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The Spaces of Hilbert Cusp Forms for Totally Real
Cubic Fields and Representations of SLy(F,)

By Yoshinori HAMAHATA

Abstract. Let So,,,(I'(p)) be the space of Hilbert modular cusp
forms for the principal congruence subgroup with level p of SLy(Of)
(here O is the ring of integers of K, and p is a prime ideal of O). Then
we have the action of SLa(Fy) on Sop,(I'(p)), where ¢ = Np. When ¢
is a power of an odd prime, for each SLa(F;) we have two irreducible
characters which have conjugate values mutually. In the case where K
is the field of rationals, M. Eichler gives a formula for the difference
of multiplicites of these characters in the trace of the representation of
SLa(Fq) on Sop, (I'(p)). In the case where K is a real quadratic field, H.
Saito gives a formula analogous to that of Eichler for the difference. The
purpose of this paper is to give a formula analogous to that of Eichler
in the case where K is a totally real cubic field.

1. Introduction

In this paper, we consider the action of SLy(F,) (F, : a finite field
consisting of ¢ elements) on the space of Hilbert modular cusp forms. First,
let us explain the motivation for the present paper.

Let K be a totally real number field of degree n, Ok the ring of integers
of K, and p a prime ideal of Ox. Let I'(p) be the principal congruence
subgroup of SL2(Ok), and S, (I'(p)) the space of Hilbert cusp forms of
weight 2m with respect to I'(p). Since SLo(Of) acts on Sa,, (I'(p)) and I'(p)
acts trivially on it, SLy(IFy) = SL2(Ok)/T'(p) acts on Sop,(I'(p)) (we put
q:=#(Ok/p)). Let 7 be the representation of SLs(FF,) on So,(I'(p)). For
a fixed power ¢ of an odd prime number, there are two irreducible characters
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X1, x2 of SLa(F,), whose values are conjugates mutually. Let y; (i = 1,2)
be the multiplicity of x; in the character tr w of m. We are interested in the
difference y; — yo.

There are two ways of considering the difference y; — ys. The first way
is to express it as the sum of the relative class numbers.

In the case where n = 1, m = 1, and p = (p), Hecke [8] studied the
action m of SLy(Fp) on So(I'(p)). He determined how tr 7 decomposes into
irreducible characters. Above all, he showed that the difference y; — yo is
expressed as y; — yg = —% Zf;ll i (%), where (5) is the quadratic residue
symbol mod p. Using the formula of Dirichlet on the class number of an
imaginary quadratic field, he showed that

_{O (p=1 (mod 4))
Y1 — Y2 =

@ ho(y=p) (p =3 (mod 4))’

where hq( =) denotes the class number of Q(y/—p). S. Nakajima inter-
preted this result as that of Galois coverings of modular curves, and gener-
alized it to the case of Galois coverings of algebraic curves.

In the case n > 2, H. Saito and H. Yoshida proved the following inde-
pendently by using the Selberg trace formula: if m > 2, then we have

_ hk;
ly1 — ya| =27 1Zh—]’
K, K

where K runs over totally imaginary quadratic extensions of K with the
relative discriminant p, and th and hg are the class numbers of K; and
K, respectively. This result is a generalization of Hecke’s.

In the case n = 2,m > 1, W. Meyer and R. Sczech [10] got

3/1-?;22—22
K;

hi,
hi'’

which is a refinement of the result of Saito-Yoshida in the case n = 2. They
showed it by using the holomorphic Lefschetz formula. In his book [7], van
der Geer generalized their result to the general Hilbert modular group.
Concerning this direction, T. Yamazaki, R. Tsushima, and K. Hashimoto
studied the action of Spa(IF,) on the space of Siegel cusp forms of degree 2
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with respect to I'(p). More precisely, R. Tsushima corrected the error in the
result of T. Yamazaki, and presented a conjecture for the multiplicities of
certain four irreducible representations of Sps(IF,). Finally, K. Hashimoto
solved the conjecture by using the Selberg trace formula.

The second way is to write y; —yo by using the quadratic residue symbol
and the intersection numbers of irreducuble divisors obtained from the cusp
resolution.

In the case n = 1 and m > 1, by using his trace formula, Eichler [3]
proved that

) = ﬁz (3) w0

where we put

v(i) i= ———, elz] := exp (2rv—12).
1—e [ﬂ

He showed that the right hand side of this equation is equal to
—% Zf;ll i (%), the Dirichlet expression for hg(,/=5). In this case, the cusps
of I'(p) are not singulariites of the modular curve X (p) with level p. As a
result, the intersection numbers do not appear in v(7).

In the case where n = 2,hgy = 1,m = 1, and p = (p) (p is a totally
positive element of Og), H. Saito [11] obtained the following, which is
similar to the formula (2) of Eichler:

1 2 o
(3) Y1 — Y2 = (_1)(q_1)/2q ’ [U . U(p)] Z (E) V(a)7

a mod p

where (T) is the quadratic residue symbol modulo p, and v(«) is expressed

as e[ | and the self-intersection numbers of irreducible divisors obtained
from the cusp resolution. He showed it by using the holomorphic Lefschetz
formula.

The purpose of this paper is to gain a formula (see Theorem 4.4) similar
to Eichler’s formula for y; — 32 in the case where n = 3,hx = 1 and p = (u)
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(u is a totally positive element of O). We shall show it with the use of
the holomorphic Lefschetz formula.

Let us explain the significance of our result. In the process of the proof
of Saito-Yoshida’s result, the difference y; — yo is expressed as a sum of
values at 1 of some certain L-functions, and is proven to be equal to a sum
of relative class numbers. Hence y; — ys can be written as an “infinite sum”
by using the Selberg trace formula. On the other hand, Hecke and Eichler
wrote y1 —yo as a “finite sum” in the case n = 1. In the case n = 2, from this
point of view Saito wrote y; —y»2 as a “finite sum” by some method, i.e., the
holomorphic Lefschetz formula other than the Selberg trace formula. Our
motivation to prove Theorem 4.4 arises from this point of view. Our result
implies that in the case of n = 3 the difference y; — y2 can be represented
as a “finite sum”.

The contents of this paper is as follows. In Section 2, we assemble some
facts about Hilbert modular forms for the principal congruence subgroups.
In Section 3, we review some facts about 3-dimensional Hilbert modular
varieties. In Section 4, the statement of our main result is given. In Sec-
tion 5, we shall prove it. First, Theorem 4.4 will be proven in the case
where m = 1. And then the theorem will be proven for the general m. In
Section 6, we give an example to our result.

Acknowledgement. The author expresses his sincere gratitude to Pro-
fessor Hiroshi Saito, who suggested this problem and gave encouragement.
He would also like to thank Professor Ryuji T'sushima sincerely for his help-
ful advice. Special thanks are also due to Professors Akira Fujiki, Hirotada
Naito, and Hiroshi Saito for their helpful correspondence. He also thanks
Professor Takayuki Oda for his interest and encouragement.

Notation. By #(S), we mean the cardinality of the set S. Put e[z] :=
exp(2my/—1z). Let C,R, and Q be the field of complex, real, and rational
numbers, respectively, and [, the finite field consisting of g-elements.

2. Fundamental facts
1. Hilbert modular form

2.1. Let K be a totally real number field of degree n, O the ring of
integers of K. Set ) := {z € C | Im(z) > 0}. Let o1, - , 0, be embeddings
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of K into R. In particular, let o7 be a trivial embedding: o1 (z) = x for all
x € K. The group SL2(Of) acts on 9", the n-fold product of §) as follows:

for v = (Z Z) € SLy(Ok) and (z1,--- ,2,) € H", we define

(4) O R (al(a)zl +o1(b)  onla)z +an(b)> .

o1(c)z1 +o1(d)” " op(e)zn + on(d)

Let a be an integral ideal of Ox. We set

I'(a) ::{(‘CL Z) € SLy(Ox) | (Z Z) - (é ?) (mod a)}.

It is called the principal congruence subgroup with level a of SLs(Of). The
group I'(a) acts on K U {oo} by the linear fractional transformation. The
orbits for the action are called the cusps for I'(a).

An additive subgroup M of K which is a free group of rank n is called
a complete Z-module of K. We denote by UA'Z the group of units u of K
which are totally positive and satisfy uM = M. The group U]\JSI is a free
group of rank n — 1. For a subgroup V' with rank n — 1 of UAJZI, define

G(M,V) ::{(3 ff) lueV, aeM}.

For each cusp = of I'(a), let I'(a), be the stabilizer of x in I'(a). Then there
exists an element p of PGL$ (R)" such that p(z) = oo and pI'(a).p~! =
G(M,V). Then the cusp z is called of type (M, V). We say two complete Z-
modules My, M strictly equivalent if there exists a totally positive element
of u of K such that uM; = Ms. Then we have U]T/[l = UAZQ. The strictly
equivalence class of M and the group V are completely determined by the

cusp « and do not depend upon the choice of p.

LEMMA 2.2. Let A = a/f be a cusp of I'(a) such that Oxa + Ogf3 =

b. Then the stabilizer I'(a)y of A in I'(a) is isomorphic to {<8 €m1> ]

ecU(a), me ab_2}, where U(a) is the group of units of K congruent to

1 modulo a.
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PROOF. Since the proof is essentially the same as that of Lemma 2 in
Saito [11], we omit it. O

b
2.3. Let m be a positive integer. For any v = <CCL d) € SLy(Ok)

and z = (21,"' 7Zn) eﬁnv put

Tom (7, 2) = [ [ (0a(e)zi + 03(d)) ~>™ .
=1

A Hilbert cusp form f of weight 2m with respect to I'(a) is a holomorphic
function on $H" satisfying

2) 1(12)Jom(,%) = [(2) for any ~ € T(a),

b) f(z) is holomorphic at every cusp of I'(a) (This condition automati-
cally holds if n > 2).

c¢) f(z) vanishes at every cusp of I'(a).

We denote by So,,(I'(a)) the space of Hilbert cusp forms of weight 2m
for I'(a). For v € SL2(Ok) and f € Son(T'(a)), we have f|[v]am :=
f(v2)Jam(7, 2) € S2m(T(a)). Hence by the map v — [y]2m, we obtain a
representation m of SLy(Ok)/T'(a) on Sa,(I'(a)). In particular, if a is a
prime ideal p and #(Og/a) = g, then we have SLy(Ok)/I'(a) = SLy(F,).
We thus have the representation m of SLy(F;) on Sa,(I'(p)).

2.4. Anelement v of SLy(Of) is called elliptic if it satisfies tr(o;(y))?—
4-det(oi(y)) <0 (i=1,---,n). A point z € H™ which is a fixed point of
an elliptic element of I'(a) is called elliptic fized point of I'(a).

LEMMA 2.5. Let a be an integral ideal of K such that a is prime to
6 - di (here di is the discriminant of K). Then I'(a) has no elliptic fized
points.

PROOF. Since the proof is essentially the same as that of Remark 1 in
Saito [11], we omit it. See also Yoshida [17], page 11. O

2. Representations of SLy(F,)

2.6. Let ¢ be a power of an odd prime. There are two pairs of irre-
ducible characters whose values are conjugate mutually. We give a list of
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LN o _ (1
1) 7 \o 1
") an (X’,X”) as follows:

values at € =

1 . *
0 (1 is a nonsquare element of Fy) of
such pairs (W', W'

€ e
) 1+,/7 1-/q
w 2 2
" 1-vq 1+vq
W 2 2
I —1+y/—q 1y~
2 2
X —1-v—q —1+v=q
2 2

If g =1 (mod 4), then X’ and X” do not appear. If ¢ = 3 (mod 4), then
W' and W” do not appear. Let us consider a representation 7 of SLo(F,)
on So,,(T'(p)), which is treated in 2.3. Let y; be a multiplicity of W’ (resp.
X') in tr 7 when ¢ = 1 (mod 4) (resp. ¢ = 3 (mod 4)), and y2 a multiplicity
of W” (resp. X”) in tr # when ¢ = 1 (mod 4) (resp. ¢ = 3 (mod 4)). Since
the values at € and € of irreducible characters of SLy(IF,) other than these
characters are equal, we have

tr w(e) — tr m(e') = 1/ (—=1)(a=D/2q(y1 — yo).
Hence we obtain

! - (tr w(e) — tr w()) .

Y1 — Y2 = —(_1)(q_1)/ .

3. Holomorphic Lefschetz formula

2.7. Let X be a compact complex manifold, VV a holomorphic vector
bundle over X, and G a finite group of automorphisms of the pair (X, V).
For an element g of G, we denote by X9 the fixed subvariety of g in X. Let
X9 =3 X& be the irreducible decomposition of X9, and N§ = >, NI (0)
the decomposed normal bundle of XJ corresponding to the eigenvalues

exp(v/—=10) of g. If the Chern class of NZ(6) is ¢(NE(0)) = [15(1 + 25),

then put
0/ rrg _ 1 —exp(—zg — v—160) -
u wa(e))—rﬂ[( )
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Let 7(X%) be the Todd class of X3, and ch(V|X%)(g) the Chern character
of V| X5 with g-action. Put

o _ JhVIXE)(9) - [Ty UP(NE(B)) - T(XE) \ ;4g
T = { det(1 = gl(N)") } el

where [XJ] denotes the fundamental class of X§. Moreover, put 7(g) =
> T (9, X2).

THEOREM 2.8 (Holomorphic Lefschetz formula [1]).  Notation being as
above, we have

7(9) = Y _(=1)'tr(g| H'(X,0(V)).

i>0

3. Hilbert modular 3-folds

In this section, we remember some facts on Hilbert modular 3-folds. We
refer to Ehlers [4], van der Geer [7], and Hirzebruch [9] for details. From
now on, all totally real number fields we consider are totally real cubic
fields.

3.1. Let K be a totally real cubic number field, Og the ring of integers
of K, and a an integral ideal of O. Since I'(a) acts on $2, we have the
quotient space I'(a) \ H2 of $3 by I'(a). The space I'(a) \ H° can be com-
pactified by adding all cusps of I'(a). We denote by I'(a) \ $3 the resulting
space. The space I'(a) \ $? is a normal compact space with a finite number
of isolated singularities, i.e., quotient singularities arising from elliptic fixed
points of I'(a) and cusp singularities arising from cusps of I'(a). By Hi-
ronaka’s general theory, there exists a proper morphism X (a) — I'(a) \ $?3
resolving the singularities. The space X (a) is a 3-dimensional nonsingular
projective variety. We call it Hilbert modular 3-fold obtained from I'(a).

3.2. Let v be an element of SLy(Ok). Since I'(a) is a normal subgroup
of SL2(Ok), v induces an automorphism of I'(a) \ $* given by

(21,22, 23) = (01(7)21, 02(7) 22, 03(7) 23),
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and moreover this automorphism can be extended to that of T'(a)\ $3.
Take any element a of Ok, and let f, be the automorphism of I'(a )\,?_)3

1
defined by v = < 0 1 > By the same argument as the proof of Lemma

2.5, we can easily see that f, has no fixed points in I'(a) \ $® under the
same assumption as that of Lemma 2.5.

LEMMA 3.3. Let fe, fe be automorphisms of T'(a) \ $3 defined by €, €
given in 2.6, respectively. Suppose that hx = 1 and a is a prime ideal p
generated by p. Then the fized points of f. are the cusps which are T'(p)-
equivalent to the cusps of the form a/u, (o € Og,Oga + Ogp = Ok).
The same thing holds for fe.

PrOOF. We refer to Remark 3 in Saito [11]. O

LEMMA 3.4. Let the notation and the assumption be as in Lemma 3.35.
Let U be the image of U in (OK/p . If{a;} is a complete system of the
representatives of (Og /p)* /U, then {al/u} is the set of all fixed points of

fe (resp. fe).

PROOF. Since the proof is essentially the same as that of Lemma 1 in
Saito [11], we omit it. (J

3.5. We assume that a is prime to 6 - dx. Then I'(a)\ H2 has no
quotient singularities by Lemma 2.5. Hence it suffices to consider the cusp
resolution in this case. We shall describe the cusp resolution of I'(a) \ £3
in the rest of this section.

3.6. Let W be a n-dimensional vector space over R, and M a rank n

free Z-module in W. Let vq,--- , v, be linearly independent elements of M,
and set
T
g = <’U1,'-'UT> = {Zcivi | C; Z O} .
i=1

The set o is called r-simplex if M /Zvy + -- - + Zv, is torsion-free. For any
subset {v;,,---,v;, } of {v1, -, v}, we call (v;,,---,v;,) the k-face of o.
By abuse of notation, we may write w for a 1-simplex (w). We consider {0}
as a 0-simplex.
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A set X of simplices is called complex when it satisfies the following;:

i) If 0,0’ € 3,0 # o, then we have oMo’ =¢and ocNo’ €3, where &
is the interior of o. Take any element o € 3. If 7 is a face of o, then 7 € X.

ii) For any element 7 € X, the set {o € ¥ | 7 is a face of o} is finite.

iii) If 7 € ¥ satisfies dim 7 < n, then 7 is a face of certain n-simplex in
3.

For each complex ¥, we obtain a n-dimensional complex manifold Xyx.
We call it a torus embedding associated to ¥ (cf. [18]). There exists a
1-1 correspondence between the coordinate charts (C™), of Xy and the n-
simplices o of ¥. Let *) be the set of k-simplices in ¥. Each element o
of R corresponds to a codimension k submanifold F, of Xx. Set Fy, =

U Fy.
oex()

3.7. Let UT be the group of totally positive units of K. Let M be a

rank 3 complete Z-module in K, and V a subgroup of rank 2 of U such
that V.- M = M. Set

G(M,V) :—{(3 ”f) lueV, meM}.

The group G(M,V) acts on $3 by the same way as (4) in Section 2. The
space H(M,V) := G(M,V) \ $2 U {co} is a normal space with an isolated
singularity at oo, which is of type (M,V). The space H(M,V) has the
following properties:

(i) H(M, V) is locally compact.

(i) G(M, V) \ $° is open dense in H(M, V).

(iii) For any positive real number ¢, set

Ue:={z€$® | Im(21) - Im(22) - Im(23) > c}.

Then G(M,V) acts on U, and {G(M,V)\ U.U{<} | ¢ > 0} forms a fun-
damental system of neighbourhoods of co.

Each cusp singularity = of Hilbert modular 3-fold I'(a) \ 3 is analyti-
cally equivalent to oo on some H(M, V).

Let M be the dual Z-module of M, i.e.,

M = {r € K | tr(xy) € Z,for all y € M}.
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Here we used the notation tr(zy) := o1(zy) + o2(zy) + o3(zy). Let MJ’_ be

—

the set of totally positive elements of M. For a cusp oo of type (M, V), let
O(M, V) be the ring of holomorphic functions f at a neighbourhood of oo
satisfying the following conditions:

(a) Each f € O(M,V) has the Fourier expansion

f(z) =ap+ Z azeltr(zz)]
zeMy

such that a; = ay, for all u € V' (here we put tr(zz) := o1(z)21 + 02(x) 22 +

03(.%‘)23).
(b) Each f € O(M,V) converges on U, for some ¢ > 0 depending on f.

3.8. In this subsection, we recall resolutions of cusp singularities of
Hilbert modular 3-folds. We here construct a cusp resolution of H(M, V).

Let M be a rank 3 complete Z-module in K. The module M acts on
C3 by (21,22, 23) — (21 + 01(m), 22 + 02(m), z3 + 03(m)) (m € M). The
quotient M \ C3 is an algebraic torus. Let {u,v,w} be a basis of M. Then
there exists an isomorphism

o(u,v,w) : M\ C3 - (C*)3, z mod M +— (t1,t9,13),
where t1, t2,t3 are determined by

2/ —1z1 = o1(u)log t1 + o1(v)log ta + o1(w)log t3  (mod 27/ —1M)
21/ =1z = oa(u)log t1 + o2(v)log ta + oa(w)log t3  (mod 27/ —1M)
2my/—1z3 = o3(u)log t1 + o3(v)log t2 + o3(w)log t3  (mod 27/ —1M).

Take another basis {u/,v’,w'} of M. Then we have a commutative diagram:
I Ly
M\cB ‘P(“lﬁiywl) ((c*)?) ,

where we put ¢ = p(u',v', w')op(u,v,w) L. If a matrix g = (g;;) € GL3(Z)
transforms (u, v, w) into (u/,v',w’), then 1 is expressed as

¢(t1, tg, tS) — (t1g11t2912t3913,t1921t2922t3923,t1g31t2932t3933).
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The quotient M \ C? contains M \ $ as an open subset. If
Im(z1)Im(22)Im(z3) tends to oo, then t;,ta, or t3 appeared in the above
isomorphism tends to 0. We consider the inclusion (C*)* ¢ C3 for any
basis of M. Take any element ¢ = (u,v,w) of £). By the construction of
Y, {u,v,w} is a basis of M. Let ((C?’)U be a copy of C2. We can glue these
copies ((Cg)(7 (o € 2(3)) by using biholomorphic maps i appeared in the
above diagram. Then we obtains a three dimensional complex manifold Xy.
Let ® : M\ C3 < Xy, be an embedding defined by M\ C* — (C*)* — Xx.
The map & is independent of a choice of a basis of M by the construc-
tion of Xy. Put X := ® (M \ $°) U Fy, where Fy, := Xy, — ® (M \ C?).
Since there is an exact sequence 0 — M — G(M,V) -V — 0, V acts on
M\ 3. Take an element o = (u, v, w) of ©). From the construction of 3,
o' = (eu, ev, ew) € X4 for any element e € V. By sending a point with co-
ordinates u, v, w in ((Cg)a to the point with coordinates eu, ev, ew in (C3)U,,
V acts on Xx. The map ® : M \ $® — X is compatible with the action of
V. According to Ehlers, V acts on X freely and properly discontinuously
(Ehlers [4], section 2, Lemma 1, 2). The quotient Y(M,V) := V \ X is
a three dimensional complex manifold, and ®~' induces a surjective mor-
phism p : Y (M, V) — H(M, V) satisfying p~t(cc) = V' \ Fy. The complex
3-fold Y(M, V) is a resolution of the cusp oo.

3.9. We keep the notation of 3.7. We consider a cusp of type (M, V).
Let e be a unit element of K such that eM = M, and m an element of K
such that (e — 1)m € M for all e € V. Then e and m define maps

(21,22, 23) = (01(€)*21, 02(€)?22, 03(€)23),

(21,22,23) — (21 + 01(m), 2o + 02(m), 23 + 03(M)),
respectively. The neighbourhoods U, of oo are stable under these maps.
These maps define automorphisms ge, g,, of H(M, V'), respectively. More-

over, we have two automorphisms g}, g of O(M,V) induced by ge, Gm,
respectively:

gm : O(M, V) — O(M,

)

(efz1], efz2], e[zs]) > (e[e’z1], e[e®z], e[ez3]),
)

(e[z1], e[z2], e[z3]) = (

e[z1 + o1(m)], e[z2 + o2(m)], €[2z3 + o3(m)]).
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ProrosiTioN 3.10. The maps g and g.,, can be extended to a cusp
resolution Y (M, V') of H(M,V).

PrOOF. We use the notation in 3.8. First, let us show the claim for g..
Let g. : Xy — X be a map with the property that a point with coordinates
u, v, w in ((CS)U is mapped to the point with coordinates v/, v’, w’ in ((C?’)U,.
Here we put v/ = eu,v’ = ev,w’ = ew, and o' = (u/,v',w'). Put W, :=
®(M \U;)UFx, for any ¢ > 0. The set W, is open in X, and is stable under
the map g, for any element e € V', and g, induces a map V\ W, — V \ W..
Also, Fy; is stable under g, and g. induces in O(M, V) the map g} from
the relation

2y —121 = o1(u)log t1 + o1(v)log ta + o1 (w)log t3
(5) 2wy —129 = o2(u)log t1 + o2(v)log ta2 + o2 (w)log t3
2y —1z23 = o3(u)log t1 + o3(v)log ta2 + o3(w)log t3

between the coordinates of (C?), N X and those of H (M, V). This proves
the claim for ge.
We next show the claim for g,,. For any element o = (u,v,w) € X, we

define a map (C?’)U — (C3)a by

= e[z o] ).

d(u,v,w) d(u,v,w) (u,v,w

where we put

(6) d(a,b,c) := |o2(a) o
os(a) o3(b) o3(c)

for a,b,c € K. For a 3-simplex (u,v,w), we may assume d(u,v,w) > 0 by
reordering u,v,w. Then we have d(u,v,w) = v/di. This map is compat-
ible with the glueing of (C?’)U (0 € X) by ¢’s, and therefore induces an
automorphism g, : Xs; — Xx. By the construction of W,, W, is stable
under g,,. Also, g, makes stable Fy,, and g,, induces in O(M, V') the map
gt by (5). This proves the claim for g,,. O

3.11. We take an element v of SL2(Of). Since I'(a) is a normal sub-
group of SLy(Ok), 7 induces an automorphism of I'(a) \ $3 defined by
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(21, 22,23) — (01(7)21,02(7)22,03(7)23). This automorphism can be ex-
tended to that of I'(a) \ $3. We denote the resulting map by f,. Then we
have the following:

ProPOSITION 3.12.  The map f, can be extended to an automorphism

of X(a).

PROOF. Let ¢ : X(a) — I'(a) \ $2 be a morphism resolving the sin-
gularities of I'(a) \ 3. The morphism ¢ induces an isomorphsm X (a) —
Pp71(S) — T(a)\ 3. Here S denotes the set of cusp singularities of
I'(a) \ $3. Thus f, can be extended to X (a) —1~1(S) as an automorphism
of X(a) —~1(S). Let A\ be a cusp for I'(a), and put y(\) = \. By our
assumption, A and A are of type (a,U(a)). There exist vy, vv € SLa(Ok)
such that y)(c0) = A,7x(c0) = N. The matrix 7;,'v7y, has the form

~1
(8 gﬂ) = (g 691> <(1) ¢ 1m> for some element e € U and for
some element m € Ox. We see that e and e~ 'm satisfy the condition in
3.9. By Proposition 3.10, maps g, and g¢,-1,, can be extended to X (a) as
automorphisms of X (a). Since ’y;,l’y’y,\ is expressed as ge - -1, fo can be
extended to X (a) as an automorphism of X (a). OJ

4. The main result

In this section, we present a formula for y; — y2, which is an analogue of
a formula of Eichler.

4.1. In this subsection, we prepare for some definitions and notations
needed in the next theorem. Let K be a totally real cubic field with hg =1,
and p a prime ideal of K with the conditions that p is generated by a totally
positive element p and that p is prime to 6-dx ( here dx is the discriminant
of K). Let ¥ be a complex which describe the cusp resolution of a cusp
with type (Og,U(p)?). Take a 2-simplex (v,w) € B . Let a(v,w) be
the selfintersection number of Fi, .,y on Fi,y, and a(w,v) be that of F,
on F,y. Take a l-simplex (w) € >, Let {01, ---,04} be the set of all
2-simplices in ¥ with the property (o;,w) € 23, There exist elements
UL, ,Us € »@ such that

oi = (Ui, Uit1) (1<i<s), Ugy1 = UT.
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Ui+1

Then we have
Uit1 + Ui—1 = w + diu; (1<i<ys)

for certain integers ¢;, d; € Z (cf. Thomas-Vasquez [14], page 177). We
write the integers ¢; and d; on the sides of w and u; as Fig. 1.

The numbers ¢;, d; (1 <i < s) are three dimensional analogues of pe-
riodic continued fractions. It is known that —¢; = a(u;, w), —d; = a(w, u;)
(cf. Tsuchihashi [15], page 628). Then we put c(w) := —> .7 ;¢ Let
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d(w) := F<w>3 be the triple intersection number of F,,. Using ¢; and d;,
we define

AO = 07 Al = Cs,
Aipn=ci+diAi— Ao, (1<i<s—3)
recursively. Then we have d(w) = Zf;lz ¢iA;. For the definition of d(-,-,-),

see (6).

DEFINITION 4.2. Let the notation be as above. For each element o of

1
Ok, let f,, be the automorphism of X (p) for v, := ( oz/,u) (cf. 3.9,

0 1
3.12). Then for each o € Ok, we define

e [d(a/uvvvw)} e [d(uva/uyw)} e [d(uw,a/u)}

V() = — Z Alu,o,w) d(u,v,w) d(u,v,w)
(o) (-« (S - 528
dlw,a/pw) | o | duv.a/p)

where the sum ) runs over the elements (u,v,w) of Z(S) corresponding
1)

to the components of 0-dimensional fixed subvariety of f,,, the sum )

2)
runs over the elements (v, w) of 2(2) corresponding to the components of
1-dimensional fixed subvariety of f,, (then take an element u of Z(l) such
that (u,v,w) € 2(3)), and the sum ) runs over the elements w of Z(l)

3)

corresponding to the components of 2-dimensional fixed subvariety of f,,

(then take an element (u,v) of 2(2) such that (u,v,w) € 2(3)).
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REMARK 4.3. (1) As one sees in Definition 4.2, a 3-simplex (u, v, w) €
¥®) is chosen for an element w € ) corresponding to a component of

2-dimensional fixed subvariety of f,,. The value of e [%} is inde-
pendent of a choice of such 3-simplices. Indeed, let {01, -, 0} be the set

of all 2-simplices in ¥ with the property (o;, w) € $(3). There exist elements
UL, - ,Us € »@ such that

o; = (Ui, Ujt1) (1<i<s), Ust] = U7.
Then we have
Uil + Ui—1 = cw + d;ju; (1<i<ys)
for certain integers ¢;, d; € Z. Using it,

d(uiv Ui+1, CY/,LL) = —C- d(U), Us, a/lu’) + d(uifla Us, a/ILL)’

d(ui, uiy1, w) = d(ui—1,ui, w).

Since e [M} =1 (1<j<s)(cf 54.), we have

d(uj,ujy1,w)

d(ui7 Ui41, a/:u’) —e -d(Ui, —U;—1, CY/,U) .e d(u’bu w, O[//L) “
d(u, w1, w) d(ui, uiy1,w) d(wi, wiy1, w)

d(wi—1,ui, /)
L d(us, wig1, w)

. _d(uil,ui,a/u)} |

L d(uiflv Uq, U))

= e

This proves the claim. Also, in Definition 4.2, for any element (v, w) € %(2)
corresponding to a component of 1-dimensional fixed subvariety of f,_,

an element u € M) such that (u,v,w) € £®) is chosen. The values of

u' be another 1-simplex such that (u/,v,w) € ). There exist ¢, d € Z

] are independent of choice of u. Indeed, let
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such that u+u' = cv+ dw as above. Hence, d(v',v,w) = —d(u, v, w) holds.
Since e [%] =1 (cf. 5.4.), we have
d(u',v,a/p) d(u,v, /) d(w,v,o/p)] ™4
e|l—————F|l=e| " 6| — T
d(u',v,w) d(u,v,w) d(u, v, w)
_ o [du v, /)
N d(u,v,w) |

This proves the second claim.

(2) If @ = B (mod p) for a, B € Ok, then v(a) = v(F). Indeed,
a — (3 € (p) implies that (aw — 3)/p is a linear combination of u,v,w over
Z. Hence, d((a — 8)/p, v, w)/d(u,v,w), d(u, (e — )/, w)/d(u,v,w), and
d(u,v, (o — B)/u)/d(u,v,w) are rational integers.

(3) Though in our case we define v(a) with the use of the cubic de-
terminant, Saito [11] defines v(a) without the use of the determinant in
the real quadratic field case. However, one can easily see that v(a) in
Saito [11] is rewritten with the use of the quadratic determinant d(a,b) =
oi(a) o1(b)
oz(a)  oa(b) |

We now state the main theorem:

THEOREM 4.4. Let K be a totally real cubic field whose class number
is 1, and p a prime ideal of K, which lies over an odd prime number,
generated by a totally positive element i, and is prime to 6 - di. On the
space Som(I'(p)), we have

1 2 «a
nom= e w2 (5) e

ae(Oxk /p)~

Here we explain the notation appeared above. Let ¢ = #(Ox/p). Let U be
the unit group for K, and U(p) the group of elements of U congruent to 1
modulo p. The sum > runs over a complete system of the representatives

of (Ok/p)”*. Let (T) be the quadratic residue symbol modulo p.
5. Proof of Theorem 4.4

In this section we prove Theorem 4.4. From 5.1 till 5.6, we are engaged
in the proof in the case m = 1. In 5.7, we prove in the case m > 2.
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5.1. From now on, we assume that the norm N(p) of a prime ideal p
is a power of some odd prime. Let m be the representation of SLy(FF,) =
SL2(Ok)/T(p) on the space S2(I'(p)). Take an element n of Ok such that

g = —1 (here <T> is the quadratic residue symbol modulo p). Put
e=1{, i and € = (1) 717 . Then the difference y; — y2 (cf. Section 2)

of multiplicities of two irreducible characters in tr = was expressed as

1 /
(7) Y1 —Y2 = W(tr m(e) —tr w(€')).

Hence we shall compute tr 7(e) and tr 7(¢’) in order to study y1 — yo.

The matrix € (resp. €') induces the automorphism f. (resp. fo) of
T(p) \ H3. By Proposition 3.12, we can extend the automorphism f. (resp.
fo) to the biholomorphic automorphism f. (resp. }’?) of X(p), respec-
tively. Let Q3 be the sheaf of germs of holomorphic 3-forms on X(p).
It is known that the space So(I'(p)) is isomorphic to H°(X (p),3). Let
tr(f|HO(X (p), Q%)) (resp. tr(f;]HO(X(p),Q?’))) be the trace of the linear
transformation of HO(X(p),3) induced by f. (resp. 3‘;) Then we see
that tr m(e) (resp. tr m(¢')) is equal to tr(fHO(X(p),23)) (resp.

tr(foHO(X (p),2))).

5.2. By the holomorphic Lefschetz formula (Theorem 2.8), we have

3

S (=Dt (fe H (X (p), 2%)) = 7(e),
=0

3
S (1) te(fo [ H (X (p), %)) = 7(€).
1=0

Let Oxy) be the structure sheaf of X (p). By the Serre duality theorem, we

have
Hl(X(p)vgg) = Hgii(X(p)a OX(p)) (Z = 17233)'

We know that H%(X(p), Ox(,)) = C. By Theorem 7.1 in Freitag [5], we
have H' (X (p), Ox(p)) = H*(X(p), Ox(y)) = 0. Therefore, we conclude that

tr(flHO(X (p), 2%)) = tr(fu H(X (p), %)) = 7(€) = ().
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By (7), the difference y; — y2 is expressed as

(8) Y1 — Y2 =

5.3. By Lemma 3.3, the fixed subvariety of :f; is contained in the sur-
faces arising from the resolution of the cusps which are I'(p)-equivalent to
the cusps of the form o/ (o € Og, Oga+Ogp = Og). The same thing
holds for f..

Take a fixed point A = a/p of f. (resp. fo). Then the stabilizer T'(p)y

of A in I'(p) is isomorphic to {(8

2.2. Hence \ is of type (p,U(p)?) (here we set U(p)? = {u? | u € U(p) }).
Hence O()) is isomorphic to O(p,U(p)?) (here O(\) denotes the ring of
holomorphic functions at a neighborhood of ). Then the automorphism of
O()) given by f. (resp. };) is transformed to that of O(p, U(p)?)) given by

:ﬁ) lecU(p), m Ep} by Lemma

(oo (el (] ()

(resp.

(e[ ror (G el e (Go))] e s s (22))] )

Here (%) (resp. (Z£)) is an element of Ok such that o? (%) =1 (mod p)
(resp. o (%) = 7 (mod p)). By the isomorphism O(p,U(p)*)=
O(Ok,U(p)?) induced by

(e[z1], e[z2], e[z3]) — <e le(lﬂ)] € LQZJ € L:(SM)D ’
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the automorphisms of O(p, U(p)?) described above are transformed to those
of O(Ok,U(p)?) given by

(e[z1], e[z2], e[z3]) —

([ G @)l (@)

(resp.

(e[z1], e[22], e[23])

(e[srem (G D)2 (5 ()]

5.4. Let m be an element of K such that (e — 1)m € Og for any

element e of U(p)2. For example, L (#) and % (%) have such property.

“w
By the proof of Proposition 3.10, the extended automorphism g, of g,, to

the cusp resolution is given by

ot (o [ Jlem] ] )

d(u,v,w) d(u,v,w) d(u,v,w)

using coordinates ty,ts,t3 in (C3), (0 = (u,v,w) € 23)). We here con-
sider the fixed subvariety of g, form = i (%), (%) Pute=gi, € =gp.

For simplicity, put

If e # 1,e2 # 1, and eg # 1, then e has only a fixed point (0,0,0) in
(C3),. If exactly one of e, e, e3 equals to 1, then € has a 1-dimensional
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fixed subvariety in (C3),. If exactly two of ey, es, e3 equal to 1, then € has
a 2-dimensional fixed subvariety in (C?),. The map € has no 3-dimensional
fixed subvariety because of the relation (5) in the proof of Proposition 3.10.

Put
6/1 Z—G[L] 6’2 1—e[d<U7%(n),w)]

d(u, ) d(u,v,w)

, d(u,v, (%))
e5 i =e —d(u,v,w) )

(=

Then the same thing holds for €.

5.5. In this subsection, we compute the contribution 7(e, X§) from
the fixed subvariety X& of e. The same thing holds for €. We suppose

N (C?), # ¢, and use the notation in the preceding subsection. Let
Kxp) be the canonical bundle of X(p). Let ci(e) (resp. ca(e)) be the first
(resp. second) Chern class of e.
(i) The case of dim X§ = 0.

In this case, we have e; # 1, ex # 1, and e3 # 1. We find that X§ =
{(0,0,0)}. Since Kx | X5 and Nxe are trivial, we have

ch(Kx |Xf><> 1,
| 2O T(X5) =
0

det(1—€e|(N5)) = (1 —e7)(1 —ex)(1 —e3).

Therefore, we obtain

€1€2€3

(e, Xa) = TA—e)I—e)(1—e3)

(ii) The case of dim X§ = 1.

Assume e; # 1, ea # 1, and e3 = 1. Then X is t3-axis. We find that
X€ = (u, > Put d = Cl(./\/’é) = d1 + d2, dz = Cl(./\/;(ez)) (Z = 1,2), and
c1 = c1(X5). Here we put

d(X (%), v,w d(u, (L), w
6, = or. “l@@h o) A iGa)w)
d(u,v,w) d(u,v,w)
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Then we have

ch(ICX(p)\X;)(e) =e1e2(l — 1 —d),

_ 6_1
UM (NE(B) = 61 ()
1
U (NE(6,)) = L

1—ey exp( dg)’
T(X) =1+ %1
det(1 - el(N9)*) = (1 — e71)(1 - e51).
Hence we obtain
(€, Xg)
_erea(l —cp —d) < 1—e? >
- (1-— efl)(l - 651) 1— eflexp(—dl)
1 - 62_1 C_l €
() (4 5)
_ 6162(1—61—d) (1+%1) [Xe]
L—e'(1—d))1—eg (1 —d2)) °
_ €169 (1—c1—d) (1+C71)
=D =) | (14 ) (14 1 2ds )

-1
e1e2 C1 €
= l—c—d+—)(1- d
(1 —ef1>(1—e51>{( “ 2> ( 1—ep! 1)

€169 < g
(1_61 1_651 2 1_6I1 1 1_651

6162 1 1 )
B —d1[XC] — dolX€1) .
Here Cl[XE] =2 g(Xe) (
g(Xg) =0. By Tsushuna[
o[ XE] = Fr?-

(X§) is the genus of X{). Since X is rational,
6], section 2, we have di[X¢] = Fiy, - F<v>2, and
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(iii) The case of dim X = 2.

Assume e; # 1, and ez = e3 = 1. Then X, is a plane defined by ¢; = 0.
We find that X5 = Fy,y. Put ¢; = c1(X§), c2 = ca(X{), and d = c1(Ng).
Then we have

Ch(ICX(p)|X;)(e) =ei(l —c; —d),
[ e =1 -
0 e

1
T(X;, )—1+ 02—|—cl,
det(1 — €|(NY)* ):1—61_1.

Therefore we obtain

7(e, X5)
el 1 1 el_ld >}
= l—cp—d) |1+ —=c +35¢ 1- X5
1—61_1{( ' )< 127 )( 1—e! =
-1 -1
d
= ‘ (1 —c1—d— — + il _161d
1—61 1—61 1—e]
7d”+ — X
+1—€1 1202+12 >[ N
e1 < et i et 2 1 N 1 )[XG]
e I M1 T2 pa
€1 cd[X§] + PP[XE] 1 2
- — — X X .
o (AR (el )
Since X¢ is rational, we have ca[X¢] + c}[XS] = 12 by the formula of

Noether. We find that d?[X¢] = (X£)3 = d(u) by Tsushima [16], section 2.
Let {D;}icr be the set of all irreducible divisors arising from the cusp res-
olutions of I'(p) \ H3. Then the total Chern class ¢(X§) of X§ is expressed
as

e(Xg)= T[ (+Dilx)
Di#Xg
(cf. Satake [12], Tsushima [16]). From this, c1(Xg) = > p..xe DilX§.
Hence we have c;1d[X(] = c(u).
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5.6. We return to the equation (8). Now let us calculate the difference
7(€) — 7(€'). For any element x € Ok, let v(x) be as in Definition 4.2. The
contribution to 7(€) (resp. 7(€')) from the fixed subvarieties in the resolution
of the cusp a/p is v((1/a?)) (resp. v((n/a?))) by 5.4 and 5.5. By Lemma

3.4, we have
()

a€(Ox /p)* /U

w2, (@)
“wow, 2, ()

= (@)

aE(Oxc /9)* [T
1
T[T U®p)] QG(OZKW Y ((%))
1 «
U Up) QG(OZKW <1 ) (5)) )

We thus get the formula in Theorem 4.4. for the case m = 1.

5.7. Let m > 2. Put D := X(p) — I'(p) \ $3. We denote by L :=
03(log D) be the sheaf of germs of 3-forms with logarithmic poles along
D on X(p). Then we have So,(T'(p)) = HY(X (p), L&D ® Q%) for any
positive integer m. If tr(fo| HO(X (p), L2 1 ©03) is the trace of the lincar
transformation of HO(X (p), £L2(™1) & 03) induced by f., then tr m(e) =
tr(f| HO(X (p), L2 D © 03)). The same thing holds for tr m(¢/). Since
£20(m=1) ig the pull-back of an ample sheaf under the morphism X (p) —
C(p) \ H3, we have

H'(X(p), 2" Vo0’ =0 (iz1)
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by the Kodaira vanishing theorem. Hence we have

tr m(e) — tr w(€)
3
= 2 eIH X (), £20 D @ @)

= (1) te(fo | H(X (p), £20m7D @ QF).

1=0

Since £2(™=1 is trivial around D by Lemma 5.8 below, ch((£L®(™~1)
D3)|XE) () = ch(23]XE)(€) holds in 2.7. The same thing holds for €. Thus
we have

tr w(e) — tr w(€') = 7(e) — 7(¢)

by using 7(€), 7(€¢') in 5.2 and the holomorphic Lefschetz formula. We get
the equation (8) on S, (I'(p)). In other words, the case m > 2 is reduced
to the case m = 1. [J

LEMMA 5.8. The notation being as in 5.7, L is trivial around D.

ProOF. It suffices to prove the claim for Y (M, V) in Proposition 3.10.
In the coordinate system (1, t2,t3) of the resolution Y (M, V'), we have

dt1 A dty A dts

(2nv/—=1)3dz1 Adzy A dzz = d(u,v,w) -
titats

Hence the holomorphic 3-form dz; A dze A dzz on G(M,V) \ £ extends
to a nowhere vanishing section of Qy(ij)S(log D). Here we put D :=
Y (M,V)—G(M,V)\ $H3. This proves the Lemma. (J

6. An example

In this section, we give an example to Theorem 4.4.

6.1. Let K be the field Q(w) defined by

w+ 2w —w—1=0.
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u/v

Fig. 2

The discriminant of this equation is 72, and K is a totally real Galois cubic
field with class number 1. It is known that Ox = Z + Zw + Zw?. Thomas-
Vasquez [13] shows that U/{#£1} is freely generated by w~! and (1+w)w™1,
and that U™ is freely generated by v := w? and v := (w + 1)2. Moreover,
they shows that (1, u,u/v) and (1, u,v) form a fundamental domain for the
action of UT on R3, where Ry := {r e R | r > 0}. Put J := 1+ w + w?.
Then each of the triples (1,u,u/v), (1,u,J), (1,v,J), and (u,v,J) is a
basis of Og. Therefore, the diagram in Fig. 2 gives a cusp resolution for
the cusp of type (Og,U™T) :
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One can see that 13 is completely decomposed in K. We may assume
that w = o1(w) > o2(w) > o3(w). We have

—3<o3(w) < -2, —1<og(w)<—-1/2, O0<w<]l1.

Hence if we put p = 2 —w, then p is totally positive. We find that p := (u)
is a prime ideal of K lying over 13. A simple computation shows that
UT/U(p)? is a cyclic group with order 6 generated by the image of u.
Hence if we denote by ¥ the complex consisting of

<ui’ ui+17 ui+1/v>’ <ui, uiJrl’ u’J>, <ui’ ui% ’LLZJ>, <ui+17 uiv7 uﬁ])

(0<i<5),

and their faces, then ¥ describe the cusp resolution for the cusp of type
(Og,U(p)?). We shall compute y; — yo for this prime ideal p below.

6.2. Let 3 be the complex as above. Let m be any positive integer
such that 1 < m < 12. For any element (u/, v, w’) € £3), we have

o[dmit )] oy [ [

d(u!, v, w') d(u’, v, w') d(u', v, w')

Hence the fixed subvariety is 0-dimensional. Put

e | dm/pv'w') o [’y
oy - L] D]
v(m; (W', v, w')) == l—e [%} — {%}

Then we get



Hilbert Cusp Forms

395

We put ¢ := exp(27i/13). The values of v(m;o) (o0 € X)) are as

follows :

Cm

v(m; (1,4, u/v))

v(m; (u, u?, u2/v))

(1 —=¢m)(1—¢m)(1—¢tm)’

Cﬁm

(1= ¢m)(L—¢3m)(1—¢om)’

_Cllm

v(m; (u?,ud,ud Jv)) =

(1-

¢Am) (L= ¢tm)(1 = ¢8m)’

_ CGm

V(m; <u3a u4’ u4/v>) -

v(m; <u4,u5,u5/v))

(1= ¢m)(1 = ¢>m)(1—¢tm)’

_ <4m

(1= ¢m)(1 = ¢3m)(1—¢om)’

v(m; <u5,u6,u6/v)) =

v(m; (1,u, J)) =
v(m; (u, u?, ug)) =
v(m; (u?,ud, u?J)) =
v(m; (U, ut, uJ)) =
v(m; (ut,u’, ul)) =

v(m; <u5,u6,u5J>) =

v(m;(1,v,J)) =

(1-

C4m

¢m)(1 = ¢rm)(1 — ¢&m)’
_C7m

(= GmPa—cmy
_C5m

(= cmPa—cmy
Cm

= CmpPa—omy
CSm

(= GmPa—cmy
C4m

(= CmPa—cmy
_<4m

(= CPa=c)

_<9m

(1= ¢m)(L = ¢#m) (L —¢om)’

C5m

v(m; (u,uv,uJ)) =

(1= ¢tm)(L = ¢om) (L —¢om)’
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i
(A= — i - o)
om0 = (e ey
o 1) = (g gy
T

v(m; (u?, v?v,u?J)) =

v(m; (u®, uPv,uPJ)) =

1

v(m; (u,v,J)) = (1= &m)2(1 = ¢om)’

vlm: (2,0, 0) = g

V(m; <u37 u2v, u2J>) = (1 . Cm);(ll _ C2m)’
C12m

v(m; <u4,u3v,u3J>) = (1 — ¢3m)2(1 — ¢bmy’
3m

V(m; <u57 u4v>u4‘]>) = (1 _ C4m<)2(1 _ CSm)’
C4m

v(m; (Wb, wPv,u’J)) =

(1=¢m)2(1—¢m)
A simple calculation shows that

5
S {wlms (ut utt a o))+ v(ms (i, a )
1=0
—H/(m; <ui+1,ui+1’ u’LJ>)}

5
= Z v(m; (ut, ulv,u'J)) = 0.
i=0

Thus we have v(m) =0 (1 <m < 12). Using these, we obtain

1 9 12
v M i IR (F) vm)

m=1
=0.
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REMARK 6.3. The above result agrees with the fact that there does
not exist a totally imaginary quadratic extension of K with the relative
discriminant p. Omne can verify this fact as follows: {w™!w™! + 1} is
a fundamental system of units for K (cf. 6.1). One can see that —1 is
quadratic residue, but w™! and w™! + 1 are quadratic nonresidue modulo
p. Consequently, the above fact is verified by the following Lemma.

LEMMA 6.4 (Naito). Let K be as above, and p a prime ideal of K.
We assume that the prime p which divided by p is odd and that p is totally
decomposed in K. Moreover, we suppose that —1 is quadratic residue, and
w™ is quadratic nonresidue modulo p. Then there does not exist a totally
imaginary quadratic extension of K with the relative discriminant p.

PROOF. Let oo; be the real infinite prime of K corresponding to o; (i =
1,2,3). Put § = poojoogo03. Let Hj be the ideal class group for f. Since we
here consider quadratic extensions, it suffices to study Hj /Hf2. Let U be
the unit group of K, and U the image of U by the map U — (Og/p)* x
{£1}%, wrs (umod p,sgn o1(u),sgn oa(u),sgn o3(u)). Here sgn o;(u) de-
notes the signature of o;(u). Then we have H; = ((Ox/p)* x {£1}3) /U.
Since we deal with Hj/H;j?, it suffices to consider the image of U in
((OK/p)X/(OK/p)X2> x {£1}3. Let U be its image, and @ € U the image
of ueU.

As we saw in 6.1, we have w™! > 0,02(w™!) < 0, and o3(w™!) < 0. Since
wtog(w ) os(w™t) = 1, oa(w™) or o3(w™?) is quadratic residue modulo
p. We may assume that oo(w 1) is quadratic residue modulo p by exchange
o5 for o5 if necessary. We denote the image of u € U in (O /p)* /(O /p)*>
by (%) Then we have

wl=(-1,1,-1,-1),

(9) UQ(w_l) = (17_17_171)7
“1=(1,-1,-1,-1).

Hence the rank of U is 3. Thus the elementary 2-extension for f is a qua-
dratic extension. However, if we put f = poojoos, then the elementary
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2-extension for fis a quadratic extension by (9). Hence the former ex-
tension agrees with the latter one. Therefore this extension is not totally
imaginary. [J
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