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On Continuation of Gevrey Class Solutions

of Linear Partial Differential Equations

By Akira Kaneko1

Dedicated to Professor Hikosaburo KOMATSU for his 60-th anniversary

Abstract. We give a sufficient condition for the removability of
thin singularities of Gevrey class solutions of linear partial differential
equations. In §1 we give a sufficient condition for the removability in
the case of equations with constant coefficients. Then in §2 we discuss
the necessity of the condition and construct non-trivial solutions with
irremovable thin singularities for some class of equations. In §3 we give
a sufficient condition for the removability of thin singularities of Gevrey
class solutions in the case of equations with real analytic coefficients.

§0. Introduction

In this article, we gather results on continuation to thin singularity (or

removability of thin singularities) of Gevrey class solutions to linear par-

tial differential equations. Some of the results given here are easily derived

from Grushin’s pioneering works on continuation of C∞ solutions and from

the author’s former works on continuation of regular solutions. But it will

be worth gathering them all to an article, because they may not be ob-

vious for the readers who are not specialized in this subject. Moreover it

will be adequate to dedicate this to Professor Hikosaburo Komatsu, who

devoted his half carreer to the study of ultra-differentiable functions and

ultradistributions.

Here is a brief plan of the present article. The first two sections treat

equations with constant coefficients. In §1 we give a sufficient condition for
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the removability of thin singularities of the Gevrey class solutions. This is

a translation of Grushin’s work except for small details. In §2 we discuss

the necessity of the condition given in §1. This is to construct non-trivial

solutions with irremovable thin singularities under the condition opposite

to §1. We generalize the construction of Grushin who gave such a few ex-

amples in his work [G2]. As an example, the precise Gevrey index for the

threshold of existence of solutions with thin singularity is determined for

the Schrödinger equation. In §3 we give a sufficient condition for the remov-

ability of thin singularities of Gevrey class solutions in the case of equations

with real analytic coefficients. This is a modification of the author’s work

for the removability of thin singularities of real analytic solutions.

For a general survey on this subject, we refer to [Kn11] for results until

1992, and [Kn12], where a list of open problems is gathered. The present

article treats some of them concerning Gevrey class solutions.

§1. Continuation of Gevrey class solutions to equations with

constant coefficients

Let P (D) be a linear partial differential operator with constant coef-

ficients, where P (ζ) is a polynomial in n variables ζ = (ζ1, . . . , ζn) and

D = (D1, . . . , Dn) with Dj = −i∂/∂xj , j = 1, . . . , n. We define the two

spaces of Gevrey class functions of index s by

E(s)(Ω) := {f(x) ∈ C∞(Ω); ∀K ⊂⊂ Ω, ∀h > 0, ∃CK,h > 0(1.1)

sup
x∈K

|Dαf(x)| ≤ CK,hh
|α|α!s for ∀α},

and

E{s}(Ω) := {f(x) ∈ C∞(Ω); ∀K ⊂⊂ Ω, ∃h = h(K) > 0,(1.2)

∃C = C(K) > 0,

sup
x∈K

|Dαf(x)| ≤ Ch|α|α!s for ∀α}.

The first space has a simple topology of Fréchet space and is easier to

treat, but it is a little less natural because when s = 1, this corresponds

to the space of entire functions. The second space has a very complicated

topological structure and does not allow the closed range theorem to hold.
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Hence for this space we cannot utilize fundamental theorems such as the

global surjectivity on convex open sets of linear partial differential opera-

tors with constant coefficients or the Fundamental Principle of Ehrenpreis-

Palamodov. But it is more natural because for s = 1 this corresponds to

the space of real analytic functions which is localizable along the real axis.

We also set

(1.3) E1+(Ω) :=
⋂
s>1

E(s)(Ω) =
⋂
s>1

E{s}(Ω).

This is a very convenient space, still containing enough functions in non-

quasianalytic ultra-differentiable class. Following the usage of Komatsu, we

shall denote in the sequel by E∗(Ω) either of the spaces E(s)(Ω), E{s}(Ω),

E1+(Ω) when we can state something commonly to these spaces. Thus

E∗ denotes either of these function classes. In the same time, this symbol

will denote the corresponding sheaf (that is, the localization) on RRRn. As

usual we let D∗(Ω) denote the functions of class E∗ with compact support

contained in Ω (together with the obvious topology if the dual space, that is,

the space of ultradistributions of this class, is considered). For a general set

L we let E∗(L) denote the functions of class E∗ defined on a neighborhood

of L, with the obvious identification in the sense of inductive limit with

respect to the neighborhoods.

In general, we denote by E∗P (Ω) the space of solutions in Ω of the equa-

tion P (D)u = 0 of class E∗. Let K ⊂ Ω denote a thin compact subset.

Here “thin” means that the interior is void. We assume that it is contained

in a hyperplane, say ν · x = 0. (This follows automatically for convex thin

set, as we mainly consider in the sequel.) We study the continuation of

solutions of P (D)u = 0 in E∗(Ω \K) to solutions in E∗(Ω).

Proposition 1.1. The canonical map induced by the canonical restric-

tion from Ω to Ω \K:

E∗P (Ω)→ E∗P (Ω \K)

is injective. In other words, there are no solutions of P (D)u = 0 with

compact support.
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Actually, any element in the kernel of the above map would be a solution

of P (D)u = 0 with compact support. But via the Fourier transform we

would then obtain P (ζ)û = 0, where û is entire, whence û ≡ 0.

Thus the quotient space

(1.4) E∗P (Ω \K)/E∗P (Ω)

will represent the obstruction for continuation of solutions of this class to

K. The reason why we restrict K to thin sets is obvious from the non-

quasianalyticity of the function class under consideration: If K had a non-

void interior, then choosing f ∈ D∗(IntK) \P (D)D∗(IntK) and a solution

u ∈ E∗(RRRn) of P (D)u = f , u|Ω\K would present a non-trivial element of

(1.4).

First we shall show that the obstruction space (1.4) depends only on K

and not on Ω. For this purpose we recall the notion of local cohomology

groups with coefficients in the solution sheaf E∗P of class E∗ of the equation

Pu = 0.

Proposition 1.2. We have the following isomorphism

(1.5) E∗P (Ω \K)/E∗P (Ω)
∼
= H1

K(Ω, E∗P ).

More generally, for any set L containing K in its interior, we have

(1.5bis) E∗P (L \K)/E∗P (L)
∼
= H1

K(L, E∗P ).

The quotient space in (1.5) or (1.5bis) is determined by K only and does

not depend on the choice of the neighborhoods.

Proof. Recall the following fundamental exact sequence of local co-

homology groups:

0→ ΓK(Ω, E∗P )→ Γ (Ω, E∗P )→ Γ (Ω \K, E∗P )(1.6)

→ H1
K(Ω, E∗P )→ H1(Ω, E∗P )→ H1(Ω \K, E∗P )

→ H2
K(Ω, E∗P )→ H2(Ω, E∗P ) = 0.
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Here we have ΓK(Ω, E∗P ) = 0 by Proposition 1.1. (The fact H2(Ω, E∗P ) = 0

follows from the resolution (1.7) as will be discussed below.) We shall show

that the mapping

H1(Ω, E∗P )→ H1(Ω \K, E∗P )

is always injective. Then we will obtain the isomorphism (1.5). Incidentally,

we obtain the exact sequence

(1.7) 0→ H1(Ω, E∗P )→ H1(Ω \K, E∗P )→ H2
K(Ω, E∗P )→ 0.

Recall now the following exact sequence of sheaves

(1.8) 0→ E∗P → E∗ P (D)→ E∗ → 0.

Here the surjectivity in the last arrow, that is, the local solvability in this

class, is an easy consequence of the existence of a fundamental solution

for a single linear partial differential operator P with constant coefficients.

Taking the fundamental exact sequence of global cohomology groups on an

open set Ω, we obtain

0→ Γ (Ω, E∗P )→ Γ (Ω, E∗) P (D)−→ Γ (Ω, E∗)(1.9)

→ H1(Ω, E∗P )→ H1(Ω, E∗) = 0.

The fact H1(Ω, E∗) = 0 is obvious because the sheaf E∗ is fine. (From

this H2(Ω, E∗P ) = 0 also follows.) Thus it suffices to show that the natural

mapping induced from the restriction

E∗(Ω)/P (D)E∗(Ω)→ E∗(Ω \K)/P (D)E∗(Ω \K)

is injective. Suppose that u ∈ E∗(Ω) represents an element mapped to 0.

This implies that there exists v ∈ E∗(Ω \K) such that

u|Ω\K = P (D)v.

Employing partitions of unity, construct h ∈ E∗(Ω) and w ∈ E∗(RRRn \ K)

such that v = h − w on Ω \K. We can obviously choose w in such a way
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that w ≡ 0 outside a ball of some radius R > 0, by cutting v smoothly in

the class E∗ on a neighborhood of K. Put

g =

{
P (D)w on RRRn \K,
P (D)h− u on Ω.

This definition is consistent on the common domain:

P (D)w = P (D)h− P (D)v = P (D)h− u on Ω \K.

Thus g becomes a well defined element of E∗(RRRn), which has compact

support by the choice of w as above. Let f ∈ E∗(RRRn) be a solution of

P (D)f = g. (We can simply obtain such f by convoluting g with the

distributional fundamental solution of P (D) which obviously preserves the

Gevrey regularity.) Then, on Ω we have

u = P (D)(h− f).

Hence, it represents 0 in E∗(Ω)/P (D)E∗(Ω).

The proof for general neighborhood L of K is just similar. Now that

the isomorphism (1.5) is established, the final conclusion follows from the

excision theorem of local cohomology groups. �

Remark. 1) We cannot expect H1(Ω, E∗P ) = 0, unless we have the

global surjectivity of P (D) on Ω in this function class. This follows from

the exact sequence (1.8). To have this surjectivity for open Ω, we first of all

need to assume that Ω is convex. Then it is valid for the class E(s) (see e.g.

Björck [Bj1]), but still not in general for E{s} (see e.g. Cattabriga [C1]).

The above method of argument was first introduced by [Kn6] for the real

analytic solutions, to which the global surjectivity is neither available. Note

that the above Proposition (or the sequence (1.7)) implies that in such a

situation, the obstruction for the global surjectivity is concentrated on the

neighborhood of ∂Ω.

2) We have an alternative choice of neighborhoods of K for which the

global surjectivity holds. It is to take compact neighborhoods L ⊃⊃ K. In

this case the surjectivity of P (D) : E∗(L)→ E∗(L) holds irrespective of the

convexity of L, because of the non-quasianalytic property of our class. This
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fact was implicitly employed by some of the proofs for the corresponding

assertions in the author’s former publications.

In view of the above Proposition, we can always assume Ω to be convex,

thus allowing to apply the Fourier analysis. Sometimes the choice of convex

compact L simplifies the situation further.

Next, we shall show that the obstruction (1.4) can be decomposed via

the irreducible components of P (D):

Corollary 1.3. Let Q be any factor of P . Then we have a canonical

injection

(1.10a) H1
K(Ω, E∗Q) ↪→ H1

K(Ω, E∗P ).

Conversely, let P = Qm1
1 · · ·QmN

N be the decomposition of P (ζ) into different

irreducible components with their multiplicities counted. Then we have a

(non-canonical) injection

(1.10b) H1
K(Ω, E∗P ) ↪→

N∏
j=1

[H1
K(Ω, E∗Qj

)]mj .

Hence we have H1
K(Ω, E∗P ) = 0 if and only if H1

K(Ω, E∗Qj
) = 0 for j =

1, . . . , N .

Proof. Let P = QR be a decomposition of polynomial. (We do not

assume that Q, R are mutually prime.) Note that we have the following

exact sequence of sheaves similar to (1.8):

(1.11) 0→ E∗Q → E∗P
Q(D)→ E∗R → 0.

As a matter of fact, the exactness is obvious except for the surjectivity of

the last arrow. But any solution u ∈ E∗ of Q(D)u = f for f ∈ E∗R will

satisfy P (D)u = R(D)(Q(D)u) = R(D)f = 0. Taking the fundamental

exact sequence of the relative cohomology groups for an open neighborhood

Ω ⊃ K, we obtain from (1.11) the following exact sequence:

0 → ΓK(Ω, E∗Q)→ ΓK(Ω, E∗P )→ ΓK(Ω, E∗R)(1.12)



558 Akira Kaneko

→ H1
K(Ω, E∗Q)→ H1

K(Ω, E∗P )→ H1
K(Ω, E∗R)

→ H2
K(Ω, E∗Q)→ H2

K(Ω, E∗P ).

Here the terms in the first row vanish because of the absence of solutions

with compact support. Hence the existence of canonical inclusion mapping

(1.10a) follows. Since E∗ is not flabby, the second degree relative cohomol-

ogy groups do not vanish even for single equations. But we have at least

the injection mapping

H1
K(Ω, E∗P )/H1

K(Ω, E∗Q) ↪→ H1
K(Ω, E∗R),

whence in view of the complete reducibility of the vector spaces, we have a

(non-canonical) injection mapping

(1.13) H1
K(Ω, E∗P ) ↪→ H1

K(Ω, E∗Q)⊕H1
K(Ω, E∗R).

Repeating this argument forQ, R, we finally obtain an injection like (1.10a).

�

Remark. In the preprint version of this article, we gave a proof for the

assertion that (1.10b) is an algebraic isomorphism, which was wrong as the

referee kindly pointed out. Here we give another proof of the isomorphism

for curiosity’s sake, although it will not be useful because we cannot give a

canonical mapping.

To prove an abstract isomorphism, it suffices to show that both sides of

(1.10b) have algebraic dimension (over CCC always) of the same cardinality.

Note that in view of Corollary 1.3 the algebraic dimension of each side of

(1.10b) is estimated by a finite multiple of the other’s. Thus it suffices to

show that each H1
K(Ω, E∗Q) is either 0 or is infinite dimensional. Suppose

that it has a non-zero finite dimension, and let u ∈ E∗Q(Ω \ K) represent

a non-trivial element. Choose R which is irreducible and not contained

in the factors of Q. Then R(D)ju, j = 0, 1, 2, . . . will define elements of

H1
K(Ω, E∗Q) of which a finite number are linearly dependent, say

S(D)u :=
m∑

j=0

cjR(D)ju = v,
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v ∈ E∗P (Ω), cj ∈ CCC, j = 0, 1, 2, . . . ,m, cm �= 0.

The simultaneous equation

S(D)w = v, Q(D)w = 0

has a solution w ∈ E∗(Ω) as long as we shrink Ω a little for the fear of the

case of ∗ = {s} type space. (We neglect to introduce a new notation for

the shrinked domain.) Then u− w ∈ E∗(Ω \K) will satisfy

Q(D)(u− w) = 0, S(D)(u− w) = 0.

Obviously, Q and S are primary to each other. Hence they define an overde-

termined system, and by Ehrenpreis-Malgrange’s classical theorem the so-

lution u − w can be continued to K. (Though the theorem may not have

been written down for the class E∗, it is easy to modify their theory to

this case. A more easy-going way is that if ever we have a continuation as

a C∞-solution, we can show that it is in class E∗ via the propagation of

E∗ regularity for solutions of, say, Q(D)u = 0 up to K. This propagation

theorem can be shown by a standard argument employing a cut-off func-

tion in this class and a distribution fundamental solution of Q(D) by which

the convolution preserves the E∗ regularity.) Thus u − w, hence u, can be

continued to a solution of Q(D)u = 0 near K, and irrespective of the fact

of shrinking Ω, we conclude that u ∈ E∗Q(Ω) for the original Ω, which is a

contradiction.

Here we recall the notion of irregularity of a characteristic direction.

We adopt the following definition. Let P (ζ) be an irreducible polynomial

of order m such that Pm(ν) = 0, where Pm denotes the principal part.

Consider

Q(s, t) := P (tξ + sν) = q0(ξ)t
m + q1(s; ξ)t

m−1 + · · ·+ qm(s; ξ)

as a polynomial of the two variables (s, t). For generically fixed ξ, let κ

be the minimum value of the leading powers of the Puiseux expansions of

the roots of Q for t in terms of s representing irreducible germs of N(Q)

passing through the point (∞, 0) at infinity. Then we set µ = (1 − κ)−1
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and call it the multiplicity of ν. A more exact definition may be given via

the Newton polygon, transforming the point at infinity to the origin: Set

σ = 1/s, τ = t/s and let

q(σ, τ) = s−mQ(s, t)
∣∣
s=1/σ,t=τ/σ

.

Factorize it as a polynomial of τ with coefficients in Oσ,0 at 0. Then µ is

the inverse of the minimum value with respect to the irreducible factors of

the leading powers of the Puiseux expansions of the roots of them.

Notice that the irregularity employed here is the mildest one, in com-

parison with the strongest one which is usually used e.g. to define the

hyperbolicity.

Our main result here is the following

Theorem 1.4. Let K be a compact set contained in a hyperplane

ν · x = 0. Assume further that every irreducible component of P (ζ) has

ν as characteristic direction of irregularity ≤ µ. Then

E(s)
P (Ω \K)/E(s)

P (Ω) = 0, if s ≤ µ/(µ− 1),

E{s}P (Ω \K)/E{s}P (Ω) = 0, if s < µ/(µ− 1).

Corollary 1.5. Assume that every irreducible component of P (ζ) is

non-elliptic. Then the isolated singularities of solutions of class E1+ are

removable, that is,

(1.14) E1+
P (Ω \ {0})/E1+

P (Ω) = 0.

Remark that this sufficient condition on P (D) is the same as the one for

the removablilty of isolated singularities of real analytic solutions given in

[Kn1]–[Kn2].

Although the proof of Theorem 1.4 is almost a literal translation of

Grushin’s original article [G2] for the removability of isolated singularities of

C∞ solutions, we shall reproduce it here in detail, because it is nevertheless
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important to indicate in which point the Gevrey regularity allows to simplify

the result.

Proof. In view of the Propositions prepared hitherto, we can assume

without loss of generality that P (D) is irreducible and Ω is convex. Now

we need to recall the Grushin representation: Given u(x) ∈ E∗P (Ω \ K),

choose an extension [u] to an element of E∗(Ω) with modification in the

ε-neighborhood Kε of K. Then P (D)[u] ∈ D∗(Kε). Thus its Fourier trans-

form F (ζ) = ̂P (D)[u] becomes an entire function and in view of the Paley-

Wiener type theorem (see e.g. Komatsu [Km2], Theorem 9.1) it satisfies

(1.15) ∀h > 0 |F (ζ)| ≤ Che
−h|Re ζ|1/s+HK(Im ζ)+ε| Im ζ|, if {∗} = (s),

∃h = h(ε) > 0 |F (ζ)| ≤ Ce−h|Re ζ|1/s+HK(Im ζ)+ε| Im ζ|,(1.16)

if {∗} = {s}.

If we restrict F (ζ) to the complex characteristic variety

N(P ) := {ζ ∈ CCCn; P (ζ) = 0}

of P , it defines a global holomorphic function on N(P ) with the same

estimate. This does not depend on the choice of the modification [u] of u

nor of ε. For, the difference of any such two modifications has the form

P (D)v with v ∈ D∗(Kε), where ε denotes the bigger one. Hence it vanishes

by the Fourier transformation and restriction to N(P ). Thus we obtain the

Grushin representation:

(1.17) H1
K(Ω, E∗P )→ Ê∗(K)[N(P )].

Here obviously the right-hand side denotes the space of global holomorphic

functions on N(P ) satisfying the estimate (1.15) or (1.16).

A variant of the so called Fundamental Principle asserts that (1.17) is

a topological linear isomorphism. For our class (s) this really takes place,

but for {s} this holds only partially (see Proposition 1.6 below). To prove

the continuation of solutions, however, we only need the injectivity of the

mapping (1.17), which we shall show here: If F (ζ)|N(P ) = 0, then F (ζ) is
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divisible by P (ζ) as an entire function. Then Malgrange’s theorem guar-

antees that the quotient G(ζ) = F (ζ)/P (ζ) satisfies the same estimate as

F (ζ). By the Paley-Wiener type theorem in the inverse direction, we can

find g ∈ D∗(Kε) such that G(ζ) = ĝ. Thus P (D)[u] = P (D)g, hence

v = [u] − g is another modification of u which satisfies P (D)v = 0 on the

whole of Ω. This implies that our solution u can be continued to a solution

on Ω if it is modified in Kε. Such continuation with small modification is

uniquely determined, because the difference of such two would again give a

solution with compact support. Hence in view of the arbitrariness of ε this

implies that u itself can be continued to K as a solution.

Thus (1.17) is injective. Therefore, to prove the theorem it suffices to

show that the image of the obstruction H1
K(Ω, E∗P ) in (1.17) is trivial.

Until now the discussion was common to any P (D) and any convex

compact K. Now we employ the assumptions of our theorem. Choose the

coordinate system in such a way that ν = (0, . . . , 0, 1) and that (1, 0, . . . , 0)

is a non-characteristic direction. In the sequel let us employ the abbrevia-

tion ζ ′′ = (ζ2, . . . , ζn−1). By the assumption on P (D), for a generic choice

of ζ ′′ = ζ ′′0 and a small δ > 0, the equation P (ζ1, ζ
′′, ζn) = 0 for ζ1 has a

solution ζ1 = τ(ζ ′′, ζn) which is multi-valued analytic in ζn in |ζn| ≥ 1/δ

for each fixed ζ ′′ in |ζ ′′ − ζ ′′0 | ≤ δ, and which satisfies there the following

estimate:

|τ(ζ ′′, ζn)| ≤ C|ζn|(µ−1)/µ.

For the present system of coordinates the assumption on K reads as K ⊂
{xn = 0}, hence

HK(η) ≤ A|η1|+A|η′′|, HKε(η) ≤ (A+ ε)|η1|+ (A+ ε)|η′′|+ ε|ηn|.

Thus for each fixed ζ ′′ we obtain a function

G(z) := F (τ(ζ ′′, z), ζ ′′, z)

of one variable z, which is multi-valued holomorphic in |z| ≥ 1/δ and which

satisfies there

(1.18) |G(z)| ≤ Cεe
−h|z|1/s+(A+ε)C|z|(µ−1)/µ+ε| Im z|.

Here, by the assumption, we have 1/s ≥ (µ − 1)/µ but we can choose

h > (A + 1)C in case ∗ = (s), and we have 1/s > (µ − 1)/µ in case
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∗ = {s}. Thus in either case, in view of the arbitrariness of ε we can apply

the Phragmén-Lindelöf principle to G(z) to conclude that G(z) is bounded

on Im z ≥ 1/δ, and similarly on Im z ≤ −1/δ, hence on |z| ≥ 1/δ. Recall

that the multivaluedness of G(z) at z = ∞ comes from that of τ(ζ ′′, z).
Hence it can be represented by a Puiseux series of z, and we can find an

integer q ≥ 1 such that H(w) := G(wq) is single valued holomorphic at

w =∞. Therefore we can apply Riemann’s theorem on removable isolated

singularity to H(w) to conclude that it is holomorphic at w = ∞. By the

estimate (1.18), however, H(w) decreases faster than any inverse power of

|w| along the real axis. Thus its Taylor expansion at w = ∞ should be

trivial. Thus we conclude that H(w) ≡ 0, whence G(z) ≡ 0.

Now we have shown that F (ζ1, ζ
′′, ζn) = 0 on

N(P ) ∩ {(ζ1, ζ ′′, ζn); |ζ ′′ − ζ ′′0 | ≤ δ, |ζn| ≥ 1/δ, ζ1 = τ(ζ ′′, ζn)}.

Since this is an open subset of the irreducible algebraic variety N(P ), we

conclude that F (ζ) ≡ 0 on N(P ). This shows the continuation of this

solution as is already remarked. �

In the next section, we need the surjectivity of (1.17), because in or-

der to show the existence of a non-trivial solution with thin singularity,

we construct a global holomorphic function on the variety N(P ) with the

indicated growth condition. Therefore we prepare

Proposition 1.6. (1.17) is an algebraic isomorphism for a general

convex compact set K.

It remains to show the surjectivity. It is proved in the standard way in

the theory of Ehrenpreis-Palamodov on Fundamental Principle. Here we

only sketch the outline. For a given F (ζ) ∈ Ê∗(K)[N(P )], we first choose

local extensions and make a 1-cochain {Fλ(ζ)} for a covering of CCCn. Then

we make a 2-cocycle {Fλµ(ζ) = (Fλ(ζ) − Fµ(ζ))/P (ζ)}. (The divisibility

comes from the fact that each element of the 1-cochain vanishes on the

multiplicity variety N(P ).) Finally, we prove the vanishing of degree 1 Čech

cohomology group with growth condition corresponding to Ê∗(K)[N(P )].

For ∗ = (s) the proof is similar to the case of B̂[K] of Fréchet type given

in [Kn3]. For ∗ = {s}, it is difficult to prove it directly because of the
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complicated topological structure. We can, however, prove the surjectivity

under the growth condition

|F (ζ)| ≤ Ce−h|ζ|1/s+HK(Im ζ)+ε| Im ζ|.

with a fixed ε > 0. Then the problem becomes one for a DF type space

and is treated by Palamodov [P1]. We obtain in this way a solution uε with

singularity of size Kε, or more precisely, such that P (D)uε ∈ D∗(Ω), with

support in Kε. But the difference of two such P (D)uε−P (D)uε′ for ε > ε′,
has the form of P (D)w with suppw ⊂ Kε, because its Fourier transform

vanishes on N(P ). Thus

P (D)(uε − w) = P (D)uε′ .

Hence we can modify uε′ by an element of E∗(Ω) which is harmless, so that

we can show the extendability of uε as a solution with singularity of smaller

size Kε′ . Continuing this process with a suitable choice of sequence εk → 0,

we can finally find a solution in class E{s} with singularity in K. From

this way of proof the topological isomorphism cannot be seen in this case

(maybe false).

At the end of this section, we give an analogy of Grushin’s result in

[G1] concerning the removability of weak singularity. We shall say that an

isolated singularity of a solution u of class E∗ is weak if u is prolongeable

to a neighborhood of the singularity as an ultradistribution of class D∗′.
Recall that P (D) is called hypoelliptic in the class E∗ if P (D) admits a

fundamental solution in D∗′ which has E∗ regularity outside the origin, or

equivalently, if every local solution of P (D)u = 0 in D∗′ becomes regular of

class E∗.

Theorem 1.7. The isolated weak singularity of any solution of

P (D)u = 0 of class E∗ is always removable if and only if P (D) contains no

irreducible factor which is hypoelliptic in the class E∗.

Proof. We just copy Grushin’s proof. The necessity is obvious be-

cause the fundamental solution of the hypoelliptic factor will provide a

solution with irremovable weak singularity.

Conversely, assume that P (D) admits a solution u in E∗ with irremovable

weak isolated singularity, say at the origin. We can find an irreducible
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factor Q(D) of P (D) and a factor R(D) of P (D) such that v = R(D)u is

a non-trivial solution of Q(D)v = 0 in E∗ with irremovable weak isolated

singularity. In fact, if R(D)u becomes zero, we can discuss with R(D)

instead of P (D). On the other hand, if the singularity of v = R(D)u

becomes removable as a solution of Q(D)v = 0, we can find a local solution

w in E∗ of R(D)w = [v], where [v] is the continuation of v in E∗. Then

h = u− w will be a solution of R(D)h = 0 with irremovable weak isolated

singularity, and we can continue again with R(D).

Thus we can assume from the beginning that P (D) is irreducible. Let

[u] be any prolongation of u to the singularity in the class D∗′. Then by

the structure theorem of elements of D∗′ with isolated support, we can find

an infinite order differential operator J(D) adapted to this class such that

P (D)[u] = J(D)δ.

Let χ(x) be a function in D∗(RRRn) with small support such that χ ≡ 1 on a

smaller neighborhood of the origin. Then

P (D)(χ(x)[u]) = J(D)δ + ϕ(x),

with ϕ ∈ D∗(RRRn). Employing this identity we can show that P (D) is J(D)-

hypoelliptic in E∗, that is, for any solution f of P (D)f = 0 in class D∗′

J(D)f becomes regular of class E∗:

J(D)f = J(D)δ ∗ f = P (D)(χ[u]) ∗ f − ϕ ∗ f = −ϕ ∗ f.

Note that J(D) is not divisible by the irreducible polynomial P (D), because

if so, the singularity of u would be removable as is easily seen. From this

fact, via standard argument we can show that the simultaneous equation

J(D)f = g, P (D)f = 0

has always a local solution in D∗′ for any right-hand side g of class D∗′ which

itself satisfies P (D)g = 0. (This existence theorem is not trivial, because

J(D) is not a polynomial in general. See the Appendix.) Since as remarked

above J(D)f is in E∗, so is g. This means that P (D) is hypoelliptic in the

class E∗. This proves the sufficiency part of our theorem. �
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§2. Equations possessing Gevrey solutions with thin compact

singularity

In this section we present some class of equations with constant coef-

ficients for which the continuation of Gevrey solutions as discussed in the

preceding section does not hold. Since the preparatory arguments there

apply as well, we shall restrict ourselves to consideration of irreducible op-

erators.

First of all, it is well known that hypoelliptic equations have C∞ solu-

tions with isolated singularity. In our case this corresponds to the following,

which makes the necessity part of Theorem 1.7 more concrete:

Proposition 2.1. Assume that there exist positive constants q ≥ 1

and δ such that

(2.1) | Im ζ| ≥ δ|Re ζ|1/q on ζ ∈ N(P ) ∩ {|ζ| ≥ 1/δ}.

Then there exist solutions with isolated non-removable singularity of class

E(s) for s > q, and of class E{s} for s ≥ q.

In fact, a fundamental solution E(x), that is a solution of P (D)E = δ,

presents a non-trivial example. The irremovability of the singularity is ob-

vious because if there is such a continuation, say [E], then the difference

v = E − [E] would be a distribution supported by the origin satisfying

P (D)v = δ, which is impossible. Thus it only remains to see the Gevrey

regularity of E outside the origin. This is rather classical (see e.g. Palam-

odov[P1], Chapter 6, §5).

A proof based on the Grushin representation is as follows: Choose

F (z) ≡ 1 as a function on N(P ). (Actually, this corresponds to the fun-

damental solution of P via the Grushin transform.) In view of (2.1) it will

satisfy, for any ε > 0,

|F (z)| = 1 ≤ Ce−δε|Re ζ|1/q+ε| Im ζ| on N(P ).

Thus F (z) ∈ Ê∗(K)[N(P )] for ∗ = {s} with s ≥ q, hence for ∗ = (s) with

s > q. Thus in view of Proposition 1.6, this F (ζ) corresponds to a solution

in the indicated class with isolated singularity.
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Note that q = 1 corresponds to the elliptic equation.

A remarkable discovery of Grushin was that there exist equations which

are non-hypoelliptic but nevertheless allow C∞ solutions with isolated sin-

gularity. Grushin only gave a few examples. Here we shall try to general-

ize his idea of construction. The following generalizes Grushin’s example

D3
1−D2

2, which is obviously non-hypoelliptic. We first give a result on thin

singularity, which is more general than the case of isolated singularity as

will be given later:

Theorem 2.2. Let P (D) be an operator of two independent variables

with the following form

(2.2) P (D) = Dm
1 − aDk

2 + · · · , k < m, a �= 0

where · · · denotes lower order terms in the sense of weighted homogeneity.

Then for any prescribed s > m/k, P (D) admits a solution in E{s} with a

compact thin singularity K contained in x2 = 0.

Note that for this operator (0, 1) is a characteristic direction of multi-

plicity m and irregularity µ = m/(m− k), hence µ/(µ− 1) = m/k.

Proof. Let ψ(t) ∈ D{q}(RRR1), with q > 1 which is supposed to be close

to 1. We have

(2.3) |ψ̂(τ)| ≤ Ce−A|τ |1/q+B| Im τ |.

Set

F (ζ1, ζ2) = ψ̂(ζ1)|N(P ).

We shall show that F (ζ) satisfies

(2.4) |F (ζ)| ≤ Cεe
−A′|ζ|1/s+B| Im ζ|

with any fixed s > m/k and with some correspondingly defined A′ > 0.

Remark that on N(P ) we have

(2.5) |ζ1| ∼ |a|1/m|ζ2|k/m.
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Hence we simply obtain

|F (ζ)| ≤ Ce−(A/2)|ζ1|1/q−(A/3)|a|1/qm|ζ2|k/qm+B| Im ζ1|.

This gives a solution in E{s} for s = qm/k and in E(s) for s > qm/k with

singularity |x1| ≤ B on the line x2 = 0. Since q can be chosen as close to 1

as we wish, we obtain the assertion. �

Remark that for s < m/k such a solution does not exist because of

Theorem 1.4. Notice that the above theorem is not a general nonsence in

spite of the simplicity of its proof. Trivial thing is rather that for thin K

contained in a1x1 + a2x2 = 0 with a1 �= 0, we can always show a solution

for s in 1 < s < m/k:

Proposition 2.3. Let P (D) be an operator as in the preceding theo-

rem. Then for any prescribed s > 1, P (D) admits a solution in E(s) or in

E{s} with a compact thin singularity K contained in x1 = bx2.

Proof. Our operator is weakly hyperbolic to the direction dx1 and

posseses a fundamental solution for the Cauchy problem in ultradistribu-

tions with the positive x1-axis as the propagation cone. Hence it supplies

the solution of the Cauchy problem for any Cauchy data on x1 = bx2 sup-

ported by K in the class E(s) with 1 < s < m/k. (See e.g. Bronshtein

[Br1]. The present case may be verified directly via the Fourier analysis.)

The solution u has support in the cylinder with base K and the generators

parallel to the x1-axis. If we put u = 0 outside this cylinder and also on the

side x1 < bx2, then we obtain a solution u ∈ E(s)(RRRn \K) which obviously

has K as non-removable singularity. �

Next we try to construct solutions with isolated singularity. We have

rather a partial result on this. First we prepare the following lemma, which

is implicitly contained in Theorems 4.1.1 and 4.1.8 of Boas [Bo1].

Lemma 2.4. For any δ > 0 we can find pδ > 1 such that for any

prescribed p with 1 < p ≤ pδ, we can construct an entire function of one

variable G(τ) which satisfies

|G(τ)| ≤ Ce−A|τ |1/p , on Re τ ≥ δ| Im τ |,
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|G(τ)| ≤ CeB|τ |1/p , on Re τ ≤ δ| Im τ |,

with some constants B > A > 0.

Proof. Put

(2.6) G(τ) =
∞∏

n=1

(
1− τ

np

)
.

On the region Re τ ≤ δ| Im τ | (actually everywhere), we have

∞∏
n=1

∣∣∣1− τ

np

∣∣∣ ≤ ∞∏
n=1

(
1 +

|τ |
np

)
≤ exp

[ ∞∑
n=1

log

(
1 +

|τ |
np

)]

≤ exp

[∫ ∞

0
log

(
1 +

|τ |
sp

)
ds

]
.

Here we utilized the fact that log(1 + |τ |/sp) is monotone decreasing in s

for 0 < s <∞. Via change of variable t = |τ |/sp we obtain

≤ exp

[
1

p
|τ |1/p

∫ ∞

0
log(1 + t)t−1−1/pdt

]
≤ eB|τ |1/p ,

where

B =
1

p

∫ ∞

0
t−1−1/p log(1 + t)dt.

Next, on the region Re τ ≥ δ| Im τ | we have |Re τ | ≥ δ|τ |/
√

1 + δ2, hence,

∣∣∣1− τ

np

∣∣∣ =

(
1− 2

|Re τ |
np

+
|τ |2
n2p

)1/2

≤
(

1− 2
δ|τ |√

1 + δ2np
+
|τ |2
n2p

)1/2

≤
(

1− δ|τ |
2
√

1 + δ2np

)
,

provided

np ≥ 4 + 3δ2

4δ
√

1 + δ2
|τ |.
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Set c = 2
√

1 + δ2/δ. Then if we choose λ ≥ c−1/p, we have |τ |/cnp ≤ 1 for

n ≥ λ|τ |1/p, hence

∏
n≥λ|τ |1/p

(
1− |τ |

cnp

)
≤ exp

 ∑
n≥λ|τ |1/p

log

(
1− |τ |

cnp

)
≤ exp

− ∑
n≥λ|τ |1/p

|τ |
cnp


≤ exp

[
−
∫ ∞

λ|τ |1/p

|τ |
csp

ds

]
≤ e−A|τ |1/p

with

A =
1

(p− 1)λp−1c
=

δ

2(p− 1)λp−1
√

1 + δ2
.

Note that this constant grows to ∞ as p→ 1 as long as λ remains bounded

away from 0. Thus if we choose λ in such a way that

λ = max

{(
δ

2
√

1 + δ2

)1/p

,

(
4 + 3δ2

4δ
√

1 + δ2

)1/p
}
,

then we have ∏
n≥λ|τ |1/p

∣∣∣1− τ

np

∣∣∣ ≤ e−A|τ |1/p .

On the other hand, we have∏
n≤λ|τ |1/p

∣∣∣1− τ

np

∣∣∣ ≤ ∏
n≤λ|τ |1/p

(
1 +

|τ |
np

)

≤ exp

 ∑
n≤λ|τ |1/p

log

(
1 +

|τ |
np

)
≤ (1 + |τ |) exp

[∫ λ|τ |1/p

1
log

(
1 +

|τ |
sp

)
ds

]

≤ (1 + |τ |) exp

[
1

p
|τ |1/p

∫ |τ |

λ−p

t−1−1/p log(1 + t)dt

]
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≤ (1 + |τ |)eb|τ |1/p ,

where

b =
1

p

∫ ∞

λ−p

t−1−1/p log(1 + t)dt.

Note that if we let p → 1, we have finally A > b. Hence if p is sufficiently

close to 1, we obtain the desired decay estimate with another A > 0 in this

region. �

Remark. Via scaling of the variable τ , we can let B smaller than any

prescribed positive constant or let A larger than any prescribed positive

constant, although in each case the remaining constant A resp. B changes

proportionally.

Theorem 2.5. Let P (D) be an operator of two independent variables

as in Theorem 2.2. Assume further that a �= 0 is real, m is odd, and k

is even. Then for any prescribed s > m/k, P (D) admits a solution with

isolated singularity in E{s} and in E(s).

Proof. Sincem is odd, by the change of sign of the x1-axis if necessary,

we can assume without loss of generality that a > 0. Take an entire function

of one variable G(τ) as is given by Lemma 2.4 with p > 1 close to 1. Then

put

F (ζ1, ζ2) = G(ζ1).

Recall the asymptotic form (2.5). Thus on the region | Im ζ1| ≤ δRe ζ1
(actually on Re ζ1 ≥ δ| Im ζ1|) we have

|F (ζ)| ≤ Ce−A|ζ1|1/p ≤ C ′e−(A/2)|ζ1|1/p−(A/3)ak/m|ζ2|k/pm .

Next, on the region | Im ζ1| ≥ δ|Re ζ1|, we have |ζ1| ≤
√

1 + δ−2| Im ζ1|,
hence

|F (ζ)| ≤ CeB|ζ1|1/p ≤ Ce−A|ζ1|1/p+(A+B)
√

1+δ−2| Im ζ1|1/p

≤ Cεe
−(A/2)|ζ1|1/p−(A/3)ak/m|ζ2|k/pm+ε| Im ζ1|.

Finally, on the region | Im ζ1| ≤ −δRe ζ1, we put

ζ1 = ρeπi+θi, where |θ| ≤ Arctan δ.
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Then for ρ→∞ we have

ζ2 ∼ a−m/kρm/ke(m/k)θi+((2(+1)/k)πi, A = 0, . . . , k − 1.

By the assumptions on a,m, k, we see from this that for δ sufficiently small,

each branch satisfies

Im ζ2 ∼ a(ρ
m/k, with a( = a−m/k sin

(
m

k
θ +

2A+ 1

k
π

)
�= 0.

Thus in this region we obtain, with some a′ > 0

|F (ζ)| ≤ CeB|ζ1|1/p ≤ Ce−A|ζ1|1/p+(A+B)|ζ1|1/p

≤ Ce−(A/2)|ζ1|1/p−(A/3)ak/m|ζ2|k/pm+(A+B)ρ1/p

≤ Cεe
−(A/2)|ζ1|1/p−(A/3)ak/m|ζ2|k/pm+ερm/k

≤ Cεe
−(A/2)|ζ1|1/p−(A/3)ak/m|ζ2|k/pm+ε| Im ζ2|.

The obtained estimate shows that F (ζ) is the Grushin transform of a solu-

tion with isolated singluarity at the origin in the class E{s} for s = pm/k

and in the class E(s) for s > pm/k. �

The above proof is adopted from the original example of GrushinD3
1−D2

2

(although he did not discuss the threshold Gevrey index and only presented

a C∞ solution). We hope that the additional assumption which we posed

in Theorem 2.5 (in comparison to Theorem 2.2) is only technical. Note,

however, that for imaginary a or for m, k even and a < 0 our operator

becomes hypoelliptic and the existence of solutions with weak isolated sin-

gularity becomes trivial. In view of Theorem 1.7 the singularity of such an

example of solution is never weak for non-hypoelliptic case.

We also believe that we will be able to construct solutions with thin

singularity in E(s) with s = m/k, but our method does not work for this

class. (We can improve e.g. Lemma 2.4 to replace |τ |1/p in the decay/growth

condition by |τ |/(log |τ |)2. But this does not improve the result for the

threshold value of s. In order to do this by our argument, we need to

replace |τ |1/p by |τ |, which is of course impossible.)

We conclude this section by showing a solution with thin singularity for

the Schrödinger equation for general space dimension. A consideration of
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general equations with more than two variables need the study of cohomol-

ogy groups with bound on the variety N(P ), and is left for the future.

Proposition 2.6. Consider the operator P (D) = D2
1+· · ·+D2

n−1−Dn

corresponding to the Schrödinger equation. This admits a solution of class

E∗ with ∗ = {s} or ∗ = (s) for s > 2 with compact irremovable singularity

contained in xn = 0.

Note that for this operator ν = (0, . . . , 0, 1) is a characteristic direction

of multiplicity and irregularity equal to 2, hence the threshold value is

µ/(µ− 1) = 2.

Proof. Let q > 1 be close to 1 and let ψ(t) be a function in D{q}(RRR1)

which is even. Then its Fourier transform ψ̂(τ) is also even and satisfies

the estimate (2.3). Set

F (ζ) = ψ̂

(√
ζ2
1 + · · ·+ ζ2

n−1

)
.

We shall estimate this in various regions. In the sequel we set ζ ′ = (ζ1, . . . ,

ζn−1), and we let |ζ ′| denote the (complex) Euclidean norm of ζ ′. We also set

ξ′ = Re ζ ′, η′ = Im ζ ′, use similar symbols for their norms, and abbreviate

their Euclidean inner product as ξ′η′.
Fix δ such that 0 < δ < 1. First, consider the region |η′| ≤ δ|ξ′|. Here

we have ξ′2 − η′2 ≥ (1− δ2)|ξ′|2 ≥ 0. Hence recalling the estimate

| Im
√
a+ bi| =

√√
a2 + b2 − a√

2
=

1√
2

|b|√√
a2 + b2 + a

≤ |b|
2
√
a

which is valid for a ≥ 0, we obtain∣∣∣∣Im√
ζ2
1 + · · ·+ ζ2

n−1

∣∣∣∣ ≤ 2|ξ′||η′|
2
√

1− δ2|ξ′|
≤ 1√

1− δ2
|η′|.

Thus taking account of the fact

|ζn| = |ζ2
1 + · · ·+ ζ2

n−1| =
{
(|ξ′|2 − |η′|2)2 + 4(ξ′η′)2

}1/2 ≥ 1− δ2

1 + δ2
|ζ ′|2
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on N(P ), we obtain in this region

|F (ζ)|(2.7)

≤ Ce−A|ζ′|1/q+B| Im
√

ζ2
1+···+ζ2

n−1|

≤ Ce−(A/2)|ζ′|1/q−(A/2)(1+δ2)1/2q(1−δ2)−1/2q |ζn|1/2q+(1−δ2)−1/2B| Im ζ′|.

Next, on the region |η′| ≥ δ|ξ′|, we employ |ζn| ≤ |ζ ′|2 and

Im
√
ζ2
1 + · · ·+ ζ2

n−1 ≤ |ζ ′| ≤ (1 + δ−2)1/2|η′|.

Then we have

|F (ζ)| ≤ CeB|ζ′|(2.8)

≤ Ce−(A/2)|ζ′|1/q−(A/2)|ζn|1/2q+A|ζ′|1/q+B|ζ′|

≤ Ce−(A/2)|ζ′|1/q−(A/2)|ζn|1/2q+A(1+δ−2)1/2q |η′|1/q+B(1+δ−2)1/2|η′|.

Combinig (2.7) and (2.8), we conclude that we can find a universal constant

λ > 0 such that on N(P ) we have

|F (ζ)| ≤ Ce−A|ζ|1/2q+λB| Im ζ′|.

This implies that F (ζ) gives a solution in E{2q} with compact thin singu-

larity contained in xn = 0. Since q > 1 is arbitrary, we obtain the desired

conclusion. �

It is an interesting problem to know if we can construct similar solution

with isolated singularity. In the above proof we can let the “horizontal”

size B of the singularity as small as we like, but never to 0.

§3. Continuation of Gevrey solutions for equations with real

analytic coefficients

Now we consider an operator P (x,D) with real analytic coefficients de-

fined on a neighborhood of the origin ofRRRn. We assume that the thin singu-

larity K is contained in the hyperplane x1 = 0 which is non-characteristic

with respect to P .
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To state the result we first recall the set of boundary characteristic points

for the real analytic solutions from the sides ±x1 > 0, introudced in [Kn8]:

V ±
S,A(P )(3.1)

:= {(x′, ξ′); there exists a sequence (x(k), ξ(k)) ∈ RRRn ×CCC ×RRRn−1

such that Pm(x(k), ξ(k)) = 0, ±x(k)
1 > 0, Im ξ

(k)
1 > 0

and (x(k)′, ξ(k)′)→ (x′, ξ′)}.

Here the suffix S represents the hypersurface x1 = 0 under consideration.

We also set

(3.2) VS,A(P ) := V +
S,A(P ) ∪ V −

S,A(P ).

When we discussed the continuation of real analytic solutions in [Kn8], it

was fundamental that the analytic wavefront set of the boundary values of

real analytic solutions of P (x,D)u = 0 on ±x1 > 0 is contained in V ±
S,A(P ),

respectively, hence the analytic wavefront set of their gap in VS,A(P ). We

can formulate an analogous assertion that the same holds for Gevrey class

solutions of suitable index. But the boundary values of Gevrey class so-

lutions need not be contained in the corresponding ultradistributions and

in general become hyperfunctions, hence the notion of this wavefront set is

not classical. We first give a result which does not utilize the notion of such

a wavefront set, and will discuss this problem after that.

Theorem 3.1. Let P (x,D) be an m-th order linear partial differen-

tial operator with real analytic coefficients defined on a neighborhood of

the origin. Assume that x1 = 0 is non-characteristic with respect to P ,

and let K be a compact subset of x1 = 0. Assume further that there

exists some direction ν ′ ∈ RRRn−1 such that K ⊂ {ν ′x′ = 0} and that

(K ′ × {±ν ′}) ∩ VS,A(P ) = ∅, where K ′ denotes the set K considered as

the n− 1 dimensional one. Let µ be the maximum value of the multiplicity

of the characteristic roots for the Cauchy problem to the directions ±dx1.

Then every solution of class E∗ for ∗ = {s} with s < µ/(µ−1) or for ∗ = (s)

with s ≤ µ/(µ − 1) defined outside K can be continued as a hyperfunction

solution to a neighborhood of K.



576 Akira Kaneko

Proof. Let W (x′, ω′) denote the component of Kashiwara’s twisted

Radon decomposition of δ(x′). The assumption implies that our operator

is micro-locally semihyperbolic in the sense of [Kn8] to both sides of x1 = 0

near the directions ±ν ′, hence so is tP near ∓ν ′. There we have shown

that under this condition there exists a complete set of local hyperfunction

fundamental solutions Ek(x, y
′), where x ∈ RRRn, y′ ∈ RRRn−1, which gives a

micro-local solution near ±ν ′ to the following Cauchy problem with respect

to the initial hyperplane x1 = 0:

tP (x,D)Ek = 0 (that is, is micro-analytic near the directions ± ν ′),(
− ∂

∂x1

)j

Ek

∣∣
x1=0

= δj,m−k−1W (y′ − x′, ω′), 0 ≤ j ≤ m− 1.

such that WFAEk(x, y
′, ω′) on |x1| < ε is contained in some c(ε)-neighbor-

hood of {(0, x′, y′; iξ, iη′); x′ = y′, ξ′ = −η′ = ω′}, where c(ε)→ 0 as ε→ 0.

Namely, if {uk(x
′)}m−1

k=0 are hyperfunctions of which the analytic wavefront

sets are contained in a small neighborhood of K ′ × {±ν ′} ⊂ RRRn−1 × SSSn−2,

then

(3.3) u(x) =
m−1∑
k=0

∫
Ek(x, y

′)uk(y
′)dy′

becomes a hyperfunction solution of P (x,D)u = 0 with the given Cauchy

data. Here we need to show that Ek(x, y
′) are not only mere hyperfunctions

but also ultradistributions dual to E{q} with q = µ/(µ − 1). It is rather

a hard task to show this via the estimation of E(z, y′) when Im z tends

to zero. We can, however, use a result of Kajitani-Wakabayashi [KW1]

who showed the solvability of this micro-local Cauchy problem in E{q}′ (see

[KW1], Theorem 4.11; see also Kajitani [Kj1] of which the discussion is

obviously micro-localizable). From their result, we can see, in view of the

uniqueness of the solution of the Cauchy problem in hyperfunctions, that if

{uk(x
′)} are in E{q}, then (3.3) gives a solution in E{q}. Hence applying the

kernel theorem (see [Km3], Theorem 2.3), we conclude that the fundamental

solutions Ek are in E{q}′.
Now let u(x) be a solution in E∗ defined outside K. By the bound-

ary value theory of Komatsu-Kawai-Schapira, we can define the boundary
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values u±k (x′) of u to x1 = 0 from the sides ±x1 > 0 by the identity:

(3.4) P (x,D)[u]± = ±
m−1∑
k=0

u±k (x′)δ(m−1−k)(x1),

where [u]± denotes the canonical extension of u from the side ±x1 > 0,

respectively, with supp[u]± ⊂ {±x1 ≥ 0}. The double sign on the top of

the right-hand side is adopted for the coordinate invariance. In view of the

uniqueness of the expression of the form (3.4), it is easily seen that if u is a

classical solution of class Cm on a neighborhood of x1 = 0, we have [u]± =

u(x)Y (±x1), where Y denotes the Heaviside function. Correspondingly, in

such a case the coefficients are given by

u±k = Bk(x,D)u
∣∣
x1→±0

,

where {Bk(x,D)}m−1
k=0 denotes the system of boundary trace operators dual

to the natural one {(∂/∂x1)
k}m−1

k=0 . Thus we see that [u]± agree on x1 = 0

outside the set K, and

[u] := [u]+ + [u]− =
m−1∑
k=0

uk(x
′)δ(m−1−k)(x1),

where uk(x
′) := u+

k (x′) − u−k (x′) also satisfy suppuk ⊂ K ′. (Note that [u]

is among the extensions of u to K figuring in the Grushin representation,

although it is not in E∗. In general, the extension is not unique even if we

do not employ the modification in the ε-neighborhood and allow it to be

a hyperfunction. But in case when K is contained in a non-characteristic

hypersurface, we have this canonical choice.) Choose ε > 0 and a neigh-

borhood U ′ of K ′, such that [u] and Ek are defined on a neighborhood of

{|x1| ≤ ε} × U ′. Then for a choice of smaller neighborhood V ′ ⊂⊂ U ′ of

K ′, we can choose a modification [[u]] of u as a hyperfunction, but obtained

via cut-off function of x′ in our Gevrey class, such that supp[[u]] ⊂ RRR×U ′,
[[u]] ≡ u in RRR×V ′. Thus we can find a Gevrey class function v in our class,

with support contained in RRR× (U ′ \ V ′), such that

P (x,D)[[u]] + v =
m−1∑
k=0

uk(x
′)δ(m−k−1)(x1).
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Now we employ the Green formula∫
uk(x

′)W (y′ − x′, ω′)dx′(3.5)

=

∫ m−1∑
j=0

Bj(x,D)[[u]]
∣∣
x1=ε

(−∂/∂x1)
m−j−1Ek(x, y

′, ω′)
∣∣
x1=ε

dx′

−
∫ m−1∑

j=0

Bj(x,D)[[u]]
∣∣
x1=−ε

(−∂/∂x1)
m−j−1Ek(x, y

′, ω′)
∣∣
x1=−ε

dx′

+

∫
vEk(x, y

′, ω′)Y (ε2 − x2
1)dx.

This formula can be formally derived via integration by parts from∫
P (x,D)[[u]]Ek(x, y

′, ω′)dx.

The only necessary observation is the interpretation of the products ap-

pearing in the formal calculus which are not justified by the mere product

rule based on the wavefront sets. It was first given in [Kn8] but the proof

contained some trivial error and its correction was given in Appendix B of

[Kn10]. It was extended to a powerful abstract theorem by Kataoka [Kt1].

But his formulation contains no right-hand side, which is very important

for our argument.

From this identity, we can find that for a small neighborhood ∆′ of ±ν ′,
the term ∫

∆′
dω′

∫
uk(x

′)W (y′ − x′, ω′)dx′

is micro-locally in E∗ at the origin, as is seen from the right-hand side of

(3.5). On the other hand, the term∫
SSSn−2\∆′

dω′
∫
uk(x

′)W (y′ − x′, ω′)dx′

is micro-analytic to the directions ±ν ′. These sum uk(x
′) has support in K ′.

Thus we are led to the situation of Lemma 3.2 below, with n− 1 variables

instead of n, and ν ′ = (0, . . . , 0, 1), and we can conclude that uk ≡ 0. Hence
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[[u]] satisfies P [[u]] = 0 near K, and [[u]] serves as a continuation of u as a

hyperfunction solution to K. �

Remark. Assume that tP (x,D) possesses a fundamental solution in

D∗′ near K such that WFE∗E(x, y) ⊂ {ξdx+ηdy; ξ �= 0, η �= 0} (a condition

which E usually satisfies if ever it exists). Then we can show that the

continued solution is in the same Gevrey class also on K. This follows from

the standard argument on the propagation of regularity: Let us write u for

[[u]] to simplify the notation. Let χ(x) ∈ D∗(RRRn) be such that χ ≡ 1 on a

neighborhood of K. Then on this neighborhood we have

u(x) = χ(x)u(x) =

∫
δ(x− y)χ(y)u(y)dy

=

∫
(tP (y,D)E(x, y))χ(y)u(y)dy

=

∫
E(x, y)P (y,D)(χ(y)u(y))dy.

Here the last term is in E∗ because P (x,D)(χ(x)u(x)) is zero on a neigh-

borhood of K where u may have hyperfunction singularity. In general P

may not be locally solvable, hence we cannot expect the Gevrey regularity

of the continued solution.

Lemma 3.2. Let f(x) be a hyperfunction with support in a compact

subset K of xn = 0. Let g(x) be a continuous function defined on a neigh-

borhood of K. If f + g is micro-analytic to the direction ±dxn on a neigh-

borhood of K, then f ≡ 0.

Proof. First consider the case of one variable xn only. Then the

assumption implies that f is supported by the origin, g is continuous and

the sum f + g is real analytic at the origin. But this will imply that f is

continuous at the origin. Hence f ≡ 0.

In the general case we prove this lemma by reducing it to the case of one

variable xn via the definite integration coupled with the real analytic test

functions of the variables x′ := (x1, . . . , xn−1): Let ϕ(x′) be any polynomial.

Then

v(xn) :=

∫
RRRn−1

f(x)ϕ(x′)dx′
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is well defined and gives a hyperfunction of one variable supported by one

point xn = 0. On the other hand, without loss of generality we can assume

that g has support in a small neighbrohood of K, or at least decreases

exponentially. Then

w(xn) :=

∫
RRRn−1

g(x)ϕ(x′)dx′

is obviously continuous. We shall show below that for a suitable choice of

g their sum v+w becomes real analytic at xn = 0. Then as is shown above

we will obtain v(xn) ≡ 0, hence

〈f(x), ϕ(x′)χ(xn)〉 =

∫
RRR
χ(xn)dxn

∫
RRRn−1

f(x)ϕ(x′)dx′ = 0

for any polynomial χ(xn) of one variable. Since the linear combination of

functions of the form ϕ(x′)χ(xn) is dense in A(K), we can then conclude

that f(x) ≡ 0.

Notice that f + g is micro-analytic to ±dxn only on a smaller neigh-

borhood, say U of K. (We cannot cut the support of g preserving this

condition!) Thus v +w need not be real analytic at xn = 0 in general, and

we have to modify g in a suitable way. This argument is routine:

Choose a sufficiently small neighborhood ∆ of ±dxn in SSSn−1. Let

W∼ (x, ω) denote the exponentially decaying variant of Kashiwara’s twisted

Radon decomposition introduced in [Kn7], and let

W∼ (x,∆) =

∫
∆
W∼ (x, ω)dω.

Then

(f + g) ∗W∼ (x,∆)

will be real analytic in U because it contains no wavefront there. Hence

h = g ∗ W∼ (x,∆) becomes real analytic in U \ K. Choose a continuous

function χ(x′) with support in the (n−1)-dimensional set corresponding to

U ∩ {xn = 0}, such that χ(x′) ≡ 1 on a neighborhood of K ′, and set

g1 = χ(x′)h(x).
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On the other hand,

g2 := g ∗W∼ (x,SSSn−1 \∆)

is obviously micro-analytic to the directions ±ν ′ everywhere on RRRn. Thus

if we replace g by g1 + g2 constructed above, the assumption of our lemma

is preserved for this new g. Now it is a simple calculation to show that∫
RRRn−1

{f(x) + g1(x)}ϕ(x′)dx′, and

∫
RRRn−1

g2(x)ϕ(x′)dx′

become real analytic on a smaller neighborhood of xn = 0. �

Remark. The above lemma may be regarded as a variant of Holm-

gren type theorem of Kashiwara-Kawai. One may therefore think that the

assumption of the above lemma could be weakened to the one “f + g is

micro-analytic in either of the directions ±dxn” instead of both. But this is

false even in the case of one variable. In fact, f(x) = [zei/z] is a hyperfunc-

tion supported at the origin (which is actually in ultradistribution E(2)′).
Since the boundary value from the lower half plane is a continuous function

g(x) = xei/x, the difference f − g becomes micro-analytic to −dxn. This

situation cannot be improved even if we require g(x) to be in some E∗ for

∗ = {s} or ∗ = (s) with s > 1 (except for the case s = 1 for which the

assertion becomes trivial). In fact, for any prescribed q > 1, there exists an

entire function G(τ) which satisfies

|G(τ)| ≤ Ce−|τ |1/q on Im τ ≥ 0.

To obtain such a function, we can employ e.g. Theorem 3 of Arakeljan [A1]

which shows the existence of an entire function Φ(τ) satisfying |Φ(τ)| ≤
Ce−|τ |1/2q outside a narrow region surrounding the positive real axis, say

{z = x + iy; x ≥ 1, |y| ≤ 1/x}. Then G(τ) := Φ((τ + i)2) will be a

desired one. Now f(x) := [G(1/z)] is again a hyperfunction supported by

the origin, and the boundary value g(x) of G(1/z) from the lower half plane

is now in Eq, as is seen from Theorem 11.5 of [Km2].

Notice that if we assume f(x) to be in Ds′ for some s > 1, the situation

is completely different. In fact, we have the following result corresponding

to this situation:



582 Akira Kaneko

Theorem 3.3. Let P (x,D) be an m-th order linear partial differential

operator with coefficients of class E∗ defined on a neighborhood of the origin.

Assume that x1 = 0 is non-characteristic with respect to P , and let K be a

compact subset of x1 = 0. Assume further that there exists some direction

ν ′ ∈ RRRn−1 such that K ⊂ {ν ′x′ = 0} and that (K ′ × {ν ′}) ∩ VS,A(P ) = ∅,
where K ′ denotes the set K considered as the n− 1 dimensional one. Let µ

be the maximum value of the multiplicity of the characteristic roots for the

Cauchy problem to the directions ±dx1. Then every solution of class E∗ for

∗ = {s} with s < µ/(µ−1) or for ∗ = (s) with s ≤ µ/(µ−1) defined outside

K and prolongeable to K as an ultradistribution of class D∗′ with the same

value of ∗, can be continued as an ultradistribution solution of this class to

a neighborhood of K.

This time we can formulate the boundary value theory in the framework

of ultradistributions, hence the regularity of the coefficients are required

only in the corresponding Gevrey class. That is, if we choose an extension

v of u|±x1>0 with supp v ⊂ {±x1 ≥ 0}, then P (x,D)v becomes an ultradis-

tribution supported by x1 = 0. By means of division, that is, by modifying

v by elements of the form P (x,D)w with an ultradistribution w supported

by {x1 = 0}, we can choose a canonical extension [u]± of u such that a

formula like (3.4) holds with ultradistribution coefficients uk(x
′) (see Ko-

matsu [Km4]). The remaining calculus is the same. The essential difference

hereafter is that in the case of weak singularity, we only need either of the

directions ±ν ′ in the assumption. This is due to the following variant of

Lemma 3.2:

Lemma 3.4. Let f(x) be an ultradistribution of class D∗′ with support

in a compact subset K of xn = 0. If f is micro-locally in E∗ to the direction

dxn on a neighborhood of K, then f ≡ 0.

If ∗ = {s} with s ≥ 2 or ∗ = (s) with s > 2, then we have the following

stronger assertion: If there exists a distribution defined on a neighborhood

of K such that f + g is micro-locally in E∗ to the direction dxn on a neigh-

borhood of K, then f itself becomes a distribution. Hence in particular, if

we can choose such g as only in L2
loc, then we have the same conclusion

f ≡ 0 as before.

Proof. As in the proof of Lemma 3.2, we only have to consider the

case of one variable, and K = {0}. We first consider the latter assertion.
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Let f(x) = F (x+ i0)− F (x− i0) be the boundary value representation

by a defining function F (z) holomorphic in PPP 1 \ {0} and zero at ∞. Let

g(x) = G+(x + i0) − G−(x − i0) be a boundary value representation such

that G±(z) has a distribution limit individually when Im z → 0. (Actually

this is true for any representation in the case of one variable.) By the

assumption there exists an ultradistribution of the form H(x − i0) such

that f(x)+ g(x)−H(x− i0) is regular of class E∗. Thus by the generalized

Painlevé theorem F +G+ resp. F +G−−H is individually prolongeable up

to the real axis in the class E∗. Hence F (z) is prolongeable in distribution

and therefore has tempered growth when Im z → 0 from the side Im z > 0.

Consider the entire function Φ(z) := F (i/z). This satisfies

|Φ(z)| ≤ Ceh|z|
1/(s−1)

everywhere,

|Φ(z)| ≤ C(1 + |z|)M on Re z < 0,

where s denotes the (dual) Gevrey index of f . Thus if we assume the

restriction for the value of s, then we have 1/(s − 1) < 1 or 1/(s − 1) = 1

but then h may be arbitrary. Thus we can apply the Phragmén-Lindelöf

theorem to Ψ(z) = Φ(zq)(1 + zq)−M on Re z ≥ 0 to conclude that Ψ(z) is

bounded there. Hence Φ(z) is of O((1 + |z|)M ) everywhere, whence F (z)

defines a distribution at the origin.

If further g is in L2
loc, then F (x + i0) must also be in L2

loc. But this is

impossible for F (z) which has pole of finite order at 0.

Now we consider the general case. The Fourier transform of f(x) be-

comes an entire function satisfying

|f̂(ζ)| ≤
{
Cea|ζ|

1/s
everywhere,

Ce−b|ζ|1/s on the negative imaginary axis.

Here a may be arbitrarily small while b is fixed in case ∗ = {s}, and a is fixed

but b may be arbitrary large in case ∗ = (s). (In both cases the constant C

should depend on the arbitrarily chosen constant.) In view of the minimum

modulus theorem (Boas [Bo], Theorem 3.2.11), this is impossible unless f̂

is trivial. �

The restriction posed on s for the latter part of Lemma 3.4 is optimal.

In fact, the example F (z) = zei/z given in Remark before Theorem 3.3

provides a counter-example for D(2)′(RRR).
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We are tempted to introduce the following definition of micro-local dif-

ferentiability for general hyperfunctions:

Definition. We shall say that a hyperfunction f(x) is micro-C∞ at

(x0, ξ0) if it can be written in the form

f(x) = ϕ(x) + g(x),

where ϕ(x) is C∞ at x0 and g(x) is micro-analytic at (x0, ξ0) in the usual

sense. WFC∞f , the C∞-wavefront set of f , is just the complement of where

f is micro-C∞.

We shall define the micro-local E∗ regularity and the corresponding no-

tion of wavefront sets WFE∗ for hyperfunctions just by the same manner,

by replacing the regularity of ϕ(x) by that of the corresponding class.

If we review the proof of Theorem 3.1 for separate direction ν ′, we can

easily obtain the following:

Corollary 3.5. Assume that x1 = 0 is non-characteristic with respect

to P . Let µ be the maximum value of the multiplicity of the characteristic

roots for the Cauchy problem to the direction dx1 (resp. −dx1). Then for

every solution of class E∗ for ∗ = {s} with s < µ/(µ−1) or for ∗ = (s) with

s ≤ µ/(µ − 1) defined on the side x1 > 0 (resp. x1 < 0), the E∗-wavefront

set of its boundrary values in the sense of above definition is contained in

the set V +
S,A (resp. V −

S,A).

The assertions of Theorems 3.1, 3.3 and Corollary 3.5 may be strength-

ened by the introduction of micro-localization of s-semihyperbolic operators

of [Kj1] or by consideration of lower order terms as is discussed by Komatsu

[Km5] for the case of constant multiplicity. Especially, we can obviously

take µ to be the irregularity in the sense of [Km5] instead of multiplicity

as above, if P has constant multiplicity on a micro-local neighborhood of

(0, ν ′). (We cannot employ, however, the milder version of irregularity as

in the case of constant coefficients, as long as the irreducibility problem

for operators with variable coefficients is not well settled.) There seems to

exist similar results in the case of variable multiplicity. But we could not
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find reference giving a definitive result. Since we cannot infer the ultimate

form for the moment, it will be adequate to define

V ±
S,E∗(P ) := {(x′, ξ′); there exists a solution of class E∗

on ± x1 > 0 such that (x′, ξ′) is contained in WFE∗

of one of its boundary values to x1 = 0}

Then the above Corollary implies that V ±
S,E∗(P ) = V ±

S,A(P ) provided the

Gevrey index ∗ is related with the multiplicity of the characteristic roots

as above.

Concerning the analogy of the Holmgren type theorem, we have the

following conjecture much far strengthening the above lemma:

Conjecture. If supp f ⊂ {xn = 0} and if f is micro-C∞ at (0,

±dxn), then f ≡ 0 at 0.

The validity of this conjecture is crucial in improving the results of con-

tinuation of C∞ or Gevrey class solutions. Actually, if this is true, then in

the hypothesis of Theorem 3.1 K may not be compact but simply contained

in x1 = x′ν ′ = 0.

We have still attractive problem of generalizing our discussion to equa-

tions with C∞ or Gevrey coefficients. For solutions with “weak singular-

ities”, we can apply a variant of the boundary value theory of Komatsu-

Kawai-Schapira adapted to these classes as above. But for general solutions

of equations with C∞ or Gevrey coefficients, we have no available tool for

the moment.

Appendix. Proof of solvability for some simultaneous equations

We give here a proof of solvability of simultaneous equations with con-

stant coefficients consisting of one infinite order local operator and one finite

order operator employed in the proof of Theorem 1.7. We first discuss the

result in the real analytic category which was formerly given as Theorem

4.1 in [Kn4], but the proof of which contained some error as was pointed out

by Prof. Komatsu. Here for the sake of simplicity we assume that P (D) is

a single operator. A different proof has been given in Supplement of [Kn5]
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in case P (D) is a general system but J(D) has a special form (function of

the n-dimensional Laplacian), which was enough for applications in [Kn4].

Proposition A.1. Let K ⊂ RRRn be a convex compact set and let J(D)

be a local operator, P (D) be a linear partial differential operator with con-

stant coefficients. Assume that the symbols of these operators have no com-

mon factor. Then the simultaneous equation

J(D)u = f, P (D)u = g

has a solution u ∈ A(K) for f, g ∈ A(K) satisfying the compatibility con-

dition J(D)g = P (D)f .

Proof. Since P (D) is surjective in the space A(K) (see e.g. Komatsu

[Km1]), we can find v ∈ A(K) such that P (D)v = g. Then by means of

w := u− v, the above system is transformed to

J(D)w = h := f − J(D)v, P (D)w = 0.

By the duality argument, the surjectivity of J(D) in the space AP (K) is

translated into the injectivity and the closed range property of the mapping

tJ(D) : B[K]/tP (D)B[K]→ B[K]/tP (D)B[K],

hence of the mapping

J(−ζ)· : B̂[K]/P (−ζ)B̂[K]→ B̂[K]/P (−ζ)B̂[K]

by means of the Fourier transform. In order to simplify the notation we shall

omit the minus sign in the sequel and write P for tP etc. The injectivity

of this mapping is not difficult to see: If û ∈ B̂[K] satisfies J(ζ)û = P (ζ)v̂

for some v̂ ∈ B̂[K], then putting P (ζ) = 0, we will obtain û ≡ 0 on N(P ),

in view of the assumption of relatively prime property. Thus we can write

as û = P (ζ)ŵ for some ŵ ∈ B̂[K]. This implies the injectivity.

To prove the closed range property, recall the Fundamental Principle

([Kn2], Theorem 3.8)

B̂[K]/P (ζ)B̂[K]
∼
= B̂[K][N(P ), d],
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where B̂[K][N(P ), d] denotes the space of global holomorphic functions on

N(P ) which are locally in the range of the Noetherian operator d and

which satisfy the same growth condition as B̂[K]. (Noetherian operator is

a generalization of restriction describing the local condition of the image

of the multiplication operator P (ζ). d is a simple restriction if P does not

contain multiple factors, but if it does, d becomes a vector of transversal

derivatives composed with restriction.) Thus the problem is translated into

the closed range property of the mapping

(A.1) J(ζ)· : B̂[K][N(P ), d]→ B̂[K][N(P ), d].

In the proof of Theorem 4.1 in [Kn4], we proved the following minimum

modulus theorem for J(ζ): There exists a constant H > 0 such that for any

ε > 0 and for any ζ ∈ CCCn, we can find τ ∈ CCC with ||τ | − |ζ|| ≤ 8ε|ζ| such

that

|J(τζ/|ζ|)| ≥ e−Hε|ζ|.

Employing this, we proved the closed range property of the multiplication

operator J(ζ) on the space B̂[K]. It is, however, not enough to show the

closed range property of (A.1). Without loss of generality, we can suppose

that P (ζ) is of degree m and has the form

(A.2) P (ζ) = ζm1 + P1(ζ
′)ζm−1

1 + · · ·+ Pm(ζ ′).

Then J(ζ) can be written in the form

(A.3) J(ζ) =
m−1∑
k=0

Jm−k−1(ζ
′)ζk1 +Q(ζ)P (ζ),

where Jk(ζ
′) are symbols of local operators of n − 1 variables. Obviously

we can replace J by the first term of (A.3), or equivalently, Q(ζ) ≡ 0 here.

Thus we shall assume this from now on. The problem is to estimate this

new J(ζ) from below on N(P ). Note that on N(P ), ζ1 agrees with one

of the roots τk(ζ
′), k = 1, . . . ,m of the polynomial (A.2) of ζ1. Therefore

on N(P ) the value of J is equal to either of J(τk(ζ
′), ζ ′), k = 1, . . . ,m.

Let σj(ζ
′) denote the j-th fundamental symmetric function of J(τk(ζ

′), ζ ′),
k = 1, . . . ,m. These are polynomials of the coefficients Jk(ζ

′) and Pk(ζ
′),
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hence entire functions of infra-exponential growth as well. The value of J

is among the roots of the equation

(A.4) λm − σ1(ζ
′)λm−1 + · · ·+ (−1)mσm(ζ ′) = 0.

We have σm(ζ ′) �≡ 0 by the assumption of relatively prime property. Thus

by applying the above minimum modulus theorem to σm(ζ ′) of n− 1 vari-

ables, we see that there exists H > 0 such that for any ε > 0 and for any

ζ ′ ∈ CCCn−1, we can find τ ∈ CCC with ||τ | − |ζ ′|| ≤ 8ε|ζ ′| such that

|1/σm(τζ ′/|ζ ′|)| ≤ eHε|ζ′|.

Since the value of 1/J(ζ) agrees with a root of the equation obtained from

(A.4) via the substitution λ→ 1/λ, by a theorem on the estimation of the

roots from the coefficients we conclude that

J(τk(τζ
′/|ζ ′|), τζ ′/|ζ ′|) ≥ e−Hε|ζ′|

for such τ . Employing this as in the proof of Theorem 4.1 in [Kn4], we can

show that for F (ζ) ∈ B̂[K][N(P ), d],

(A.5) |F (ζ)| ≤ Cεe
(8A+Hd)ε|ζ| sup

|z−ζ|≤16ε|ζ|
|J(z)F (z)|,

with some universal constants A, d. This implies the closed range property

of (A.1). �

Similar proof gives the following

Proposition A.2. Let U ⊂ CCCn be a convex domain and let J(D) be a

local operator, P (D) be a linear partial differential operator with constant

coefficients. Assume that the symbols of these operators have no common

factor. Then the simultaneous equation

(A.6) J(D)W = F, P (D)W = G

has a solution W ∈ O(U) for F,G ∈ O(U) satisfying the compatibility

condition J(D)G = P (D)F .
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This is proved via the duality argument, by showing the injectivity and

closed range property of J(ζ)· : Ô′(U) → Ô′(U) just in the same way as

above.

Corollary A.3. Let Ω ⊂ RRRn be a convex open set and let J(D) be a

local operator, P (D) be a linear partial differential operator with constant

coefficients. Assume that the symbols of these operators have no common

factor. Then the simultaneous equation

J(D)u = f, P (D)u = g

has a solution u ∈ B(Ω) for f, g ∈ B(Ω) satisfying the compatibility condi-

tion J(D)g = P (D)f .

This solvability follows from the one for holomorphic functions, i.e.

Proposition A.2, by applying the latter to the defining functions of the

hyperfunctions. Though the argument is standard, we sketch it for com-

pleteness: Let U be a convex complex neighborhood of Ω, and set

U#Ω = U ∩
n⋂

j=1

{Im zj �= 0}, U#jΩ = U ∩
⋂
k �=j

{Im zk �= 0}.

These are disconnected complex open sets with convex components. Then

the space of hyperfunctions on Ω is represented as

B(Ω) = O(U#Ω)/
n∑

j=1

O(U#jΩ).

Thus let F,G ∈ O(U#Ω) be representatives of f , g, respectively. Then

the compatibility condition implies that there exists Hj ∈ O(U#jΩ), j =

1, . . . , n such that

J(D)G = P (D)F +
n∑

j=1

Hj .

We can solve P (D)Fj = Hj on the convex components of U#jΩ by the

classical existence theorem. Then replacing F by F +
∑n

j=1 Fj , which does
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not change the represented hyperfunction f , we can assume from the begin-

ning that the compatibility condition J(D)G = P (D)F holds in the level of

defining functions. Thus we can find a holomorphic solution W ∈ O(U#Ω)

of (A.6) by applying Proposition A.2 componentwise. Then the hyperfunc-

tion u defined by W is a desired solution.

Now we discuss the case of Gevrey category which is really needed here.

Proposition A.4. Let K be a convex compact set and let J(D) be a

local operator in the class E∗, P (D) be a linear partial differential operator

with constant coefficients. Assume that the symbols of these operators have

no common factor. Then the simultaneous equation

J(D)u = f, P (D)u = g

has a solution u ∈ E∗(K) for f, g ∈ E∗(K) satisfying the compatibility

condition J(D)g = P (D)f . The same assertion holds for D∗′(K) instead

of E∗(K) everywhere.

The proof is similar. The only difference is the minimum modulus the-

orem. This time, J(ζ) satisfies the following growth condition

|J(ζ)| ≤ Che
h|ζ|1/s for ∀ h > 0, if ∗ = {s},

|J(ζ)| ≤ Ceh|ζ|
1/s

for ∃ h > 0, if ∗ = (s).

In view of Theorem 3.2.11 in [Bo1], for an entire function F (τ) of one

variable of order ρ with 0 < ρ < 1 there exists a sequence Rk → ∞ such

that for Rk ≤ r ≤ Rk +R1−ρ−ε
k we have

logm(r) > (cosπρ− ε) logM(r),

where m(r) resp. M(r) denotes the minimum modulus resp. maximum

modulus of F (τ) on |τ | = r. Applying this to J(τζ) as above, we can show

an estimate of the form

|F (ζ)| ≤ Cεe
Ah|ζ|1/s sup

|z−ζ|≤16ε|ζ|
|J(z)F (z)|
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with a universal constant A > 0. This implies the desired closed range

property.

For the case of ∗ = (s), we have the global solvability on convex open

sets, although we do not need this in this article:

Proposition A.5. Let Ω be a convex open set and let J(D) be a local

operator in the class E(s), P (D) be a linear partial differential operator with

constant coefficients. Assume that the symbols of these operators have no

common factor. Then the simultaneous equation

J(D)u = f, P (D)u = g

has a solution u ∈ E(s)(Ω) for f, g ∈ E(s)(Ω) satisfying the compatibility

condition J(D)g = P (D)f . The same assertion holds for D(s)′(Ω) instead

of E(s)(Ω) everywhere.

The proof is similar, because E(s)(Ω) resp. D(s)′(Ω) is FS resp. DFS

space and the closed range theorem holds.
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