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On Gross’s Refined Class Number Formula for

Elementary Abelian Extensions

By Joongul LEE

Abstract. In this paper we consider the conjecture of Gross on
the special values of abelian L-functions when the Galois group G is
an elementary abelian [-group. Under some restrictions, we prove that
the conjecture holds when the class number of the base field is prime
to L.

1. Introduction

Suppose L/K is an abelian extension of global fields and let G =
Gal(L/K). In [3], B. Gross has conjectured a congruence relation involving
the Stickelberger element in Z[G], class number of K and the generalized
regulator. The relation can be thought of as a generalization of the classical
class number formula which describes the leading term of the Taylor expan-
sion of (x(s) at s = 0 in terms of the class number and the regulator of K.
In this paper we consider the case when G is an elementary abelian I-group.
Our main result is Theorem 3, which states that the conjecture holds when
the class number of K is prime to [ and (when K contains a primitive /-th
root of unity) 7" contains a place whose degree is prime to [. This improves
the result that Gross obtained when G is cyclic of prime order (see [3]).

I would like to thank Benedict Gross, Ki-Seng Tan and Felipe Voloch
for helpful discussions and suggestions, and especially my teacher John Tate
for continuous support and encouragement. I would also like to thank the
referee for valuable comments.

2. The conjecture of Gross

Let L/K be an abelian extension of global fields with Galois group G.
Let S be a finite non-empty set of places of K which contains all archimedean
places and places ramified in L, and let T" be a finite non-empty set of places
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of K which is disjoint from S. Let n = |S| — 1. For a finite place v of K,
let [, be the residue field of v.

For a complex character y € G = Hom(G, C"), the associated modified
L-function is defined as

(1) Lsr(x,s) = [1(1 = x(g0)Nv" =) T] (1 = x(g0) Nv =),
veT vES

where g, € G is the Frobenius element for v.
The Fourier inversion formula tells us that there is a unique element
0c € C[G] which satisfies

(2) x(0c) = Ls(x,0)

for all y € G. In fact, 6 € Z|G] by works of Weil, Siegel, Deligne-Ribet
and Cassou-Nogues (see [3] for more information).

Let Y be the free Z-module generated by the places v € S and X =
{>vesaw - v | > a, = 0} the subgroup of elements of degree zero in Y.
Let Up denote the group of S-units which are congruent to 1 (mod 7))
(in other words, S-units which are congruent to 1 (mod v) for all v € T').
Then Ur is a free Z-module of rank n if K is a function field, and to ensure
that the same is true if K is a number field we require that T" either contains
places of different residue characteristics or contains a place v whose absolute
ramification index e, is strictly less than (p—1), where p is the characteristic
of F,. This assumption makes Ur a free Z-module.

Let J denote the idele group of K, and f : J — G be the Artin reci-
procity map. Let A\g be the homomorphism

(3) Aa:Up — GX
€ — Zf(l,l,...,sv,...,l)-v.
S

We choose bases (e1,...,&,) and (z1,...,zy) for Ur and X. With re-
spect to the chosen bases, we obtain an n x n matrix ((g;;)) for Ag with
entries in G.

Let I C Z|G] be the augmentation ideal, which is defined as the kernel
of the ring homomorphism

(4) 7[G] — Z

g — 1.
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It is well known that the map g — g — 1 (mod I?) gives an isomorphism
G = I/I? of abelian groups. We may therefore consider the matrix for \g
as having entries 7;; = g;; — 1 in I/I?. We define

(5) detdg = Y sign(0)me)N20()  * Mhon)
oc€Sym(n)

e 1/1" .
Now we can state the main conjecture.
CONJECTURE 1 (Gross). 0g =m-det\g (mod I™"1).

Here m = fhgr is the modified class number of the S-integers of K
and the sign depends on the choice of ordered bases of X and Ur (see [3]).
We summarize some basic facts on Conjecture 1.

PROPOSITION 2. (a) Suppose S C S" and T C T'. If Conjecture 1
holds for the set S and T, it holds for S’ and T'.
(b) Suppose H is a subgroup of G. The natural map Z|G] — Z|G/H]| maps
0c and det A\g to Og/p and det A\g, respectively. Hence Conjecture 1 holds
for G/H if it holds for G.
(c) Conjecture 1 holds for G if and only if it holds for all its p-Sylow quo-
tients.
(d) If S contains a place v that splits completely in L, then 0 = m-det A\g =
0 (mod I™*1).
(e) If n = 0 then det\¢ = 1,m = hgp, ["/I"™ = Z, and conjecture 1
holds because it is equivalent to the classical class number formula.

See [3, 8] for (a) and (b). (c) was pointed out by J. Tate. For (d) we note
that the Euler factor for v is zero, so g = 0, and also the row of the matrix
of A\ which correspond to v is zero and hence det A\ =0 (mod I"*1). (e)
follows from the definitions of the related quantities.

In [3], B. Gross proved that the Conjecture 1 holds when S consists of
the archimedean places of K. He also treated the case when G = Z/IZ
is cyclic of prime order. In this case, I"/I"*!' = 7Z/IZ for n > 1, and
Gross proved that his conjecture is true up to an element of (Z/IZ)*, in the

sense that 05 always belongs to I (hence we are comparing two elements
in I"/I™""1) and that 0 € I""! if and only if m - det \¢ € I"*L. In [9],
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M. Yamagishi treated the case when K = @ and got some partial result,
and N. Aoki proved that the conjecture is true for K = Q in [1]. D. Hayes
proved a refined version of the Stark conjecture (conjectured by Gross) for
function fields in [4], which implies Conjecture 1 for n = 1. In [6], K.-S.
Tan proved the case when K is a function field of characteristic p and G is

a p-group.
3. The main theorem

Let [ be a prime. Our goal is to prove the following theorem.

THEOREM 3. Suppose G is an elementary abelian l-group. If K is a
function field suppose also that hg, the number of divisor classes of degree
0 of K, is prime to [, and, in case K contains a primitive [-th root of unity,
that T' contains a place whose degree is prime to l. Then conjecture 1 holds.

If K is a number field, the existence of the archimedean places assures
that Conjecture 1 is true when [ > 3 since the archimedean places split
completely in L, and when [ = 2 Conjecture 1 follows from the work of
Gross and corollary 5 below. Therefore we may assume that K is a function
field. Also, since Tan proved Conjecture 1 for p-groups ([6]), we may assume
that [ is different from the characteristic of K. Hence we will be dealing
only with tame ramification. Also we may assume that T" consists of a single
place whose degree is prime to [ if K contains a primitive [-th root of unity,
via proposition 2.

Let S = {vo,v1,...,0n}, n = |S| =1, and T = {vr}. Let Kg be the
maximal extension of K unramified outside of S whose Galois group is an
elementary abelian [-group. Let Gg = Gal(Kg/K), and for i = 0,...,n, let
I; C Gg be the inertia group of v;. Let Dp be the decomposition group of
vp. Notice that I; is cyclic because Kg/K has only tame ramification, and
that D7 is also cyclic because vy is unramified in Kg and its residue field
is finite. It follows from proposition 2 that we may assume that n > 1. We
can also assume without loss of generality that L = Kg, and that all the
places in S are ramified in Kg.

Here is our strategy for proving Theorem 3. We first discuss the struc-
ture of 1" /1", and we find a homogeneous polynomial f of degree n with
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coefficients in [F; which may be viewed as a function on é; with values in
[F;, such that the validity of the conjecture is equivalent to the vanishing of
f on é; Next we study the structure of Gg in section 5., and we show
that Iy, ..., I, generate a subgroup of Gg of rank n or n + 1, depending on
whether K contains a primitive [-th root of unity or not. We also show that
Iy, ..., I, D7 generate a subgroup of Gg of rank n + 1 when K contains
a primitive [-th root of unity. In section 6. we prove that if a polynomial
function on 6’; vanishes on n + 1 linearly independent subspaces of codi-
mension 1 and its degree is bounded by n, then it must vanish on 5’; It
turns out that this is exactly what we need in order to make the induction
on n = |S| — 1 work, and the induction is carried out in section 7..

4. The structure of /™!

Choose a primitive [-th root of unity ; € C*, and let A= —1. () is a
prime ideal in Z[(;] whose residue field is isomorphic to Z/1Z, and we have
(1) = (A1, Also note that a character xy € G can be extended by linearity
to a ring homomorphism x : Z[G] — C.

LEMMA 4 (Passi-Vermani). Suppose G is an elementary abelian [-
group. If € € I, then, for each integer k > 1, € € I* if and only if \F | x(&)
for every complex character x € G.

PROOF. See [3] for the case when G = Z/1Z, and [5, 7] for elementary
abelian case. [

As we discussed in section 2., Gross proved that both 65 and m - det A\g
are in I"™ when G is cyclic of prime order, which, together with Lemma 4,
implies that both 85 and m - det Ag are in I™ when G is an elementary
abelian group.

COROLLARY 5. Suppose G = Gal(L/K) is an elementary abelian [-
group. Then the conjecture holds for L/ K if and only if it holds for L' /K
for all cyclic subextensions L' /K of L/K.

PROOF. Set & =60g —m - det A\g and apply lemma 4. [
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Let N = dim[Fl G — 1 and choose a basis {x0y---,xn} of G. In general,
we have

(6) Gr—1=(G-(¢" " ...+ 1) =m(G —1) (mod \?).

Hence, given xy = Hfio xi™Mm € G and o € G, we may write

(7) x(o —1) = w1 = Zaimi XA (mod A\?),

where a; € F; is defined by x;(0) = ¢".
If £ € I™, then since £ can be written as a linear combination of
%_1(7j — 1) where 7; € G for all j, we have

(8) (&) = p(mg,...,my) - A" (mod A1),

where p(Xo, ..., Xn) € Fi[Xo,...,Xn] is a homogeneous polynomial of de-
gree n. We can see from Lemma 4 that £ € ™! if and only if p =0 as a
function on G.

For x € (A;, define

X0 —m - det \g)
)\n

(9) f0) = (mod \).
The above argument shows that f can be represented by a homogeneous
polynomial of degree n. Let K, be the fixed field of ker x. Then f(x) =0
if and only if the conjecture holds for K, /K with respect to S and 7.

We also note that if K contains an [-th root of unity and 7' contains a
place v that splits completely in L, then the modifying Euler factor for v is
(1 — Nw) which is divisible by . Since [ - ¢ € I"™*t(=1 whenever &€ € I™,
which follows from lemma 4, 6 will be in I"t!. With the work of Gross,
that implies m - det A\g € I""!. As a result, Conjecture 1 holds trivially (in
the sense that the conjecture becomes 0 = 0) when K contains an [-th root
of unity and T contains a place that splits completely in L.

5. The structure of Gg

In this section, we study the structure of Gg and the inertia groups of
S in Gg using class field theory. (reference:[2])
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Let [, be the exact field of constants of K. For each place v of K, let K,
be the completion of K at v, U, the set of local units in K,, and U} C U,
the local units which are congruent to 1 (mod v).

Let Jy be the set of ideles of degree 0. It is easy to see that J is (non-
canonically) isomorphic to Z x Jy, because K is known to have a divisor
(not necessarily prime) of degree 1.

There is an exact sequence

(10) 0— (J[F)/Fe — J/K* - [[Us- [[Us — J/K*-[[Us — 0.
veES vgS veS v

If we let Ky be the maximal unramified abelian extension of K, and K the
maximal abelian extension of K unramified outside of S and tamely ramified
in S, then J/K* - [[,¢5 Uv[lves Ul and J/K*-T], U, have dense images in
Gal(Kg/K) and Gal(Ky,,/K) respectively, via the Artin reciprocity map.

Observe that J/K* -], U, is isomorphic to Z x H, where H = Jo/K* -
[1, U, and since we assume that hx = |H| is not divisible by [, we have
(Zx H)Y®Z/IZ = Z/IZ and Tor(Z x H,Z/IZ) = 0. Hence tensoring the
exact sequence with Z/IZ preserves the exactness;

11 o — ([[F/EH/E — g0 - k- T[U,- [[ UL - 2/1z — o,
vesS vgS veS

where [,FE is the image of I in [[,cq [,/ F*!. Class field theory tells us that
Gs is isomorphic to the middle term of the exact sequence, hence Gy is
isomorphic to Z/1Z x ([,cs [F;/[F;';l)/[FZ and I; is the image of [in/[Ff,il in
Gs.

If we look at the map

(12) Fy— [[E — [T E/E

vES vES

then since [} is cyclic arflgl [Toes Fo/ F*!is killed by [, @/Fv:; is either 0 or cyclic of
order [. It is clear that F; =0 when ¢ # 1 (mod [). Wheng=1 (mod I),
we can see, for example by using Kummer theory, that [FZ is contained in
(F*)! if and only if degv is divisible by . Hence I]::; is non-trivial only when
g=1 (mod l) and there is a place v € S such that [ does not divide degv.
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For eachi = 0,...,n, let 0; € G be a generator of I;, and o7 a generator
of Dr. When [, = 0, {0;}] are linearly independent, viewing G's as a vec-
tor space over [F;, and dimFl Ggs =n+ 2. On the other hand, when E £ 0,
it gives a non-trivial linear relation among o;’s for j such that [ { degvj,
and hence dim[Fl Gg = n+ 1. As we have seen before, this case happens
only when K contains a primitive [-th root of unity and there is a place in
S whose degree is prime to [. In that case, we may assume that | does not
divide deg o, then {o;}}"; are linearly independent. Furthermore, with the
assumption [  degvr, vy does not split completely in K - [, which is the
maximal unramified extension in Kg by class field theory and the assump-
tion [ 1 h. Hence op ¢ (00, ...,0,), which implies that {op,01,...,0,} are
linearly independent. Hence we have proved the following theorem.

THEOREM 6. (a) If K does not contain a primitive [-th root of unity,
then the inertia groups of places in S are linearly independent in Gg.
(b) If K contains a primitive l-th root of unity, then the inertia groups of
places in S generate a subgroup of Gg of rank at least n, and the decom-
position group of vy is not contained in the subgroup as long as deguvr is
prime to [.

REMARK. This argument shows that the assumption on 7" is necessary
only when [FZ is non-trivial, i.e. when K contains an [-th root of unity and
S contains a place whose degree is prime to (.

6. Functions on the F;-vector space

Let V be a [F;-vector space of dimension N + 1. Choose a basis {wo, ...,
wn} of V, and for i = 0,..., N define X; € Hom(V,F;) by X;(w;) = 6.
We may view a polynomial f € F;[Xp,..., Xy]| as a function on V via the
above identification.

The goal of this section is to prove the following theorem, which will be
used in proving Theorem 3.

THEOREM 7. Suppose f € Fi[Xo,...,Xn]| is a polynomial of degree
< n, which we view as a function on V, and {V;}I'y are n + 1 linearly
independent subspaces of codimension 1 in V. If f vanishes on V; for all i,
then f vanishes on V.
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DEFINITION. We say that a polynomial p(Xo,...,Xy) € F[Xo,...,
Xn] is reduced if for each X;, degy, p(Xo,...,Xn) <.

LEMMA 8. FEwery function on V with values in F; can be uniquely ex-
pressed as a reduced polynomial in Fi[Xo, ..., Xn].

Proor. This is a well-known result, and we give a short proof here.
Observe that for a; € F;, i =0,..., N, we have

N 1 if z; = a; for all 7
B o e A i — )
(13) izl_lo(l (i —ai) ) { 0 otherwise.

By taking linear combination, we see that any function on V can be
represented by a reduced polynomial. Uniqueness follows from counting
such polynomials. []

For each polynomial p(Xy,...,Xn) € F[Xo,...,Xn], we can asso-
ciate the reduced polynomial p,.(Xy,..., Xn) of p(Xo,...,Xn), which is
reduced and defines the same function on V' as p(Xp,...,Xn). We can
get pr(Xo,...,Xy) from p(Xo,...,Xy) by using the relations X! = X;
for all ¢ to replace X" by Ximf(lfl) until m < [. Notice that for each <,
degx, pr < degy, p, and hence deg p, < degp.

LEMMA 9. Suppose p(Xo,...,Xn) is a reduced polynomial.  If
p(0,z1,...,xn) =0 for all (x1,...,xN) € F,N, then X, | p(Xo,..., XnN).

Proor. Write p(X(), .. ,XN) = Xp - q(XQ, ce. ,XN) + T’(Xl, .. .,XN).
For all (z1,...,zn5) € BN, r(z1,...,zx) = p(0,21,...,2x) —0-q(0, 1, ...,
xzn) = 0. Since r is also reduced, we conclude that » = 0. O

PROOF OF THEOREM 7. By change of coordinates, we may assume
that for each ¢ = 0,...,n, V; is given by the equation X; = 0. Let f,. be the
reduced polynomial of f. According to Lemma 9, f, is divisible by X; for
all ¢ and since we have unique factorization, it follows that f,. is divisible
by [Tiey Xi. Since we have deg f, < deg f < n, it follows that f, = 0, and
hence f vanishes on V. [
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7. The induction step

We prove Theorem 3 by induction on n. When n = 0, the conjecture
holds as noted in Proposition 2.

Suppose n > 2. For each i = 0,...,n, let S; = S\ {v;}. Then C/}S: is
the orthogonal of I;, hence is a subspace of codimension 1 in é; since we
assumed that v; is ramified in Kg. Note that v; is unramified in Kg,.

By induction we can assume that for all # = 0,...,n, Conjecture 1
holds for Kg,/K with respect to S; and T'. Then Proposition 2 shows that
Conjecture 1 holds for Kg,/K with respect to S and T. Hence f ‘55\ = 0.

When K does not contain a primitive [-th root of unity, it follows from
Theorem 6 and Theorem 7 that f =0 on é;

If K contains a primitive [-th root of unity, we let Gp = Gg/Dp. Then
the place vy will split completely in K, for all x € é} which implies,
as we discussed at the end of section 4., that we have f| an = 0. Again,

it follows from Theorem 6 and Theorem 7 that f = 0 on 6’;, and hence
O =m-det A\gs (mod I"*!) in all cases. O
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