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Real Shintani Functions and Multiplicity

Free Property for the Symmetric

Pair
(
SU(2, 1), S(U(1, 1) × U(1))

)
By Masao Tsuzuki

Abstract. We shall present an explicit formula of “generalized”
spherical functions on SU(2, 1) with respect to its reductive spherical
subgroup S

(
U(1, 1)× U(1)

)
, which can be considered to be a real ana-

logue of the Whittaker-Shintani functions introduced by Shintani and
investigated by Murase and Sugano. At the same time, we shall prove
a multiplicity one theorem for the corresponding space of intertwining
operators.

§0. Introduction

In this paper we shall investigate a kind of generalized spherical func-

tions on the real semisimple Lie group SU(2, 1) associated to a subgroup

S
(
U(1) × U(1, 1)

)
, which will be called the Shintani functions in what

follows. They were first introduced by Shintani in his unpublished work

intending to study certain automorphic L-functions on symplectic groups,

and later investigated by Murase and Sugano in setting of classical groups

and their spherical subgroups over local or global fields to get new integral

representations of automorphic L-functions for many examples in terms of

the Shintani functions, or the Whittaker-Shintani functions in their ter-

minology. Now we consider a situation that a classical group G and its

spherical subgroup H, both defined over a local field k, are given. Their k-

valued points are naturally considered to be locally compact groups. For a
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given irreducible admissible G×H-module Π�η, Whittaker-Shintani func-

tion of type Π � η is defined to be a function which belongs to the image

of a G ×H-intertwining operator Φ : Π � η → C∞(G) and is finite under

the action of some maximal compact subgroup of G×H, where we regard

C∞(G) as a G×H-module by the left G-action and the right H-action.

When k is non archimedean, G and H are both unramified over k and

Π � η is of class one with respect to a certain maximal compact subgroup

of G×H, Murase, Sugano and Kato proved a multiplicity one theorem of

intertwining operators Φ and an explicit formula of class one Whittaker-

Shintani functions for a number of examples.

Compared with the unramified situation over non archimedean local

fields, few facts are known when k = R, i.e. G and H are real reduc-

tive Lie groups. Murase and Sugano consider automorphic forms whose

archimedean components are special type of holomorphic or antiholomor-

phic discrete series representation and calculate the zeta integral by means

of the Bergman kernel functions. To make theories on integral represen-

tations of automorphic L-functions applicable to automorphic forms with

more general type of archimedean component, we have to study basic prop-

erties of the Shintani functions over real groups more.

On the other hand we can consider a representation theoretical problem

that for given irreducible admissible representations η and Π of H and

G respectively, under what condition Π is realized as a submodule of the

induced representation C∞IndGH(η). (Here induction is considered in the

category of smooth representations.) In this context to consider the space

Iη,Π = HomG(Π, C∞IndGH(η)) (or possibly Hom(g,K)

(
Π, C∞IndGH(η)

)
if k =

R) and functions in Sη,Π =
∑

Im(Φ) with Φ ∈ Iη,Π, which we also call

the Shintani functions, seems to be rather natural. As is seen naively, it is

closely related to consider the space HomG×H(Π � η∗, C∞(G)) (η∗ means

the contragredient representation) and the Shintani functions in the former

sense.

In this paper, we shall investigate the Shintani functions in

HomK(τ,Sη,Π) with K-types τ in the case of G = SU(2, 1), H = S(U(1)×
U(1, 1)) ∼= U(1, 1) giving a description of the intertwining space Iη,Π for

every irreducible unitary representation η of H and a standard represen-

tation Π of G. Our result yields that the dimension of Iη,Π is not exceed

one and gives a necessary and sufficient condition for dimCIη,Π = 1, or

equivalently Sη,Π(τ0) �= {0} for a K-type τ0 of Π. (For precise definitions of
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Iη,Π and Sη,Π, see (4.1).) We show that radial part of a Shintani function

is expressed in terms of Gauss’s hypergeometric function (Theorem 8.1.1,

Theorem 8.1.2 and Theorem 8.1.3 for the discrete series representations and

Theorem 9.2.1 for the principal series representations.) The method em-

ployed in this paper is that of Yamashita [Y], which gives a characterization

of the space Sη,Π(τ0) in terms of the Schmid operator , when Π is a discrete

series representation of G, τ0 is its minimal K-type and η is an arbitrary

irreducible unitary representation of H.

We should note that a description of the discrete part of the H-spectrum

of Π|H for a discrete series Π of G is already known by a work of Xie, [X] and

this seems to have an intimate relation with one of our problem to determine

the dimension of Iη,Π because of the ‘Frobenius reciprocity’. But we need

more concrete and precise formulas of functions in the spaces HomK(τ,Sη,Π)

for K-types τ of Π. First reason why we need such information is that by

using the explicit formula we want to study a zeta integral of Shintani

functions in the theory of Murese and Sugano that will give archimedean

local factors of certain automorphic L-functions for unitary groups.

Secondly, though there are many works on spherical functions or spe-

cial functions on real Lie groups, majority of them are of class one, or of

one dimensional K-types. We believe that to see what happens when one

removes this one dimensional assumption on K-types is interesting itself

apart from number theoretical applications.

Acknowledgement . I would like to express my profound gratitude to

Professor Takayuki Oda for his constant encouragement and many advices.

§1. Basic notations

We establish basic notations, and recall root space decompositions of

SU(2, 1).

(1.1) Groups and Lie algebras

For a given Lie group L we use the corresponding German letter l to

indicate its Lie algebra and lC the complexification of l.

Let

G = {g ∈ SL3(C)| tgI2,1g = I2,1 },
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K =

{(
k1 0

0 k2

) ∣∣∣∣∣ k1 ∈ U(2), k2 ∈ U(1), k2 det(k1) = 1

}
,

where I2,1 = diag(1, 1,−1); G is a connected semisimple Lie group which is

usually denoted by SU(2, 1) and K is a maximal compact subgroup of G.

The Lie algebras of G and K are realized as

g = {X ∈M3(C)| tXI2,1 + I2,1X = O, tr(X) = 0},

k =

{(
X1 0

0 X2

) ∣∣∣∣∣ X1 ∈M2(C), X2 ∈ C, tr(X1) +X2 = 0
tX1 +X1 = O, X2 = −X2

}
.

Let θ be the Cartan involution of g corresponding to the choice of K and p

the −1 eigenspace of θ. Then we have the Cartan decomposition g = k⊕ p

with

p =

{(
0 Z
tZ 0

) ∣∣∣∣ Z ∈M21(C)

}
.

Let σ be the involutive automorphism of G defined by σ(g) = I−1
1,2gI1,2

(g ∈ G) with I1,2 = diag(1,−1,−1). The set consisting of all fixed points

of σ forms a closed subgroup of G which we denote by H. We have

H =

{(
h1 0

0 h2

) ∣∣∣∣∣h1 ∈ U(1), h2 ∈ U(1, 1), h1 det(h2) = 1

}
,

where

U(1, 1) = {g′ ∈ GL2(C)| tg′I1,1g′ = I1,1}

with I1,1 = diag(1,−1). The Lie algebra of H is realized as

h =

{(
Y1 0

0 Y2

) ∣∣∣∣∣ Y1 ∈ C, Y2 ∈M2(C), tY2I1,1 + I1,1Y2 = O,

Y1 + tr(Y2) = 0, Y1 + Y1 = 0

}
.
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(1.2) Iwasawa decomposition

Let

A =

{
ar =

 (r + r−1)/2 0 (r − r−1)/2

0 1 0

(r − r−1)/2 0 (r + r−1)/2

∣∣∣∣∣ r > 0

}
.

Then its Lie algebra a = RH1, H1 :=

 0 0 1

0 0 0

1 0 0

, is a maximal abelian

subspace of p. Let us denote by M the centralizer of a in K. We have

M =

{
mθ =

 e
√
−1θ 0 0

0 e−2
√
−1θ 0

0 0 e
√
−1θ

∣∣∣∣∣ θ ∈ R

}
.

For every integer n, set gn := {X ∈ g| [H1, X] = nX }. Then

g0 = a + m

g1 = RE+
2 ⊕ RE−

2 , E
+
2 =

 0 −1 0

1 0 −1

0 −1 0

 ,

E−
2 =

 0 −
√
−1 0

−
√
−1 0

√
−1

0 −
√
−1 0

 ,

g2 = RE1, E1 =


√
−1 0 −

√
−1

0 0 0√
−1 0 −

√
−1

 ,

g−1 = θg1, g−2 = θg2

and gn = {0} (|n| > 2). Since [gi, gj ] ⊂ gi+j , n = g1+g2 becomes a nilpotent

Lie subalgebra of g, giving the Iwasawa decomposition g = n + a + k.

(1.3) Root space decompositions

Let T be the subgroup of G consisting of all diagonal matrices. Then

T is a Cartan subgroup of G contained in K. For every pair of integers

λ = (l1, l2), we define the unitary character χλ of T by setting

(1.3.1) χλ(diag(t1, t2, t3)) = tl11 t
l2
2 , diag(t1, t2, t3) ∈ T.
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The character group of T is identified with Z
⊕2 through the assignment

λ→ χλ. By taking derivative at the identity, we can embed T̂ into
√
−1t∗ =

HomR(t,
√
−1R). Then its image LT becomes a lattice of

√
−1t∗. In what

follows, we shall fix the identifications Z
⊕2 ∼= T̂ ∼= LT so obtained. Let

Σ(gC, tC) = {εi − εj | 1 � i, j � 3, i �= j }

be the root system of (gC, tC) with εi ∈ LT defined by εi(X) = xi, X =

diag(x1, x2, x3) ∈ tC. Put Σ+ = {εi − εj | 1 � i < j � 3 }, a set of positive

roots in Σ(gC, tC). Let us denote by Σc and Σn the set of compact roots

and the set of noncompact roots respectively, or explicitly

Σc = {±(ε1 − ε2)},
Σn = {±(ε1 − ε3), ±(ε2 − ε3)}.

Set

Xij =

{
Eij

(
(i, j) �= (2, 1)

)
−Eij

(
(i, j) = (2, 1)

) and H ′
ij = Eii − Ejj ,

where Eij denotes the usual matrix element. The complexification of g

is identified with sl(3,C) via the natural inclusion g ⊂ sl(3,C). Then

Xij ∈ sl(3,C) is a root vector with weight εi − εj and [X12, X21] = H ′
21,

[X13, X31] = H ′
13, [X23, X32] = H ′

23. We have the root space decomposi-

tions:

gC = tC +
∑

1�i,j�3
i�=j

CXij ,

kC = tC + CX12 + CX21,

hC = tC + CX23 + CX32

with tC = CH ′
12 + CH ′

13.

(1.4) Inner products

Let Bg : g× g → R denote the Killing form of G, or explicitly

Bg(X,Y ) = 6trace(XY ), X, Y ∈ g
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in our case g = su(2, 1). Here trace(X) means the trace of 3 × 3-matrix

X ∈M3(C) in the usual sense. Set

〈
X,Y

〉
g

= −1

6
Bg(X, θY ), X, Y ∈ g

with θ the Cartan involution of g. Then
〈
,
〉
g

: g × g → R is a positive

definite R-bilinear form of g. For every R-subspace q of g, we regard it as a

Euclidean space equipped with the inner product, say
〈
,
〉
q
, induced from〈

,
〉
g
. Especially

〈
X,X ′〉

k
= −trace(XX ′), X, X ′ ∈ k,(1.4.1) 〈

Y, Y ′〉
p

= trace(Y Y ′), Y, Y ′ ∈ p.(1.4.2)

Let Adp denote the natural action of K on p induced from the adjoint action

of K on g. Then Adp preserves the inner product (1.4.2).

Next we introduce an inner product of
√
−1t∗. By means of the inner

product
〈
,
〉
t
above, we define an isomorphism

√
−1t∗ ∼= t assigning H ′

λ ∈ t

to λ ∈
√
−1t∗ such that

λ(H ′)√
−1

=
〈
H ′, H ′

λ

〉
t
, H ′ ∈ t.

Then the inner product of
√
−1t∗ is given by

〈
λ, λ′

〉
=

〈
H ′
λ, H

′
λ′
〉
t
, λ, λ′ ∈

√
−1t

∗.

§2. Irreducible K-modules

As is well known, we can parametrize K̂, the set of equivalence classes

of irreducible finite dimensional representations of K ∼= U(2), by the high-

est weight theory. But for our explicit computation, we need to realize

irreducible representations of K more concretely by using standard basis

below. In (2.1), we introduce such realizations and in (2.2) recall an ex-

plicit formula of Clebsch-Gordan coefficients with respect to the standard

basis.
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(2.1) Parametrization of K̂

We shall specify a choice of positive root systems of Σc by putting Σ+
c =

{ε1− ε2} and fix this in what follows. Then the set of Σ+
c -dominant weights

becomes

L+
T = {λ = (l1, l2) ∈ Z

⊕2| l1 � l2 }.

For every λ ∈ L+
T , put Wλ =

⊕i=dλ
i=0 Cwλ

i with dλ := l1 − l2 and define the

actions of elements H ′
12, H

′
13, X12, X21 of kC on the C-vector space Wλ as

follows:

τλ(H
′
12)w

λ
i = (2i− dλ)w

λ
i ,

τλ(H
′
13)w

λ
i = (i+ l2)w

λ
i ,(2.1.1)

τλ(X12)w
λ
i = (i+ 1)wλ

i+1,

τλ(X21)w
λ
i = (i− dλ − 1)wλ

i−1 (i = 0, 1, . . . , dλ),

here we understand wλ
i = 0 for i = −1, dλ + 1. It is easily checked that

(2.1.1) defines a kC-module structure on Wλ and the action τλ of k can be

globalized to that of K giving a dλ +1-dimensional representation (τλ,Wλ)

of K; τλ is an irreducible representation with Σ+
c -highest weight λ ∈ L+

T .

The basis {wλ
i }

i=dλ
i=0 is called the standard basis of Wλ. Let K̂ denote the set

of all equivalence classes of irreducible finite dimensional representations of

K. Assigning the class of τλ to λ ∈ L+
T , we get a map from L+

T to K̂ and

highest weight theory tells us that this is a bijection.

(2.2) Tensor products with pC

Here we recall Clebsch-Gordan’s decomposition of τλ⊗AdpC
for a given

irreducible K-module τλ.

The vector space pC becomes a K-module via the adjoint representation

of K, which splits into two irreducible sub K-modules p+ and p−with

p
+ = CX13 ⊕ CX23, p

− = CX31 ⊕ CX32.

Set βi = εi−ε3 (i = 1, 2). It is easy to see that Adp+
∼= τβ1 and Adp−

∼= τ−β2 .

For a given irreducible representation τλ of K, Clebsch-Gordan’s rule tells

that the K-module τλ ⊗Adp± decomposes as follows:

τλ ⊗Adp+
∼= τλ+β1 ⊕ τλ+β2 ,(2.2.1)
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τλ ⊗Adp−
∼= τλ−β1 ⊕ τλ−β2 ,

here we understand that τλ = {0} for non dominant λ ∈ LT . This decom-

position determines projections

pβλ : Wλ ⊗ pC →Wλ+β, β ∈ Σn.

Proposition 2.2.1. For every λ ∈ L+
T and β ∈ Σ+

n , we have

pβλ|Wλ ⊗C p
− = 0, p−βλ |Wλ ⊗C p

+ = 0.

Furthermore we can choose the isomorphism (2.2.1) so that the following

identities hold.  pβ1

λ (wλ
i ⊗X13) = (i+ 1)wλ+β1

i+1 ,

pβ1

λ (wλ
i ⊗X23) = (dλ − i+ 1)wλ+β1

i ,
(2.2.2)

 pβ2

λ (wλ
i ⊗X13) = −wλ+β2

i ,

pβ2

λ (wλ
i ⊗X23) = wλ+β2

i−1 ,
(2.2.3)

 p−β1

λ (wλ
i ⊗X32) = wλ−β1

i ,

p−β1

λ (wλ
i ⊗X31) = wλ−β1

i−1 ,
(2.2.4)

 p−β2

λ (wλ
i ⊗X32) = −(i+ 1)wλ−β2

i+1 ,

p−β2

λ (wλ
i ⊗X31) = (dλ − i+ 1)wλ−β2

i

(2.2.5)

for i = 0, . . . , dλ, where one should note that dλ±β1 = dλ∓β2 = dλ ± 1.

Proof. [K-O, Proposition (2.3)]. �

§3. Representation theory of H

We note that H ∼= U(1, 1) by the assignment

H �

x11 0 0

0 x22 x23

0 x32 x33

→
(
x22 x23

x32 x33

)
∈ U(1, 1)

with x11 =
(
x22x33−x23x32

)−1
and correspondingly T = H∩K, a maximal

compact subgroup of H, is mapped onto U(1)×U(1) diagonally embedded

in U(1, 1). Thus representation theory of H including a description of its

unitary dual is wellknown. We recall it here briefly.
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(3.1) Non-unitary principal series representation

We first define subgroups A′, M ′, N ′ and P ′ of H as follows:

A′ =

{
a′r =

 1 0 0

0 (r + r−1)/2 (r − r−1)/2

0 (r − r−1)/2 (r + r−1)/2

∣∣∣∣∣ r > 0

}
,

M ′ =

{
m′
θ =

 e−2
√
−1θ 0 0

0 e
√
−1θ 0

0 0 e
√
−1θ

∣∣∣∣∣ θ ∈ R

}
,

N ′ =

{ 1 0 0

0 1 +
√
−1x −

√
−1x

0
√
−1x 1−

√
−1x

∣∣∣∣∣ x ∈ R

}
,

P ′ = M ′A′N ′.

For ε ∈ {0, 1}, set Zε := {m ∈ Z| m ≡ ε (mod 2) }. For every ν ∈ C and

n ∈ Zε, define the Hilbert space Vn,ν as follows: it consists of all measurable

functions ϕ′ : H → C satisfying

ϕ′(m′
θa

′
rn

′h) = e
√
−1nθrν+1ϕ′(h), m′

θ ∈M ′, a′r ∈ A′, n′ ∈ N ′, h ∈ H

and ϕ′|K ∩H ∈ L2(K ∩H), equipped with the inner product

〈
ϕ′

1, ϕ
′
2

〉
=

∫
(K∩H)/M ′

ϕ′
1(k

′)ϕ′
2(k

′)dk′

with dk′ the normalized Haar measure of (K ∩H)/M ′.
The group H acts on Vn,ν by the right translation and thus we get

the non-unitary principal series representation (ηn,ν ,Vn,ν) of H. We shall

describe the underlying (hC,K∩H)-module structure of ηn,ν explicitly. For

every m ∈ Zε, there exists the unique C∞-function vm : H → C belonging

to Vn,ν such that

vm(t) = t
(n−m)/2
2 t

(n+m)/2
3 , t = diag(t1, t2, t3) ∈ T.

Note that ηn,ν(t)vm = χ(−(n+m)/2,−m)(t)vm, t ∈ T with χ(−(n+m)/2,−m)

the unitary character of T defined by (1.3.1). The family {vm| m ∈ Zε }
provides us with an orthonormal basis of the Hilbert space Vn,ν .
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The following proposition describes explicitly the action of the Lie alge-

bra hC to {vm}. It will be very important in computations carried out in

section 6 and 7.

Proposition 3.1.1. Let ν ∈ C and n ∈ Zε. The totality of all H ∩K-

finite vectors of Vn,ν coincides with V0
n,ν :=

⊕
m∈Zε

Cvm. Let (η0
n,ν ,V0

n,ν) be

the underlying Harish-Chandra module of (ηn,ν ,Vn,ν). Then the actions of

elements H ′
13, H

′
12, X23, X32 on V0

n,ν are given as follows:

η0
n,ν(H

′
13)vm = −n+m

2
vm,(3.1.1)

η0
n,ν(H

′
12)vm = −n−m

2
vm,

η0
n,ν(X23)vm =

ν −m+ 1

2
vm−2,

η0
n,ν(X32)vm =

ν +m+ 1

2
vm+2 (m ∈ Zε).

(3.2) Admissible representations of H

A bounded Hilbert representation (η,Fη) of H is called admissible if the

H∩K-module η|H∩K contains every irreducible representation with finite

multiplicity. The center of H coincides with M ′ in our case. If there exists

an integer n ∈ Z such that

η(m′
θ) = e

√
−1nθ1Fη (θ ∈ R),

then we say that η has central character n. For every admissible represen-

tation (η,Fη) of H, let us denote its underlying Harish-Chandra module by

(η0,F0
η ). Note that the nonunitary principal series representation ηn,ν with

(ν, n) ∈ C × Z is admissible and has central character n. Now we quote a

result which is so called Casselman’s subrepresentation theorem.

Proposition 3.2.1. Assume that an admissible representation η is ir-

reducible and has central character n ∈ Z. Then there exists an (hC, H∩K)-

inclusion η0 → η0
n,ν for some ν ∈ C.

Let H̃ denote the set of infinitesimal equivalence classes of irreducible

admissible representations of H. Let Ĥ be the subset of H̃ consisting of
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unitarizable classes. For a given integer n, H̃n (resp. Ĥn) denotes the sub-

set of H̃ (resp. Ĥ) consisting of all classes with central character n. By

Proposition 3.2.1, to parametrize the set H̃, it suffices to describe how the

non-unitary principal series ηn,ν decomposes. We recall it here.

Proposition 3.2.2. Let (n, ν) ∈ C× Zε and {ε, ε′} = {0, 1}.
(1) The (hC, H ∩K)-module η0

n,ν is irreducible if and only if ν ∈ C− Zε′.

(2) Let k ∈ Zε′ be a non negative integer.

Let us define a subspace D+0
n,k (resp. D−0

n,k) of V0
n,k as the C-linear span of

{vm| m ∈ Zε, m � k + 1} (resp. {vm| m ∈ Zε, m � −k − 1}). Then

this is a (hC, H ∩ K)-invariant subspace of V0
n,k and (hC, H ∩ K)-module

δ±0
n,k := η0

n,k|D±0
n,k is irreducible. The quotient η0

n,ν/(δ
+0
n,k⊕δ−0

n,k) is isomorphic

to the k-dimensional irreducible representation with central character n. Let

D±
n,k be the closure of D±0

n,k in Vn,k endowed with the naturally induced Hilbert

space structure and δ±n,ν denotes the corresponding representation of H.

(3) Let k ∈ Zε′ be a negative integer. Let us define a subspace E0
n,−k of V0

n,−k
as the C-linear span of {vm| m ∈ Zε, k + 1 � m � −k − 1}. Then this

is a (hC, H ∩ K)-invariant subspace of V0
n,−k and the (hC, H ∩ K)-module

σ0
n,−k := η0

n,−k|E0
n,−k is irreducible and isomorphic to the −k dimensional

representation with central character n. The quotient η0
n,−k/σ

0
n,−k is iso-

morphic to δ+0
n,k ⊕ δ−0

n,k. E0
n,−k is a closed H-invariant subspace of Vn,−k.

The irreducible −k-dimensional representation of H realized on E0
n,−k is

denoted by σn,−k.

(4) The set H̃n is exhausted by the representations ηn,ν with ν ∈ C − Zε′,

δ±n,k with k ∈ Zε′ , k � 0 and σn,−k with k ∈ Zε′ , k < 0.

Proposition 3.2.3.

The set Ĥ is exhausted by classes of the following representations.

(1) (Unitary principal series) ηn,ν (n ∈ Zε, ν ∈
√
−1R− Zε′ with {ε, ε′} =

{0, 1}).
(2) (Discrete series) δ±n,k (n ∈ Zε, k ∈ Zε′ , k > 0) with {ε, ε′} = {0, 1}).
(3) (Limit of discrete series) δ±n,0 (n ∈ Z1).

(4) (Complimentary series) ηn,ν (n ∈ Z0, ν ∈ R, 0 < |ν| < 1).

(5) (One dimensional representations) σn,1 with n ∈ Z0.

Remark. We should note that in case of (2), (3) and (4), we have
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to replace the Hermitian inner product by an appropriate one in order to

make the action of H unitary. We will not present it here.

(3.3) Standard basis

Let (η,Fη) be an admissible Hilbert representation of H with central

character n ∈ Zε. We assume that η is irreducible or isomorphic to a

non-unitary principal series representation. From Proposition 3.1.1 and

Proposition 3.2.2, we see that there exists a subset Lη of Zε such that K∩H-

module η|K∩H decomposes into a multiplicity free direct sum of characters

χ(−(n+m)/2,−m) with m ∈ Lη. By Proposition 3.1.1 and Proposition 3.2.2,

we have constructed a basis {vm| m ∈ Lη} of F0
η . Assume η0 occurs as a

submodule of η0
n,ν with (n, ν) ∈ Zε×C. Then this basis is characterized up

to a multiplicative constant by requiring that vm belongs to the character

χ(−(n+m)/2,−m) and

η0(X23)vm =
ν −m+ 1

2
vm−2, η0(X32)vm =

ν +m+ 1

2
vm+2

for every m ∈ Lη.

We call any orthonormal basis {vm| m ∈ Lη} satisfying the above con-

ditions standard basis of η.

§4. The Shintani functions on G

In the first subsection, we introduce a space of the Shintani functions

Sη,Π(τ) which is of our main interest in this paper. After recalling the

Harish-Chandra parametrization of discrete series representations of G, we

define Schmid operators (or shift operators) and quote a theorem of Ya-

mashita about a characterization of the space Sη,Π(τ0) with Π a discrete

series representation of G and τ0 its minimal K-type in terms of the Schmid

operators. In (4.4) we shall present commutation relations among the shift

operators which will be used in §9.

(4.1) A space of Shintani functions

Let Π be an irreducible Harish-Chandra module of G and (η,Fη) be an

admissible representation of H. Let C∞
η (H\G) denotes the C-vector space

consisting of all C∞-functions F : G → Fη with the following equivariant

property:

F (hg) = η(h)F (g), h ∈ H, g ∈ G.
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Setting

RXF (g) = lim
t→0

F (g exp(tX))− F (g)

t
, g ∈ G,

for every X ∈ g and F ∈ C∞
η (H\G), we have an action of the Lie algebra

g on C∞
η (H\G). As is easily seen, this action of g is compatible with the

natural right action of K, thus C∞
η (H\G) becomes a (g,K)-module.

Now we set

Iη,Π = Hom(g,K)

(
Π∗, C∞

η (H\G)
)

with Π∗ the contragredient (g,K)-module of Π. Let (τ,W ) be an irreducible

K-module. For every K-equivariant map i : τ∗ → Π∗|K, we define a C-

linear map [i]η,Π by the composite of the following sequence of maps:

Iη,Π i∗−→ HomK

(
τ∗, C∞

η (H\G)
) ∼= C∞

η,τ (H\G/K),

where i∗ denotes the pullback via i and C∞
η,τ (H\G/K) is the space of smooth

functions F : G→ Fη ⊗C W with the property

(4.1.1) F (hgk) =
(
η(h)⊗ τ(k)−1

)
F (g), h ∈ H, g ∈ G, k ∈ K.

In other words, [i]η,Π is characterized by the equations

ew∗
(
[i]η,Π(Φ)(g)

)
=

(
Φ ◦ i(w∗)

)
(g), g ∈ G

for every w∗ ∈ W ∗ and Φ ∈ Iη,Π, where ew∗ : Fη ⊗C W → Fη is the

contraction map via w∗. Now we set

Sη,Π = C-span of
⋃

Image(Φ), Φ ranges over Iη,Π,

Sη,Π(τ) = C-span of
⋃

Image([i]η,Π), i ranges over HomK(τ∗,Π∗|K).

Any function belonging to the space Sη,Π(τ) is called Shintani function with

K-type τ . Note that Sη,Π(τ) ∼= HomK(τ∗,Sη,Π) naturally and K-module

Sη,Π decomposes to a direct sum of Sη,Π(τ)⊗ τ∗ (τ ∈ K̂).
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(4.2) Discrete series representation of G

An irreducible (gC,K)-module Π is said to be a discrete series repre-

sentation of G if there exists an injective (gC,K)-module homomorphism

Π → L2(G). Here we recall the Harish-Chandra parametrization of the

discrete series representations of G. Let Ξ be the set of all linear forms

Λ ∈
√
−1t∗ such that

〈
Λ, ε1 − ε2

〉
> 0 and

〈
Λ, εi − ε3

〉
�= 0 for i = 1, 2, or

explicitly

Ξ = {Λ = (Λ1,Λ2) ∈ Z
⊕2| Λ1 > Λ2, Λ1Λ2 �= 0 }.

By Harish-Chandra’s theorem, there exists the bijection Λ → ωΛ from Ξ

to Ĝd, the set of all equivalence classes of discrete series representations

of G. Any unitary representation belonging to the class ωΛ is said to have

Harish-Chandra parameter Λ. There exists the following three positive root

systems of Σ(gC, tC) which contains Σ+
c :

Σ+
I := {ε1 − ε2, ε2 − ε3, ε1 − ε3 }(= Σ+),(4.2.1)

Σ+
II := {ε1 − ε2, ε3 − ε2, ε1 − ε3 },

Σ+
III := {ε1 − ε2, ε3 − ε2, ε3 − ε1 }.

For every J ∈ {I, II, III}, set ΞJ := {Λ ∈ Ξ|
〈
Λ, β

〉
> 0, β ∈ Σ+

J }. Then

Ξ is a disjoint union of the following three subsets

ΞI = {(Λ1, Λ2) ∈ Z
⊕2| Λ1 > Λ2 > 0 },

ΞII = {(Λ1, Λ2) ∈ Z
⊕2| Λ1 > 0 > Λ2 },

ΞIII = {(Λ1, Λ2) ∈ Z
⊕2| 0 > Λ1 > Λ2 }.

Discrete series representations with Harish-Chandra parameter belonging

to ΞI (resp. ΞIII) are called holomorphic (resp. antiholomorphic). The

remaining discrete series representations of G, namely those whose Harish-

Chandra parameter belong to ΞII , are said to be large in the sense of Vogan

[V]. Let ρJ (resp. ρc) be the half sum of roots in Σ+
J (resp. Σ+

c ). By (4.2.1),

we easily have ρI = ε1 − ε3, ρII = ρc = ε1 − ε2 and ρIII = ε3 − ε2. It

is known that the Σ+
c -highest weight of the minimal K- type of Π with

Harish-Chandra parameter Λ = (Λ1,Λ2) ∈ ΞJ is λ = Λ + ρJ − 2ρc called

the Blattner parameter of Π. The explicit form of λ is as follows:

λ = (Λ1 + 1,Λ2 + 2) ( if J = I ),
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λ = (Λ1,Λ2) ( if J = II ),

λ = (Λ1 − 2,Λ1 − 1) ( if J = III ).

(4.3) Schmid operators

Let (η,Fη) be an admissible representation of H and (τ,W ) a finite

dimensional representation of K. For every F ∈ C∞
η,τ (H\G/K), set

∇η,τF (g) :=
4∑
i=1

RXiF (g)⊗Xi

(
g ∈ G),

where {Xi}i=4
i=1 is an orthonormal basis of p with respect to the inner product

(1.4.2). It is easily checked that the right hand side of the above identity

does not depend on the particular choice of {Xi} and the resulting function

∇η,τF belongs to C∞
η,τ⊗AdpC

(H\G/K). Thus we have a first order gradient

type differential operator

∇η,τ : C∞
η,τ (H\G/K) −→ C∞

η,τ⊗AdpC

(H\G/K).

We can take{
X13 +X31√

2
,

√
−1(X13 −X31)√

2
,
X23 +X32√

2
,

√
−1(X23 −X32)√

2

}
as {Xi}4

i=1 and consequently have

∇η,τF (g) = ∇+
η,τF (g) +∇−

η,τF (g)

with

∇+
η,τF (g) = RX31F (g)⊗X13 +RX32F (g)⊗X23

∇−
η,τF (g) = RX13F (g)⊗X31 +RX23F (g)⊗X32

for every F ∈ C∞
η,τ (H\G/K). Note that

∇+
η,τF (g) = (1Fη ⊗ 1W ⊗ π+)∇η,τF (g),

∇−
η,τF (g) = (1Fη ⊗ 1W ⊗ π−)∇η,τF (g)
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with π+ : pC → p+ and π− : pC → p− the natural projectors and the

assignments F → ∇±
η,τF define differential operators

∇±
η,τ : C∞

η,τ (H\G/K) −→ C∞
η,τ⊗Ad

p±
(H\G/K).

The differential operators ∇η,τ or ∇±
η,τ thus defined are called Schmid op-

erators, [S], [Y]. For every noncompact root β ∈ Σ and every dominant

weight λ ∈ L+
T , we define the β-shift operator

∇β
η,λ : C∞

η,τλ
(H\G/K) −→ C∞

η,τλ+β
(H\G/K)

by setting

∇β
η,λF (g) := (1Fη ⊗ pβλ)

(
∇η,τλF (g)

)
.

Let Π be a discrete series representation of G with Harish-Chandra param-

eter Λ ∈ ΞJ and Blattner parameter λ = Λ + ρJ − 2ρc. We want to know

the space Sη,Π(λ). The following result due to Yamashita is our basic tool

to investigate this space. It tells us that the space Sη,Π(τλ) is characterized

as the C∞-solution space of certain system of differential equations.

Proposition 4.3.1 ([Y, Theorem 2.4]). Let Π be a discrete series rep-

resentation of G with Harish-Chandra parameter Λ ∈ ΞJ and Blattner pa-

rameter λ = Λ+ρJ−2ρc. Let (η,Fη) be an irreducible unitary representation

of H. If λ is far from the wall, then Sη,Π(λ) coincides with the totality of

F ∈ C∞
η,τλ

(H\G/K) such that

(Dη,Λ) : ∇−β
η,λF (g) = 0, β ∈ Σ+

J ∩ Σn.

In other words,

Sη,Π(τλ) =
⋂

β∈Σ+
J ∩Σn

ker(∇−β
η,λ).
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(4.4) Casimir operator

Recall the inner product of k and p defined in (1.4). Let {Yi}i=4
i=1 and

{Zi}i=4
i=1 be arbitrary orthonormal R-basis of p and k respectively. Then the

Casimir element of G is the degree 2 element of U(gC), the universal en-

veloping algebra of gC, defined by ΩG =
∑4

i=1 Y
2
i −

∑4
i=1 Z

2
i . It is wellknown

that ΩG does not depend on the choice of {Yi} and {Zi}, and that it belongs

to the center of U(gC). Let (η,Fη) be an admissible representation of H

and λ ∈ L+
T a dominant weight. Since ΩG satisfies Ad(k)ΩG = ΩG for every

k ∈ K, the operator RΩG
on C∞

η (H\G) induces that on C∞
η,τλ

(H\G/K),

which will be denoted by Ωη,λ.

(4.5) Commutation relations of shift operators

Now we present commutation relations among β-shift operators with

β ∈ Σn, whose proof is included in Appendix 2. We introduce a convention

that for a non dominant weight λ ∈ LT the symbol τλ represent the zero

K-module, and ∇β
η,λ represent a zero operator if either λ or λ + β is non

dominant.

Theorem 4.5.1. Let λ = (l1, l2) ∈ L+
T , a dominant weight and F ∈

C∞
η,τλ

(H\G/K).

(1) For every pair of non compact roots (β, β′) such that β �= −β′, we have

(4.5.1; β, β′) ∇β
η,λ+β′ ◦ ∇β′

η,λF (g) = ∇β′

η,λ+β ◦ ∇
β
η,λF (g).

(2) For β = β1 or β2, we have

∇−βi
η,λ+βi

◦ ∇βi
η,λF (g)−∇βi

η,λ−βi ◦ ∇
−βi
η,λ F (g)(4.5.2;β)

=
1

2
Ωη,λF (g)− 1

2
(1Fη ⊗ τλ(ΩK))F (g)

+
(
εi
l1 + l2

2
+ dλ + εidλli

)
F (g).

Here εi is +1 or −1 according as i = 1 or i = 2.

(3) For every β ∈ Σn, we have

(4.5.3; β) Ωη,λ+β ◦ ∇β
η,λF (g) = ∇β

η,λ ◦ Ωη,λF (g).

Remark. All definitions in this section make sense and Theorem 4.5.1

remain true if we replace the pair (H, η) by a pair formed by an arbitrary

closed subgroup of G and its continuous representation.



Real Shintani Functions 681

§5. Radial part of Schmid operators and Casimir operators

We first recall a decomposition G = HAK with one dimensional split

torus A of G, which is a kind of Cartan or Iwasawa decomposition. Using

this or its infinitesimal version gC = Ad(a−1)hC+aC+kC (a ∈ A, a �= 1), we

study the A-radial part of the differential operators ∇±
η,τ and Ωη,λ defined

in the previous section. The main result of this section is Proposition 5.2.1

and Proposition 5.3.1.

(5.1) Definition of radial part

Let M∗ be the normalizer of A in K. Then M is a normal subgroup of

M∗ of index 2 and the quotient group W0 = M∗/M is isomorphic to the

little Weyl group of the restricted root system of the pair (g, a). The coset

w0M with w0 =

−1 0 0

0 −1 0

0 0 1

 is the non trivial element of W0. First we

recall the following result.

Lemma 5.1.1. (1) The multiplication map Φ : H × A × K → G,

(h, a, k) → hak is a C∞-surjection, and its tangent map at (h, a, k) is sur-

jective if and only if a �= 1. Moreover we have

g = Ad(a−1)h + a + k

for a ∈ A, a �= 1.

(2) The fiber of Φ above g = hak is given as follows:

Φ−1(g) = {(hl−1, 1, lk)| l ∈ H ∩K} if a = 1,

Φ−1(g) = {(hl−1,Ad(l)a, lk)| l ∈M∗} if a �= 1.

Proof. [R, Theorem 9], [R, Theorem 10]. �

For an admissible representation (η,Fη) of H and a finite dimensional

K-module (τ,W ), let us denote by C∞
W0

(A ;Fη⊗W ) the totality of Fη⊗W -

valued smooth functions on A satisfying

(η(m)⊗ τ(m)
)
ϕ(a) = ϕ(a) (m ∈M, a ∈ A),(5.1.1)
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(
η(w0)⊗ τ(w0)

)
ϕ(a) = ϕ(a−1) (a ∈ A),(5.1.2)

(η(l)⊗ τ(l))ϕ(1) = ϕ(1) (l ∈ H ∩K).(5.1.3)

Lemma 5.1.2. The restriction map

resA : C∞
η,τ (H\G/K) −→ C∞

W0
(A ;Fη ⊗W )

is an isomorphism of C-vector spaces.

Proof. This follows from Lemma 5.1.1. �

Let (τi,Wi) (i = 1, 2) be finite dimensional K-modules. The A-radial

part of any C-linear map A : C∞
η,τ1(H\G/K) −→ C∞

η,τ2(H\G/K) is defined

by a unique C-linear map ρ(A) : C∞
W0

(A ;Fη ⊗Wτ1) → C∞
W0

(A ;Fη ⊗Wτ2)

satisfying resA(AF ) = ρ(A)(resAF ) for every F ∈ C∞
η,τ1(H\G/K).

(5.2) Radial part of shift operators

Let (η,Fη) be an admissible representation of H and (τ,W ) a finite

dimensional representation of K. We need a lemma.

Lemma 5.2.1. Let F ∈ C∞
η,τ (H\G/K).

(1) RXF (g) = −(1Fη ⊗ τ(X))F (g) (g ∈ G) for every X ∈ k.

(2) The value F (g) of F at an arbitrary g ∈ G is a smooth vector of Fη⊗W
and we have

RAd(g−1)Y F (g) = (η(Y )⊗ 1W )F (g)

for every Y ∈ h.

Proof. We omit the proof because it is rather easy. �

The following proposition gives the A-radial part of ∇±
η,τ explicitly.

Proposition 5.2.1. For every ϕ ∈ C∞
W0

(A ;Fη⊗W ) and r > 0, r �= 1,

we have

ρ(∇+
η,τ )ϕ(ar)

(5.2.2)

=
1

2

{
∂1 −

2r2

r4 − 1
η(H ′

13)−
r4 + 1

r4 − 1
(τ ⊗Adp+)(H ′

13) + 2
r2 − 1

r2 + 1
+ 2

r4 + 1

r4 − 1

}
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× (ϕ⊗X13) +

{
2r

r2 + 1
η(X32)−

r2 − 1

r2 + 1
(τ ⊗Adp+)(X12)

}
(ϕ⊗X23),

ρ(∇−
η,τ )ϕ(ar)

(5.2.3)

=
1

2

{
∂1 +

2r2

r4 − 1
η(H ′

13) +
r4 + 1

r4 − 1
(τ ⊗Adp−)(H ′

13) + 2
r2 − 1

r2 + 1
+ 2

r4 + 1

r4 − 1

}
× (ϕ⊗X31) +

{
2r

r2 + 1
η(X23)−

r2 − 1

r2 + 1
(τ ⊗Adp−)(X21)

}
(ϕ⊗X32),

where ∂1ϕ = RH1ϕ and we simply write η(Y ) and τ ⊗ Adp±(X) instead of

η(Y )⊗ 1W⊗p± and 1Fη ⊗ (τ ⊗Adp±)(X) respectively for every Y ∈ hC and

X ∈ kC.

Proof. We first note that

X13 =
r2

r4 − 1
Ad(a−1

r )H ′
13 +

1

2
H1 −

1

2

r4 + 1

r4 − 1
H ′

13,(5.2.4)

X31 =
−r2

r4 − 1
Ad(a−1

r )H ′
13 +

1

2
H1 +

1

2

r4 + 1

r4 − 1
H ′

13,(5.2.5)

X32 =
2r

r2 + 1
Ad(a−1

r )X32 +
r2 − 1

r2 + 1
X12,(5.2.6)

X23 =
2r

r2 + 1
Ad(a−1

r )X23 +
r2 − 1

r2 + 1
X21(5.2.7)

for every r > 0, r �= 1 corresponding to the decomposition gC =

Ad(a−1
r )hC + aC + kC. Take an F ∈ C∞

η,τ (H\G/K) such that ϕ = F |A.

By using (5.2.5), (5.2.6) and Lemma 5.2.1, we have

RX31F (a)

=
−r2

r4 − 1
RAd(a−1)H′

13
F (a) +

1

2
RH1F (a) +

1

2

r4 + 1

r4 − 1
RH′

13
F (a)

=
−r2

r4 − 1

(
η(H ′

13)⊗ 1W
)
F (a) +

1

2
∂1F (a)− 1

2

r4 + 1

r4 − 1

(
1Fη ⊗ τ(H ′

13)
)
F (a)

and

RX32F (a)
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=
2r

r2 + 1
RAd(a−1)X32

F (a) +
r2 − 1

r2 + 1
RX12F (a)

=
2r

r2 + 1

(
η(X32)⊗ 1W

)
F (a)− r2 − 1

r2 + 1

(
1Fη ⊗ τ(X12)

)
F (a).

Hence we have

ρ(∇+
η,τ )ϕ(a)

(5.2.8)

= RX31F (a)⊗X13 +RX32F (a)⊗X23

=

{ −r2

r4 − 1

(
η(H ′

13)⊗ 1W
)
F (a) +

1

2
∂1F (a)

+
−1

2

r4 + 1

r4 − 1

(
1Fη ⊗ τ(H ′

13)
)
F (a)

}
⊗X13

+

{
2r

r2 + 1

(
η(X32)⊗ 1W

)
F (a)− r2 − 1

r2 + 1

(
1Fη ⊗ τ(X12)

)
F (a)

}
⊗X23.

By using the relations [H ′
13, X13] = 2X13 and [X12, X23] = X13, we have(

1Fη ⊗ τ(H ′
13)

)
F (a)⊗X13 =

(
1Fη ⊗ τ ⊗Adp+

)
(H ′

13)
(
F (a)⊗X13

)
− 2

(
F (a)⊗X13

)
and (

1Fη ⊗ τ(X12)
)
F (a)⊗X23 =

(
1Fη ⊗ τ ⊗Adp+

)
(X12)

(
F (a)⊗X23

)
− F (a)⊗X13.

By inserting these to (5.2.8) we finally obtain

ρ(∇+
η,τ )ϕ =

{
1

2
∂1 −

r2

r4 − 1

(
η(H ′

13)⊗ 1W⊗p+

)
+
−1

2

r4 + 1

r4 − 1
(1Fη ⊗ τ ⊗Adp+)(H ′

13)

+
r2 − 1

r2 + 1
+
r4 + 1

r4 − 1

}
ϕ⊗X13

+

{
2r

r2 + 1

(
η(X32)⊗ 1W⊗p+

)
− r2 − 1

r2 + 1

(
1Fη ⊗ τ ⊗Adp+(X12)

)}
ϕ⊗X23.

The computation of ρ(∇−
η,τ ) is similar. �
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(5.3) Radial part of the Casimir operators

Let η be an irreducible admissible representation of H and τ = τλ, λ ∈
L+
T an irreducible finite dimensional representation of K. The A-radial part

ρ(Ωη,λ) is given by the next proposition.

Proposition 5.3.1. For every ϕ ∈ C∞
W0

(A ;Fη ⊗Wλ) and r > 0, r �=
1, we have

2ρ(Ωτ,λ)ϕ(ar)

= ∂2ϕ(ar) +
(
3
r2 − 1

r2 + 1
+
r2 + 1

r2 − 1

)
∂ϕ(ar)

+

[
−
( 2r2

r4 − 1

)2
η(H ′

13)
2 +

( 2r

r2 − 1

)2{−1

2
τ(H ′

13)η(H
′
13)−

1

4
τ(H ′

13)
2
)
}

+
( 2r

r2 + 1

)2{−1

2
τ(H ′

13)η(H
′
13) +

1

4
τ(H ′

13)
2 − η(H ′

13) + τ(H ′
13)

+ 4η(X23)η(X32)− 4τ(X21)τ(X12)
}

+ 4τ(X12)τ(X21) + 4τ(X21)τ(X12) +
1

3
τ(H ′

13 − 2H ′
23)

2

− 8r(r2 − 1)

(r2 + 1)2
{η(X32)τ(X21) + η(X23)τ(X12)}

]
ϕ(ar),

where ∂1ϕ = RH1ϕ and we simply write η(Y ) and τ ⊗ Adp±(X) instead of

η(Y )⊗ 1W⊗p± and 1Fη ⊗ (τ ⊗Adp±)(X) respectively for every Y ∈ hC and

X ∈ kC.

Proof. We can prove this in the same way as Proposition 5.2.1, using

(5.2.i) (i = 4, 5, 6, 7). We omit it. �

§6. Differential equations for the A-radial parts

The computation carried out in this and the next sections is the technical

main body of this paper, which is summarized as follows: since F ∈ Sη,Π(τλ)

has the equivariance property (4.1.1), we may restrict our attention to the

A-radial part F |A. We first show that F |A is determined by a family of

dλ + 1 functions on r > 0, say {ci(r)| 0 � i � dλ} (Lemma 6.1.1), and then

rewrite the system of differential equations (Dη,Λ) in Proposition 4.3.1 in

terms of {ci} (Proposition 6.2.2, 6.2.3 and 6.2.4). In §7, we seek solutions

of the system of difference-differential equations among ci’s thus obtained.
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(6.1)

Let (η,Fη) be an admissible Hilbert representation of H with central

character n ∈ Z that is irreducible or a non-unitary principal series repre-

sentation. Let {vm| m ∈ Lη} be the standard basis of η.

For an integer n and a dominant weight λ = (l1, l2) ∈ L+
T , set

µn,λ :=
l1 + l2 + n

3
,

βn,λ(i) := −i− l2 + µn,λ (i ∈ Z),(6.1.1)

mn,λ(i) := −2i+ µn,λ + dλ (i ∈ Z).

It is easily checked that if µn,λ ∈ Z, then mn,λ(i) ≡ n (mod 2) for every

i ∈ Z.

Lemma 6.1.1.

(1) If µn,λ �∈ Z, then C∞
W0

(A ;Fη ⊗Wλ) = {0}.
(2) Assume that µn,λ ∈ Z. For a given C∞-function ϕ : A → Fη ⊗Wλ,

there exists a unique family of C∞-functions cmi(r) (m ∈ Zε, 0 � i � dλ)

on r > 0 satisfying cmi(r) = 0 for m �∈ Lη and

(6.1.2) ϕ(ar) =

dλ∑
i=0

∑
m∈Zε

cmi(r)(vm ⊗ wλ
i )

for every ar ∈ A. The right hand side converges in the Hilbert space Fη ⊗
Wλ. Furthermore ϕ belongs to the space C∞

W0
(A ;Fη ⊗Wλ) if and only if

the following conditions are satisfied:

cmi is identically zero for m �∈ {mn,λ(i)| 0 � i � dλ }.(6.1.3)

cmn,λ(i),i(r
−1) = (−1)βn,λ(i)cmn,λ(i),i(r)for every r > 0.(6.1.4)

βn,λ(i)cmn,λ(i),i(1) = 0 for i = 0, . . . , dλ.(6.1.5)

Proof. Let {(wλ
i )

∗} be the dual basis of {wλ
i } and γi : Fη⊗CWλ → Fη

denotes the contraction by (wλ
i )

∗. Then ϕi := γi ◦ ϕ becomes a Fη-valued

C∞-map on A and ϕ(a) =
∑dλ

i=0 ϕi(a)⊗ wλ
i , a ∈ A. Since {vm|m ∈ Lη} is
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an orthonormal basis of the Hilbert space Fη, we can expand each ϕi(a) as

follows:

ϕi(ar) =
∑
m∈Lη

cmi(r)vm.

Hence ϕ(a) can be expanded in Fη ⊗C Wλ in the form (6.1.2). Since cmi :

A → C is obtained as the composite of C∞-map ϕi and a bounded linear

form v �→
〈
v, vm

〉
on Fη, it is a C∞-function also. Now we shall rewrite the

condition (5.1.1) and (5.1.2) in terms of coefficients cmi. Since M is the one

parameter subgroup with an infinitesimal generator
√
−1H ′ =

√
−1(2H ′

12−
H ′

13), and since we have

ηn,ν(H
′)vm =

3m− n

2
vm (m ∈ Zε)

and

τλ(H
′)wλ

i = (3i− 2l1 + l2)w
λ
i (0 � i � dλ),

the condition (5.1.1) means

∑
m∈Zε

dλ∑
i=0

{
exp

((3m− n

2
+ 3i− 2l1 + l2

)√
−1θ

)
− 1

}
cmi(r)(vm ⊗ wλ

i ) = 0

(r > 0)

for all θ ∈ R. In other words, cmi = 0 unless
3m− n

2
+ 3i− 2l1 + l2 = 0.

Noting that
3m− n

2
+ 3i − 2l1 + l2 =

3

2
(m −mn,λ(i)), we finally know

that the condition (5.1.1) is equivalent to cmi = 0 for m �∈ {mn,λ(0), . . . ,

mn,λ(dλ)}. Especially if µn,λ �∈ Z, then mn,λ(i) �∈ Z for every i = 0, . . . , dλ
hence we have cmi = 0 for all m and i. This proves (1). Now we prove (2).

It suffices to check that for a given ϕ ∈ C∞
W0

(A ;Fη ⊗Wλ), the conditions

(5.1.1), (5.1.2) and (5.1.3) are equivalent to (6.1.3), (6.1.4) and (6.1.5). We

have already seen the equivalence of (5.1.1) and (6.1.3). Now suppose that

ϕ satisfies (5.1.1). As for the equivalence of (5.1.2) and (6.1.4), by using

w0 = exp
(
π
√
−1(2H ′

13 −H ′
12)

)
, we have

η(w0)vm = exp
(√
−1π(−3m+ n

2
)
)
vm
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and

τλ(w0)w
λ
i = exp

(√
−1π(l1 + l2)

)
wλ
i .

Hence the condition (5.1.2) can be written as follows:

cmi(r) = (−1)
3m+n

2
+l1+l2cmi(r

−1) (r > 0).

After some computations, we can see that
3mn,λ(i) + n

2
+ l1 + l2 ≡ βn,λ(i)

(mod 2), thus we have done. Finally we show the equivalence of (5.1.3)

and (6.1.5). Since we assume that ϕ satisfies (5.1.1) and the group H ∩K
is generated by M and exp(

√
−1R(H ′

12 + H ′
13)), it suffices to require the

condition (5.1.3)

for l ∈ exp(
√
−1R(H ′

12 +H ′
13)). By using the relations

η(H ′
12 +H ′

13)vm = −nvm, τλ(H
′
12 +H ′

13)w
λ
i = (3i− l1 + 2l2)w

λ
i ,

we see that (5.1.3) for l = exp((H ′
12 +H ′

13)
√
−1θ) (θ ∈ R) can be rewritten

as

∑
m∈Zε

dλ∑
i=0

{
exp

(
(−n+ 3i− l1 + 2l2)

√
−1θ

)
− 1

}
cmi(1)vm ⊗ wλ

i = 0,

or equivalently exp((−n+3i− l1 +2l2)
√
−1θ)cmi(1) = cmi(1) for all m and

i. Noting −3βn,λ(i) = −n+ 3i− l1 + 2l2 we have the conclusion. �

(6.2) Difference-differential equations

In Proposition 4.3.1 we present a system of differential equation (Dη,Λ)

with unknown function F which belongs to the space C∞
η,τλ

(H\G/K). On

the other hand we have seen that any member F of this last space is com-

pletely determined by its A-radial part ϕ = resA(F ) or by the dλ + 1

functions ci(r) := cmn,λ(i),i(r) on r > 0 defined in Lemma 6.1.1. We have

to find C∞-solutions of the A-radial part ρ(Dη,Λ) of (Dη,Λ) in terms of ci’s.

So our first task to be carried out is to write down the A-radial part of

shift operators ρ(∇±βi
η,λ ) (i = 1, 2) in the language of ci’s. In the rest of this

subsection, we assume that η = ηn,ν with (n, ν) ∈ Zε × C for ε ∈ {0, 1}.
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Proposition 6.2.1. Let ϕ ∈ C∞
W0

(A ;Fη ⊗Wλ) and let β be an arbi-

trary non compact root. In view of Lemma 6.1.1, we can express ϕ as

(6.2.0) ϕ(ar) =

dλ∑
i=0

ci(r)vmn,λ(i) ⊗ wλ
i

with dλ + 1 C∞-functions ci(r) on r > 0. Then ρ(∇β
η,λ)ϕ is given in terms

of ci’s as follows:

ρ(∇β
η,λ)ϕ(ar) =

dλ+β∑
i=0

c[β]i(r)vmn,λ+β(i) ⊗ wλ+β
i

with

c[+β1]i+1

=
i+ 1

2

{
∂ci +

(
4r2

r4 − 1
µn,λ −

r2 + 1

r2 − 1
(l2 + i)− 2

r2 − 1

r2 + 1
(dλ − i)

)
ci

}
+
r(dλ − i)

r2 + 1
(ν +mn,λ(i)− 1)ci+1 (i = −1, . . . , dλ),

c[−β1]i−1

=
1

2

{
∂ci +

( −4r2

r4 − 1
µn,λ +

r2 + 1

r2 − 1
(l2 + i) + 2

r2 − 1

r2 + 1
(dλ − i+ 1)

)
ci

}
+

r

r2 + 1
(ν −mn,λ(i)− 1)ci−1 (i = 1, . . . , dλ),

c[+β2]i =
−1

2

{
∂ci +

(
4r2

r4 − 1
µn,λ −

r2 + 1

r2 − 1
(l2 + i) + 2

r2 − 1

r2 + 1
(i+ 1)

)
ci

}
+

r

r2 + 1
(ν +mn,λ(i)− 1)ci+1 (i = 0, . . . , dλ − 1),

c[−β2]i =
dλ − i+ 1

2

{
∂ci +

( −4r2

r4 − 1
µn,λ +

r2 + 1

r2 − 1
(l2 + i)− 2

r2 − 1

r2 + 1
i

)
ci

}
− ri

r2 + 1
(ν −mn,λ(i)− 1)ci−1 (i = 0, . . . , dλ + 1).
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Proof. We prove the formulas for ρ(∇−β1

η,λ )ϕ and ρ(∇−β2

η,λ )ϕ only, be-

cause the other cases can be treated similarly. We write mi instead of

mn,λ(i) for simplicity. By using (5.2.3), we first have

ρ(∇−βi
η,λ )ϕ(a) = (1⊗ p−βiλ )ρ(∇−

η,λ)ϕ

(6.2.1)

=
1

2

dλ∑
i=0

{
∂1ci

(
vmi ⊗ p−βiλ (wλ

i ⊗X31)
)

+
2r2

r4 − 1
ci
(
η(H ′

13)vmi ⊗ p−βiλ (wλ
i ⊗X31)

)
+
r4 + 1

r4 − 1
ci
(
vmi ⊗ τλ−βi(H

′
13)p

−βi
λ (wλ

i ⊗X31)
)

+ 2

(
r2 − 1

r2 + 1
+
r4 + 1

r4 − 1

)
ci
(
vmi ⊗ p−βiλ (wλ

i ⊗X31)
)}

+

dλ∑
i=0

{
2r

r2 + 1
ci
(
η(X23)vmi ⊗ p−βiλ (wλ

i ⊗X32)
)

− r2 − 1

r2 + 1
ci
(
vmi ⊗ τλ−βi(X21)p

−βi
λ (wλ

i ⊗X32)
)}

,

where i = 1, 2. We first consider the case i = 2.

Tables (2.1.1) and (3.1.1) give us

τλ−β2(H
′
13)w

λ−β2
i = (i+ l2 − 2)wλ−β2

i ,

τλ−β2(X21)w
λ−β2
i = (i− dλ − 2)wλ−β2

i−1

and

η(H ′
13)vm = −m+ n

2
vm, η(X23)vm =

ν −m+ 1

2
vm−2.

Substituting these and the Clebsch-Gordan formulae (2.2.5) to (6.2.1), we

see that ρ(∇−β2

η,λ ) equals to the following expression:

dλ∑
i=0

1

2
(dλ − i+ 1)

{
∂1ci(vmi ⊗ wλ−β2

i ) +
2r2

r4 − 1
ci

(
−m+ n

2
vmi

)
⊗ wλ−β2

i
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+
r4 + 1

r4 − 1
ci
(
vmi ⊗ (i+ l2 − 2)wλ−β2

i

)
+ 2

(
r2 − 1

r2 + 1
+
r4 + 1

r4 − 1

)
ci(vmi ⊗ wλ−β2

i )

}

+

dλ∑
i=0

{
2r2

r2 + 1
ci

(
ν −m+ 1

2
vmi−2

)
⊗
(
−(i+ 1)wλ−β2

i+1

)
− r2 − 1

r2 + 1
ci
(
vmi ⊗

(
−(i+ 1)(i− dλ − 1)wλ−β2

i

)}

=
1

2

dλ∑
i=0

(dλ − i+ 1)

{
∂1ci +

(
− r2

r4 − 1
(m+ n)

+
r4 + 1

r4 − 1
(l2 + i)− 2

r2 − 1

r2 + 1
i

)}

× (vmi ⊗ wλ−β2
i )−

dλ+1∑
i=0

r

r2 + 1
(ν −mi − 1)ici−1(vmi ⊗ wλ−β2

i ).

Next we compute ρ(∇−β1

η,λ )ϕ(a).

Tables (2.1.1) and (3.1.1) give us

τλ−β1(H
′
13)w

λ−β1
i = (i+ l2 − 1)wλ−β1

i , τλ−β1(X21)w
λ−β1
i = (i− dλ)w

λ−β1
i−1

and

η(H ′
13)vm = −m+ n

2
vm, η(X23)vm =

ν −m+ 1

2
vm−2.

Inserting these and the Clebsch-Gordan formulae (2.2.4) to (6.2.1), we see

that ρ(∇−β1

η,λ ) equals to the following expression:

dλ∑
i=0

1

2

{
∂1ci(vmi ⊗ wλ−β1

i−1 ) +
2r2

r4 − 1
ci

(
−m+ n

2
vmi

)
⊗ wλ−β1

i−1

+
r4 + 1

r4 − 1
ci
(
vmi ⊗ (i− 1 + l2 − 1)wλ−β1

i−1

)
+ 2

(
r2 − 1

r2 + 1
+
r4 + 1

r4 − 1

)
ci(vmi ⊗ wλ−β1

i−1 )

}
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+

dλ∑
i=0

{
2r2

r2 + 1
ci

(
ν −m+ 1

2
vmi−2

)
⊗ wλ−β1

i

)
− r2 − 1

r2 + 1
ci
(
vmi ⊗ (i− dλ)w

λ−β1
i−1

)}

=
1

2

dλ∑
i=0

{
∂1ci + ci

(
− r2

r4 − 1
(mi + n) +

r4 + 1

r4 − 1
(l2 + i− 2)

− 2
r2 − 1

r2 + 1
(i− dλ) + 2

r2 + 1

r2 − 1
+ 2

r4 + 1

r4 − 1

)}
(vmi ⊗ wλ−β1

i−1 )

+

dλ∑
i=1

r

r2 + 1
(ν −mi − 1)ci−1(vmi ⊗ wλ−β1

i−1 ). �

By using Proposition 6.2.1 we obtain the following.

Proposition 6.2.2. Assume Λ ∈ ΞI , and let λ = (l1, l2). Then

ρ(Dη,λ) is equivalent to the following system of differential equations of ci’s:

(A−
ν,λ)i : (dλ − i+ 1)(∂1ci(r) +A−

λi(r)ci(r))

=
2ir

r2 + 1
(ν −mn,λ(i)− 1)ci−1(r)

(i = 0, . . . , dλ + 1),

(B−
ν,λ)i : ∂1ci(r) +B−

λi(r)ci(r) =
−2r

r2 + 1
(ν −mn,λ(i)− 1)ci−1(r)

(i = 1, . . . , dλ),

where

A−
λi(r) =

−4r2

r4 − 1
µn,λ +

r2 + 1

r2 − 1
(l2 + i)− 2

r2 − 1

r2 + 1
i,

B−
λi(r) =

−4r2

r4 − 1
µn,λ +

r2 + 1

r2 − 1
(l2 + i) + 2

r2 − 1

r2 + 1
(dλ − i+ 1).

Proof. Since Λ ∈ ΞI , the system ρ(Dη,Λ) consists of two differential

equations ρ(∇−β2

η,λ )ϕ = 0 and ρ(∇−β1

η,λ )ϕ = 0. �
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Proposition 6.2.3. Assume Λ ∈ ΞII , and let λ = (l1, l2). Then

ρ(Dη,λ) is equivalent to the following system of differential equations of ci’s:

(A+
ν,λ)i : ∂1ci(r) +A+

λi(r)ci(r) =
2r

r2 + 1
(ν +mn,λ(i)− 1)ci+1(r)

(i = 0, . . . , dλ − 1),

(B−
ν,λ)i : ∂1ci(r) +B−

λi(r)ci(r) =
−2r

r2 + 1
(ν −mn,λ(i)− 1)ci−1(r)

(i = 1, . . . , dλ),

where

A+
λi(r) =

4r2

r4 − 1
µn,λ −

r2 + 1

r2 − 1
(l2 + i) + 2

r2 − 1

r2 + 1
(i+ 1),

B−
λi(r) =

−4r2

r4 − 1
µn,λ +

r2 + 1

r2 − 1
(l2 + i) + 2

r2 − 1

r2 + 1
(dλ − i+ 1).

Proof. Since Λ ∈ ΞII , the system ρ(Dη,Λ) consists of two differential

equations ρ(∇+β2

η,λ )ϕ = 0 and ρ(∇−β1

η,λ )ϕ = 0. �

Proposition 6.2.4. Assume Λ ∈ ΞIII , and let λ = (l1, l2). Then

ρ(Dη,λ) is equivalent to the following system of differential equations of ci’s:

(A+
ν,λ)i : ∂1ci(r) +A+

λi(r)ci(r) =
2r

r2 + 1
(ν +mn,λ(i)− 1)ci+1(r)

(i = 0, . . . , dλ − 1),

(B+
ν,λ)i : (i+ 1)(∂1ci(r) +B−

λi(r)ci(r))

=
−2(dλ − i)r

r2 + 1
(ν +mn,λ(i)− 1)ci+1(r)

(i = −1, . . . , dλ),

where

A+
λi(r) =

4r2

r4 − 1
µn,λ −

r2 + 1

r2 − 1
(l2 + i) + 2

r2 − 1

r2 + 1
(i+ 1),

B+
λi(r) =

4r2

r4 − 1
µn,λ −

r2 + 1

r2 − 1
(l2 + i)− 2

r2 − 1

r2 + 1
(dλ − i).

Proof. Since Λ ∈ ΞIII , the system ρ(Dη,Λ) consists of two differential

equations ρ(∇+β2

η,λ )ϕ = 0 and ρ(∇+β1

η,λ )ϕ = 0. �
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§7. An explicit formula of ci

For given n ∈ Z, λ = (l1, l2) ∈ Z
⊕2 and ν ∈ C such that l1 � l2 and

µn,λ = 3−1(l1 + l2 + n) ∈ Z, we have obtained the following three systems

of differential equations with dλ+1 unknown functions ci(r) (i = 0, . . . , dλ)

on r > 0.

(D)I : (A−
ν,λ)i, (B−

ν,λ)i for i = 1, . . . , dλ and (A−
ν,λ)0, (A−

ν,λ)dλ+1,

(D)II : (A+
ν,λ)i, (B−

ν,λ)i for i = 0, . . . , dλ − 1 and (A+
ν,λ)0, (B−

ν,λ)dλ ,

(D)III : (A+
ν,λ)i, (B+

ν,λ)i for i = 0, . . . , dλ − 1 and (B+
ν,λ)−1, (B+

ν,λ)dλ .

Now we shall examine these systems of differential equations and find C∞-

solutions of them.

(7.1) Solution of (D)I or (D)III
We consider the systems (D)I and (D)III first. Note that these were

obtained from (Dη,Λ) in Proposition 4.3.1 with Π being holomorphic or

antiholomorphic discrete series representations of G respectively.

Proposition 7.1.1. The system of differential equations (D)I has a

non trivial C∞-solution if and only if the following conditions on λ, n and

ν are satisfied:

(1) There exists an integer q (1 � q � dλ + 1) such that ν = mn,λ(q) + 1.

(2) µn,λ � l2 + q − 1.

Under the above conditions, the system of differential equations (D)I has,

up to a constant, a unique C∞-solution ci(r) (i = 0, . . . , dλ) given by

ci(r) = Li

(
r − r−1

2

)βn,λ(i)(r + r−1

2

)−µn,λ

(r > 0),

where

Li = 0 (i � q), Lq−1 = 1,

Li =

q−1∏
k=i+1

k − dλ − 1

k − q
(i < q − 1).
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Proof. First assume that ν �= mn,λ(q) + 1 for all q (1 � q � dλ + 1).

From (A−
ν,λ)dλ+1, we have

0 =
2r

r2 + 1
(dλ + 1)(ν −mn,λ(dλ + 1)− 1)cdλ(r).

Since ν �= mn,λ(dλ + 1) + 1, this implies that cdλ(r) = 0. Now using

(B−
ν,λ)i successively and noting that ν �= mn,λ(i) + 1, we obtain ci(r) = 0

for i = 0, . . . , dλ. Next we consider the case of ν = mn,λ(q) + 1 with some

q (q = 1, . . . , dλ + 1). By adding (A−
ν,λ)i and i-times (B−

ν,λ)i, we obtain

(dλ + 1)∂1ci(r) + {(dλ − i+ 1)A−
λi(r) + iB−

λi(r)}ci(r) = 0 (i = 1, . . . , dλ),

hence

(7.1.1) r
d

dr
ci(r)+

( −4r2

r4 − 1
µn,λ+

r2 + 1

r2 − 1
(l2 +i)

)
ci(r) = 0 (i = 1, . . . , dλ).

On the half interval r > 1, this has a unique C∞-solution Ci(r) up to a

multiplicative constant given by

Ci(r) =

(
r − r−1

2

)βn,λ(i)(r + r−1

2

)−µn,λ

(r > 1).

If we define C0(r) by the right hand side of the above formula with

i = 0, then we can check by a direct computation that Ci(r) (i = 0, . . . , dλ)

satisfies

∂1Ci(r) +A−
λi(r)Ci(r) =

−4r

r2 + 1
iCi−1(r),(7.1.2)

∂1Ci(r) +B−
λi(r)Ci(r) =

4r

r2 + 1
(dλ − i+ 1)Ci−1(r).

Since ci(r) (i = 0, . . . , dλ) is a C∞-solution of (7.1.1), ci(r) = KiCi(r) (r >

1) with a constant Ki. Inserting this to (A−
ν,λ)i, (B−

ν,λ)i and using (7.1.2),

we obtain the following recurrence relation:

−2(dλ − i+ 1)Ki = (mn,λ(q)−mn,λ(i))Ki−1 (i = 1, . . . , dλ + 1).
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Using this, we can easily see that Ki (i = 0, . . . , dλ) is determined by Kq−1

and Ki = Kq−1Li for i = 0, . . . , dλ. Especially Ki = 0 if i � q. Noting this

fact, KiCi(r) can be extended to r > 0 smoothly if and only if βn,λ(i) � 0

for i = 0, . . . , q − 1, or equivalently µn,λ � l2 + q − 1. �

Proposition 7.1.2. The system of differential equations (D)III has a

nontrivial C∞-solution if and only if the following conditions on λ, n and

ν are satisfied:

(1) There exists an integer q (−1 � q � dλ−1) such that ν = −mn,λ(q)+1.

(2) µn,λ � l2 + q + 1.

When the above conditions are satisfied, the system of differential equations

(D)III has a unique C∞-solution ci(r) (i = 0, . . . , dλ) up to a multiplicative

constant given by

ci(r) = Li

(
r − r−1

2

)−βn,λ(i)(r + r−1

2

)µn,λ

(r > 0),

where

Li = 0 (i � q), Lq+1 = 1,

Li =
i−1∏

k=q+1

k + 1

q − k
(i > q + 1).

Proof. This can be proved similarly as Proposition 7.1.1. �

(7.2) Solutions of (D)II
Next we treat the system (D)II , which corresponds to the case of Π being

a large discrete series representation of G in the situation of Proposition

4.3.1.

Proposition 7.2.1. If a family of C∞-functions {ci| i = 0, . . . , dλ}
is a solution of the system of differential equations (D)II , then each ci(r)

satisfies the following differential equation:

(Γν,λ)i :
(
r
d

dr

)2
w +

(
r2 + 1

r2 − 1
+ (2dλ + 3)

r2 − 1

r2 + 1

)
r
d

dr
w + Fi(r)w = 0,
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where

Fi(r) = −
( 4r2

r4 − 1
µn,λ

)2

+ {ν2 − (mn,λ(i)− 1)2 − 4(i+ 1)(dλ − i)

+ 2µn,λ(dλ − 2i− 1)}
( 2r

r2 + 1

)2

+ {2µn,λ(l2 + i)− (l2 + i)2}
( 2r

r2 − 1

)2 − (i− l2 − 2dλ − 2)(i− l2 + 2).

Proof. For an integer i with 0 � i < dλ, we have two differential

equations (A+
ν,λ)i and (B−

ν,λ)i+1 with unknown functions ci and ci+1. We

can obviously eliminate ci+1 from these to get a second order differential

equation with only one unknown function ci. After elementary computation

we have (Γν,λ)i. We can also start with (A+
ν,λ)i−1 and (B−

ν,λ)i (0 < i � dλ),

eliminate ci−1 and get the same differential equation (Γν,λ)i of ci. �

Let F (a, b ; c ; z) be the Gauss’s hypergeometric function, which is given

by the following power series expansion on the unit disc |z| < 1:

F (a, b ; c ; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
.

Especially it is C∞ on 0 � z < 1 and F (a, b ; c ; 0) = 1.

Proposition 7.2.2. (1) If i is an integer such that βn,λ(i) � 0, then

(Γν,λ)i has the unique C∞-solution C+
i (ν : r) up to a constant multiple on

the closed half interval r � 1 given by

C+
i (ν : r) =

(r + r−1

2

)−mn,λ(i)−dλ−2(r − r−1

2

)βn,λ(i)

× F

(
mn,λ(i) + 1 + ν

2
,
mn,λ(i) + 1− ν

2
;

1 + βn,λ(i) ;
(r − r−1

r + r−1

)2
)
.
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(2) If i is an integer such that βn,λ(i) � 0, then (Γν,λ)i has the unique

C∞-solution C−
i (ν : r) up to a constant multiple on the closed half interval

r � 1 given by

C−
i (ν : r) =

(r + r−1

2

)mn,λ(i)−dλ−2(r − r−1

2

)−βn,λ(i)

× F

(−mn,λ(i) + 1 + ν

2
,
−mn,λ(i) + 1− ν

2
;

1− βn,λ(i) ;
(r − r−1

r + r−1

)2
)
.

Proof. Let w(r) be a C∞-solution of (Γν,λ)i on r > 1. We make

change of variables from r to z by z =
(r − r−1

r + r−1

)2
.

We simply write βi instead of βn,λ(i). When βi � 0 (resp. βi � 0), set

u(z) =
(r + r−1

2

)α(r − r−1

2

)β
w(r),

here (α, β) = (mn,λ(i)+dλ+2,−βn,λ(i)) (resp. (−mn,λ(i)+dλ+2, βn,λ(i))).

Then u(z) is a C∞ function on 0 < z < 1 that satisfies the hypergeometric

differential equation:

(Γ̃ν,λ)i : z(1− z)
d2u

dz2
+ {(1 + |βi|)− (ai + bi + 1)}du

dz
− aibiu = 0,

with

ai =
mn,λ(i) + 1 + ν

2
, bi =

mn,λ(i) + 1− ν

2
.

(resp. ai =
−mn,λ(i) + 1− ν

2
, bi =

−mn,λ(i) + 1 + ν

2
).

By taking into account the condition that w(r) is smooth at r = 1, we can

conclude that u(z) must be of the form

u(z) = F (ai, bi ; 1 + |βi| ; z), 0 < z < 1.
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Thus we have done. �

Remark. Let i0 be the integer such that βn,λ(i0) = 0. Then we obtain

C+
i0

(ν : r) = C−
i0

(ν : r) by the following wellknown formula of Kummer:

F (a, b ; c ; z) = (1− z)c−a−bF (c− a, c− b ; c ; z).

Lemma 7.2.3. We have

{(1− a− b)z + c− 1}F (a, b ; c ; z) + z(1− z)
ab

c
F (a+ 1 ; b+ 1 ; c+ 1 ; z)

= (c− 1)F (a− 1, b− 1 ; c− 1 ; z).

Proof. This can be checked by comparing the Taylor series expansions

at z = 0 of both sides. �

Proposition 7.2.4. Let C±
i (r) = C±

i (ν : r) (i = 0, . . . , dλ) be the

functions defined in Proposition 7.2.2.

If βn,λ(i) � 0, then

∂C+
i (r) +A+

λi(r)C
+
i (r) = 2βn,λ(i)

2r

r2 + 1
C+
i+1(r),(7.2.1)

∂C+
i (r) +B−

λi(r)C
+
i (r)(7.2.2)

=
(mn,λ(i) + 1− ν)(mn,λ(i) + 1 + ν)

2βn,λ(i− 1)

2r

r2 + 1
C+
i−1(r).

If βn,λ(i) � 0, then

∂C−
i (r) +A+

λi(r)C
−
i (r)(7.2.3)

=
(mn,λ(i)− 1− ν)(mn,λ(i)− 1 + ν)

−2βn,λ(i+ 1)

2r

r2 + 1
C−
i+1(r),

∂C−
i (r) +B−

λi(r)C
−
i (r) = −2βn,λ(i)

2r

r2 + 1
C−
i−1(r).(7.2.4)
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Proof. By making change of variables from r to z =
(r − r−1

r + r−1

)2
, we

can easily deduce these identities from the previous lemma. �

We finally get the following, which gives all C∞-solutions of the system

(D)II .

Proposition 7.2.5. Put qn,λ := min(dλ,max(0, i0)), where i0 is the

integer such that βn,λ(i0) = 0, or explicitly i0 = µn,λ − l2.

For i = 0, . . . , dλ, set

γi(ν : r) = Li(ν)C
+
i (ν : r), Li(ν) =

qn,λ−1∏
k=i

ν +mn,λ(k)− 1

2βn,λ(k)
(i < qn,λ),

γi(ν : r) = Li(ν)C
−
i (ν : r), Li(ν) =

i∏
k=qn,λ+1

ν −mn,λ(k)− 1

2βn,λ(k)
(i > qn,λ)

and γqn,λ
(ν : r) = C+

qn,λ
(ν : r) unless qn,λ = 0 in which case γqn,λ

(ν : r) =

C−
qn,λ

(ν : r). Then {γi(ν : r)| i = 0, . . . , dλ} is,up to a constant, a unique

C∞-solution of the system of differential equations (D)II .

Proof. Given a C∞-solution ci(r) (i = 0, . . . , dλ) of (A+
ν,λ)i, (B−

ν,λ)i,

then each ci(r) is a C∞-solution of (Γν,λ)i. Hence, from Proposition 7.2.2,

there exists a constant Ki satisfying ci(r) = KiC
+
i (r) or ci(r) = KiC

−
i (r)

according as βn,λ(i) > 0 or βn,λ(i) � 0. If 0 � i < qn,λ, then βn,λ(i) >

βn,λ(i + 1) � 0. Inserting ci(r) = KiC
+
i (r) and ci+1(r) = Ki+1C

+
i+1(r) to

(A+
ν,λ)i and (B−

ν,λ)i+1 and using Proposition 7.2.4, we obtain

2βn,λ(i)Ki = (ν +mn,λ(i)− 1)Ki+1.

In the same manner, we have

2βn,λ(i+ 1)Ki+1 = (ν −mn,λ(i+ 1)− 1)Ki

if qn,λ � i � dλ. Using these we can see that Ki (i = 0, . . . , dλ) is determined

uniquely by Kqn,λ
and expressed as Ki = Kqn,λ

Li(ν) (i = 0, . . . , dλ). �
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§8. Main results

(8.1) Summing up the computations in the previous two sections, we can

now tell our main results. Let Π be a discrete series representation of G with

Harish-Chandra parameter Λ ∈ Ξ and far from the wall Blattner parameter

λ = (l1, l2) ∈ L+
T . Recall the definitions of µn,λ, βn,λ(i) and mn,λ(i). (See

(6.1.1).)

Theorem 8.1.1. Assume that Λ ∈ ΞI , i.e. Π is a holomorphic discrete

series representation of G. Then the intertwiner space Iη,Π for η ∈ H̃ is

non zero if and only if
l1 + l2 + n

3
∈ Z and η0 ∼= δ+0

n,k with n, k satisfying

k > 0,
3(k + 1) + n

2
� l1 + l2,(8.1.1)

2l2 − l1 � 3(k + 1)− n

2
� 2l1 − l2.

Under this condition, the space Sη,Π(τλ) is one dimensional and has the

base F given by

F (ar) =

dλ∑
i=0

Li

(
r − r−1

2

)βn,λ(i)(r + r−1

2

)−µn,λ

(vmn,λ(i) ⊗ wλ
i ) (r > 0),

where p is the integer determined by k − 1 = mn,λ(p) and

Li = 0 (i � p), Lp−1 = 1,

Li =

p−1∏
j=i+1

j − dλ − 1

j − p
(i < p− 1).

Proof. Let (η,Fη) be an irreducible admissible representation of H

with central character n ∈ Zε. Let {ε, ε′} = {0, 1}. We have already seen in

Lemma 6.1.1 that µn,λ ∈ Z is a necessary condition for Sη,Π(τλ) �= {0}. By

Proposition 3.2.1, there exists an (hC,K∩H)-module embedding η0 ↪→ η0
n,ν

to some non unitary principal series representation ηn,ν with ν ∈ C. Hence

we have a natural injective linear map Sη̄,Π(τλ) ↪→ Sηn,ν ,Π(τλ) where (η̄,Fη)
means the closure of F0

η in the Hilbert space Vn,ν .



702 Masao Tsuzuki

One should note that the definition of two C-vector spaces Sη,Π(τλ) and

Sη,Π(τλ) depends on topologies of Fη and Fη respectively which may not be

isomorphic. But as a result of Proposition 4.3.1, Lemma 5.1.2, Lemma 6.1.1

and Proposition 6.2.1, the C-vector spaces Sη,Π(τλ) and Sη,Π(τλ) are both

isomorphic to the C∞-solution space of the system of differential equations

(D)I with unknown functions ci(r), i = 0, . . . , dλ, whose definition imvolves

only numerical data determined by λ and the structure of η0 ∼= (η)0. Thus

Sη,Π(τλ) is isomorphic to Sη,Π(τλ) as a C-vector space. By this reason we

may replace η by η and assume Fη is a closed sub H-module of Vn,ν in what

follows. We see that Sη,Π(τλ) �= {0} implies that ν = mn,λ(q) + 1 with q

satisfying 1 � q � dλ + 1 and µn,λ � q + l2 − 1 by using Proposition 7.1.1.

Since k := mn,λ(q) + 1 ∈ Zε′ , the possibility of η0 is δ±0
n,k or σ0

n,−k according

to k � 0 or k < 0. We consider these cases separately. Let q′ be the integer

determined by mn,λ(q
′) = −mn,λ(q).

(1) Assume that η0 ∼= σ0
n,−k. Let ϕ ∈ C∞

W0
(A ;Fη ⊗Wλ) be a non zero

function satisfying the differential equation ρ(Dη,λ) and express it as (6.2.0)

by means of the standard basis of σ0
n,−k and Wλ. Then ci ≡ 0 for i =

0, . . . , dλ such that mn,λ(i) � k − 1 or mn,λ(i) � −k + 1, or equivalently

i � q or i � q′. Since {ci} is a C∞-solution of (D)I , there exists a non zero

constant K satisfying

ci(r) = KLi

(
r − r−1

2

)βn,λ(i)(r + r−1

2

)µn,λ

(r > 0)

where Li (i = 0, . . . , dλ) are the constants given in Proposition 7.1.1. From

the definition, Li = 0 for i � q. Since Li �= 0 for i = 0, . . . , q − 1, q′

must be negative in order that ci ≡ 0 for i � q′. On the other hand, since

q + q′ = dλ + µn,λ and µn,λ � q + l2 − 1, we have q′ � dλ + l2 − 1 = l1 − 1.

Furthermore noting that Λ ∈ ΞI , we have l1 − 1 > 0 and consequently

q′ > 0. But this contradicts the negativity of q′. Thus the possibility of

η0 ∼= σ0
n,k is excluded.

(2) Next we consider the case η0 ∼= δ+0
n,k (k � 0). Let ϕ and {ci} be as in

(1). Then ci ≡ 0 for i = 0, . . . , dλ such that mn,λ(i) � k− 1 or equivalently

i � q. By the same argument as in the case (1), we have

ci(r) = KLi

(
r − r−1

2

)βn,λ(i)(r + r−1

2

)µn,λ

(r > 0)
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with a non zero constant K. Noting that Li = 0 for i � q, this proves

that the space Sη,Π(τλ) is one dimensional. It is easily checked that the

condition 1 � q � dλ + 1 and µn,λ � q + l2 − 1 is equivalent to (8.1.1).

(3) Finally we treat the case η0 ∼= δ−0
n,k (k � 0). Let ϕ and {ci} be as above.

Then ci ≡ 0 for i = 0, . . . , dλ such that mn,λ(i) � −k + 1, or equivalently

i � q′. By using the same argument as (1), we again have a contradiction. �

Theorem 8.1.2. Assume that Λ ∈ ΞIII , i.e. Π is an antiholomorphic

discrete series representation of G. Then the intertwiner space Iη,Π for

η ∈ H̃ is non zero if and only if
l1 + l2 + n

3
∈ Z and η0 ∼= δ−0

n,k with n, k

satisfying

k > 0,
3(−k − 1) + n

2
� l1 + l2,(8.1.2)

− l2 + 2l1 � 3(−k − 1)− n

2
� −l1 + 2l2.

Under this condition, the space Sη,Π(τλ) is one dimensional and has the

base F given by

F (ar) =

dλ∑
i=0

Li

(
r − r−1

2

)−βn,λ(i)(r + r−1

2

)µn,λ

(vmn,λ(i) ⊗ wλ
i ) (r > 0),

where p is the integer determined by k + 1 = mn,λ(p) and

Li = 0 (i � p), Lp+1 = 1,

Li =
i−1∏

j=p+1

j + 1

p− j
(i > p+ 1).

Theorem 8.1.3. Assume Λ ∈ ΞII , i.e. Π is a large discrete series

representation of G. If µn,λ �∈ Z, then Iη,Π = 0 for every η ∈ H̃. Assume

that µn,λ ∈ Z and set qn,λ = min (dλ,max(0, µn,λ − l2)). Then the space

Sη,Π(τλ) for η ∈ Ĥ is described as follows:
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(1) When η is the class of an irreducible unitary principal series represen-

tation ηn,ν , then the space Sη,Π(τλ) is one dimensional and has the base

F (ν) whose A-radial part is given by

F (ν : ar) =

dλ∑
i=0

γi(ν : r)(vmn,λ(i) ⊗ wλ
i ) (r > 0),

γi(ν : r) = Li(ν)
(r + r−1

2

)−εimn,λ(i)−dλ−2(r − r−1

2

)|βn,λ(i)|

× F

(
εimn,λ(i) + 1 + ν

2
,
εimn,λ(i) + 1− ν

2
;

1 + |βn,λ(i)| ;
(r − r−1

r + r−1

)2
)

with

Li(ν) =

qn,λ−1∏
k=i

ν +mn,λ(k)− 1

2βn,λ(k)
(i � qn,λ − 1),

Li(ν) =
i∏

k=qn,λ+1

ν −mn,λ(k)− 1

2βn,λ(k)
(i � qn,λ + 1),

Lqn,λ
(ν) = 1,

where εi expresses +1 or −1 according as βn,λ(i) � 0 or βn,λ(i) < 0 respec-

tively.

(2) When η is the class of a (limit of) discrete series representation δ±0
n,k

with (n, k) satisfying n ≡ k + 1 (mod 2) and k � 0. Then the space Iη,Π is

non zero if and only if

(8.1.3) η0 ∼= δ+0
n,k with k satisfying 0 � k < −2qn,λ + µn,λ + dλ + 1

or

(8.1.4) η0 ∼= δ−0
n,k with k satisfying − 2qn,λ + µn,λ + dλ − 1 < −k � 0.
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Under this condition, the space Sη,Π(τλ) is one dimensional and has the

base given by F (k), where F (k) is given by the same formula in the case

(1).

(3) When η is the class of one dimensional representation σn,1 (n ∈ Z0).

Then the space Iη,Π is non zero if and only if

(8.1.5) −2qn,λ + µn,λ + dλ = 0.

Under this condition, the space Sη,Π(τλ) is one dimensional and has the

base given by F (−1),where F (−1) is given by the same formula in the case

(1).

Proof. Let(η,Fη) be an irreducible admissible representation with

central character n ∈ Z. It is already proved in Lemma 6.1.1 that µn,λ ∈ Z

is a necessary condition for Sη,Π(τλ) �= 0. So we assume that µn,λ ∈ Z. We

may also assume that η is a subrepresentation of ηn,ν . Let ϕ ∈ C∞
W0

(A ;Fη⊗
Wλ) be a non zero function satisfying the differential equation ρ(Dη,λ) and

express it as (6.2.0) by means of the standard basis of η and τλ. Since {ci}
is a C∞-solution of (D)II , there exists a constant K satisfying

ci(r) = Kγi(ν : r) (i = 0, . . . , dλ)

in view of Proposition 7.2.5. The assertions of the case (1) are already

proved in Proposition 7.2.6. We consider the case (2) for δ+0
n,k(⊂ η0

n,k).

Let p be the integer such that k − 1 = mn,λ(p). We have ci ≡ 0 for

i = 0, . . . , dλ such that mn,λ(i) � k − 1, or equivalently i � p. If qn,λ � p,

then cqn,λ
(r) = KC+

qn,λ
(k : r) must be identically zero. Hence K = 0, and

ci ≡ 0 for all i. If qn,λ < p, then we have

ci(r) = K
i∏

j=qn,λ+1

mn,λ(p)−mn,λ(j)

2βn,λ(j)
C−
i (ν : r) = 0

for all i � p. It is easy to see that the condition qn,λ < p is equivalent

to (8.1.3). This proves the assertions for η0 ∼= δ+0
n,k. The case η0 ∼= δ−0

n,k is

treated similarly.

Next we consider the case η = σn,k(⊂ ηn,−k). Let p and p′ be integers

satisfying −k − 1 = mn,λ(p) and k + 1 = mn,λ(p
′). We have ci ≡ 0 for



706 Masao Tsuzuki

mn,λ(i) � −k − 1 or mn,λ(i) � k + 1, or equivalently i � p or i � p′. If

qn,λ � p or qn,λ � p′, then we must have cqn,λ
(r) = Kγqn,λ

(−k : r) ≡ 0, and

hence K = 0. Thus in order that Iη,Π �= 0, it is necessary that p′ < qn,λ < p,

or equivalently −k − 1 < mn,λ(q) < k + 1 holds. On the other hand, we

have mn,λ(q) ≡ k + 1 (mod 2). Hence, k = 1 means that mn,λ(q) = 0. �

§9. The case of principal series representations

In this section, we shall investigate the spaces of Shintani functions

Sη,Π(τλ) when Π is a principal series representation of G.

(9.1) Principal series representations of G

We first parametrize the principal series representations of G as follows.

Let P = MAN be the minimal parabolic subgroup of G with the unipotent

radical N = exp(n) and the Levi part MA ((1.2)). For given n ∈ Z and

s ∈ C, let ξn,s : P → C
∗ denote a quasi character of P defined by

ξn,s(marn) = rsχn(m), ar ∈ A, m ∈M, n ∈ N,

where χn : M → C
(1) stands for the unitary character of M defined by

χn(m) = un, m = diag(u, u−2, u) ∈ M . Then the non-unitary principal

series representation of G with parameter (n, s) ∈ Z × C in C∞ context is

defined by the C∞-induced module Π∞
n,s = C∞IndGP (ξn,s+2). Recall that

the representation space of Π∞
n,s is the Frechet space F∞

n,s+2 consisting of all

C∞-functions f : G→ C with the equivariant property

f(pg) = ξn,s+2(p)f(g), p ∈ P, g ∈ G

and the action Π∞
n,s(g), g ∈ G on F∞

n,s+2 is the right translation:(
Π∞
n,s(g)f

)
(x) = f(xg), f ∈ F∞

n,s+2.

We remark that in the definition of Π∞
n,s the parameter s is shifted by 2

(‘ρ-shift’) so that the action Π∞
n,s(g), g ∈ G is unitary for a purely imaginary

s with respect to the following Hermitian inner product on F∞
n,s+2:

〈
f1, f2

〉
=

∫
K
f1(k)f2(k)dk, f1, f2 ∈ F∞

n,s+2,
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with dk the normalized Haar measure of K. By passing to the comple-

tion with respect to the Hermitian inner product above, we get a bounded

Hilbert representation Πn,s on a Hilbert space Fn,s+2 which contains F∞
n,s+2

as a dense subspace. It is known that F∞
n,s+2 coincides with the space of

C∞-vectors of Πn,s, [B-W, p.106 Theorm 7.5]. We note that the operators

Πn,s(k) with k ∈ K are unitary for all n ∈ Z and s ∈ C. Moreover Π∗
n,s,

the contragredient Hilbert representation of Πn,s, is isomorphic to Π−n,−s
through the pairing Fn,s+2 ×F−n,−s+2 → C given by

(f1, f2) →
〈
f1, f2

〉
=

∫
K
f1(k)f2(k)dk,(9.1.0)

f1 ∈ Fn,s+2, f2 ∈ F−n,−s+2.

The following Lemma is an easy consequence of the formula (2.1.1).

Lemma 9.1.1. Let λ = (l1, l2) ∈ L+
T , a dominant weight, and {wλ

i }
dλ
i=0

the standard basis of Wλ. Then

(9.1.1) τλ(m)wλ
i = χ3i+l2−2l1(m)wλ

i , m ∈M

for i = 0, . . . , dλ. In other words the representation τλ|M is a direct sum of

characters χ3i+l2−2l1 of M with i = 0, . . . , dλ.

Proof. The only point which should be pointed out is that m =√
−1(2H ′

12 −H ′
13)R. �

For a given n ∈ Z, put

(9.1.2) L(n) = {(−n,−n) + n1β1 + n2(−β2)| n1, n2 ∈ Z�0},

a subset of L+
T . The proposition below describes how Πn,s decomposes to

irreducible representations when restricted to K.

Proposition 9.1.2. Let Πn,s be the principal series representation of

G with (n, s) ∈ Z × C. Then Πn,s|K, a unitary representation of K, is a

multiplicity free orthogonal direct sum of irreducible representations whose

highest weights are in L(n). In other words, dimCHomK(τλ,Πn,s|K) is 0

or 1 and it is indeed 1 if and only if λ ∈ L(n).
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Proof. We have a K-isomorphism Πn,s|K ∼= IndKM (χn) by restricting

functions in F∞
n,s+2 to K. Then we can prove the proposition by using the

Frobenius reciprocity applied to representations of a compact group K and

those of its subgroup M , combined with the branching law of τλ|M for

λ = (l1, l2) ∈ L+
T given in Lemma 9.1.1. �

We shall specify a basis of the space F0
n,s+2. Take a λ = (l1, l2) ∈ L(n)

and for every w ∈Wλ define a function j̃λ(w) on K by the equation

(9.1.3) j̃λ(w)(k) =
〈
(wλ

γλ
)∗, τλ(k)w

〉
, k ∈ K,

where {(wλ
i )

∗} is the dual basis of {wλ
i },

〈
,
〉

: W ∗
λ ⊗C Wλ → C stands

for the canonical pairing and γλ = 3−1(n + 2l1 − l2). We note that the

condition λ ∈ L(n) implies that γλ ∈ {0, 1, . . . , dλ}. Indeed, if we write

λ = (−n,−n)+n1β1 +n2(−β2) with non negative integers n1 and n2, then

dλ = n1 + n2 and γλ = n1.

Lemma 9.1.3. The function j̃λ(w) : K → C satisfies

(9.1.4) j̃λ(w)(mk) = χn(m)j̃λ(w)(k), m ∈M, k ∈ K,

thus there exists a unique element jλ(w) of F∞
n,s+2 whose restriction to K

is j̃λ(w). The application w → jλ(w) gives an injective K-homomorphism

jλ from Wλ to F0
n,s+2. The family {fλi | λ ∈ L(n), 0 � i � dλ} with

fλi = jλ(w
λ
i ) provides us with a basis of the C-vector space F0

n,s+2.

Proof. For m ∈M and k ∈ K, we have

j̃λ(w)(mk) =
〈
(wλ

γλ
)∗, τλ(m)τλ(k)w

〉
=

〈
τ∗λ(m−1)(wλ

γλ
)∗, τλ(k)w

〉
= χ3γλ−2l1+l2(m)

〈
(wλ

γλ
)∗, τλ(k)w

〉
= χn(m)j̃λ(w)(k).

This proves (9.1.4). We can easily confirm the equation j̃λ(τλ(k)w)(k′) =

j̃λ(k
′k) for k′, k ∈ K by looking at the definition. Thus we get a K-

homomorphism j̃λ : τλ → C∞IndKM (χn). Since j̃λ(w
λ
γλ

)(1) = 1, this map is

not zero. Because τλ is irreducible, injectivity of j̃λ follows. The remaining

assertions are clear in view of Proposition 9.1.2. �
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(9.2) Differential equations for principal series Shintani

functions

Let Πn,s be the non-unitary principal series representation of G with

(n, s) ∈ Z×C. By Lemma 9.1.1 Πn,s has a unique one dimensional K-type,

namely τ(−n,−n), that is explicitly given by

τ(−n,−n)

(
diag(k1, k2)

)
= det(k1)

−n, k1 ∈ U(2), k2 = det(k1)
−1 ∈ U(1).

By Lemma 9.1.2, the τ(−n,−n)-isotypic subspace of Fn,s is given by

Cf
(−n,−n)
0 . We note that the operator Π∞

n,s(ΩG) on F∞
n,s+2 is given by

(
s2

2
+
n2

6
− 2)1F∞

n,s+2

as is calculated in [O-K, (7.3)]. The following is the main theorem of this

subsection, which should be considered to be an analogue of Proposition

4.3.1.

Theorem 9.2.1. Let Πn,s be a non-unitary principal series represen-

tation of G and η an irreducible admissible Hilbert representation of H.

We assume that Π0
n,s, the underlying (g,K)-module of Πn,s, is irreducible.

Then the application Φ → Φ(f
(−n,−n)
0 ) induces a bijective C-linear map

from Hom(g,K)

(
Π0
n,s, C

∞
η (H\G)

)
to the space of F ∈ C∞

η (H\G) satisfying

the following equations:

RΩG
F (g) =

(s2

2
+
n2

6
− 2

)
F (g), g ∈ G,(9.2.1)

F (gk) = τ(−n,−n)(k)F (g), k ∈ K, g ∈ G.(9.2.2)

Proof. Given a function F ∈ C∞
η (H\G) of the form Φ(f

(−n,−n)
0 ) with

some Φ ∈ Hom(g,K)

(
Π0
n,s, C

∞
η (H\G)

)
. Since f

(−n,−n)
0 is an eigen vector of

Π0
n,s(ΩG) with eigenvalue s2

2 + n2

6 − 2 and belongs to the one dimensional

K-type τ(−n,−n), we get the equations (9.2.1) and (9.2.2) for F noting that

Φ is a (g,K)-homomorphism. The injectivity of Φ → Φ(f
(−n,−n)
0 ) is a

consequence of the irreducibility of Π0
n,s. Indeed the equation Φ(f

(−n,−n)
0 ) =
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0 and a fact that f
(−n,−n)
0 is a cyclic vector of F0

n,s+2 imply Φ(F0
n,s+2) =

Φ(U(gC)f
(−n,−n)
0 ) = RU(gC)Φ(f

(−n,−n)
0 ) = {0}.

Thus we only have to prove the surjectivity of the map Φ → Φ(f
(−n,−n)
0 ).

Take an arbitrary non zero function F ∈ C∞
η (H\G) which satisfies (9.2.1)

and (9.2.2). Then it suffices to show that the (g,K)-submodule of

C∞
η (H\G) generated by F , say VF , is irreducible and isomorphic to Π0

n,s.

Let W be a maximal proper (g,K)-submodule of VF and VF = VF /W the

quotient (g,K)-module, that is irreducible. Since VF is a cyclic U(gC)-

module generated by F and W is a proper U(gC)-submodule, F �∈ W,

or equivalently the image of F in VF , say F̃ , is non zero. Thus VF con-

tains a one dimensional K-type CF̃ ∼= τ(−n,−n). By Casselman’s subrep-

resentation theorem we can find a (g,K)-inclusion VF → Π0
n′,s′ with some

(n′, s′) ∈ Z× C, hence a K-inclusion τ(−n,−n) → VF → Π0
n′,s′ |K. Since the

only one dimensional K-type of Π0
n′,s′ is τ(−n′,−n′) (see Proposition 9.1.1),

we conclude n = n′. Comparing the eigenvalues of the Casimir operators

on VF and Π0
n′,s′ , we have

s2

2
+
n2

6
− 2 =

s′2

2
+
n′2

6
− 2.

Using this and the equation n = n′, we get s = ±s′. Since Π0
n,s is assumed to

be irreducible and VF is also irreducible by definition, we get VF ∼= Π0
n,s

∼=
Π0
n,−s. Now we use Theorem 9.2.2 below taking (−n,−n) for λ0 there. It

claims that the K-spectrum of VF is multiplicity free and contained in that

of Π0
n,s. Noting VF ∼= Π0

n,s, we conclude that the K-spectrum of VF and

that of VF are same. Thus the natural surjection VF → VF turns out to be

bijective and we finally get an isomorphism VF ∼= Π0
n,s. �

Theorem 9.2.2. Let λ0 ∈ L+
T . Given a non zero function F ∈

C∞
η,τλ0

(H\G/K) that satisfies the following equations with a constant cF ∈
C:

∇−β1

η,λ0
F (g) = 0,(9.2.3)

∇+β2

η,λ0
F (g) = 0,(9.2.4)

Ωη,λ0F (g) = cFF (g).(9.2.5)
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By means of the standard basis {wλ0
i } of Wλ0, write F (g) =

∑dλ0
i=0 Fi(g) ⊗

wλ0
i , g ∈ G with Fi ∈ C∞

η (H\G), i = 0, . . . , dλ0. Let VF denote the smallest

(g,K)-submodule of C∞
η (H\G) which contains F0, . . . , Fdλ0

. Then the K-

spectrum of VF is multiplicity free and the highest weight of its arbitrary

irreducible K-submodule is of the form λ0+n1β1+n2(−β2) with non negative

integers n1 and n2.

The rest of this subsection is devoted to give a proof of this theorem.

For every λ ∈ L+
T , let

evλ : C∞
η,τλ

(H\G/K)⊗W ∗
λ → C∞

η (H\G)

denote the natural contraction map. We first have the following

Lemma 9.2.1. Let λ ∈ L+
T , a dominant weight and F ∈ C∞

η,τλ
(H\G/K)

be an arbitrary function. Take w∗ ∈ W ∗
λ and X ∈ p and let w∗

β, β ∈ Σn be

the vectors in W ∗
λ+β determined from w∗ and X by the equations

〈
pβλ(w ⊗ Y ), w∗

β

〉
=

〈
w∗, w

〉〈
X,Y

〉
p
, w ∈Wλ, Y ∈ p.

Then

RX

(
evλ(F ⊗ w∗)

)
(g) =

∑
β∈Σn

evλ+β

(
∇β
λF (g)⊗ w∗

β

)
.

Proof. We can prove this by chasing definitions of various maps with-

out any difficulty. �

For every non negative integer m, let P(m) denote the set of all sequence

of non compact roots of length m, i.e.

P(m) = {I = (α1, . . . , αm)| αi ∈ Σn},

and set P = ∪m∈NP(m). For a given dominant weight λ ∈ L+
T and a

sequence I ∈ P(m), define a sequence λ(0), . . . , λ(m) of elements in LT
by setting λ(0) = λ, λ(i+1) = λ(i) + αi for i = 0, . . . ,m − 1. Adapting

a convention that the symbol τλ′ represent the zero K-module for a non
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dominant λ′ ∈ LT and ∇β
λ′ represent a zero map if either λ′ or λ′ +β is non

dominant, we define a linear operator

∇I : C∞
η,τλ

(H\G/K) → C∞
η,τλ{I}

(H\G/K)

as a composite ∇αm

η,λ(m−1) ◦ · · · ◦ ∇α1

η,λ(0) , where λ{I} = λ(m).

If a given I = (α1, . . . , αm) ∈ P(m) is of the form α1 = · · · = αm = β,

then we write ∇mβ instead of ∇I .

Lemma 9.2.2. Let λ ∈ L+
T and F ∈ C∞

η,τλ
(H\G/K). Then we have

(9.2.6) VF ⊂
∑
I∈P

evλ{I}
(
∇I
λF ⊗W ∗

λ{I}
)
.

Proof. Set Fi = evλ(F⊗(wλ
i )

∗), i = 0, . . . , dλ. Let V(m)
F denote the C-

span of functions of the form RX1···XqFi with i = 0, . . . , dλ and X1, . . . , Xq ∈
pC, q � m. Since the C-span of elements Fi, i = 0, . . . , dλ is invariant under

the action of kC, and U(gC) is a sum of subspaces of the form X1 · · ·XqU(kC)

with Xi ∈ p, VF coincides with the sum of V(m)
F , m ∈ N. Using Lemma

9.2.1, we can show by an induction on m that V(m)
F is contained in the right

hand side of (9.2.6). �

Lemma 9.2.3. Let Q(m) denote the subset of P(m) consisting of all

J = (αi)1�i�m with αi = +β1 or −β2. Take a J = (α1, . . . , αm) ∈ Q(m)

and let n1 (resp. n2) be the number of i such that αi = +β1 (resp. αi = −β2).

Let F ∈ C∞
η,τλ

(H\G/K) be an eigen function of Ωη,λ with eigen value cF .

(1) We have

∇JF = ∇n1β1 ◦ ∇n2(−β2)F = ∇n2(−β2) ◦ ∇n1β1F

and ∇JF ∈ C∞
η,τλ{J}

(H\G/K) is an eigen function of Ωη,λ{J} with the eigen

value cF .

(2) There exist constants c′F and c′′F such that

∇−β1 ◦ ∇JF −∇J ◦ ∇−β1F = c′F∇n2(−β2) ◦ ∇(n1−1)β1F,

∇+β2 ◦ ∇JF −∇J ◦ ∇+β2F = c′′F∇n1β1 ◦ ∇(n2−1)(−β2)F.
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Proof. This can be easily proved using Theorem 4.5.1 by an induction

on the length of J . �

Lemma 9.2.4. Let F be as in Theorem 9.2.2. Take an arbitrary I =

(α1, . . . , αm) ∈ P(m). Then ∇IF can be expressed as a constant multiple

of a function of the form ∇n2(−β2) ◦ ∇n1β1F with non negative integers n1

and n2.

Proof. If m � 1, then the statement is true because of the differential

equation (9.2.3) and (9.2.4) for F . Assume that m > 1 and the statement is

true for any sequence I with length smaller than m. Let I = (α1, . . . , αm) ∈
P(m) and i denotes the smallest integer i such that αi = −β1 or +β2

when such i exists and i = +∞ otherwise. If i = +∞, i.e. there appears

neither −β1 nor +β2 in I, then I ∈ Q(m) and by the Lemma 9.2.3 (1) the

statement is true. Now suppose i � m. We can write I = (J, β, I ′) with

J = (α1, . . . , αi−1), β = αi and I ′ = (αi+1 . . . , αm) and correspondingly

∇IF = ∇I′ ◦ ∇β ◦ ∇JF.

By the definition of i, we see that J ∈ Q(i − 1). Let n1 (resp. n2) denote

the number of appearances of +β1 (resp. −β2) in J . Now applying Lemma

9.2.3 (2), there exists a constant c such that

∇β ◦ ∇JF = ∇J ◦ ∇βF + c∇n′
1β1 ◦ ∇n′

2(−β2)F

with (n′1, n
′
2) = (n1 − 1, n2) or (n1, n2 − 1) depending on β = −β1 or β2.

Hence we get

∇IF = ∇I′ ◦ ∇J ◦ ∇βF + c∇I′ ◦ ∇n′
1β1 ◦ ∇n′

2(−β2)F.

As a result of (9.2.3) and (9.2.4), the first term in the right hand side

of the above identity is zero because β = −β1 or +β2. Thus we have

∇IF = c∇(J ′,I′)F for J ′ = (−β2, . . . ,−β2,+β1, . . . ,+β1) with β1 appear-

ing n′1 times and −β2 appearing n′2 times. Since the length of (I ′, J ′) is

smaller than that of I, the statement is now established for I because of

the induction assumption. �
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By Lemma 9.2.3 and Lemma 9.2.4 we have

VF ⊂
∑

n1,n2∈Z+

evλ0+n1β1+n2(−β2)(∇n1β1 ◦ ∇n2(−β2)F ⊗W ∗
λ0+n1β1+n2(−β2)).

This completes the proof of Theorem 9.2.2.

(9.3) Radial part of principal series Shintani functions

Let Πn,s be the principal series representation of G with (n, s) ∈ Z× C

and (η,Fη) an irreducible admissible representation of H. Now we state

the main result of this section.

Theorem 9.3.1. Let η be an irreducible admissible representation of

H realized as a submodule of ηγ,ν (γ ∈ Z, ν ∈ C) and let {vm| m ∈ Lη}
be its standard basis. Let (Πn,s,Fn,s+2) be a non unitary principal series

representation of G with (n, s) ∈ Z × C. We identify the contragredient

of Πn,s with Π−n,−s through the pairing (9.1.0). Let {fλ∗i | λ ∈ L(n), 0 �
i � dλ} be the basis of F0

−n,−s+2 constructed in Lemma 9.1.2. Here we set

λ∗ = (−l2,−l1) for a given λ = (l1, l2) ∈ LT .

(1) Then
γ − 2n

3
∈ Lη is a necessary and sufficient condition for Iη,Πn,s �=

{0}. Under this condition, there exists a unique Φ0 ∈ Iη,Πn,s such that

Φ0(f
(n,n)
0 )(ar)(9.3.1)

=
(r − r−1

2

)|βn,γ |(r + r−1

2

)s−2−|βn,γ |

× F

(−s− ν + |βn,γ |+ 1

2
,
−s+ ν + |βn,γ |+ 1

2
;

1 + |βn,γ |,
(r − r−1

r + r−1

)2
)
vβn,γ−n

with βn,γ = 3−1(n+ γ).

Proof. Since 3−1(γ − 2n) ∈ Lη is a necessary and sufficient condition

for C∞
W0

(A ;Fη ⊗W(−n,−n)) �= {0} (Lemma 6.1.1), we assume this in what

follows and show that dimCIη,Π = 1. Every F ∈ Sη,Πn,s(τ(−n,−n)) satisfies

(9.3.2) Ωη,(n,n)F (g) = (
1

2
s2 +

1

6
n2 − 2)F (g).
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From this we get a differential equation of A-radial part F |A by using

Proposition 5.3.1. The function given by (9.3.1) is a C∞-solution of this

equation that is unique up to a constant multiple. By Theorem 9.2.1,

the space Iη,Πn,s is isomorphic to the C∞-solution space of the differential

equation (9.3.2) with unknown function F ∈ C∞
η,τ(−n,−n)

(H\G/K). Thus

dimCIη,Π = 1. �

Remark. Theorem 9.3.1 gives an explicit formula of principal series

Shintani function with one dimensional K-type. As for Shintani functions

with more general K-type, we can get their explicit form by applying the

formulas (9.3.4) and (9.3.5) below sucsessively. For every λ ∈ L(n), set

(9.3.3) F λ(g) =

dλ∑
i=0

(−1)i
i!(dλ − i)!

dλ!
Φ0(f

λ∗
dλ−i)(g)⊗ wλ

i , g ∈ G.

Then F λ : G → Fη ⊗Wλ gives a basis of Sη,Π(λ) and the family {F λ| λ ∈
L(n)} satisfies

a+
i (λ)F λ+βi(g) = ∇βi

η,λF
λ(g),(9.3.4)

a−i (λ)F λ−βi(g) = ∇−βi
η,λ F

λ(g)(9.3.5)

for every λ ∈ L(n) and i = 1, 2. Here a+
i (λ), a−i (λ), i = 1, 2 are given by

a+
1 (λ) =

s+ n+ 2l2 + 2

2(dλ + 1)
, a+

2 (λ) =
(γλ − dλ)(s+ n+ 2l1 + 4)

2(dλ + 1)
,

a−1 (λ) =
γλ(s− n− 2l2 + 4)

2(dλ + 1)
, a−2 (λ) =

s− n− 2l1 + 2

2(dλ + 1)
.

Appendix 1

In this appendix, we shall give an explicit formula of matrix coeffi-

cients of discrete series representations of G. Let (Π, H) be a discrete

series representation of G with Harish-Chandra parameter Λ ∈ Ξ. Let

(τλ,Wλ) (λ = (l1, l2) ∈ L+
T ) be the minimal K-type of Π. Then the K-

module Π|K contains τλ exactly once. We fix a K-embedding τλ → Π|K
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such that the standard basis {wλ
i } becomes an orthonormal system in H.

Set

cij(g) =
〈
wλ
i ,Π(g)wλ

j

〉
(g ∈ G, 0 � i, j � dλ),

and

Φλ(g) =

dλ∑
i,j=0

cij(g)(w
λ
i )

∗ ⊗ wλ
j (g ∈ G),

where {(wλ
i )

∗} is the dual basis of {wλ
i } and

〈
,
〉

is the Hermitian inner

product of the Hilbert space H. The functions cij (0 � i, j � dλ) or Φλ are

called matrix coefficients of Π with minimal K-type. It is easily checked

that

Φλ(k
′gk) = (τ∗λ(k′)⊗ τλ(k

−1))Φλ(g)

for every k′, k ∈ K and g ∈ G. Since we have the Cartan decomposition

G = KAK, A-radial part Φλ|A completely determines Φλ.

Theorem A.1.1. The radial part Φλ|A is given as follows:

cij |A = 0 unless i = j.

If Λ ∈ ΞI , then

cii(ar) =
(r + r−1

2

)−l2−i.
If Λ ∈ ΞII , then

cii(ar) =
(r + r−1

2

)l2−i−2
F

(
i+ 1,−l2 + 1 ; dλ + 2 ;

(r − r−1

r + r−1

)2
)
.

If Λ ∈ ΞIII ,then

cii(ar) =
(r + r−1

2

)l2+i
.

Proof. Since the computation can be carried out in exactly the same

manner with the case of Shintani functions, we shall give an outline briefly.

The W ∗
λ⊗Wλ-valued function Φλ satisfies the equation Dτ∗λ ,τλΦλ = 0, where

Dτ∗λ ,τλ is the Schmid operator defined in §5. We first calculate the A-radial

part of Dτ∗λ ,τλ using the Cartan decomposition G = KAK in this case. By

solving the radial part of the differential equations thus obtained, we have

the result. �
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Appendix 2

In this appendix H stands for an arbitrary closed subgroup of G and

(η,Fη) an arbitrary bounded Hilbert representation of H.

The aim of this appendix is to give a proof of Theorem 4.5.1. For

that purpose, we introduce operators Tλ, Sλ and Aλ associated to T 2(p) =

p⊗R p, Sym2(p) and Alt2(p) respectively, where Sym2(p) denotes the space

of symmetric tensors of degree 2 over p and Alt2(p) the space of alternating

tensors of degree 2 over p. For X, Y ∈ p, the image of X⊗Y ∈ T2(p) under

the natural surjection T2(p) → Sym2(p) (resp. T2(p) → Alt2(p)) is denoted

by X ·Y (resp. X ∧Y ). Let jsp : Sym2(p) → T2(p) and jap : Alt2(p) → T2(p)

stand for the natural maps such that

jsp(X · Y ) =
1

2
(X ⊗ Y + Y ⊗X), X ∈ p, Y ∈ p,

jap (X ∧ Y ) =
1

2
(X ⊗ Y − Y ⊗X), X ∈ p, Y ∈ p.

Obviously jsp (resp. jap ) provides a section of the natural surjection T2(p) →
Sym2(p) (resp. T2(p) → Alt2(p)); jsp and jap are injective and jsp ⊕ jsp gives

a K-isomorphism from Sym2(p)⊕Alt2(p) onto T2(p). Let
〈
,
〉
T2(p)

denote

the inner product of T2(p) induced by
〈
,
〉
p
, i.e.

〈
X ⊗ Y,X ′ ⊗ Y ′〉

T2(p)
=

〈
X,X ′〉

p

〈
Y, Y ′〉

p
, X, Y, X ′, Y ′ ∈ p.

If {Xi}4
i=1 is an orthonormal basis of p, then

(A.2.0) Xi ⊗Xj (1 � i, j � 4)

provides an orthonormal basis of T2(p).

By means of the injections jsp and jap , we can induce inner products〈
,
〉
Sym2(p)

of Sym2(p) and
〈
,
〉
Alt2(p)

of Alt2(p) from
〈
,
〉
T2(p)

. It is easy

to see that〈
X · Y,X ′ · Y ′〉

Sym2(p)
=

1

2

(〈
X,X ′〉

p

〈
Y, Y ′〉

p
+
〈
X,Y ′〉

p

〈
X ′, Y

〉
p

)
,〈

X ∧ Y,X ′ ∧ Y ′〉
Alt2(p)

=
1

2

(〈
X,X ′〉

p

〈
Y, Y ′〉

p
−
〈
X,Y ′〉

p

〈
X ′, Y

〉
p

)
,
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X, Y, X ′, Y ′ ∈ p.

Note that if {Xi}4
i=1 is an orthonormal basis of p, then

(A.2.1) Xi ·Xi (1 � i � 4),
√

2Xi ·Xj (1 � i < j � 4)

provide orthonormal basis of Sym2(p) and

(A.2.2)
√

2Xi ∧Xj (1 � i < j � 4)

provides that of Alt2(p).

Let ψ : T2(p) → U(gC) denote the map which sends each element X⊗Y

of T2(p) to a degree 2 element Y X of U(gC). It is easy to see that ψ is a

K-homomorphism, where we consider U(gC) as a K-module by the action

induced from the adjoint action of K on gC. Now we set

(A.2.3) TλF (g) =
∑
k

Rψ(xk)F (g)⊗ xk, F ∈ C∞
η,τλ

(H\G/K)

with {xk} an orthonormal basis of T2(p). Then the right hand side of the

above identity does not depend on the choice of {xk} and Fη⊗CWλ⊗RT
2(p)-

valued C∞-function g → TλF (g) belongs to C∞
η,τλ⊗T2(pC)(H\G/K). Thus

we get an operator

Tλ : C∞
η,τλ

(H\G/K) → C∞
η,τλ⊗T2(pC)(H\G/K).

In the same way, by setting

SλF (g) =
∑
i

Rψ◦jsp (zi)F (g)⊗ zi, F ∈ C∞
η,τλ

(H\G/K),(A.2.4)

AλF (g) =
∑
j

Rψ◦jap (yj)F (g)⊗ yj , F ∈ C∞
η,τλ

(H\G/K)(A.2.5)

with {zi} and {yj} orthonormal basis of Sym2(p) and Alt2(p) respectively,

we get operators

Sλ : C∞
η,τλ

(H\G/K) → C∞
η,τλ⊗Sym2(pC)(H\G/K),
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Aλ : C∞
η,τλ

(H\G/K) → C∞
η,τλ⊗Alt2(pC)(H\G/K)

respectively.

Lemma A.2.1. Let {Xi}4
i=1 be an orthonormal basis of p. Then for

every F ∈ C∞
η,τλ

(H\G/K), we have

TλF (g) =
4∑

i,j=1

RXiRXjF (g)⊗ (Xj ⊗Xi),(A.2.6)

SλF (g) =
4∑
i=1

RXiRXiF (g)⊗ (Xi ·Xi)(A.2.7)

+
∑

1�i<j�4

(RXiRXjF (g) +RXjRXiF (g))⊗ (Xi ·Xj),

AλF (g) =
∑

1�i<j�4

R[Xi,Xj ]F (g)⊗ (Xj ∧Xi)(A.2.8)

and

TλF (g) = (1Fη⊗Wλ
⊗ jsp)SλF (g) + (1Fη⊗Wλ

⊗ jap )AλF (g).(A.2.9)

Proof. The formula (A.2.9) follows from the definitions (A.2.3),

(A.2.4) and(A.2.5), because jsp ⊕ jap gives an isometrical isomorphism from

Sym2(p) ⊕ Alt2(p) onto T2(p). We can easily prove the formulas (A.2.6),

(A.2.7) and (A.2.8) by direct computations taking orthonormal basis

(A.2.0), (A.2.1) and (A.2.2) for {xk}, {zi} and {yj} respectly. �

For a given λ ∈ L+
T , let

jsλ : Wλ ⊗R Sym2(p) →Wλ ⊗R T2(p),

jaλ : Wλ ⊗R Alt2(p) →Wλ ⊗R T2(p),

κλ : Wλ ⊗R T2(p) →Wλ

denote the natural maps defined by

jsλ(w ⊗X · Y ) = w ⊗ jsp(X · Y ),(A.2.10)
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jaλ(w ⊗X ∧ Y ) = w ⊗ jap (X ∧ Y ),(A.2.11)

κλ(w ⊗X ⊗ Y ) =
1

2

〈
X,Y

〉
p
w(A.2.12)

for w ∈Wλ, X, Y ∈ p. These are obviously K-homomorphisms.

For a given pair of non compact roots (β, β′) and a given dominant

weight λ ∈ L+
T , define a K-homomorphism πβ,β

′

λ : Wλ⊗R T2(p) →Wλ+β+β′

by

(A.2.13) πβ,β
′

λ = pβλ+β′ ◦ (pβ
′

λ ⊗ 1p),

where for a non compact root β and a dominant weight λ, pβλ : Wλ ⊗R p →
Wλ+β denotes the K-projector specified in Proposition 2.2.1.

Lemma A.2.2. Let λ ∈ L+
T , a dominant weight and (β, β′) a pair of

non compact root.

(1) If β �= −β′, then in the space HomK(τλ ⊗R Sym2(p), τλ+β+β′), the fol-

lowing identity holds:

(A.2.14; β, β′) πβ,β
′

λ ◦ jsλ = πβ
′,β

λ ◦ jsλ.

(2) For β = β1 or β2, the following identity holds in the space HomK(τλ⊗R

Sym2(p), τλ):

(A.2.15; β) π−β,β
λ ◦ jsλ − πβ,−βλ ◦ jsλ = κλ ◦ jsλ.

Proof. We only give a proof of (A.2.14; β1, β2) since the remaining

identities can be proved quite similarly. Let {wλ
i } be the standard basis of

Wλ. Then

wλ
i ⊗ (X13 ·X13), w

λ
i ⊗ (X13 ·X23), w

λ
i ⊗ (X23 ·X23),

wλ ⊗ (X13 ·X31), w
λ
i ⊗ (X13 ·X32), w

λ
i ⊗ (X23 ·X31), w

λ
i ⊗ (X23 ·X32),

wλ
i ⊗ (X31 ·X31), w

λ
i ⊗ (X31 ·X32), w

λ
i ⊗ (X32 ·X32)

with i = 0, . . . , dλ provides a basis of the C-vector space Wλ ⊗R Sym2(p) =

Wλ ⊗C Sym2(p)C. It suffices to check that πβ1,β2

λ ◦ jsλ and πβ2,β1

λ ◦ jsλ take
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the same value on the basis above. By using Proposition 2.2.1 and the

definition (A.2.10) of the map jsλ, we easily prove

πβ1,β2

λ ◦ jsλ(wλ
i ⊗ (X13 ·X13)) = πβ2,β1

λ ◦ jsλ(wλ
i ⊗ (X13 ·X13))

= −(i+ 1)wλ′
i+1,

πβ1,β2

λ ◦ jsλ(wλ
i ⊗ (X13 ·X23)) = πβ2,β1

λ ◦ jsλ(wλ
i ⊗ (X13 ·X23))

=
1

2
(2i− dλ)w

λ′
i ,

πβ1,β2

λ ◦ jsλ(wλ
i ⊗ (X23 ·X23)) = πβ2,β1

λ ◦ jsλ(wλ
i ⊗ (X23 ·X23))

= (dλ − i+ 1)wλ′
i−1

with λ′ = λ+ β1 + β2 and the remaining values are all zero. Thus we have

done. �

Lemma A.2.3. Let F ∈ C∞
η,τλ

(H\G/K). Then for every pair of non

compact rooots (β, β′), we have

(A.2.16) ∇β
η,λ+β′ ◦ ∇β′

η,λF (g) =
(
1Fη ⊗ πβ,β

′

λ

)
TλF (g).

Proof. Take an orthonormal basis {Xi}4
i=1 of p. By definition we have

∇β′

η,λF (g) = (1Fη ⊗ pβ
′

λ )∇η,λF (g),

∇η,λF (g) =
4∑

j=1

RXjF (g)⊗Xj

hence

∇η,λ+β′ ◦ ∇β′

η,λF (g) =
4∑
i=1

RXi [(1Fη ⊗ pβ
′

λ )∇η,λF ](g)⊗Xi

= (1Fη ⊗ pβ
′

λ ⊗ 1p)
4∑
i=1

RXi∇η,λF (g)⊗Xi

= (1Fη ⊗ pβ
′

λ ⊗ 1p)
4∑
i=1

RXi(
4∑

j=1

RXjF (g)⊗Xj)⊗Xi
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= (1Fη ⊗ pβ
′

λ ⊗ 1p)(TλF (g)),

where we have used (A.2.6) in the last step. Noting that

∇β
η,λ+β′ ◦ ∇β′

η,λF (g) = (1Fη ⊗ pβλ+β′)∇η,λ+β′ ◦ ∇β′

η,λF (g)

we have done. �

We define a K-homomorphism γ : Alt2(p) → k by

γ : Alt2(p) → k, X ∧ Y → 1

2
[Y,X].

For every dominant weight λ ∈ L+
T , set

ιλ(w) =
∑
j

τλ(γ(yj))w ⊗ yj , w ∈Wλ

with {yj} an orthonormal basis of Alt2(p). Then we can prove that the

right hand side of the above identity is independent of the choice of {yj}
and get a K-equivariant linear map ιλ : Wλ →Wλ ⊗R Alt2(p).

Lemma A.2.4. Let λ = (l1, l2) ∈ L+
T , a dominant weight and F ∈

C∞
η,τλ

(H\G/K).

(1) We have

(A.2.17) AλF (g) = (1Fη ⊗ ιλ)F (g), g ∈ G.

(2) For every pair of noncompact roots (β, β′) such that β �= −β′, we have

(A.2.18; β, β′) [1Fη ⊗ (πβ,β
′

λ ◦ jaλ)]AλF (g) = 0,

(3) For β = β1 or −β2, we have

[1Fη ⊗ (πβ,−βλ ◦ jaλ)]AλF (g) = −1

2
(dλ + dλl1 + c)F (g),(A.2.19;β)

[1Fη ⊗ (π−β,β
λ ◦ jaλ)]AλF (g) =

1

2
(l1 + l2 + dλ + dλl1 + c)F (g).(A.2.20;β)
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Here c = −δβ,−β2dλ(dλ + 2).

Proof. (1) Let {yν} be an orthonormal basis of Alt2(p). By the def-

inition (A.2.5), we have

AλF (g) =
∑
ν

Rψ◦jap (yν)F (g)⊗ yν .

Since ψ ◦ jap (yν) = γ(yν) ∈ k( ⊂ U(gC)), the K-equivariant property of

F means Rψ◦jap (yν)F (g) = τλ(γ(yν))F (g), thus the above identity can be

rewritten as

(A.2.21) AλF (g) =
∑
ν

τλ(γ(yν))F (g)⊗ yν .

Now by means of the standard basis {wλ
i } of Wλ, we can write F (g) as

F (g) =

dλ∑
i=0

Fi(g)⊗ wλ
i , g ∈ G

with Fi ∈ Cη(H\G) for i = 0, . . . , dλ. Substituting this for F (g) in (A.2.21),

we have

AλF (g) =
∑
i

Fi(g)⊗
∑
ν

τλ(γ(yν))w
λ
i ⊗ yν

=
∑
i

Fi(g)⊗ ιλ(w
λ
i )

= (1Fη ⊗ ιλ)F (g).

(2) Since the map πβ,β
′

λ ◦ jaλ ◦ ιλ provides a K-homomorphism from τλ to

τλ+β+β′ , it must be zero if β + β′ �= 0. Thus using (A.2.17), we have

[1Fη ⊗ πβ,β
′

λ ◦ jaλ]AλF (g) = [1Fη ⊗ πβ,β
′

λ ◦ jaλ ◦ ιλ]F (g) = 0.

(3) Let q denote the orthogonal complement of ker(γ) with respect to〈
,
〉
Alt2(p)

. Then q has an orthonormal basis given by

√
−2(X31 ∧X13),

√
−2(X32 ∧X23),
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X13 ∧X32 −X23 ∧X31,
√
−1(X13 ∧X32 +X23 ∧X31).

In the definition of the map ιλ we can take an orthonormal basis {yj} of

Alt2(p) which contains the above basis of q as a subset. As a result, we

have

ιλ(w) = −τλ(H ′
13)w ⊗ (X31 ∧X13)− τλ(H

′
23)w ⊗ (X32 ∧X23)

− τλ(X21)w ⊗ (X13 ∧X32) + τλ(X12)w ⊗ (X23 ∧X31)

after some computations. Taking wλ
i for w and using (2.1.1), we have

ιλ(w
λ
i ) =− {(i+ l2)w

λ
i ⊗ (X31 ∧X13)(A.2.22)

− (i− l1)w
λ
i ⊗ (X32 ∧X23)

+ (i− dλ − 1)wλ
i−1 ⊗ (X13 ∧X32)

− (i+ 1)wλ
i+1 ⊗ (X23 ∧X31)}.

Now we prove (A.2.18; β1). By using the formulas in Proposition 2.2.1, we

can easily obtain the following:

πβ1,−β1

λ ◦ jaλ(wλ
i ⊗ (X31 ∧X13)) =

1

2
iwλ

i ,(A.2.23)

πβ1,−β1

λ ◦ jaλ(wλ
i ⊗ (X32 ∧X23)) =

1

2
(dλ − i)wλ

i ,

πβ1,−β1

λ ◦ jaλ(wλ
i−1 ⊗ (X13 ∧X32)) = −1

2
iwλ

i ,

πβ1,−β1

λ ◦ jaλ(wλ
i+1 ⊗ (X23 ∧X31)) = −1

2
(dλ − i)wλ

i .

Using (A.2.17), (A.2.22) and (A.2.23), we proceed as follows to get the

desired identity:

− 2[1Fη ⊗ πβ1,−β1

λ ◦ jaλ] ◦ AλF (g)

=

dλ∑
i=0

Fi(g)⊗ {(i+ l2)i− (i− l1)(dλ − i)

− i(i− dλ − 1) + (dλ − i)(i+ 1)}wλ
i
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=

dλ∑
i=0

Fi(g)⊗ dλ(l1 + 1)wλ
i

= dλ(l1 + 1)F (g).

The remaining identities in (3) can be proved in the same way. �

Now we give a proof of (4.5.1; β, β′). By Lemma A.2.3, (A.2.9),

(A.2.14; β, β′) and (A.2.18; β, β′), we proceed as follows to get the con-

clusion:

∇β
η,λ+β′ ◦ ∇β′

η,λF (g)−∇β′

η,λ+β ◦ ∇
β
η,λF (g)

= [1Fη ⊗ πβ,β
′

λ − 1Fη ⊗ πβ
′,β

λ ] ◦ TλF (g)

= [1Fη ⊗ πβ,β
′

λ − 1Fη ⊗ πβ
′,β

λ ] ◦ (1Fη ⊗ jsλ ◦ SλF (g) + 1Fη ⊗ jaλ ◦ AλF (g))

= 0.

The formula (4.5.2; β1) can be verified as below: First using Lemma A.2.3,

(A.2.9), (A.2.15; β1) and (A.2.19; β1), we have

∇−β
η,λ+β ◦ ∇

β
η,λF (g)−∇β

η,λ−β ◦ ∇
−β
η,λF (g)(A.2.24)

= [1Fη ⊗ π−β,β
λ − 1Fη ⊗ πβ,−βλ ]

◦ {(1Fη ⊗ jsλ)SλF (g) + (1Fη ⊗ jaλ)AλF (g)}

= [1Fη ⊗ κλ ◦ jsλ]SλF (g) +
1

2
(l1 + l2 + 2dλ + 2l1dλ)F (g)

By using (A.2.7), we have

1Fη ⊗ κλ ◦ jsλSλF (g)(A.2.25)

= [1Fη ⊗ κλ]{
4∑
i=1

RXiRXiF (g)⊗ jsp(Xi ·Xi)

+
∑

1�i<j�4

(RXiRXjF (g) +RXjRXiF (g))⊗ jsp(Xi ·Xj)}.
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Since κλ(w⊗ jsp(Xi ·Xj)) = 1
2δijw for every w ∈Wλ (see (A.2.12)), it turns

out that the second term of the right hand side of (A.2.25) is zero and

(A.2.25) becomes

[1Fη ⊗ κλ ◦ jsλ]SλF (g) =
1

2

4∑
i=1

R2
Xi
F (g).

Since {Xi} is an orthonormal basis of p, this equals to

1

2
(Ωη,λF (g)− 1Fη ⊗ τλ(ΩK)F (g)).

Summing up the computations, we finally obtain

∇−β1

η,λ+β1
◦ ∇β1

η,λF (g)−∇β1

η,λ−β1
◦ ∇−β1

η,λ F (g)

=
1

2
(Ωη,λF (g)− 1Fη ⊗ τλ(ΩK))F (g) +

( l1 + l2
2

+ dλ + l1dλ
)
F (g).

Thus we have done. �
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