatenation of u and v, that is to say,
u-v=(u(0),...,u(n—1),v(0),v(1),...).
Finally we set Yz(0) = Y/BO (0) = {e} where € is the empty word and satisfies

e-u=1u-€=ufor any u € Yg(n).

r—I
DEFINITION 4.2. Define the right-to-left lexicographical order < in
r—I
LIy Xg(n) as follows: w < ' if and only if (w(n—1),...,w(0)) < ('(m—
1),...,w'(0)) where w € Xg(n) and ' € Xg(m).
DEFINITION 4.3 (Ng [7]). Define Lg = {w;}$2, as ||y~ X3(n) ordered
in rlght to-left lexicographical order, that is, Lg is | |;—y Xg(n) as a set and
w; —< w; holds for all i < j. Then, the sequence Ny is defined as follows:

N3 = {pslwi)}Z
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Ezxample 4.1. 1If g = 1+72\/g7 then (g = (1,0) and elements of Ng are
calculated as follows:

Ng(0) = ps(0)=0

Nz(1) = pa(1) = 0.618033988749895 . . .
N3(2) = pp(01) = 0.381966011250106 .. .
Nz(3) = ps(001) = 0.23606797749979 . ..
Nz(4) = ps(101) = 0.854101966249686 . . .
N3(5) = ps(0001) = 0.145898033750316 . ..
Nz(6) = pp(1001) = 0.763932022500212.. ..
N3(7) = pp(0101) = 0.527864045000422 . ..
N3(8) = ps(00001) = 0.0901699437494747 . ..
N3(9) = ps(10001) = 0.70820393249937 .. .
N3(10) = pp(01001) = 0.472135954999581 . ..
N3(11) = p(00101) = 0.326237921249265 . . .
N3(12) = pp(10101) = 0.944271909999161 . ..
N3(13) = ps(000001) = 0.0557280900008416 . . .
N3(15) = pp(100001) = 0.673762078750737 . ..
N3(16) = pﬁ(010001)_0.437694101250947...

From this definition, we immediately have the following proposition:

PRrROPOSITION 4.1. If 3 is an integer greater than or equal to 2 then Ng
is the van der Corput sequence in base 3 with all digit permutations 7; = id.

From Theorem 2.2 and Proposition 4.1, we see that if § € Z>2 then
Nj is a low-discrepancy sequence, that is to say, D%, (Ng) = O(M 1 log M)
holds for all 8 € Z>>. We also have the following theorem:

THEOREM 4.1. Let B be a real number greater than 1, and let the fol-
lowing condition (PV') hold:
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(PV) All zeroes of 1 — ¢g(z) except for z =1 belong to {z € C | |z| > (}.
Then,
. (log M)?
D3(Ng) = —
m(Ng) =0 ( i

holds. Moreover, if 8 is Markov, then

Dis(g) = 0 (<5

holds.

REMARK 4.1. When ( is Markov, the condition (PV) is equivalent
to the condition that all conjugates of 3 with respect to its characteristic
equation (3.3) belong to {z € C | |z| < 1}.

REMARK 4.2. In [7], the case in which § is Markov is proved.

To prove this theorem, we provide lemmas and definitions. We use the
following notations:

w[i’j):{ (W(i), ..., w(G—1), i<

€, 1=7"

where w € X3 and 4,5 € Z>g. Rg(u) = A(B(u)) where, A is the one-
dimensional Lebesgue measure, v € Xg(n), and B(u) is the cylinder (3.5).
For a sequence S, S[N] denotes the point set consisting of the first N ele-
ments of S, and S[N; M] = S[N + M]\ S[N].

DEFINITION 4.4. For any k> 0 and u € Yp(k), define
e(u) ={i € Z>o | (3[0,i + 1) -u ¢ Ya(k +i+1)}.

LEMMA 4.1 ([5]). For an arbitrary k> 0 and u € Y3(k), we have the
following partitioning of Yz(u;n):

Ya(u;n) = Yﬁo(u;j) -(gl0,n — ) Umax{Yg(u;n)}

-

1

J
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Proor. It is trivial to show that the left-hand side includes the right-
hand side.

If v=(ai,...,an4k) € Ya(u;n) \Yg(u; n) and v # max{Ys(u;n)}, then
there exists an integer [ that satisfies

E+1<Ii<n+k

and
min{w € Yg(u;n) | w > v} = (a1,...,a4,+1,0,...,0).

This means that

(al—l-la' .- aan-f-k) = CB[O,TL‘FIC - l)

and
(at,...,aqi_1,a;+ 1) € Yﬁo(u;l — k)

hold. O
Taking account of Lemma 4.1, we give the following definition:

DEFINITION 4.5. For an arbitrary u € Y3(n), define an integer d(u) as
follows: d(u) = k if
u € YJ(k)-(3[0,n — k)

holds. Remark that max{Y3(n)} = (30, n).

From Lemma 4.1, Definition 4.4, and Definition4.5 we have the following
lemma:

LEMMA 4.2. Foranyk,l,n >0, u € Yg(k), and v € Yg(l), we have the
following partitioning of Ys(u;n;v):

Ys(u;n;v)
U Y9us4)-¢l0,n —3),
1<5<n
n—j—1¢e(v)

I

if n+k—dmax{Ys(u;n)}) —1 € e(v)
L Yg(u;j) -(pl0,n — j) Umax{Y3(u;n)}, otherwise.
1<j<n
n—j—1ée(v)
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LEMMA 4.3. For anyn >0 and u € Y3(n),
1 n—d(u)—1 Cﬁ(l)
Rs(w)= s | 1= > Zad
Bd( ) ( — 5 +1
holds.

PrROOF. Let u = u"- (g[0,n — d(u)) where u® € Yé)(d(u)). From Defi-
nition 3.6,

Rs(u’) = pp((u®(0),...,u’(d(u) = 1) +1)
1
= pp((u°(0),...,u’(d(u) — 1)) = Faw

and

n—d(u)—1 1
Ro(Glo.n—dw) =1- Y oo
=0

When v - w € Yg(m), it follows that Rg(v - w) = Rg(v)Rg(w). Then, the
lemma holds. []

REMARK 4.3. From Definition 3.6, it follows that

st = (- 3 20

for any x € [0,1] and n > 0. Then, we have

1
D
for any u € Y3(n) and n > 0, from Lemma 4.3.

Rp(u) = — 13" (1)

LEMMA 4.4 ([5]). Let r be the absolute value of the second smallest
zero of 1 — ¢pg(z), that is, r = min{|z| | z € C, 2z # 1, 1 —¢g(z) = 0}. Then
for any small € > 0, there exists a constant Cc > 0 and
B Ry(u)| _ Cc ( & >

¢5(1) —n \r—e

Ghusn) —
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holds for any n >0, k > 0 and u € Yg(k).

PRrOOF. Let k> 0 and u € Yg(k). Remark that

(4.1) Rs(w)= >, Rg(u-v)

u-veYg(uin)

holds. From (4.1), Lemma 4.1, and Remark 4.3, we have
(4.2) B Rig(u Z [ ()G (usn = 5) + f57(1)

where | = k — d(max{Ys(u;n)}) > 0. Remark that the formal power series

PIE Z FH(GEun = )5~ 0

n>1

converges for |z| < 1. We have the following equality from (4.2):

nnl

48 PSR = Z( ) WD )
+Z<> i
n>1

We also have

1 (;)”?j:fgmagw;n )

S 3 6B n -5+ (5)
S (5) S esen ()

n>

and, from Remark 4.3,

(1-=2) Zf@ ( )n

n>0
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_1- _ N 6@ .
=1-2)+( Z)Z 1 Zﬁi—&-l z

n>1 =0
Py n+1
=1- - =1- .
o (3) 44(2)

By using these two equalities, we obtain from (4.3) that

2\"  z8FRg(u 1—2) 3,5 A1) (2/8)"
(4.4) E:cgﬂu;n)<ﬁ> _ 2B Rs(w) (1= 2) Snz 5 (/A"

n>1

- 1—¢p(2) 1— ¢g(2)

Consider the function

Z\" k U
45 hu(z) = Z(G%(u;n) () —ﬁRﬁ()z”>

= B ¢5(1)
_ 2% Rs(u) B (1—2)2 0> 5“(1)(2/&)"
1 —p(z) 1—¢p(z)
23" R (u)

(1—2)¢j(1)

The second equality comes from (4.4). From Proposition 3.3, we see that
hy(z) is analytic in a neighborhood of {z € C | |2| < r —¢, z # 1}. We
also see from (4.5) that lim,_;(1 — z)h,(2) = 0. Considering the fact that
BF¥Rp(u) < 1 for any u € Yz(k), k > 1 and that the second term of the
right-hand side of (4.4) and its derivative are bounded uniformly in [, we
see that there exists a constant C. and

(4.6) sup \hi,(2)| < Ce
k>1, ueYs(k)
|z|=r—e

holds. Then we have

G%(uin)  BFRs(u)
G B TN Y o)
a1,
= | dent (0)|

_ (n - 1)! / 2V dz
- 27r(7“ _ s)n /|Z|_r_(E hu( )d
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< (n—1)!

(r—e)m

and the lemma follows. [J

LEMMA 4.5. If 8 € Rsy is Markov and (3 = (ag,...,a1—1,dz,...,
Qyim—1), where m = p(B) and | = min{l € Z>o | o'(s is periodic}, then
we have the following statements:

1. For an arbitrary v € Xg, {G%(n) o and {Gg(n)}s>, satisfy the
following linear recurrent equation:

m+1—1
(4.7)  Galen+m+1lv) — Z aiGglen+m+1—1i—1;v)
i=0
-1
:Gg(e;n+l;v)—ZaiGg(e;nle—i—l;v)
=0
= G(s[0,1); n;v).

2. For arbitrary u € Yg(k), k > m+1l andv € Xg, the following equations
hold for anyn >m +1—k+d:

m—+l—k+d
> ak-d-14G(Csl0,1);n — i3 0)
i=1
(4.8) Gg(u;n;v) = when d>k—m—1

Gs(¢sl0,1);n50)
when d=k—m—1

(4.9) Gp(Cpl0,1);m50) = Y arpi1Gplen —i;v)

=1
+ G(¢s[0,1);n — m; v)

where d = d(ulk —m —1,k)) +k —m — .
Proor. First, we remark that u = [0, d) - (3[0,k — d). From Proposi-
tion 3.2, we have the following partitioning;:

-1 CLj—l

Ya(en+Lo)\ || | ¢sl0,5) i Ya(en+1—j—1;0)
j=0 i=0
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= Yp5(¢p[0,1);n;v)
m+l—1a;—1

=Ys(en+m+1Lv)\ |_| |_|Cﬁ[O,j)-i-Yg(e;n—i—m—i—l—j—l;v).
=0 i=0

Then, (4.7) holds. When d = k —m — [, it is trivial to obtain (4.8) from
Proposition 3.2. When d > k —m — [, we obtain the following partitioning:

m+l—(k—d) ag—d4;-1—1

Ya(u;n;v) = |_| |_| ul0,d) - (30, k —d+j)-i-w-v
j=1 i=0

where (3[0,1) - w - v € Y3((g[0,1); n — j;v). We also have

m al4j—1—1

Ya(¢sl0,0);mv) = || | ¢al0,0) - Gall i+ —1)-i- Ya(e;n — jsv)
j=1 =0

|_|C5[(), L+ m)-Ys((gl0,1);n — m;v).

The lemma follows from these partitionings. [

Proor OoF THEOREM 4.1. Let k > 0, u € Yg(k). Let M € N and
b= (b, b1,...,bm—1) = Lg(M). We assume M to satisfy m > k. Define

A(I; P) = A(I; P) — M),

where [ is an interval in [0,1) and P = {z1,22,...,zpm} C [0,1). For any
finite sets of points P, P’ in [0,1) and any intervals I,I’ C [0,1), INI" = (),

A(I; PUP) = A(I;P)+ A(I; P)

(4.10) A(TUTI;P) = A(I;P)+ A(I; P)

hold. Here, P LI P’ is the disjoint union of P and P’ or the union of P and
P’ with multiplicity. From Definition 4.3 and (4.10), we have

m—1 bj—l

(4.11) A(B(u); Ns[M]) = AB(u); || [] Yalegivy)
j=0 i=0

—_

m—1bj—1

= Z A(B(u); Ya(€ 53 vij))
j=0 i=0
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where v;; =i -b[j + 1,m). Consider the 0 < j < k part of the right hand
side of (4.11).
k bj—1

k
(412) > Z |A(B(u); Y(e; j; vif)) Z Bl +1)Gs(j) Rs(u)

7=0 =0

holds from the definition of A. From Lemma 4.1 and Lemma 4.4, there
exists a constant C’ and Gg(j) < C’37 holds for any j. From this and
Rg(u) < B7F, there exists a constant Cp, and

k

S (8] + DG () Rs(u) < Co

7=0
is satisfied for any k. Then, from (4.11) and (4.12), we have

m—1 bj—1
(4.13)  A(B(u); Ns[M]) < Co+ Y > IA(B(u); Ya(e: jsvig))] -
j=k+1 i=0
Define
wn) = G%%u:n ﬁn+kRﬁ(U)
Bn
— ) —
6(n) Gﬁ( ) %(1)
for u € Yg(k) and k,n > 0. From this definition,
(4.14) [A(B(u); Y5 ()| = |Gj(u;n) — Ra(u)G(k + n)|

= |6(usn) = Rp(u)o(k +n)|
holds. Then, from Lemma 4.2 we have

m—1 bj—1

(4.15) > Z |A(B(u); Ys(e: s vij))|

Jj=k+1 =0

—
I
—

b;

3

AN
(]

ABw);YI) - al0,5 = )| +1

j=k+1 i=0 I=1,...,j
Jj—l-1¢e(vij)
m—1 bj—1 J
< > |ABw: VW) +1].
j=k+1 i=0 \I=1
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From the (PV) condition and Lemma 4.4, there exist r > [ and a constant
C, that satisfy

Cr (B\"
4.16 S(usn)| < — | =
(1.16) atusm)] < 5 (%)
for any n,k > 0 and u € Yg(k). From (4.13), (4.14), (4.15), (4.16), and
r > (3, we see that

(4.17)  A(B(u); Ng[M])
<Co+C.([A1+ 1)
5 (Z (1( ) <u>)+1)
j= k+1 =1 ! r ’
=0(m g M)

holds.

Choose an arbitrary ¢t € [0,1). Let M € N and Lg(M) = (bo, ..., bm-1).
Let B(to,...,tm-1) be a cylinder of rank m that satisfies t € B(to,...,
tm—1). Then we have

[0,t) = Bs, UB,, U...UBs, UR,

where 0 < 51 < s2 < ... < s = m—1, By, is a disjoint union of up to [5]+1
cylinders of rank s; and A(R) < 8~™*L. Then from (4.10) and (4.17), we
have

|A([0,£); Np[M])| = O((log M)?),

and therefore )
log M)
D3 (Ng) =0 (log M) .
m(Ng) ( M )

In the following part, we consider the case in which § is Markov. Let
¢ = (ao,...,ap—1,ay,...,a;_1) and | — 1" = p(3). Then, [ is the unique
z > 1 solution of

-1

-1
(4.18) 2 — Zaizl_l_i = - Z a;i 2" 10
i=0 i=0

Let aq,...,aq be the conjugates of § with respect to the equation (4.18),
that is,

I'—-1 q

-1
2 — Zaizl_l_i — Z a;2' 71 = (z—P) H(z — ai)li
i=0 i=0

i=1
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where [; > 1, o # o for all i # j and Y7, l; =1 — 1. We also have
(4.19) la;| <1, forallie{1,...,q}

from the (PV) condition. Let v € X3. From Lemma 4.5, there exist
complex numbers ¢, ¢;; (i = 1,...,q, 7 = 0,...1; — 1) that satisfy the
following equation:

r l;—1
(4.20) Gple;n;v) =™ + Z Z cijn’aj forall n e N.
i=1 j=0

From Lemma 4.3, Lemma 4.5, and (4.20), we have

(4.21)  A(B(u); Ng[Gp(e; k +nsv)])
q Ip—1

Z Z Chj <nja2 - ﬂlk(k: + n)jag‘m) )

h=1 j=0
when d=%—1

4 ;
(b n - dpaftr=t=t = (k4 npaft),
when d>k—1

where u € Y3(k), n € N, and d = d(u[max{0,k — [+ 1},k+ 1)) + k — L.
From (4.10), (4.13), (4.15), (4.19), and (4.21), there exists a constant C' that
satisfies the following inequality (4.22) for any cylinder B(u) of any rank k
and M > Gg(l + d).

(4.22) [A(B(u); Ng[M])| < C

Then, we obtain

Diy(Ng) =0 (252

by the above reasoning. [
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