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Asymptotic Self-Similarity and Short Time

Asymptotics of Stochastic Flows

By Hiroshi Kunita

Dedicated to Professor Shinzo Watanabe on the occasion of his 60th birthday

Abstract. We study asymptotic properties of Lévy flows, chang-
ing scales of the space and the time. Let ξt(x), t ≥ 0 be a Lévy flow on a
Euclidean space Rd determined by a SDE driven by an operator stable

Lévy process. Consider the Lévy flows ξ
(r)
t (x) = γ

(x)
1/r(ξrt(x)), t ≥ 0,

where {γ(x)
r }r>0 is a dilation, i.e., a one parameter group of diffeomor-

phisms of Rd with invariant point x such that γ
(x)
1/r(y) → ∞ as r → 0

whenever y �= x. We show that as r → 0 {ξ(r)
t (x), t ≥ 0} converge

weakly to a stochastic flow {ξ(0)
t (x), t ≥ 0}, if we choose a suitable

dilation. Further, the limit flow is self-similar with respect to the dila-
tion, i.e., its law is invariant by the above changes of the space and the
time. This fact enables us to prove that the short time asymptotics of
the density function of the distribution of ξt(x) coincides with that of

the density function of the distribution of ξ
(0)
t (x).

1. Introduction

This paper is concerned with the asymptotic self-similarity of Lévy flows

driven by operator-stable Lévy processes. Our goal is to obtain the short

time asymptotics of density functions of probability distributions of these

Lévy flows.

Let us consider the Lévy flow {ξt, t ≥ 0} on a Euclidean space Rd

generated by the following canonical SDE:

dξt =
k∑
j=1

Xj(ξt) � dZj(t),(1.1)
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where X1, . . . , Xk are complete C∞ vector fields on Rd and {Z(t) = (Z1(t),

. . . , Zk(t)), t ≥ 0} is an operator-stable Lévy process. Suppose that we are

given a family of one parameter group of diffeomorphisms {γ(x)
r }r>0, x ∈ Rd

such that limr→0 γ
(x)
r (y) = x uniformly on compact sets of Rd and γ

(x)
r (x) =

x,∀r > 0 for any x ∈ Rd. It is called a family of dilations. We change scales

of the space and the time of the stochastic processes {ξt(x), t ≥ 0} by the

family of dilations and consider the stochastic processes

ξ
(r)
t (x) = γ

(x)
1/r(ξrt(x)), t ≥ 0.(1.2)

The Lévy flow {ξt, t ≥ 0} is called self-similar with respect to the family of

dilations {γ(x)
r }r>0, x ∈ Rd if the law of the process {ξ(r)

t (x), t ≥ 0} coincides

with the law of the process {ξt(x), t ≥ 0} for any x and r > 0.

In the previous paper [11], the author studied the strict self-similarity

of the Lévy flow (1.1) (the definiton of the strict self-similarity is slightly

stronger than the present one). It turned out that the class of Lévy flows

with the strict self-similarity is not a big one. Indeed, if a Lévy flow is

strictly self-similar, the Lie algebra generated by vector fields X1, . . . , Xk is

nilpotent and satisfies a specific property (Thorem 3.1).

In the first part of this paper (Sections 2, 3), we show that under Condi-

tions (A.1) and (A.2), there exists a family of dilations {γ(x)
r }, x ∈ Rd such

that the family of the stochastic processes {ξ(r)
t (x), t ≥ 0}, r > 0 converges

weakly to a stochastic process {ξ(0)
t (x), t ≥ 0} as r → 0 for all x (Theorem

3.2). The limiting flow {ξ(0)
t , t ≥ 0} is no longer a solution of a certain

SDE and does not define a Markov process any more. However, it has the

self-similarity with respect to the dilation {γ(x)
r } for all x. The Lévy flow

{ξt, t ≥ 0} with the above property is called asymptotically self-similar and

the limiting flow {ξ(0)
t , t ≥ 0} is called a self-similar approximation of the

flow {ξt(x), t ≥ 0}.
Our argument is based on the asymptotic expansion of the Lévy flow by

Champbell Hausdorff formula (Theorem 2.1). In the case where the flow

{ξt, t ≥ 0} is driven by a standard Brownian motion (instead of operator-

stable Lévy process), similar expansion formulas have been studied by many

authors. See Yamato [21], Kunita [8], Ben Arous [2] and Castell [6]. We

obtain the Champbell-Hausdorff representation: ξ
(0)
t = exp η

(0)
t , where η

(0)
t

is a linear sum of multiple Wiener-Stratonovich integrals of Z1(t), . . . , Zk(t)

and it is operator-self-similar (Theorem 3.2).
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In the second half of this paper (Sections 4, 5), we study properties of the

density functions of probability distributions of self-similar and asymptot-

ically self-similar Lévy flows. Probability distributions of self-similar Lévy

flows and those of the approximating self-similar flows have some nice prop-

erties. Specially, their density functions can be represented similarly as the

heat kernel (Gaussian kernel) of the Laplacian provided that they exist. In-

deed, if {Z(t), t ≥ 0} is a standard Brownian motion with demension k = d

and the vector fields X1(x), . . . , Xd(x) are linearly independent at any x

(nondegenerate), then the density function p
(0)
t (x, y) of the distribution of

the random variable ξ
(0)
t (x) is represented by

p
(0)
t (x, y) =

1

(2πt)d/2
exp

(
−|ψ(x, y)|2

2t

) ∣∣∣∣det

(
∂ϕx
∂z

(ψ(x, y))

)∣∣∣∣
−1

,(1.3)

where ϕx(z) = exp
∑
j zjXj(x), (∂ϕx/∂z) is the Jacobian matrix of ϕx(z)

and ψ(x, y) = ϕ−1
x (y) (Theorem 4.3 and the remark after the theorem).

We shall then study the short time asymptotics of the density function

pt(x, y) of the distribution of the random variable ξt(x) determined by SDE

(1.1) in the case where the driving process Z(t) is a standard Brownian

motion. We show that its short time asymptotics coincide with the short

time asymptotics of p
(0)
t (x, y) mentioned above. See Theorem 5.2. This

fact enables us to obtain a new result on the short time asymptotics for

degenerate heat kernels. See Theorem 5.5.

A lot of works has been done for the short time asymptotics and upper-

lower estimates of the heat kernels or fundamental solutions of diffusion

equations. See Ben Arous [2], Kusuoka-Stroock [13] [14], Takanobu [17] [18]

and others (found in the references of these papers). Our approach to the

problem is quite different from those works. We conjecture that the similar

short time asymptotics would be valid for the case where the driving process

Z(t) is an operator stable Lévy process, but we have not yet succeeded in

proving it.

2. Asymptotic expansions of Lévy flows

Let {Z(t) = (Z1(t), . . . , Zk(t)), t ≥ 0} be a Lévy process with values in

Rk cadlag with respect to t defined on a probability space (Ω,F , P ). In this

paper, we assume that the Lévy process {Z(t), t ≥ 0} is operator-stable as
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is stated below. Let Q be a k×k-matrix such that the real parts of its eigen

values are positive. A Lévy process {Z(t), t ≥ 0} is called operator-stable

with exponent Q ( or simply Q-stable) if the law of the process {rQZ(t), t ≥
0} is equal to that of the process {Z(rt), t ≥ 0} for any r > 0. The one

parameter group of linear transformations {rQ}r>0 is called a dilation. We

assume that the exponent Q is a diagonal matrix with diagonal elements

α1, . . . , αk such that αj ≥ 1/2 for any j.

Let X1, . . . , Xk be linearly independent complete C∞ vector fields on

a Euclidean space Rd of dimension d. We will often identify these vector

fields with first order partial differential operators. Throughout this paper,

we assume:

(A.1) The Lie algebra L ≡ L(X1, . . . , Xk) generated by vector fields X1,

. . . , Xk is a finite dimensional space. Let L(x) be the projection of L to the

point x ∈ Rd. Then it holds dimL(x) = d for any x ∈ Rd.

We consider a canonical stochastic differential equation (SDE) on the

Euclidean space Rd:

{
dξt =

∑k
j=1 Xj(ξt) � dZj(t),

ξ0 = x.
(2.1)

By the solution of the above canonical equation, we mean a cadlag process

{ξt, t ≥ 0} with values in Rd adapted to Ft = σ(Z(s); s ≤ t) satisfying

f(ξt) = f(x) +
k∑
j=1

∫ t

0
Xjf(ξs)dZ

j(s) +
1

2

∑
i,j

aij

∫ t

0
XiXjf(ξs)ds(2.2)

+
∑

0≤s≤t
{f(ϕξs−(∆Z(s))) − f(ξs−) −

∑
j

Xjf(ξs−)∆Zj(s)},

for any f ∈ C∞(M). Here (aij)t is the covariance of the continuous part

Zc(t) of the Lévy process {Z(t), t ≥ 0}. ϕx(z) = exp{∑k
j=1 zjXj}(x) and

∆Z(s) = Z(s) − Z(s−), where for a given complete vector field Y on

Rd, exp tY (x) denotes the solution ϕt of the ordinary differential equation

dϕt/dt = Y (ϕt) with the initial condition ϕ0 = x.

In Applebaum-Kunita [1], it is shown that equation (2.1) has a unique

global solution and that it has a modification of a stochastic flow of diffeo-

morphisms, i.e., there exists a Diffeo(Rd)-valued stochastic process {ξt, t ≥
0}, cadlag with respect to t a.s. such that its projection to x ∈ Rd de-
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noted by ξt(x) satisfies (2.2). The stochastic flow {ξt, t ≥ 0} has inde-

pendent increments, i.e., ξ−1
ti ξti+1 , i = 0, . . . , n − 1 are independent for any

0 = t0 < t1 < · · · < tn, and is temporally homogeneous, i.e., the laws of

ξ−1
h ξt+h do not depend on h > 0. It is called a Lévy flow determined by

equation (2.1).

For the convenience of the later discussion, we will recall that under

Condition (A.1) there exists a Lie group G of dimension n with properties

(i)–(iv) below.

(i) G is a Lie transformation group of Rd, i.e., there exists a C∞-map

ψ : G× Rd → Rd such that ψ(e, ·) = identity and ψ(τσ, ·) = ψ(σ, ψ(τ)).

(ii) The map τ → ψ(τ) is an isomorphism from G into Diffeo(Rd).

(iii) Let Ĝ be the Lie algebra of G. For any X of L there exists X̂ of Ĝ such

that

X̂(f ◦ ψx)(τ) = Xf(ψx(τ))

holds for all f of C∞(M), where ψx : G → Rd is defined by ψx(τ) = ψ(τ, x).

(iv) The Lie transformation group G acts on Rd transitively so that Rd is

a homogeneous space. (See [1])

We shall make an asymptotic expansion of the flow ξt determined by

equation (2.1) through Champbell-Hausdorff formula. Our expansion for-

mula is similar to Castell [6]. Let J = (j1, . . . , jl) be a multi-index where

j1 . . . , jl ∈ {1, . . . , k}. We set

|J | = length of J, ‖J‖Q =
∑
j∈J

αj .(2.3)

We define

XJ = [Xj1 , [Xj2 , [· · · [Xjk−1
, Xjl ] · · ·].(2.4)

The Lie algebra L is called nilpotent of step p if XJ = 0 holds for any J

such that |J | ≥ p.

Associated with the multi-index J = (j1, . . . , jl) of length l, we shall

define a multiple Wiener-Stratonovich integral

ZJ(t) =

∫
· · ·
∫
At(J)

◦dZj1(t1) · · · ◦ dZjl(tl),(2.5)

where At(J) = {(t1, . . . , tl); 0 < t1 ≤ · · · ≤ tl ≤ t}. Then the stochastic

process {ZJ(t), t ≥ 0} is self-similar with exponent ‖J‖Q, i.e., the law of the

stochastic process {r‖J‖QZJ(t), t ≥ 0} coincides with that of the stochastic
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process {ZJ(rt), t ≥ 0}, since the {Z(t), t ≥ 0} is operator-stable with

exponent Q.

Theorem 2.1. Let {ξt, t ≥ 0} be the Lévy flow determined by equation

(2.1) and let {L} be the Lie algebra generated by vector fields {X1, . . . , Xk}
defining equation (2.1).

(1) If L is nilpotent of step p, the Lévy flow is represented by

ξt(x) = exp ηt(x),(2.6)

where

ηt =
∑

J ;1≤|J |≤p−1

cJt XJ ,(2.7)

and

cJt =
∑

τ ;|τ |=|J |

(−1)e(τ)

|J |2
(

|J | − 1

e(τ)

)ZJ◦τ−1

t .(2.8)

Here τ is a permutation of order |τ | = l and e(τ) is the cardinality of the

set {j; j ∈ {1, . . . , l}; τ(j) > τ(j + 1)}.
(2) Suppose that L is not necessarily nilpotent. Let RJ(t, x) be the pro-

cess defined by

ξt(x) = exp ηt(x) +
∑

J ;|J |=p
t‖J‖QRJ(t, x).(2.9)

Then

lim
δ→∞

sup
0≤t≤1

P (|RJ(t, x)| > δ) = 0.(2.10)

For the proof of the theorem, we consider an SDE with multi-parameter

ε = (ε1, . . . , εk):

dϕεt =
k∑
j=1

εjXj(ϕ
ε
t) � dZj(t).(2.11)

Let ϕεt(x) be the Lévy flow generated by the above SDE. If εj = rαj , j =

1, . . . , k where r > 0, we denote ϕεt by ϕ
(r)
t . Then the law of the stochastic

process {ϕ(r)
t , t ≥ 0} is equal to that of the stochastic process {ξrt, t ≥ 0},

because of the operator-stable property of {Z(t), t ≥ 0}.
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Lemma 2.2. (1) If L is nilpotent of step p, the Lévy flow {ϕεt, t ≥ 0}
determined by equation (2.11) is represented by

ϕεt(x) = exp ζεt (x),(2.12)

where

ζεt =
∑

J ;1≤|J |≤p−1

εJcJt XJ , εJ = εj1 · · · εjl if J = (j1, . . . , jl).(2.13)

(2) Suppose that L is not necessarily nilpotent. For an arbitrary fixed

positive integer p, define ζεt by (2.13). Let {RεJ(t, x), t ≥ 0} be the stochastic

process such that

ϕεt(x) = exp ζεt (x) +
∑

J ;|J |=p
εJRεJ(t, x).(2.14)

Then

lim
δ→∞

sup
0≤|ε|≤1

P (|Rε(t, x)| > δ) = 0,(2.15)

for any t > 0 and x ∈ Rd.

Proof. Consider a sequence of stochastic ordinary differential equa-

tions:
dϕε,nt
dt

= Aε,n(ϕε,nt ),(2.16)

where

Aε,n(s, x) = 2n
k∑
j=1

εjδ
n
i Z

jXj(x), if s ∈ [ti, ti+1),(2.17)

and δni Z
j = Zj(ti+1)−Zj(ti) and ti = i/2n, i = 0, 1, 2, . . . . Let {ϕε,nt (x), t ≥

0} be the solution of (2.16) such that ϕε,n0 (x) = x. It is known that finite

dimensional distributions of {ϕε,nt (x), t ≥ 0} converge weakly to those of

{ϕεt(x), t ≥ 0}. See Kunita [10].

On the other hand, we can show similarly as in Castell [6] that for any

fixed positive integer p ϕε,nt (x) is represented by

ϕε,nt (x) = exp ζε,nt (x) +
∑

J ;|J |=p
εJRε,nJ (t, x).(2.18)
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Here,

ζε,nt =
∑

J ;1≤|J |≤p−1

εJcJ,nt XJ ,(2.19)

cJ,nt =
∑

τ ;|τ |=|J |

(−1)e(τ)

|J |2
(

|J | − 1

e(τ)

)ZJ◦τ−1,n
t ,(2.20)

and

ZJ,nt =

∫
· · ·
∫
At(J)

Żj1,n(t1) · · · Żjl,n(tl)dt1 · · · dtl,

where Żj,n(t) = 2nδni Z
j if t ∈ [ti, ti+1).

Suppose first that L is nilpotent of step p. Then it holds Rε,J(x, t) =

0. Further {ZJ,nt , t ≥ 0} converges to {ZJt , t ≥ 0} strongly as n → ∞.

Thererfore, {ζε,nt , t ≥ 0} converges to

ζεt =
∑

J ;1≤|J |≤p−1

εJcJt XJ , t ≥ 0(2.21)

strongly as n → ∞. Consequently, we have ϕεt(x) = exp ζεt (x), proving the

first assertion (1).

Suppose next that L is not nilpotent. Since ϕε,nt (x) → ϕεt(x) and

ζε,nt (x) → ζεt (x) hold as n → ∞ in equation (2.18), {Rε,nJ (t, x), t ≥ 0}
converges to {RεJ(t, x)}. Therefore we obtain (2.14). For the proof of the

last assertion (2.15), we consider the follwing two ε expansions:

ϕεt(x) = x+
∑

J ;1≤|J |≤p−1

εJqJ(t, x) +
∑

J ;|J |=p
εJQε

J(t, x),(2.22)

and

exp ζεt (x) = x+
∑

J ;1≤|J |≤p−1

εJhJ(t, x) +
∑

J ;|J |=p
εJP ε

J(t, x).(2.23)

Since (2.14) holds, we have qJ = hJ for J such that |J | ≤ p− 1. Therefore

we have RεJ(t, x) = Qε
J(t, x) − P ε

J(t, x). Since both ϕεt(x) and exp ζεt (x) are

infinitely differentiable with respect to ε, Qε
J(t, x) and P ε

J(t, x) have the same

properties. Then RεJ(t, x) has also the same property. This implies (2.15).

The proof is complete. �

Proof of Theorem 2.1. The first assertion (1) is immediate from

Lemma 2.2 (1) by setting ε = 1. Next, set εj = rαj , j = 1, . . . , k and t = 1 in
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equation (2.14). Note that the law of the random variable ϕ
(r)
1 (x) coincides

with that of ξr(x) and the law of the random variable ζ
(r)
1 coincides with

that of ηr for any r > 0 and x ∈ Rd. Then the law of the random variable

R
(r)
J (1, x) coincides with that of RJ(r, x). Then we get the equalities (2.9)

and (2.10) for t = r. The proof is complete. �

3. Self-similar and asymptotically self-similar Lévy flows

The strict self-similarity of a Lévy flow is studied in Kunita [11]. Let us

recall it quickly. Let {γr}r>0 be a one parameter group of diffeomorphisms

of the Euclidean space Rd such that limr→0 γr(x) = x0 holds, where x0 is a

certain fixed point of Rd. It is called a dilation. Let dγr be the differential

of the map γr. Then dγr is an automorphism of the Lie algebra V(Rd)

of C∞-vector fields of Rd, i.e., it is a linear invertible map of V(Rd) and

satisfies dγr[X,Y ] = [dγrX, dγrY ]. Thus {dγr}r>0 is a one parameter group

of automorphisms of V(Rd).

The law of the Lévy flow {ξt, t ≥ 0} can be defined on the Skorohod space

D[[0,∞),Diffeo(Rd)) (the space of cadlag maps from [0,∞) to Diffeo(Rd)).

The Lévy flow is called strictly self-similar with respect to the dilation {γr}
if the law of the Lévy flow {γr ◦ ξt ◦ γ−1

r , t ≥ 0} coincides with that of

{ξrt, t ≥ 0} for any r > 0. Denote the distribution of ξt(x) by Pt(x,E).

Then if the Lévy flow is strictly self-similar, we have

Pt(x,E) = Prt(γr(x), γr(E)), ∀r > 0, t > 0.(3.1)

A Lévy flow driven by an operator-stable Lévy process {Z(t), t ≥ 0} is

not always strictly self-similar with respect to a certain dilation. A charac-

terization of the strictly self-similar Lévy flow was given in [11]. Before we

state the result, let us remark that the exponent Q of the driving opeator-

stable Lévy process {Z(t), t ≥ 0} can be regarded as a linear transformation

on l.s.{X1, . . . , Xk}.
Throughout the rest of this paper, we assume:

(A.2) For any point x ∈ Rd, expX(x) = x,X ∈ L implies X = 0.

The above condition means that the isotropic subgroup

Hx = {σ ∈ G;ψ(σ, x) = x}
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of the Lie transformation group G is trivial, i.e., Hx = {e} for any x.

Therefore, G is diffeomorphic to Rd. Then the group G should be solvable

by the Iwasawa decomposition.

Theorem 3.1. (Kunita [11]) Assume that there exists an extension Q̄

of the linear transformation Q on the space L such that

Q̄[X,Y ] = [Q̄X, Y ] + [X, Q̄Y ], ∀X,Y ∈ L.(3.2)

Then there exists a dilation {γr}r>0 with respect to which the Lévy flow

{ξt, t ≥ 0} determined by equation (2.1) is strictly self-similar. Furthermore,

their differentials dγr map L into itself linearly and are represented by

dγr = rQ̄.(3.3)

Moreover, the Lie algebra L is nilpotent.

Conversely assume that the Lévy flow {ξt, t ≥ 0} determined by equa-

tion (2.1) is strictly self-similar with respect to a certain dilation {γr}r>0.

Then the Lie algebra L is nilpotent and the differentials {dγr} define a one

parameter group of automorphsims of L and these are represented by (3.3),

where Q̄ is an extension of Q satisfying (3.2).

We call Q̄ the exponent of the dilation {γr}r>0.

In the sequel, we shall define a weaker self-similarity of the stochastic

flow. We want to relax the notion of the dilation. Let S be a simply con-

nected domain of the Euclidean space Rd. Let {γr}r>0 be a one parameter

group of diffeomorphims of S such that γr(y) → x holds unifromly on com-

pact sets of S as r → 0, where x is a point of S. It is called a dilation on

S.

Suppose we are given an arbitrary point x ∈ Rd and an arbitrary linear

transformation R on L such that the real parts of its eigen values are all

positive. We shall construct a dilation with the invariant point x and the

exponent R. Set

Sx = {y = expX(x);X ∈ L}.(3.4)

Then it is a domain of Rd including the point x so that it can be regarded

as a neighborhood of x. Define γ
(x)
r : Sx → Sx by

γ(x)
r (expX(x)) = exp rRX(x).(3.5)
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Then γ
(x)
r is an onto C∞-map of Sx. Moreover, it is one to one by Condition

(A.2). Then Sx is a domain of Rd and γ
(x)
r is a diffeomorphism of Sx.

Further, the family of diffeomorphisms {γ(x)
r }r>0 satisfies γ

(x)
t γ

(x)
s = γ

(x)
st

for all s, t > 0 and limr→0 γ
(x)
r (y) = x for all y ∈ Sx. Therefore {γ(x)

r }r>0 is

a dilation on the simply connected manifold Sx with the invariant point x

and exponent R. The family of dilations {γ(x)
r }r>0, x ∈ Rd satisfying (3.5)

for all x ∈ Rd is said to have the common exponent R.

Let {ξt, t ≥ 0} be a stochastic flow on Rd. It may or may not be a Lévy

flow determined by SDE. It is called self-similar with respect to the family

of dilations {γ(x)
r } on Sx, x ∈ Rd, if the stochastic process {ξt(x), t ≥ 0}

takes values in Sx and the law of the stochastic process {γ(x)
r ◦ ξt(x), t ≥ 0}

coincides with the law of the stochastic process {ξrt(x), t ≥ 0} for any

x ∈ Rd.

Remark. If a Lévy flow {ξt, t ≥ 0} is strictly self-similar with respect

to a certain dilation with exponent Q̄, then it is self-similar with respect

to a family of dilations {γ(x)
r } on Rd, x ∈ Rd with the common exponent

Q̄. Indeed we define dilations {γ(x)
r } on Sx = Rd through (3.5). Then, the

stochastic process {ξt(x), t ≥ 0} is self-similar with respect to the dilation

{γ(x)
r }r>0 for any x ∈ Rd.

Conversely, a self-similar Lévy flow is not necessarily strictly self-similar.

Indeed, we do not require that the law of the Lévy flow {γ(x)
r ◦ξt◦γ(x)

1/r, t ≥ 0}
coincides with the law of the Lévy flow {ξrt, t ≥ 0}. Then the differential

dγ(x) of the map γ
(x)
r maps V(Sx) into itself but does not map L into it-

self. Further L is not necessarily nilpotent. Here is an example. Consider a

Brownian flow ξt(x) on R1 determined by the Ito SDE dξt = cos(ξt)dB
1(t)+

sin(ξt)dB
2(t), where (B1(t), B2(t)) is a standard Brownian motion. The

solution ξt(x) is a Brownian motion on R1 starting from x, since its in-

finitesimal generator is 2−1 cos2 x(d2/dx2)+2−1 sin2 x(d2/dx2) = 2−1d2/dx2.

Therefore it is self-similar (stable) with exponent 1/2. However it is not

strictly self-similar, since the Lie algebra generated by X1 = (cosx)d/dx

and X2 = (sinx)d/dx is not nilpotent.

We shall next define the asymptotic self-similarity of the stochastic flow

{ξt, t ≥ 0}. Suppose we are given a family of dilations {γ(x)
r }, x ∈ Rd on

domains Sx, x ∈ Rd. Let τ(x) be the first leaving time of the trajectry
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{ξt(x), t ≥ 0} from the domain Sx. Then the stopped process {ξ′t(x) =

ξt∧τ(x)(x), t ≥ 0} defines a stochastic flow on Sx. We define a family of

stochastic processes {ξ(r)
t (x), t ≥ 0} with parameter {r > 0} by

ξ
(r)
t (x) = γ

(x)
1/r ◦ ξ

′
rt(x).(3.6)

If Sx = Rd, the law of the stochastic process {ξ(r)
t (x), t ≥ 0} coincides

with that of {ξt(x), t ≥ 0} for all r if and only if the Lévy flow {ξt, t ≥ 0} is

self-similar with respect to the family of dilations {γ(x)
r }, x ∈ Rd. The Lévy

flow {ξt, t ≥ 0} is called asymptotically self-similar (with respect to the family

of dilations {γ(x)
r }, x ∈ Rd) if there exists a stochastic flow {ξ(0)

t , t ≥ 0}
such that for any x, the family of stochastic processes {ξ(r)

t (x), t ≥ 0}, r > 0

converges weakly to the stochastic process {ξ(0)
t (x), t ≥ 0} as r → 0. The

limiting flow {ξ(0)
t , t ≥ 0} is always self-similar with respect the dilation

{γ(x)
r } if it exists. Indeed, we have

{γ(x)
s ◦ ξ(0)

t (x), t ≥ 0} = lim
r→0

{γ(x)
s γ

(x)
1/r ◦ ξrt(x), t ≥ 0}

= lim
r/s→0

{γ(x)
s/r ◦ ξ(r/s)st(x) : t ≥ 0} = {ξ(0)

st (x), t ≥ 0}

in the sense of distributions. We call {ξ(0)
t , t ≥ 0} a self-similar approxima-

tion of {ξt, t ≥ 0} based on {γ(x)
r }, x ∈ Rd.

In the sequel we show that any Lévy flow determined by SDE (2.1)

is asymptotically self-similar. We shall introduce exponents and dilations

adapted to SDE (2.1). Let {X1, . . . , Xk, Xk+1, . . . , Xn} be a basis of L
such that X1, . . . , Xk are vector fields defining SDE (2.1). We denote the

projection of XJ to {Xj} by PXjXJ . We set

α
(0)
j = min{‖J‖Q;PXjXJ �= 0}, j = 1, . . . , n.(3.7)

Let βj , j = 1, . . . , n be arbitrary numbers satisfying 1/2 ≤ βj ≤ α
(0)
j , j =

1, . . . , n. Then it holds βj ≤ αj for any j = 1, . . . , k. The n × n diagonal

matrix R with diagonal elements β1, . . . , βn is called an exponent adapted

to SDE (2.1) and the family of dilations {γ(x)
r }, x ∈ Rd with the common

exponent R is said to be adapted to SDE (2.1).
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Theorem 3.2. The Lévy flow {ξt, t ≥ 0} determined by equation (2.1)

is asymptotically self-similar with respect to any family of adapted dilations.

Let (2.9) be the representation of the Lévy flow. Then the self-similar ap-

proximation {ξ(0)
t , t ≥ 0} is represented by

ξ
(0)
t = exp η

(0)
t ,(3.8)

where

η
(0)
t =

∑
j∈K


 ∑
J ;‖J‖Q=βj

ajJc
J
t


Xj .(3.9)

Here β1, . . . , bn are diagonal elements of the adapted exponent matrix R,

K = {j;βj = α
(0)
j } and ajJ , j ∈ K are constants such that ajJXj = PXjXJ .

Proof. Let {ϕ(r)
t , t ≥ 0} be the Lévy flow determined by equation

(2.11) where εj = rαj , j = 1, . . . , k. Then we have by Lemma 2.2,

ϕ
(r)
t = exp ζ

(r)
t +

∑
|J |=p

r‖J‖QR(r)
J (t, ·),(3.10)

where p > 2 maxj βj + 1 and

ζ
(r)
t =

∑
J ;1≤|J |≤p−1

r‖J‖QcJt XJ .(3.11)

Let {γ(x)
r }, x ∈ Rd be a family of dilations with the common exponent R.

We have

γ
(x)
1/r ◦ ϕ

(r)
t (x) = γ

(x)
1/r ◦ exp ζ

(r)
t (x)(3.12)

+Dγ
(x)
1/r(x+ θ)

∑
J ;|J |=p

r‖J‖QR(r)
J (t, x),

where θ is a vector such that |θ| ≤ ∑
J ;|J |=p r

‖J‖Q |R(r)
J (t, x)| and Dγ

(x)
1/r is

the Jacobian matrix of the map γ
(x)
1/r. We have

γ
(x)
1/r ◦ exp ζ

(r)
t (x) = exp


r−R

∑
J ;1≤|J |≤p−1

r‖J‖QcJt XJ


 (x)(3.13)

= exp



∑
j∈K


 ∑
J ;‖J‖Q=βj

ajJc
J
t


Xj +O(r)


 (x),
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where

O(r) =
∑
j∈K


 ∑
J ;1≤|J |≤p−1,‖J‖Q>βj

r‖J‖Q−βjajJc
J
t


Xj .

Clearly O(r) converges to 0 a.s. as r → 0. Therefore (3.13) converges to

ξ
(0)
t (x) of (3.8) a.s. as r → 0. Since ‖Dγ(x)

1/r‖ = O(r−maxj βj ), and ‖J‖Q ≥
|J |/2 > maxj βj holds if |J | = p, the last member of (3.12) converges to 0 a.s.

as r → 0. Consequently, {γ(x)
1/r ◦ ϕ

(r)
t (x), t ≥ 0} converges to {ξ(0)

t (x), t ≥ 0}
a.s. Now, since the law of {ξrt, t ≥ 0} coincides with the law of {ϕ(r)

t , t ≥ 0},
the law of {ξ(r)

t (x); t ≥ 0} coincides with that of {γ(x)
1/r ◦ ϕ

(r)
t (x); t ≥ 0}.

Therefore the former converges weakly to {ξ(0)
t (x), t ≥ 0}. The proof is

complete. �

Remark. The stochastic process {η(0)
t , t ≥ 0} of (3.9) can be identified

with R|K|-valued process {(∑J :‖J‖Q=βj a
j
Jc
J
t )j∈K , t ≥ 0}. It is self-similar

with respect to the linear transformations {rR0}r>0, where R0 is the restric-

tion of the exponent R to R|K|.
The stochastic flow {ξ(0)

t , t ≥ 0} is not a Lévy flow in general. Thus the

stochastic process {ξ(0)
t (x), t ≥ 0} can not be obtained by solving a certain

SDE and it is not always Markovian.

Corollary 3.3. Let Pt(x, ·) and P
(0)
t (x, ·) be the probability distribu-

tions of the random variables ξt(x) and ξ
(0)
t (x), respectively. Then, for any

Borel subset E of Sx such that P
(0)
t (x, ∂E) = 0,

∃ lim
r→0

Prt(x, γ
(x)
r (E)) = P

(0)
t (x,E).(3.14)

Further, P
(0)
t (x,E) is self-similar with respect to the dilation {γ(x)

r }, i.e.,

for any Borel subset E of Sx,

P
(0)
t (x,E) = P

(0)
rt (x, γ(x)

r (E)), ∀r > 0.(3.15)

Remark. Self-similar approximations of a given Lévy flow {ξt, t ≥ 0}
are not unique. In the next section, we will discuss a canonical dilation,

which plays an important role for the study of the short time asymptotics

of the transition density function.
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4. Representations of probability densities of self-similar

stochastic flows

Let Y1, . . . , Yd be linear independent vectors in L such that l.s.{Y1, . . . ,

Yd} is invariant with respect to the linear transformation Q̄. Let dy1, . . . , dyd
be 1-forms such that (dyi)x((Yj)x) = δij holds for all x ∈ Rd. Since Yi, i =

1, . . . , d are invariant with respect to the Lie transformation group G, the

1-forms dy1, ..., dyd are also G-invariant. Consider the d-form m = dy1 ∧
· · · ∧ dyd. It is a G-invariant d-form. The form m is a volume form if

{(Y1)x, . . . , (Yd)x} are linear independent for any x.

Let {ξt, t ≥ 0} be the Lévy flow determined by SDE (2.1) and let Pt(x,E)

be the distribution of the random variable ξt(x). The existence of the density

function of Pt(x,E) with respect to a volume form m has been studied in

details by Malliavin [16], Ikeda-Watanabe [7], Kusuoka-Stroock [12] in the

case where the driving process Z(t) is a standard Brownian motion. Indeed,

it has beeen shown by these authors that under Condition (A.1) Pt(x,E)

has a C∞ density function. A similar problem has beeen studied by Bismut

[5], Bichiteler-Gravereaux-Jacod [4] and Leandre [15] in the case where Z(t)

is Lévy process with jumps. However, it seems to us that those results

are not sufficiently sharp for our purpose. Thus in this section, we assume

the existence of the continuous density function pt(x, y) with respect to the

d-form m.

We shall obtain the representation of the density function pt(x, y) by

means of the dilation. We first consider the case where the Lévy flow is

strictly self-similar.

Theorem 4.1. Let {ξt, t ≥ 0} ba a Lévy flow determined by SDE (2.1),

which is strictly self-similar with respect to the dilation {γr} and let Pt(x,E)

be the distribution of the random variable ξt(x). Suppose that Pt(x,E) has

a density funtion pt(x, y) with respect to the G-invariant d-form m. If it is

continuous in (t, x, y), it satisfies

pt(x, y) =
1

ttrQ0
p1(γ1/t(x), γ1/t(y)), ∀x, y ∈ Rd,(4.1)

where Q0 is the restriction of the exponent Q̄ of the dilation {γr} to the

space {Y1, . . . , Yd}.
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Proof. The density function pt(x, y) satisfies

∫
A
pt(x, y)m(dy) = P (ξt(x) ∈ A) = P (γt(ϕ1 ◦ γ1/t(x)) ∈ A)

= P1(γ1/t(x), γ−1
t (A)),

and

P1(x, γ
−1
t (A)) =

∫
γ−1
t (A)

p1(x, y)m(dy) =

∫
A
p1(x, γ1/t(y))γtm(dy),

where γtm is the measure such that γtm(A) = m(γ−1
t (A)). We can regard

γtm as the pull back of the d-form m by the map γt. Then, γtm satisfies

(γtm)y((Y1)y, . . . , (Yd)y) = mγt(y)((dγtY1)γt(y), . . . , (dγtYd)γt(y))

= |det dγt|−1mγt(y)((Y1)γt(y), . . . , (Yd)γt(y))

= |det dγt|−1my((Y1)y, · · · , (Yd)y),

because the d-form m and vector fields Y1, . . . , Yd are G-invariant. Since

dγt = tQ0 holds by (3.3), we have |det dγt| = ttrQ0 . Therefore we have the

equality γtm = t−trQ0m. Consequently we obtain

∫
A
pt(x, y)m(dy) =

∫
A
p1(γ1/t(x), γ1/t(y))

1

ttrQ0
m(dy)

for any Borel set A. This implies the formula (4.1). The proof is complete. �

We shall next consider the density function of the distribution of a self-

similar approximation ξ
(0)
t (x) of the Lévy flow determined by SDE (2.1), in

the case where the associated dilation is canonical. Let K = {j1, . . . , jd} be

a subset of {1, . . . , n} such that (Xj1)x, . . . , (Xjd)x are linearly independent.

Set LK = l.s.{Xj ; j ∈ K}. It is a subspace of L. An adapted exponent R is

called canonical if their diagonal elements βj , j = 1, ..., n satisfy βj = α
(0)
j if

j ∈ K and βj < α
(0)
j if j /∈ K. Let {γ(x)

r } be a family of dilations with the

common canonical exponent R. It is called a family of canonical dilations

and the corresponding self-similar approximation is called the canonical self-

similar approximation. We need a lemma.



Asymptotic Self-Similarity of Stochastic Flows 611

Lemma 4.2. Let ϕx : LK → Rd be a map such that ϕx(z) =

exp(
∑
j∈K zjXj)(x). Let ν be the Lebesgue measure on LK . For each x,

define a measure m̂x on S by m̂x = ϕxν:

m̂x(A) = ν(ϕ−1
x (A)).(4.2)

Then it is a volume form at a neighborhood of x. Let {γ(x)
r } be a family

of dilations with common canonical exponent R. Then it holds γ
(x)
r m̂x =

rtrR0m̂x, where R0 is the restriction of R to LK .

Proof. Since the map ϕx : LK → Rd is a local diffeomorphism at a

neighborhood of 0 ∈ LK , the measure m̂x is a volume form at a neighbor-

hood of x. For a Borel set A in Rd, set Ã = {z : ϕx(z) ∈ A}. Then we have

{z : γ
(x)
r ϕx(z) ∈ A} = {rR0z ∈ Ã}. Therefore we have

γ(x)
r m̂x(A) = ν({z : γ(x)

r ϕx(z) ∈ A}) = ν(r−R0Ã)

= rtrR0ν(Ã) = rtrR0m̂x(A). �

Theorem 4.3. Let {ξ(0)
t , t ≥ 0} be the stochastic flow determined by

(3.8) and (3.9). Suppose that the distribution of η
(0)
1 = log ξ

(0)
1 has a con-

tinuous density function f(x) with respect to the Lebesgue measure. Then

the distribution P
(0)
t (x,E) of the random variable ξ

(0)
t (x) has a continuous

density function p̂
(0)
t (x, y) with respect to the measure m̂x of (4.2). Further,

it is represented by

p̂
(0)
t (x, y) =

1

ttrR0
f(t−R0ψ(x, y)), ∀y ∈ Sx,(4.3)

where f(z) is the C∞ density function of the probability distribution of η
(0)
1 =

log ξ
(0)
1 with respect to the Lebesgue measure, ψ(x, y) = ϕ−1

x (y), R0 is the

restriction of the exponent R to LK and trR0 =
∑
j∈K α

(0)
j .

Proof. By Corollary 3.3 we have

P
(0)
t (x, (γ

(x)
t )−1(E)) = P

(0)
1 (x,E) = P (exp η

(0)
1 (x) ∈ E)

= P (η
(0)
1 ∈ ϕ−1

x (E))

=

∫
ϕ−1
x (E)

f(z)ν(dz) =

∫
f(ϕ−1

x (y))m̂x(dy).
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On the other hand, by Lemma 4.2 we have

P
(0)
t (x, (γ

(x)
t )−1(E)) =

∫
(γ

(x)
t )−1(E)

p̂
(0)
t (x, y)m̂x(dy)

=

∫
E
ttrR0 p̂

(0)
t (x, γ

(x)
t (y))m̂x(dy).

Therefore we have

ttrR0 p̂
(0)
t (x, γ

(x)
t (y)) = f(ϕ−1

x (y)).(4.4)

Substitute (γ
(x)
t )−1(y) in place of y in the above formula. It is immediate

to see

ϕ−1
x ((γ

(x)
t )−1(y)) = t−R0ϕ−1

x (y) = t−R0ψ(x, y).

Then we obtain the formula (4.3). �

Remark. Let µ be the Lebesgue measure and let ρ(x, y) be the density

function of the measure m̂x with respect to µ. Then P
(0)
t (x,E) has a density

function p
(0)
t (x, y) with respect to µ and it is represented by

p
(0)
t (x, y) =

1

ttrR0
f(t−R0ψ(x, y))ρ(x, y), ∀y ∈ Sx(4.5)

Now ρ(x, y) is given by

ρ(x, y) = |det
∂ϕx
∂z

◦ ψ(x, y)|−1, y ∈ Sx,(4.6)

where (∂ϕx/∂z) is the Jacobian matrix of the map ϕx. In particular,

ρ(x, x) = |det(Xi
j(x))|−1 holds, where (Xi

j(x)) is the matrix of coefficients

of vector fields Xj1 , . . . , Xjd ∈ LK .

5. Short time asymptotics of probability densities of Brownian

flows

In this section we shall assume that the driving process {Z(t), t ≥ 0}
of equation (2.1) is a standard Brownian motion. Then the stochastic flow

ξt(x) determined by equatin (2.1) is called a Brownian flow instead of a

Lévy flow. Let Pt(x,E) be the distribution of the random variable ξt(x).
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Then under Condition (A.1), Pt(x,E) has a C∞ density funtion pt(x, y) with

respect to a volume form m as we have remarked in the previous section.

The next lemma shows that the distribution P
(0)
t (x,E) of the self-similar

approximation ξ
(0)
t (x) has also a C∞ density function.

Lemma 5.1. Let {η(0)
t , t ≥ 0} be the stochastic process of (3.9). Then

the distribution of η
(0)
t has a C∞ density function with respect to the

Lebesgue measure ν.

Proof. We shall first show that η
(0)
t can be obtained by taking a

projection of a certain stochastic process determined by an SDE. We in-

troduce some notions following Yamato [21]. Let E = {1, . . . , k} and

E(p) = {I = (i1, . . . , il); i1, . . . , il ∈ E, 1 ≤ l ≤ p}, where p is a positive

integer. The set {y = (yI)I∈E(p); y
I ∈ R} is identified with Rm, where

m = @E(p). We define vector fields Vi on Rm by

Vi =
∂

∂yi
+

∑
l+1≤p,j1,...,jl∈E

yj1,...,jl
∂

∂yj1,...,jl,i
.

Consider the SDE on Rm:

dYt =
∑
j∈E

Vj(Yt) � dZj(t).

The solution sarting from 0 at time 0 is Yt = (ZI(t))I∈E(p), where ZI(t) is

the multiple Wiener-Stratonovich integral defined by (2.5).

Let L(V1, . . . , Vk) be the Lie algebra generated by V1, . . . , Vk. Then

dimL(V1, . . . , Vk)(y) = m holds for any y. Therefore the distribution of Yt
has a C∞ density function.

Define π : Rm → LK by

π(y) =
∑
j∈K

∑
J :‖J‖Q=βj

∑
τ :|τ |=|J |

(−1)e(τ)

|J |2
(

|J | − 1

e(τ)

)yJPXjXJ .

Then we have π(Yt) = η
(0)
t , t ≥ 0. Further {π∗VJ ;J ∈ E(p)} = LK holds.

Therefore, the distribution of η
(0)
t has a C∞ function. See Taniguchi [19]

and Kusuoka-Stroock [13]. The proof is complete. �
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We shall study the short time asymptotics of transition density functions

of the Brownian flow. The next theorem indicates that it coincides with the

short time asymptotics of the probability density of a canonical self-similar

approximation.

Theorem 5.2. Let {ξt, t ≥ 0} be a Brownian flow determined by equa-

tion (2.1) and let {ξ(0)
t , t ≥ 0} be its canonical self-similar approximation.

Let Pt(x,E) and P
(0)
t (x,E) be the probability distributions of random vari-

ables ξt(x) and ξ
(0)
t (x) respectively. Let pt(x, y) and p

(0)
t (x, y) be their den-

sity functions with respect to the Lebesgue measure µ. Then we have

pt(x, y) ∼ p
(0)
t (x, y), as t → 0 ∀y ∈ Sx.(5.1)

For the proof of the theorem, we shall introduce an intermediate stochas-

tic flow. For a positive integer p, define ηpt ≡ ηt by (2.7) and ξ̃pt ≡ ξ̃t by

ξ̃t ≡ exp ηt.(5.2)

Then the law of the stochastic process {ξ̃t(x), t ≥ 0} coincides with the law

of the stochastic process {γ(x)
t (exp η

(t)
1 (x)), t ≥ 0} for any x. Here {γ(x)

r } is

a canonical dilation with exponent R and η
p,(t)
s ≡ η

(t)
s is given by

η(t)
s =

∑
j

∑
J :|J |≤p−1

t‖J‖Q−βjcJsPXjXJ ,(5.3)

where βj are diagonal elements of R. The following lemma can be verified

similarly as in Lemma 5.1 and Theorem 4.3.

Lemma 5.3. The distribution of η
(t)
1 has a C∞ density function ft(z)

with respect to the Lebesgue measure. Further, the distribution of ξ̃t(x) has

a C∞ density function p̃t(x, y) with respect to the Lebesgue measure and it

is represented by

p̃t(x, y) =
1

ttrR0
ft(t

−R0ψ(x, y))ρ(x, y), ∀y ∈ Sx,(5.4)

where R0 is the restriction of R to LK .
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We shall apply Malliavin calculus of Ikeda-Watanabe [7]. Let q > 1 and

s ∈ R. Let Dq,s be the Sobolev space defined on the Wiener space (Z(t), P ),

where Z(t), t ≥ 0 is a k-dimensional Brownian motion defining SDE (2.1).

The associated Sobolev norm is defined by ‖ ‖q,s. It is known that the

solution ξt(x) of equation (2.1) belongs to Dq,s for any q and s.

Lemma 5.4. For a sufficiently large p, there exists s ∈ R such that

lim
t→0

‖δy(ξt(x)) − δy(ξ̃
p
t (x))‖q,s = 0, ∀x, y ∈ Rd(5.5)

lim
t→0

sup
z∈Rn

‖δz(ηp,(t)1 ) − δz(η
(0)
1 )‖q,s = 0(5.6)

holds for any q > 1 and M > 0, where δy and δz are Dirac delta functions

at y and z respectively.

Proof. We shall follow Watanabe’s argument ([7] and [20]). For a

given positive integer p, set ϕ̃εt = exp ζεt , where ζεt is defined by (2.13).

When εj = r1/2, j = 1, . . . , k, we denote ϕ̃εt by ϕ̃
(r)
t . Then the laws of ϕ

(t)
1 (x)

and ϕ̃
(t)
1 (x) coincide with those of ξt(x) and ξ̃pt (x) respectively. Let σ(t)(x)

and σ̃(t)(x) be the Malliavin covariances of ϕ
(t)
1 (x) and ϕ̃

(t)
1 (x), respectively.

Then for any q > 1, there exists a positive constant c and N such that

‖|detσ(t)(x)|−1‖q ≤ ct−N , ‖|det σ̃(t)(x)|−1‖q ≤ ct−N(5.7)

for 0 ≤ t ≤ 1.

Let T be a tempered distribution. Then there exists s ∈ R such that

both T ◦ ϕ(t)
1 (x) and T ◦ ϕ̃(t)

1 (x) are in the Sobolev space Dq,s for all q > 1.

Further, these have the t1/2-expansions:

T ◦ ϕ(t)
1 (x) = Φ0 + t1/2Φ1 + · · · + t(p−1)/2Φp−1 +O(εp/2−N ),

T ◦ ϕ̃(t)
1 (x) = Φ̃0 + t1/2Φ̃1 + · · · + t(p−1)/2Φ̃p−1 +O(tp/2−N ),

in Dq,s, where p is the positive integer in Lemma 2.2 (2). (Theorem 9.4 and

its proof in Ikeda-Watanabe [7]). Since (2.14) holds, we have Φi = Φ̃i for

i ≤ p− 1. Therefore we have T ◦ ϕ(t)
1 (x) − T ◦ ϕ̃(t)

1 (x) = O(tp/2−N ) in Dq,s.

Consequently we obtain

‖T ◦ ξt(x) − T ◦ ξ̃pt (x)‖q,s = O(tp/2−N ).(5.8)
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Now set T = δy and take p > 2N . Then we get (5.5).

We shall next prove (5.6). Let τ (t) be the Malliavin covariance of η
(t)
1 .

Then it satisfies

sup
0≤t≤1

‖|det τ (t)|−1‖q < ∞(5.9)

for any q > 0. Then we can show similarly as the above that there exists

s ∈ R such that

sup
z

‖δz(η(t)
1 ) − δz(η

(0)
1 )‖q,s = O(tγ)(5.10)

for some γ > 0. This implies (5.6). The proof is complete. �

Proof of Theorem 5.2. It holds pt(x, y) = E[δy(ξt(x))] and

p̃t(x, y) = E[δy(ξ̃t(x))]. Therefore we have by Lemma 5.3,

|pt(x, y) − p̃t(x, y)| ≤ ‖δy(ξt(x)) − δy(ξ̃t(x))‖q,s → 0,

as t → 0.

We shall next compare p̃t(x, y) with p
(0)
t (x, y). Note that p

(0)
t (x, y) and

p̃t(x, y) are represented by (4.5) and (5.4) with the density functions f and

ft, respectively. We shall prove that ft(z) converges to f(z) uniformly in z

as t → 0. Since ft(z) = E[δz(η
(t)
1 )] and f(z) = E[δz(η

(0)
1 )], we have

|ft(z) − f(z)| = |E[δz(η
(t)
1 ) − δz(η

(0)
1 )]| ≤ ‖δz(η(t)

1 ) − δz(η
(0)
1 )‖q,s

which converges to 0 uniformly in z by Lemma 5.4. Therefore we have

p̃t(x, y) ∼
f(t−R0ψ(x, y))

ttrR0
ρ(x, y) = p

(0)
t (x, y),

in view of Theorem 4.3. The proof is complete. �

We shall rewrite the kernel p
(0)
t (x, y) of Theorem 5.2 more explicitly.

Assume k ≤ d and {X1(x), . . . , Xk(x)} is linearly independent at every x.

Set V1 = {X1, . . . , Xk}, V2 = [V1, V1], · · · , Vn = [Vn−1, V1]. Then L = ∪nVn.
We can choose X1, . . . , Xd of L and positive integers k < k2 < · · · < kl = d

such that a) {X1(x), . . . , Xd(x)} is linearly independent for any x and b)

∪ji=1Vi = {X1, . . . , Xkj} for j = 2, . . . , l. Then the diagonal elements βj , j =
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1, . . . , d of the canonical exponent R associated with the above {X1, . . . , Xd}
is given by

β1 = · · · = βk1 =
1

2
, βk1+1 = · · · = βk2 = 1, · · · , βkl−1+1 = · · · = βkl =

l

2
,

where 0 = k0 < k = k1 < k2 < · · · < kl = d. Then we have trR0 =

(1/2)
∑l
i=1 i(ki − ki−1) and we have the expression

t−R0ψ(x, y) = (
ψk1(x, y)

t1/2
,
ψk2(x, y)

t
, · · · , ψkl(x, y)

tl/2
),

where ψ(x, y) = (ψk1(x, y), . . . , ψkl(x, y)). Further, η
(0)
t =

∑d
j=1 ĉ

j
tXj , where

ĉjt is a linear sum of multiple Wiener-Stratonovich integrals of order i if

ki−1 < j ≤ ki, which is self-similar with exponent i/2. Then Theorem 5.2

can be reformulated as:

Theorem 5.5. We have

pt(x, y) ∼
1

tN/2
f(
ψk1(x, y)

t1/2
,
ψk2(x, y)

t
, . . . ,

ψkl(x, y)

tkl/2
)ρ(x, y),(5.11)

as t → 0 for all y ∈ Sx, where f(z) is the density funtion of the distribution

of the random variable η
(0)
1 with respect to the Lebesgue measure and

N =
l∑

i=1

i(ki − ki−1).(5.12)

In the case where l = 1 in the above theorem, f(z) is a Gaussian density

with mean 0 and covariance I. Therefore, we have

Corollary 5.6. Assume k = d and the dimension of l.s.{X1, . . . ,

Xk}(x) = d for any x ∈ Rd. Then we have:

pt(x, y) ∼
1

(2πt)d/2
exp

(
−|ψ(x, y)|2

2t

)
ρ(x, y)(5.13)

as t → 0, ∀y ∈ Sx.
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Remark. (Kusuoka-Stroock [13]) It holds

|ψ(x, y)|2 = inf{
∫ 1

0

k∑
i=1

|ui(s)|2ds;
dϕt
dt

=
k∑
i=1

Xi(ϕt)ui(t),

ϕ(0) = x, ϕ(1) = y}

Thus |ψ(x, y)| defines a metric on Sx.
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[2] Ben Arous, G., Flots et séries de Taylor stochastiques, Probab. Theory Relat.
Fields 81 (1989), 29–77.
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