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Existence of Distribution Null-Solutions for Every

Fuchsian Partial Differential Operator

By Takeshi Mandai

Abstract. We construct a distribution null-solution for every
Fuchsian partial differential operator in the sense of Baouendi-
Goulaouic with real-analytic coefficients, if the initial surface is char-
acteristic. This construction is valid also for Fuchsian hyperbolic op-
erators with C∞ coefficients considered by H. Tahara, and for some
non-Fuchsian operators with real-analytic coefficients.

1. Introduction

We consider a Fuchsian partial differential operator with weight m − k

defined by M. S. Baouendi and C. Goulaouic[1].

P = tk∂m
t +

k∑
j=1

aj(x)tk−j∂m−j
t +

∑
j+|α|≤m,j<m

bj,α(t, x)td(j)∂j
t ∂

α
x ,(1.1)

where (t, x) = (t, x1, . . . , xn) are variables in R ×Rn (n ≥ 1) and d(j) :=

max{ 0, j − m + k + 1 }. We assume, for the time being, that m, k are

integers satisfying 0 ≤ k ≤ m and that aj (resp. bj,α) are real-analytic

in a neighborhood of 0 ∈ Rn (resp. (0, 0) ∈ R × Rn). (When m = k,

M. Kashiwara and T. Oshima([5], Definition 4.2) called such an operator

“to have regular singularity in a weak sense along Σ0 := { t = 0 }.”)

Baouendi and Goulaouic[1] gave a theorem about the unique solvability

of the Cauchy problem

(CP )

{
Pu = f(t, x)

∂j
t u|t=0 = gj(x) (0 ≤ j ≤ m− k)
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in the category of real-analytic (or holomorphic) functions. They also

showed a uniqueness theorem in a wider class of functions. From this re-

sult, it easily follows that if P is a Fuchsian partial differential operator

with real-analytic coefficients, then P does not have any sufficiently smooth

null-solutions. Here, a Schwartz distribution u in a neighborhood of (0, 0)

is called a null-solution of P at (0, 0), if Pu = 0 in a neighborhood of (0, 0)

and (0, 0) ∈ suppu ⊂ Σ+ := {t ≥ 0}, where suppu is the support of u.

If k = 0, then the initial surface Σ0 := {t = 0} is noncharacteristic for

P , and hence there exist no distribution null-solutions by (a modern version

of) the well-known Holmgren’s uniqueness theorem ([3], Theorem 8.6.5).

When k ≥ 1, K. Igari[4] constructed a distribution null-solution under

an additional assumption (see Theorem 2.2). In this article, we show that

this additional assumption can be removed; thus, the following is the main

theorem.

Theorem 1.1. If P is a Fuchsian partial differential operator (1.1)

with real-analytic coefficients and k ≥ 1, then there exists a distribution u

in a neighborhood of (0, 0) such that

Pu = 0 and (0, 0) ∈ suppu ⊂ Σ+.

The proof is divided into 2 steps. In the first step, we construct a formal

series
∞∑
h=0

vh of distributions vh such that the partial sum VN :=
∑N

h=0 vh

satisfies PVN ∈ Cr0+N+1
+ (−T, T ;O(Ω)) for every N ∈ N, where T > 0,

Ω is a domain including 0 in Cn, r0 is a constant (maybe negative) inde-

pendent of N , O(Ω) denotes the space of holomorphic functions on Ω, and

CN
+ (−T, T ;O(Ω)) := {φ ∈ CN (−T, T ;O(Ω)) ; φ(t) = 0 in O(Ω) for t <

0 }. This construction is valid for a far wider class of operators than that of

Fuchsian operators.

In the second step, we show the existence of u ∈ D′
+(−T ′, T ′;O(Ω′)) such

that Pu = 0 and u − VN ∈ Cr0+ω+N+1
+ (−T ′, T ′;O(Ω′)) for every N ∈ N,

where 0 < T ′ ≤ T , Ω′ is a subdomain of Ω also including 0. This step is

also valid for Fuchsian hyperbolic operators with C∞ coefficients considered

by H. Tahara([9], [10], [11], [12], and so on), and for some non-Fuchsian

operators with real-analytic coefficients considered by the author([6]).
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Notations.

(i) The set of all integers (resp. nonnegative integers) is denoted by Z

(resp. N).

(ii) The real part of a complex number z is denoted by Re z.

(iii) Put ϑ := t∂t and (λ)l :=
∏l−1

j=0(λ− j) for l ∈ N.

(iv) For a domain Ω in Cn, we denote by O(Ω) the set of all holo-

morphic functions on Ω. For a complete locally convex topological

vector space X, we put O(Ω;X) := { f ∈ C0(Ω;X) ; 〈φ, f〉X ∈
O(Ω) for every φ ∈ X ′ }, where X ′ is the dual space of X and 〈·, ·〉X
denotes the duality between X ′ and X. Note that if D is a domain in

Cl and Ω is a domain in Rn, then O(D;C∞(Ω)) = C∞(Ω;O(D)).

(v) The space of test functions on an open interval I of R is denoted by

D(I) and the space of distributions by D′(I). The space of rapidly

decreasing C∞ functions is denoted by S(R) and the space of tempered

distributions by S′(R). The duality between each pair of these spaces

is denoted by 〈·, ·〉. More generally, for a complete locally convex

topological vector space X, the space of all X-valued distributions is

denoted by D′(I;X) := L(D(I), X), where L(X,Y ) denotes the space

of all continuous linear mappings from X to Y (See [8]). Note that

D′(I;O(Ω)) = O(Ω;D′(I)). Put D′
+(I;X) := { f ∈ D′(I;X) ; f(t) =

0 in X for t < 0 }. Also, for N ∈ N put

CN
+ (I;X) := { f ∈ CN (I;X) ; f(t) = 0 in X for t < 0 },

C−N
+ (I;X) := { ∂N

t (f) ∈ D′
+(I;X) ; f ∈ C0

+(I;X) }.

(vi) For z ∈ C with Re z > −1, we put

tz+ :=

{
tz (t > 0)

0 (t ≤ 0)
,

which is a locally integrable function of t with holomorphic parame-

ter z, and hence belongs to D′
+(R;O({ z ∈ C ; Re z > −1 })). By

∂t(t
z
+) = ztz−1

+ , this distribution tz+ is extended to z ∈ C \ {−1,−2,

. . . } meromorphically with simple poles at z = −1,−2, . . . ([2]).
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(vii) For a commutative ring R, the ring of polynomials of λ with the

coefficients belonging to R is denoted by R[λ]. The degree of F (λ) ∈
R[λ] is denoted by degλ F . Also, the ring of formal power series of t

with the coefficients belonging to R is denoted by R[[t]].

2. Igari’s Result and Main Difficulties

As we already stated in the introduction, K.Igari([4]) showed the exis-

tence of distribution null-solutions under a weak additional condition.

For a Fuchsian operator (1.1), we put

C(x;λ) := (λ)m +
k∑

j=1

aj(x)(λ)m−j = t−λ+ωP (tλ)|t=0,(2.1)

where ω := m − k. This is called the indicial polynomial of P . Note that

C is decomposed as C(x;λ) = C̃(x;λ − ω)(λ)ω, where C̃(x;λ) := (λ)k +∑k
j=1 aj(x)(λ)k−j .

Definition 2.1. A holomorphic function ρ(x) in a neighborhood of

x = 0 is called a normal root of C̃, if it satisfies

C̃(x; ρ(x)) ≡ 0, C̃(0; ρ(0) + l) �= 0 (l = 1, 2, . . .).

Theorem 2.2 ([4]). If P is a Fuchsian operator with the real-analytic

coefficients and there exists a normal root of C̃, then there exists a distribu-

tion null-solution of P at (0, 0).

Our main theorem(Theorem 1.1) asserts that we can replace the condi-

tion “there exists a normal root of C̃” by a trivial condition “k ≥ 1”. The

solution constructed by Igari is analytic in x. We also want to construct

such a solution. We cannot make the proof easier even if we don’t require

the analyticity in x for solutions, because the proof is deeply connected with

the analyticity in x.

The following very simple examples show the main difficulties and basic

ideas to overcome them in the construction of a formal solution
∑∞

h=0 vh.

Example 2.3. (1) Let P = ϑ − x + 1. We have C(x;λ) = C̃(x;λ) =

λ− x + 1.
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By freezing x in a neighborhood of x = 0 and by considering P as an

ordinary differential operator with respect to t, we can solve the equation

Pu = 0 in D′
+(R). The solutions make a one-dimensional space and the

seemingly easiest base is { t−1+x
+ } for x �= 0, and { δ(t) } for x = 0. This

base, however, has a jump at x = 0, while we want a solution which is

holomorphic in x. This difficulty is already overcome by K. Igari and we

use a little modified idea, that is, we make a solution which is holomorphic

in x by considering u = t−1+x
+ /Γ(x), where Γ is the Gamma function. The

pole x = 0 of both t−1+x
+ and Γ(x) cancel out each other and u becomes

δ(t) at x = 0.

(2) Let P = ϑ2 − x. We have C(x;λ) = C̃(x;λ) = λ2 − x.

Also by freezing x �= 0, the solutions in D′
+(R) make a two-dimensional

space with a base { t
√
x

+ , t
−√

x
+ }. The distribution t

±√
x

+ is not holomorphic at

x = 0. This is why the definition of the normal root includes the holomorphy

of ρ(x). Though this example does not satisfy the Igari’s condition, we can

make a solution which is holomorphic in x in a neighborhood of x = 0 by

considering u = t
√
x

+ + t
−√

x
+ .

These two very simple examples suggest that we need to consider dis-

tributions like

t
−1+

√
x

+

Γ(
√
x)

+
t
−1−√

x
+

Γ(−√
x)

∈ D′
+(R;O(C)).

In Section 4., we shall introduce this kind of distributions of t with holo-

morphic parameter x.

3. Extension of Fuchsian Operators

In this section, we introduce a class of operators wider than that of the

Fuchsian operators.

Consider an operator of m-th order

P =
∑

j+|α|≤m

aj,α(t, x)∂j
t ∂

α
x .(3.1)

As for the regularity of the coefficients, we consider two cases.

Case (I): Y (Ω0) := O(Ω0), where Ω0 is a domain in Cn including 0.

Case (II): Y (Ω0) := C∞(Ω0), where Ω0 is a domain in Rn including 0.
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Put X(T0,Ω0) := C∞(−T0, T0;Y (Ω0)), where T0 > 0, and assume that

aj,α ∈ X(T0,Ω0) (j + |α| ≤ m).(3.2)

Note that X(T0,Ω0) = C∞(−T0, T0;O(Ω0)) = O(Ω0;C
∞(−T0, T0)) in Case

(I), and X(T0,Ω0) = C∞((−T0, T0) × Ω0) in Case (II).

Let r(j, α) be the vanishing order of aj,α on the initial surface Σ0, that

is

r(j, α) := sup{ r ∈ Z ; t−raj,α ∈ X(T0,Ω0) } ∈ Z ∪ {∞}.(3.3)

From now on, we assume the following condition.

(A-0) There exists (j, α) such that r(j, α) < ∞.

If r(j, α) < ∞, then put

ãj,α(t, x) := t−r(j,α)aj,α(t, x) (∈ X(T0,Ω0)).(3.4)

Note that ãj,α(0, x) �≡ 0.

We associate a weight ω(j, α) := j − r(j, α) to each differential mono-

mial aj,α(t, x)∂j
t ∂

α
x , and put ω = ω(P ) := sup{ω(j, α) ∈ Z ∪ {−∞} ; j +

|α| ≤ m } ∈ Z.

We assume the following conditions.

(A-1) ω(P ) ≥ 0, and if ω(j, α) = ω(P ), then α = 0.

Put J := { j ∈ {0, 1, . . . ,m} ; ω(j, 0) = ω(P ) }(�= ∅) and m′ = m′(P ) :=

max J .

(A-2) ãm′,0(0, x) �= 0 on Ω0.

A Fuchsian operator (1.1) satisfies these conditions with ω(P ) = m− k,

m′(P ) = m, and ãm,0(t, x) ≡ 1.

Remark 3.1. (1) If ω(P ) < 0, then tj−ω(P )∂j
t ∂

α
x = t|ω(P )|(ϑ)j∂

α
x =

(ϑ− |ω(P )|)j∂α
x ◦ t|ω(P )|. Hence, we can write P = P̃ ◦ t|ω(P )|, where P̃ has

also the coefficients belonging to X(T0,Ω0). Thus, u = δ(t) is a null-solution

of P at (0, 0).

(2) If P is a Fuchsian hyperbolic operator considered by H. Tahara ([9],

[10], [11], and so on) with coefficients in C∞((−T0, T0) × Ω0), where Ω0 is
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a domain in Rn including 0, then P satisfies the conditions (A-0)–(A-2) for

Case (II).

(3) The operators of the class considered in [6] also satisfies the conditions

(A-0)–(A-2) for Case (I). This class includes some non-Fuchsian operators,

and have the coefficients belonging to C∞(−T0, T0;O(Ω0)), where Ω0 is a

domain in Cn including 0.

Put

C(x;λ) = C[P ](x;λ) :=
∑
j∈J

ãj,0(0, x)(λ)j = t−λ+ωP (tλ)|t=0 ∈ Y (Ω0)[λ].

This polynomial C[P ] of λ is called the indicial polynomial of P . Note that

degλ C(x;λ) = m′(P ) and the coefficient ãm′,0(0, x) of the highest degree

never vanishes on Ω0 by the assumption (A-2).

Lemma 3.2. (1) There holds m′(P ) ≥ ω(P ).

(2) Putting k = k(P ) := m′(P )−ω(P ) (≥ 0), we can decompose C(x;λ) as

C(x;λ) = C̃(x;λ− ω) (λ)ω,(3.5)

where C̃(x; ρ) :=
∑

l+ω∈J ãl+ω,0(0, x)(ρ)l ∈ Y (Ω0)[ρ], which is of degree k.

Note that for a Fuchsian operator (1.1), there holds m′(P ) − ω(P ) = k,

and hence the use of the letter k makes no confusion.

Proof. Since there holds

j ∈ J =⇒ ω(j, 0) = ω =⇒ j = r(j, 0) + ω ≥ ω,

we have (1). Further, in the definition C(x;λ) =
∑

j∈J ãj,0(0, x)(λ)j , there

is no term with j < ω. If j ≥ ω, then (λ)j = (λ)ω (λ − ω)j−ω. Hence, we

have (2). �

Finally, we assume the following condition.

(A-3) k(P ) ≥ 1.

The operators satisfying these four conditions (A-0)–(A-3) are the op-

erators for which we can construct a formal solution
∑∞

h=0 vh in Section 5.
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4. Preliminaries

In this section, we give some preliminary results needed for the later

argument.

Definition 4.1. We put G(z) = G(z; t) :=
tz+

Γ(z + 1)
. We have

G(z; t) ∈ D′
+(R;O(C))

⋂
C∞(0,∞;O(C)), since the simple poles z = −1,

−2, . . . of both tz+ and Γ(z + 1) cancel out. (Normalization of tz+. See [2],

Chapt.I, §3.5.) Note that G(−d; t) = δ(d−1)(t) (d = 1, 2, 3, . . .). Also note

that G(z; ·) ∈ S′(R) for every fixed z ∈ C.

The distribution G(z; t) has the following basic properties. We omit the

proofs of these two lemmas, since they are very easy.

Lemma 4.2. (1) For l ∈ N, there hold ∂l
tG(z; t) = G(z − l; t) and

tlG(z; t) = (z + l)l G(z + l; t).

(2) For E(λ) ∈ C[λ], there holds E(ϑ)G(z; t) = E(z)G(z; t).

(3) For ε > 0, there holds 〈G(z; t), e−t/ε〉 = εz+1.

Lemma 4.3. For M ∈ R, put DM := { z ∈ C ; Re z > M }. Then, for

every l ∈ N and every N ∈ Z, we have tlG(z; t) ∈ CN
+ (R;O(DN−l)). (Note

that Re z + l > N on DN−l.)

Now, consider an operator (3.1) satisfying the conditions (A-0), (A-1),

(A-2), and (A-3). Take a root λ0 ∈ C of C̃(0;λ) = 0 that satisfies

C̃(0;λ0 + l) �= 0 for l = 1, 2, 3 . . . .(4.1)

For example, every root having the largest real part satisfies this condition.

Lemma 4.4. There exist a domain Ω including 0, an open ball D ⊂ C

with the center λ0, r ∈ N with r ≥ 1, and polynomials E(x;λ), R(x;λ) ∈
Y (Ω)[λ] for which the following conditions are satisfied.

(a) C̃(x;λ) = E(x;λ)R(x;λ).

(b) C̃(x;λ + l) �= 0 for every (x, λ) ∈ Ω ×D and l = 1, 2, 3 . . ..
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(c) E(x;λ) is monic of degree r, and E(0;λ) = (λ− λ0)
r.

(d) If E(x;λ) = 0 and x ∈ Ω, then λ ∈ D.

Note that if there exists a normal root ρ(x) of C̃, then we can take r = 1

and E(x;λ) = λ− ρ(x).

Proof. By a well-known argument based on Rouché’s theorem, we

can take polynomials E, R ∈ Y (Ω)[λ] satisfying (a) and (c), by taking a

sufficiently small domain Ω including 0. Since there holds (4.1), the con-

dition (b) holds by retaking a smaller Ω and taking a sufficiently small D.

Finally by (c), the condition (d) is satisfied by retaking again a smaller Ω. �

For x ∈ Ω, let λi(x) (1 ≤ i ≤ r) be the roots of E(x;λ) = 0. Though

λi(x) ∈ D for every x ∈ Ω, they are not necessarily holomorphic nor C∞ in

x, like in Example 2.3-(2).

We fix λ0, Ω, D, r, E, R, and λi(x) from now on. We can assume that

the radius of D is smaller than 1.

Definition 4.5. For j ∈ Z and φ ∈ O(D;Y (Ω)), put

SGj [φ](t, x) :=
r∑

l=1

φ(x;λl(x))G(λl(x) + j; t) (x ∈ Ω).

Proposition 4.6. For every j ∈ Z and every φ ∈ O(D;Y (Ω)), there

holds

SGj [φ] ∈ D′
+(R;Y (Ω))

⋂
C∞(0,∞;Y (Ω)).

Note that SGj [φ](·, x) ∈ S′(R) for every fixed x ∈ Ω.

Proof. Let Γ be a closed curve in D enclosing {λl(x) ∈ D ; l =

1, . . . , r } with positive direction. Since

(∂λE)(x;λ)

E(x;λ)
=

r∑
l=1

1

λ− λl(x)
,
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there holds

SGj [φ](t, x) =
1

2πi

∫
Γ

(∂λE)(x;λ)

E(x;λ)
φ(x;λ)G(λ + j; t) dλ(4.2)

by the Cauchy’s integral formula. It is easy to show the lemma from this

expression. �

Lemma 4.7. (1) For j ∈ Z, h ∈ N, φ ∈ O(D;Y (Ω)), and ε > 0, there

hold

∂h
t (SGj [φ]) = SGj−h[φ], thSGj [φ] = SGj+h[(· + h + j)h φ],

〈SGj [φ](t, 0), e−t/ε〉 = rφ(0;λ0)ε
λ0+j+1.

(2) For F ∈ Y (Ω)[λ], there holds F (x;ϑ)SGj [φ] = SGj [F (·; ·+ j) φ]. Espe-

cially, for E in Lemma 4.4, there holds E(x;ϑ)SG0[φ] = 0.

Proof. It is easy from Lemma 4.2 and the definition of SGj [φ]. �

Definition 4.8. For j, A ∈ N, put

Gj := {SGj [φ](t, x) ∈ D′
+(R;Y (Ω)) ; φ(x;λ) ∈ O(D;Y (Ω)) },

and

G
(A)
j := {

∑
|α|≤A

aα(x)∂α
x vα(t, x) ; aα ∈ Y (Ω), vα ∈ Gj }.

Example 4.9. If r = 1 and ρ(x) := λ1(x) �∈ {−1,−2, . . . , } (x ∈ Ω),

then

G
(A)
j = {

A∑
l=0

al(x)t
ρ(x)+j
+ (log t)l ; al ∈ Y (Ω) (0 ≤ l ≤ A) },

where tz+(log t)l (z �= −1,−2, . . .) is a distribution of t defined similarly to

tz+.

We have the following basic properties of G
(A)
j .

Lemma 4.10. (1) ∂L
t (G

(A)
j ) ⊂ G

(A)
j−L, tL × G

(A)
j ⊂ G

(A)
j+L,

ϑL(G
(A)
j ) ⊂ G

(A)
j , Y (Ω) × G

(A)
j ⊂ G

(A)
j ,

∂α
x (G

(A)
j ) ⊂ G

(A+|α|)
j .
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(2) If u ∈ G
(A)
j , then 〈u(t, 0), e−t/ε〉 = o(εΛ+j+1) for every Λ < Reλ0.

Proof. (1) is trivial. By (4.2) and Lemma 4.2-(3), there holds

〈SGj [φ](t, x), e−t/ε〉 =
1

2πi

∫
Γ

(∂λE)(x;λ)

E(x;λ)
φ(x;λ)ελ+j+1 dλ,

and hence by Lemma 4.4-(c), there holds

〈∂α
x (SGj [φ])(t, 0), e−t/ε〉 =

1

2πi

∫
Γ
w(λ)ελ+j+1 dλ,

with some w that is holomorphic in D \ {λ0 }. Since Γ can be taken arbi-

tralily near to λ0, we get the desired result. �

Lemma 4.11. If r0 ∈ Z and r0 < inf{Reλi(x) ; 1 ≤ i ≤ r, x ∈ Ω },
then

G
(A)
j ⊂ Cr0+j

+ (R;Y (Ω))
⋂

C∞(0,∞;Y (Ω)) (j ∈ N).

Proof. If A = 0, then this follows from (4.2) and Lemma 4.3. Since

SGj [φ] is holomorphic or C∞ with respect to x, we have the result for general

A. �

The following proposition is the most fundamental to the construction

of vh.

Proposition 4.12. Let j, A ∈ N.

(1) If F (x;λ) ∈ Y (Ω)[λ] and F (x;λ+ j) �= 0 for every (x, λ) ∈ Ω×D, then

for every g ∈ G
(A)
j , there exists a solution v ∈ G

(A)
j of F (x;ϑ)v = g.

(2) Let L ∈ N. For every g ∈ G
(A)
j , there exists a solution w ∈ G

(A)
j+L of

∂L
t w = g.

Proof. We prove this proposition by an induction on A.

If A = 0, then g = SGj [φ] and hence v = SGj [φ/F (·; ·+ j)] is a solution

of F (x;ϑ)v = g, and w = SGj+L[φ] is a solution of ∂L
t w = g, by Lemma 4.7.

We assume the result for A and let g ∈ G
(A+1)
j . We may assume that

g = ∂xl
g̃, g̃ ∈ G

(A)
j , without loss of generality. By the induction hypothesis,
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there exists ṽ ∈ G
(A)
j such that F (x;ϑ)ṽ = g̃. Further, there exists ˜̃v ∈ G

(A)
j

such that F (x;ϑ)˜̃v = (∂xl
F )(x;ϑ)ṽ, since (∂xl

F )(x;ϑ)ṽ ∈ G
(A)
j . Thus, v :=

∂xl
ṽ + ˜̃v ∈ G

(A+1)
j satisfies F (x;ϑ)v = ∂xl

g̃ = g. On the other hand, there

exist w̃ ∈ G
(A)
j+L such that ∂L

T w̃ = g̃. Hence, w := ∂xl
w̃ ∈ G

(A+1)
j+L satisfies

∂L
t w = ∂xl

g̃ = g. �

5. Construction of vh

Is this section, we construct a formal solution
∑∞

h=0 vh of Pv = 0.

Consider the operator (3.1), and assume the conditions (A-0), (A-1),

(A-2) and (A-3). Then, we have a formal solution as follows.

Theorem 5.1. Put v0(t, x) := SGω[1](t, x). Then, there exists vh ∈
G

(hm)
ω+h (h ≥ 1) such that

P (
N∑

h=0

vh) ∈ Cr0+N+1
+ (−T, T ;Y (Ω)) for every N ∈ N,

where r0 ∈ Z and r0 < inf{Reλi(x) ; 1 ≤ i ≤ r, x ∈ Ω }.

Proof. Since ∂ω
t v0 = SG0[1], we have C̃(x;ϑ)∂ω

t v0 = 0 by Lemma

4.7-(2).

Now, for every sufficiently large N ∈ N, we consider the expansion of P

by weight:

P = C̃(x;ϑ)∂ω
t +

ω∑
j=1

Aj(x, ∂x;ϑ)∂ω−j
t +

N−ω∑
l=1

tlBl(x, ∂x;ϑ)

+tN−ω+1RN (t, x, ∂x;ϑ),

where Aj(x, ξ;λ), Bl(x, ξ;λ) ∈ Y (Ω)[ξ, λ], and RN (t, x, ξ;λ) ∈ X(T,Ω)[ξ, λ].

Note that for every h, there holds the following by Lemma 4.10-(1).

C̃(x;ϑ)∂ω
t : G

(A)
h −→ G

(A)
h−ω,

Aj(x, ∂x;ϑ)∂ω−j
t : G

(A)
h −→ G

(A+m)
h−ω+j (j = 1, 2, . . . , ω),

tlBl(x, ∂x;ϑ) : G
(A)
h −→ G

(A+m)
h+l (l = 1, 2, . . . , N − ω).
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Using Lemma 4.4-(b) and Proposition 4.12, we can take vh ∈ G
(hm)
ω+h

(h ≥ 1) recursively as

C̃(x;ϑ)∂ω
t vh = −

ω∑
j=1

Aj(x, ∂x;ϑ)∂ω−j
t vh−j

−
N−ω∑
l=1

tlBl(x, ∂x;ϑ)vh−ω−l (∈ G
(hm)
h ).

(Consider vh = 0 if h < 0.)

Thus, we have

P
( N∑
h=0

vh
)

=
ω∑

j=1

N∑
p=N−j+1

Aj(x, ∂x;ϑ)∂ω−j
t vp

+
N−ω∑
l=1

N∑
q=N−ω−l+1

tlBl(x, ∂x;ϑ)vq

+RN (t, x, ∂x;ϑ−N + ω − 1)(tN−ω+1
N∑

h=0

vh),

and hence we have P (
∑N

h=0 vh) ∈ Cr0+N+1
+ (−T, T ;Y (Ω)) by Lemma 4.10-

(1) and 4.11. �

6. Realization of Solutions

Is this section, we show the existence of distribution null-solution u using

vh constructed in the previous section.

Consider an operator (3.1) and assume the conditions (A-0), (A-1), (A-

2), and (A-3). In this section, we also assume the following condition.

(B) There exist T ′ > 0 and a domain Ω′ including 0 for which

the solvability of the flat Cauchy problem holds as follows.

For every f ∈ C∞
+ (−T, T ;Y (Ω)), there exists

u ∈ C∞
+ (−T ′, T ′;Y (Ω′)) such that Pu = f in

(−T ′, T ′) × Ω′.
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Remark 6.1. (1) Take N ∈ N such that C[P ](x; l) �= 0 for every l ∈ N

satisfying l ≥ ω(P )+N and every x ∈ Ω. If we put P̃N := t−N ◦P ◦tω(P )+N ,

then P̃N is also an operator of the form (3.1) with ω(P̃N ) = 0. Further, P̃N

satisfies the conditions (A-0), (A-1), (A-2), and there holds C[P̃N ](x;λ) =

C[P ](x;λ+ω(P )+N). Especially, C[P̃N ](x; l) �= 0 for every l ∈ N and every

x ∈ Ω.

Now, assume that the solvability of the Cauchy problem for P̃N holds in

the following sense. (Note that we have no initial data since ω(P̃N ) = 0.)

For every f ∈ C∞([0, T );Y (Ω)), there exists u ∈ C∞([0, T ′);
Y (Ω′)) such that P̃Nu = f in [0, T ′) × Ω′.

Then, we can show that the condition (B) for P holds. In fact, for every

f ∈ C∞
+ (−T, T ;Y (Ω)), the equation Pu = f is reduced to the equation

P̃N ũ = f̃ , where ũ := t−ω−Nu and f̃ := t−Nf . Since f̃ ∈ C∞([0, T );Y (Ω)),

there exists ũ ∈ C∞([0, T ′);Y (Ω′)) such that P̃N ũ = f̃ . By substituting

the formal Taylor expansion ũ =
∑∞

h=0 uh(x)th into this equation, we can

easily show that uh = 0 for every h ∈ N by using C[P̃N ](x; l) �= 0 for every

l ∈ N and every x ∈ Ω. By putting ũ = 0 for t < 0, we can consider ũ as

ũ ∈ C∞
+ (−T ′, T ′;Y (Ω′)). Thus u = tN ũ ∈ C∞

+ (−T ′, T ′;Y (Ω′)).
(2) If P is a Fuchsian operator with coefficients in C∞(−T, T ;O(Ω)), where

Ω is a domain in Cn including 0, then P satisfies the condition (B) for Case

(I) (Y (Ω) = O(Ω)), by the result of Baouendi-Goulaoiuc([1]) and the remark

(1) above.

Theorem 6.2. If the operator (3.1) satisfies the conditions (A-0), (A-

1), (A-2), (A-3), and (B), then there exists u ∈ D′
+(−T ′, T ′;Y (Ω′))

⋂
C∞(0, T ′;Y (Ω′)) such that

Pu = 0 in (−T ′, T ′) × Ω′,

u−
N∑

h=0

vh ∈ Cr0+ω+N+1
+ (−T ′, T ′;Y (Ω′)) for every N ∈ N,

where {vh}h are the distributions constructed in Theorem 5.1, r0 ∈ Z and

r0 < inf{Reλi(x) ; 1 ≤ i ≤ r, x ∈ Ω }. Further, there holds (0, 0) ∈
suppu ⊂ Σ+, that is, u is a null-solution of P at (0, 0).

Theorem 1.1 follows from this theorem, by Remark 6.1-(2).
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Remark 6.3. (1) If P is a Fuchsian hyperbolic operator considered by

H. Tahara ([9], [10], [11], and so on) with coefficients in C∞((−T0, T0)×Ω0),

then P satisfies the condition (B) for Case (II) (Y (Ω0) = C∞(Ω0)). For

example, see Theorems 3.1, 4.1, 5.1, and 6.12 in [11]. Hence, if (A-3) is

satisfied, then there exist distribution null-solutions.

(2) The operators of the class considered in [6] also satisfy the condition

(B) for Case (I). See Theorem 1.5 in [6]. Hence, if (A-3) is satisfied, then

there exist distribution null-solutions.

The key of the proof of this theorem is the following lemma.

Lemma 6.4. For every vh ∈ G
(Ah)
ω+h (Ah ∈ N; h ∈ N), there exists

v ∈ D′
+(−T, T ;Y (Ω))

⋂
C∞(0, T ;Y (Ω))

such that there holds

v −
N∑

h=0

vh ∈ Cr0+ω+N+1
+ (−T, T ;Y (Ω))

for every N ∈ N.

Proof. Take ψ(t) ∈ C∞(R) such that ψ(t) = 1 for (−∞, 1/2] and

ψ(t) = 0 for [1,∞). For a formal series
∑∞

h=0 vh(t, x), we construct v in the

form

v :=
∞∑
h=0

vh(t, x)ψ(t/εh)(6.1)

for suitably chosen εh > 0. We prove in Case (II). The proof in Case (I) is

similar and easier, and hence omitted.

Take an increasing sequence {Un}n∈N of subdomains of Ω such that

Kn := Un are compact subsets of Ω and
⋃

n∈N Un = Ω. Put ||w||h :=∑
|α|≤h supx∈Kh

|∂α
xw(x)|.

We have

vh ∈ G
(Ah)
ω+h ⊂ Cr0+ω+h

+ (R;C∞(Ω))
⋂

C∞(0,∞;C∞(Ω)) (h ∈ N)

by Lemma 4.11, and hence ∂l
tvh ∈ Cr0+ω+h−l

+ (R;C∞(Ω)) (l ∈ N).
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Thus, for every l and h satisfying l ≤ r0 + ω + h, the function

tl−h−ω−r0 ||∂l
tvh(t, ·)||q of t is bounded on (0, T ] for every q ∈ N. On the other

hand, for every l, q ∈ N, there holds sup0≤t≤T |tl∂q
t {ψ(t/ε)}| ≤ Cl,qε

l−q with

some constant Cl,q independent of ε > 0. Hence, we can easily show that

for every h, k ∈ N satisfying k ≤ r0 + ω + h, there exists a constant Ch,k

independent of ε such that

sup
0≤t≤T

||∂k
t (vh(t, ·)ψ(t/ε))||h ≤ Ch,kε

r0+ω+h−k for every ε > 0.

Thus, for every h ∈ N satisfying h ≥ 1 − r0 − ω, we can take εh > 0

such that
r0+ω+h−1∑

k=0

sup
0≤t≤T

||∂k
t (vh(t, ·)ψ(t/εh))||h ≤ (

1

2
)h.(6.2)

Put εh = 1 for h < 1 − r0 − ω.

Finally, put

WN :=
N∑

h=0

vh(t, x)ψ(t/εh), rN :=
∞∑

h=N+1

vh(t, x)ψ(t/εh).

By the estimate (6.2), rN converges in Cr0+ω+N
+ (−T, T ;CN+1(UN+1)) for

every N ∈ N with N ≥ −ω−r0. Hence, v :=
∞∑
h=0

vh(t, x)ψ(t/εh) = WN +rN

(independent of N) defines v ∈ D′
+(−T, T ;C∞(Ω))

⋂
C∞(0, T ;C∞(Ω)).

We have v −
N∑

h=0

vh = (v − WM ) + (WM −
N∑

h=0

vh) = rM +
N∑

h=0

vh(t, x) ·

{ψ(t/εh) − 1} +
M∑

h=N+1

vh(t, x)ψ(t/εh) ∈ Cr0+ω+N+1
+ (−T, T ;CM+1(UM+1))

for every M ≥ N + 1. Hence, v −
N∑

h=0

vh ∈ Cr0+ω+N+1
+ (−T, T ;C∞(Ω)) for

every N ∈ N satisfying N ≥ −ω − r0 − 1. If r0 + ω + 1 < 0 and N < −ω −

r0−1, then v−
N∑

h=0

vh = v−
−ω−r0−1∑

h=0

vh+
−ω−r0−1∑
h=N+1

vh ∈ C0
+(−T, T ;C∞(Ω))+

Cr0+ω+N+1
+ (−T, T ;C∞(Ω)) ⊂ Cr0+ω+N+1

+ (−T, T ;C∞(Ω)). �

We also have the following lemma, whose proof is easy and omitted.
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Lemma 6.5. Let N ∈ Z, δ > 0 and Ω be a domain including 0. Let

χ ∈ C∞(R) satisfy χ(t) = 1 in a neighborhood of t = 0 and χ(t) = 0 for

|t| ≥ δ/2. If u ∈ CN
+ (−δ, δ;Y (Ω)), then 〈χu|x=0, e

−t/ε〉 = O(εN+1) (ε →
+0).

Now, we prove Theorem 6.2.

Proof of Theorem 6.2. Since RN :=
∑N

h=0 vh(t, x){ψ(t/εh) − 1} ∈
C∞

+ (R;Y (Ω)) for every N ∈ N, and since 1 ≥ ω −m, we have

Pv = P (rN ) + P (
N∑

h=0

vh) + P (RN ) ∈ Cr0+ω+N−m
+ (−T, T ;CN+1(UN+1))

in Case (II) for every N ∈ N. That is, g := Pv ∈ C∞
+ (−T, T ;Y (Ω)).

This is valid also in Case (I). By the condition (B), there exists w ∈
C∞

+ (−T ′, T ′;Y (Ω′)) such that Pw = g. Thus, u := v − w ∈ D′
+(−T ′, T ′;

Y (Ω′)) satisfies Pu = 0. Further, u −
N∑

h=0

vh = v −
N∑

h=0

vh − w ∈

Cr0+ω+N+1
+ (−T ′, T ′;Y (Ω′)) for every N ∈ N.

Finally, we show that u satisfies (0, 0) ∈ suppu.

By Lemma 4.7-(1), we have

〈v0|x=0, e
−t/ε〉 = rελ0+ω+1 (ε > 0).

Hence 〈χv0|x=0, e
−t/ε〉 = rελ0+ω+1+〈(χ−1)v0|x=0, e

−t/ε〉 = rελ0+ω+1+o(εN )

for every N ∈ N by Lemma 6.5.

By Lemma 4.10-(2), we also have 〈v1|x=0, e
−t/ε〉 = O(εΛ+ω+2) (ε → +0)

for Λ < Reλ0, since v1 ∈ G
(m)
ω+1. Hence 〈χv1|x=0, e

−t/ε〉 = O(εΛ+ω+2).

Since w := u− v0 − v1 ∈ Cr0+ω+2
+ , we have

〈χw|x=0, e
−t/ε〉 = O(εr0+ω+3) = o(εReλ0+ω+1) (ε → +0),

by Lemma 6.5, since we can take r0 > Reλ0 − 2 in Lemma 4.11 by the

assumption that the radius of D is smaller than 1.

Thus, u = v0 + v1 + w satisfies

〈χu|x=0, e
−t/ε〉 = rελ0+ω+1 + o(εReλ0+ω+1) (ε → +0).
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Again by Lemma 6.5, this implies that 0 ∈ supp(u|x=0) and hence that

(0, 0) ∈ suppu. �
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Fourier (Grenoble) 7 (1957), 1–141.

[9] Tahara, H., Cauchy problems for Fuchsian hyperbolic partial differential
equations, Proc. Japan Acad. Ser. A Math. Sci. 54 (1978), 92–96.

[10] Tahara, H., Fuchsian type equations and Fuchsian hyperbolic equations,
Japan. J. Math. (N.S.) 5 (1979), 245–347.

[11] Tahara, H., Singular hyperbolic systems, III. on the Cauchy problem for
Fuchsian hyperbolic partial differential equations, J. Fac. Sci. Univ. Tokyo
Sect. IA Math. 27 (1980), 465–507.

[12] Tahara, H., Singular hyperbolic systems, V. asymptotic expansions for Fuch-
sian hyperbolic partial differential equations, J. Math. Soc. Japan 36 (1984),
449–473.

(Received April 17, 1997)

Faculty of Engineering
Gifu University
Yanagido 1-1,
Gifu 501-11, Japan
E-mail: mandai@cc.gifu-u.ac.jp


