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On Gross’s Refined Class Number Formula for

Elementary Abelian Extensions

By Joongul Lee

Abstract. In this paper we consider the conjecture of Gross on
the special values of abelian L-functions when the Galois group G is
an elementary abelian l-group. Under some restrictions, we prove that
the conjecture holds when the class number of the base field is prime
to l.

1. Introduction

Suppose L/K is an abelian extension of global fields and let G =

Gal(L/K). In [3], B. Gross has conjectured a congruence relation involving

the Stickelberger element in �[G], class number of K and the generalized

regulator. The relation can be thought of as a generalization of the classical

class number formula which describes the leading term of the Taylor expan-

sion of ζK(s) at s = 0 in terms of the class number and the regulator of K.

In this paper we consider the case when G is an elementary abelian l-group.

Our main result is Theorem 3, which states that the conjecture holds when

the class number of K is prime to l and (when K contains a primitive l-th

root of unity) T contains a place whose degree is prime to l. This improves

the result that Gross obtained when G is cyclic of prime order (see [3]).
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for continuous support and encouragement. I would also like to thank the

referee for valuable comments.

2. The conjecture of Gross

Let L/K be an abelian extension of global fields with Galois group G.

Let S be a finite non-empty set of places ofK which contains all archimedean

places and places ramified in L, and let T be a finite non-empty set of places
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of K which is disjoint from S. Let n = |S| − 1. For a finite place v of K,

let �v be the residue field of v.

For a complex character χ ∈ Ĝ = Hom(G,�∗), the associated modified

L-function is defined as

LS,T (χ, s) =
∏
v∈T

(1 − χ(gv)Nv1−s)
∏
v �∈S

(1 − χ(gv)Nv−s)−1,(1)

where gv ∈ G is the Frobenius element for v.

The Fourier inversion formula tells us that there is a unique element

θG ∈ �[G] which satisfies

χ(θG) = LS,T (χ, 0)(2)

for all χ ∈ Ĝ. In fact, θG ∈ �[G] by works of Weil, Siegel, Deligne-Ribet

and Cassou-Noguès (see [3] for more information).

Let Y be the free �-module generated by the places v ∈ S and X =

{∑v∈S av · v | ∑
av = 0} the subgroup of elements of degree zero in Y .

Let UT denote the group of S-units which are congruent to 1 (mod T )

(in other words, S-units which are congruent to 1 (mod v) for all v ∈ T ).

Then UT is a free �-module of rank n if K is a function field, and to ensure

that the same is true if K is a number field we require that T either contains

places of different residue characteristics or contains a place v whose absolute

ramification index ev is strictly less than (p−1), where p is the characteristic

of �v. This assumption makes UT a free �-module.

Let J denote the idele group of K, and f : J → G be the Artin reci-

procity map. Let λG be the homomorphism

λG : UT −→ G⊗X(3)

ε 	−→
∑
S

f(1, 1, . . . , εv, . . . , 1) · v.

We choose bases 〈ε1, . . . , εn〉 and 〈x1, . . . , xn〉 for UT and X. With re-

spect to the chosen bases, we obtain an n × n matrix ((gij)) for λG with

entries in G.

Let I ⊂ �[G] be the augmentation ideal, which is defined as the kernel

of the ring homomorphism

�[G] −→ �(4)

g 	−→ 1.
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It is well known that the map g 	→ g − 1 (mod I2) gives an isomorphism

G ∼= I/I2 of abelian groups. We may therefore consider the matrix for λG
as having entries ηij = gij − 1 in I/I2. We define

detλG =
∑

σ∈Sym(n)

sign(σ)η1σ(1)η2σ(2) · · · ηnσ(n)(5)

∈ In/In+1.

Now we can state the main conjecture.

Conjecture 1 (Gross). θG ≡ m · detλG (mod In+1).

Here m = ±hS,T is the modified class number of the S-integers of K

and the sign depends on the choice of ordered bases of X and UT (see [3]).

We summarize some basic facts on Conjecture 1.

Proposition 2. (a) Suppose S ⊂ S′ and T ⊂ T ′. If Conjecture 1

holds for the set S and T , it holds for S′ and T ′.
(b) Suppose H is a subgroup of G. The natural map �[G] → �[G/H] maps

θG and detλG to θG/H and detλG/H respectively. Hence Conjecture 1 holds

for G/H if it holds for G.

(c) Conjecture 1 holds for G if and only if it holds for all its p-Sylow quo-

tients.

(d) If S contains a place v that splits completely in L, then θG ≡ m·detλG ≡
0 (mod In+1).

(e) If n = 0 then detλG = 1,m = hS,T , I
n/In+1 = �, and conjecture 1

holds because it is equivalent to the classical class number formula.

See [3, 8] for (a) and (b). (c) was pointed out by J. Tate. For (d) we note

that the Euler factor for v is zero, so θG = 0, and also the row of the matrix

of λG which correspond to v is zero and hence detλG ≡ 0 (mod In+1). (e)

follows from the definitions of the related quantities.

In [3], B. Gross proved that the Conjecture 1 holds when S consists of

the archimedean places of K. He also treated the case when G ∼= �/l�

is cyclic of prime order. In this case, In/In+1 ∼= �/l� for n ≥ 1, and

Gross proved that his conjecture is true up to an element of (�/l�)∗, in the

sense that θG always belongs to In (hence we are comparing two elements

in In/In+1) and that θG ∈ In+1 if and only if m · detλG ∈ In+1. In [9],



376 Joongul Lee

M. Yamagishi treated the case when K = � and got some partial result,

and N. Aoki proved that the conjecture is true for K = � in [1]. D. Hayes

proved a refined version of the Stark conjecture (conjectured by Gross) for

function fields in [4], which implies Conjecture 1 for n = 1. In [6], K.-S.

Tan proved the case when K is a function field of characteristic p and G is

a p-group.

3. The main theorem

Let l be a prime. Our goal is to prove the following theorem.

Theorem 3. Suppose G is an elementary abelian l-group. If K is a

function field suppose also that hK , the number of divisor classes of degree

0 of K, is prime to l, and, in case K contains a primitive l-th root of unity,

that T contains a place whose degree is prime to l. Then conjecture 1 holds.

If K is a number field, the existence of the archimedean places assures

that Conjecture 1 is true when l ≥ 3 since the archimedean places split

completely in L, and when l = 2 Conjecture 1 follows from the work of

Gross and corollary 5 below. Therefore we may assume that K is a function

field. Also, since Tan proved Conjecture 1 for p-groups ([6]), we may assume

that l is different from the characteristic of K. Hence we will be dealing

only with tame ramification. Also we may assume that T consists of a single

place whose degree is prime to l if K contains a primitive l-th root of unity,

via proposition 2.

Let S = {v0, v1, . . . , vn}, n = |S| − 1, and T = {vT }. Let KS be the

maximal extension of K unramified outside of S whose Galois group is an

elementary abelian l-group. Let GS = Gal(KS/K), and for i = 0, . . . , n, let

Ii ⊂ GS be the inertia group of vi. Let DT be the decomposition group of

vT . Notice that Ii is cyclic because KS/K has only tame ramification, and

that DT is also cyclic because vT is unramified in KS and its residue field

is finite. It follows from proposition 2 that we may assume that n ≥ 1. We

can also assume without loss of generality that L = KS , and that all the

places in S are ramified in KS .

Here is our strategy for proving Theorem 3. We first discuss the struc-

ture of In/In+1, and we find a homogeneous polynomial f of degree n with
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coefficients in �l which may be viewed as a function on ĜS with values in

�l, such that the validity of the conjecture is equivalent to the vanishing of

f on ĜS . Next we study the structure of GS in section 5., and we show

that I0, . . . , In generate a subgroup of GS of rank n or n+ 1, depending on

whether K contains a primitive l-th root of unity or not. We also show that

I0, . . . , In, DT generate a subgroup of GS of rank n + 1 when K contains

a primitive l-th root of unity. In section 6. we prove that if a polynomial

function on ĜS vanishes on n + 1 linearly independent subspaces of codi-

mension 1 and its degree is bounded by n, then it must vanish on ĜS . It

turns out that this is exactly what we need in order to make the induction

on n = |S| − 1 work, and the induction is carried out in section 7..

4. The structure of In/In+1

Choose a primitive l-th root of unity ζl ∈ �∗, and let λ = ζl−1. (λ) is a

prime ideal in �[ζl] whose residue field is isomorphic to �/l�, and we have

(l) = (λ)l−1. Also note that a character χ ∈ Ĝ can be extended by linearity

to a ring homomorphism χ : �[G] −→ �.

Lemma 4 (Passi-Vermani). Suppose G is an elementary abelian l-

group. If ξ ∈ I, then, for each integer k ≥ 1, ξ ∈ Ik if and only if λk | χ(ξ)

for every complex character χ ∈ Ĝ.

Proof. See [3] for the case when G ∼= �/l�, and [5, 7] for elementary

abelian case. �

As we discussed in section 2., Gross proved that both θG and m · detλG
are in In when G is cyclic of prime order, which, together with Lemma 4,

implies that both θG and m · detλG are in In when G is an elementary

abelian group.

Corollary 5. Suppose G = Gal(L/K) is an elementary abelian l-

group. Then the conjecture holds for L/K if and only if it holds for L′/K
for all cyclic subextensions L′/K of L/K.

Proof. Set ξ = θG −m · detλG and apply lemma 4. �
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Let N = dim�l
Ĝ − 1 and choose a basis {χ0, . . . , χN} of Ĝ. In general,

we have

ζml − 1 = (ζl − 1)(ζm−1
l + . . .+ 1) ≡ m(ζl − 1) (mod λ2).(6)

Hence, given χ =
∏N

i=0 χi
mi ∈ Ĝ and σ ∈ G, we may write

χ(σ − 1) = ζ

∑
aimi

l − 1 ≡
∑

aimi · λ (mod λ2),(7)

where ai ∈ �l is defined by χi(σ) = ζail .

If ξ ∈ In, then since ξ can be written as a linear combination of∏n
j=1(τj − 1) where τj ∈ G for all j, we have

χ(ξ) ≡ p(m0, . . . ,mN ) · λn (mod λn+1),(8)

where p(X0, . . . , XN ) ∈ �l[X0, . . . , XN ] is a homogeneous polynomial of de-

gree n. We can see from Lemma 4 that ξ ∈ In+1 if and only if p = 0 as a

function on Ĝ.

For χ ∈ Ĝ, define

f(χ) =
χ(θG −m · detλG)

λn
(mod λ).(9)

The above argument shows that f can be represented by a homogeneous

polynomial of degree n. Let Kχ be the fixed field of kerχ. Then f(χ) = 0

if and only if the conjecture holds for Kχ/K with respect to S and T .

We also note that if K contains an l-th root of unity and T contains a

place v that splits completely in L, then the modifying Euler factor for v is

(1 − Nv) which is divisible by l. Since l · ξ ∈ Im+(l−1) whenever ξ ∈ Im,

which follows from lemma 4, θG will be in In+1. With the work of Gross,

that implies m · detλG ∈ In+1. As a result, Conjecture 1 holds trivially (in

the sense that the conjecture becomes 0 = 0) when K contains an l-th root

of unity and T contains a place that splits completely in L.

5. The structure of GS

In this section, we study the structure of GS and the inertia groups of

S in GS using class field theory. (reference:[2])
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Let �q be the exact field of constants of K. For each place v of K, let Kv

be the completion of K at v, Uv the set of local units in Kv, and U1
v ⊂ Uv

the local units which are congruent to 1 (mod v).

Let J0 be the set of ideles of degree 0. It is easy to see that J is (non-

canonically) isomorphic to � × J0, because K is known to have a divisor

(not necessarily prime) of degree 1.

There is an exact sequence

0 → (
∏
v∈S

�∗
v)/�∗

q → J/K∗ ·
∏
v/∈S

Uv ·
∏
v∈S

U1
v → J/K∗ ·

∏
v

Uv → 0.(10)

If we letKunr be the maximal unramified abelian extension ofK, andK ′
S the

maximal abelian extension of K unramified outside of S and tamely ramified

in S, then J/K∗ ·∏v/∈S Uv ·
∏

v∈S U
1
v and J/K∗ ·∏v Uv have dense images in

Gal(K ′
S/K) and Gal(Kunr/K) respectively, via the Artin reciprocity map.

Observe that J/K∗ ·∏v Uv is isomorphic to � ×H, where H = J0/K
∗ ·∏

v Uv and since we assume that hK = |H| is not divisible by l, we have

(� × H) ⊗ �/l� = �/l� and Tor(� ×H,�/l�) = 0. Hence tensoring the

exact sequence with �/l� preserves the exactness;

0 → (
∏
v∈S

�∗
v/�∗

v
l)/�̃∗

q → J/J l ·K∗ ·
∏
v/∈S

Uv ·
∏
v∈S

U1
v → �/l� → 0,(11)

where �̃∗
q is the image of �∗

q in
∏

v∈S �∗
v/�∗

v
l. Class field theory tells us that

GS is isomorphic to the middle term of the exact sequence, hence GS is

isomorphic to �/l� × (
∏

v∈S �∗
v/�∗

v
l)/�̃∗

q and Ii is the image of �∗
vi/�∗

vi
l in

GS .

If we look at the map

�∗
q ↪→

∏
v∈S

�∗
v →

∏
v∈S

�∗
v/�∗

v
l,(12)

then since �∗
q is cyclic and

∏
v∈S �∗

v/�∗
v
l is killed by l, �̃∗

q is either 0 or cyclic of

order l. It is clear that �̃∗
q = 0 when q �≡ 1 (mod l). When q ≡ 1 (mod l),

we can see, for example by using Kummer theory, that �∗
q is contained in

(�∗
v)

l if and only if deg v is divisible by l. Hence �̃∗
q is non-trivial only when

q ≡ 1 (mod l) and there is a place v ∈ S such that l does not divide deg v.
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For each i = 0, . . . , n, let σi ∈ GS be a generator of Ii, and σT a generator

of DT . When �̃∗
q = 0, {σi}ni=0 are linearly independent, viewing GS as a vec-

tor space over �l, and dim�l
GS = n+ 2. On the other hand, when �̃∗

q �= 0,

it gives a non-trivial linear relation among σj ’s for j such that l � deg vj ,

and hence dim�l
GS = n + 1. As we have seen before, this case happens

only when K contains a primitive l-th root of unity and there is a place in

S whose degree is prime to l. In that case, we may assume that l does not

divide deg v0, then {σi}ni=1 are linearly independent. Furthermore, with the

assumption l � deg vT , vT does not split completely in K · �ql , which is the

maximal unramified extension in KS by class field theory and the assump-

tion l � h. Hence σT �∈ 〈σ0, . . . , σn〉, which implies that {σT , σ1, . . . , σn} are

linearly independent. Hence we have proved the following theorem.

Theorem 6. (a) If K does not contain a primitive l-th root of unity,

then the inertia groups of places in S are linearly independent in GS.

(b) If K contains a primitive l-th root of unity, then the inertia groups of

places in S generate a subgroup of GS of rank at least n, and the decom-

position group of vT is not contained in the subgroup as long as deg vT is

prime to l.

Remark. This argument shows that the assumption on T is necessary

only when �̃∗
q is non-trivial, i.e. when K contains an l-th root of unity and

S contains a place whose degree is prime to l.

6. Functions on the �l-vector space

Let V be a �l-vector space of dimension N +1. Choose a basis {w0, . . . ,

wN} of V , and for i = 0, . . . , N define Xi ∈ Hom(V,�l) by Xi(wj) = δij .

We may view a polynomial f ∈ �l[X0, . . . , XN ] as a function on V via the

above identification.

The goal of this section is to prove the following theorem, which will be

used in proving Theorem 3.

Theorem 7. Suppose f ∈ �l[X0, . . . , XN ] is a polynomial of degree

≤ n, which we view as a function on V , and {Vi}ni=0 are n + 1 linearly

independent subspaces of codimension 1 in V . If f vanishes on Vi for all i,

then f vanishes on V .
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Definition. We say that a polynomial p(X0, . . . , XN ) ∈ �l[X0, . . . ,

XN ] is reduced if for each Xi, degXi
p(X0, . . . , XN ) < l.

Lemma 8. Every function on V with values in �l can be uniquely ex-

pressed as a reduced polynomial in �l[X0, . . . , XN ].

Proof. This is a well-known result, and we give a short proof here.

Observe that for ai ∈ �l, i = 0, . . . , N , we have

N∏
i=0

(1 − (xi − ai)
l−1) =

{
1 if xi = ai for all i,

0 otherwise.
(13)

By taking linear combination, we see that any function on V can be

represented by a reduced polynomial. Uniqueness follows from counting

such polynomials. �

For each polynomial p(X0, . . . , XN ) ∈ �l[X0, . . . , XN ], we can asso-

ciate the reduced polynomial pr(X0, . . . , XN ) of p(X0, . . . , XN ), which is

reduced and defines the same function on V as p(X0, . . . , XN ). We can

get pr(X0, . . . , XN ) from p(X0, . . . , XN ) by using the relations X l
i = Xi

for all i to replace Xm
i by X

m−(l−1)
i until m < l. Notice that for each i,

degXi
pr ≤ degXi

p, and hence deg pr ≤ deg p.

Lemma 9. Suppose p(X0, . . . , XN ) is a reduced polynomial. If

p(0, x1, . . . , xN ) = 0 for all (x1, . . . , xN ) ∈ �l
N , then X0 | p(X0, . . . , XN ).

Proof. Write p(X0, . . . , XN ) = X0 · q(X0, . . . , XN ) + r(X1, . . . , XN ).

For all (x1, . . . , xN ) ∈ �l
N , r(x1, . . . , xN ) = p(0, x1, . . . , xN )−0 · q(0, x1, . . . ,

xN ) = 0. Since r is also reduced, we conclude that r = 0. �

Proof of Theorem 7. By change of coordinates, we may assume

that for each i = 0, . . . , n, Vi is given by the equation Xi = 0. Let fr be the

reduced polynomial of f . According to Lemma 9, fr is divisible by Xi for

all i and since we have unique factorization, it follows that fr is divisible

by
∏n

i=0 Xi. Since we have deg fr ≤ deg f ≤ n, it follows that fr = 0, and

hence f vanishes on V . �
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7. The induction step

We prove Theorem 3 by induction on n. When n = 0, the conjecture

holds as noted in Proposition 2.

Suppose n ≥ 2. For each i = 0, . . . , n, let Si = S \ {vi}. Then ĜSi is

the orthogonal of Ii, hence is a subspace of codimension 1 in ĜS since we

assumed that vi is ramified in KS . Note that vi is unramified in KSi .

By induction we can assume that for all i = 0, . . . , n, Conjecture 1

holds for KSi/K with respect to Si and T . Then Proposition 2 shows that

Conjecture 1 holds for KSi/K with respect to S and T . Hence f |
ĜSi

= 0.

When K does not contain a primitive l-th root of unity, it follows from

Theorem 6 and Theorem 7 that f = 0 on ĜS .

If K contains a primitive l-th root of unity, we let GT = GS/DT . Then

the place vT will split completely in Kχ for all χ ∈ ĜT which implies,

as we discussed at the end of section 4., that we have f |
ĜT

= 0. Again,

it follows from Theorem 6 and Theorem 7 that f = 0 on ĜS , and hence

θGS
≡ m · detλGS

(mod In+1) in all cases. �
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