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Modular 3-Folds Obtained from

Quaternion Unitary Groups of Degree 2

By Yoshinori Hamahata

Abstract. We consider three dimensional modular varieties ob-
tained from quaternion unitary groups with level N . It is shown that
these modular varieties are of general type if N is fully large.

§0. Introduction

In this paper we study modular 3-folds associated to quaternion uni-

tary groups of degree 2. We recall some results about modular forms for

quaternion unitary groups.

Let S2 be the Siegel upper half space of degree 2, and Sp2(Z) the Siegel

modular group of degree 2. Let Γ2(N) be the principal congruence subgroup

of Sp2(Z) of level N . In [Y], Yamazaki studied Siegel modular forms with

respect to Γ2(N) and obtained dimension formula for the space of cusp

forms of weight ≥ 4 for Γ2(N), N ≥ 4 by using the Riemann-Roch theorem.

As a corollary, he proved that Siegel modular 3-fold associated to Γ2(N) is

of general type if N ≥ 4. Note that Y. Morita and U. Christian got the

same dimension formula by using the Selberg trace formula.

In [A], Arakawa introduced quaternion unitary groups Γ(N) (cf. §1) of

degree 2 and studied modular forms with respect to such unitary groups.

He obtained dimension formula for the space of cusp forms of weight ≥ 5 for

Γ(N), N ≥ 3 by using the Selberg trace formula. His dimension formula

is analogous to that of Yamazaki. Yamaguchi [Ya] also got the same result

by using the Riemann-Roch theorem. Note that Hashimoto [H] obtained

dimension formula for full modular group Γ(1).
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The purpose of this paper is to prove an analogy of the result of Yamazaki

[Y]. Namely, we shall prove the following:

Theorem (Theorem 4.1, 4.6). Let Y (N) be a modular 3-fold associ-

ated to a quaternion unitary group Γ(N). Then

1. If N is fully large, then Y (N) is of general type.

2. If the discriminant d(B) of an indefinite division quaternion algebra

B over Q, which is used in order to define Y (N), is fully large, then Y (N)

is of general type for N ≥ 3.

Since the situation we here consider is Q-rank 1 case, Γ(N) has only

0-dimensional cusps. Hence our 3-folds are like Hilbert modular varieties in

that they are obtained by adding 0-dimensional cusps to open 3-folds and

desingularizing them. We shall apply methods for Hilbert modular varieties

to our modular 3-folds. Let us explain the method for proving Theorem

more precisely.

In [K], Knöller introduced defects for Hilbert modular cusp singularities.

By using those, he proved that certain Hilbert modular 3-folds are of general

type if discriminants related with these varieties are fully large. In [T],

Tsuyumine proved that Hilbert modular varieites are of general type if

associated discriminants are fully large. Both of these authors obtained

some similar results independently. Their methods is essentially the same.

In the process of intoducing defects for our singularities, we proceed the

argument along the method of Knöller, referring also to that of Tsuyumine.

We first define defects for our singularities as in [K]. Then we rewrite these

defects in terms of the numbers of lattice points (Proposition 3.5). This

result is an analogy of Theorem 2.4 in [K]. The corresponding result for

Proposition 2 in [T] is Proposition 3.4.

The content of the paper is the following. In §1, we review some facts

about quaternion unitary groups. In §2, we explain resolutions of cusp

singularities. In §3, we define defects of cusps of Γ(N). In §4, we prove our

results by evaluating plurigenera Pm(Y (N)) from the below with the use

of dimension formula of Arakawa. In §5, we give examples to Theorem 4.1

and Theorem 4.6.

The author expresses his sincere gratitude to Professor Takayuki Oda

who suggested this subject, and gave advice and encouragement. The au-

thor expresses his sincere gratitude to Professor Tsuneo Arakawa for advice
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and encouragement.

Notation. We denote by Z,Q,R, C, and Qp the ring of rational integers,

the field of rational, real, complex, and p-adic numbers, respectively. For a

field K, Mn(K) denotes the total matrix algebra over K of degree n. For

a matrix Z ∈ Mn(K), det(Z) denotes the determinant of Z, and Im(Z)

denotes the imaginary part of Z if K = C. For a matrix A ∈ M2(R), A >

0 means that A is positive definite. For a set S, #(S) stands for the

cardinality of S. Put R≥0 := {r ∈ R | r ≥ 0}.

§1. Quaternion unitary groups

In this section, we recall some facts about quaternion unitary groups

needed later on. See Arakawa [A] and Hashimoto [H] for details.

1.1. Modular groups

Let B be an indefinite division quaternion algebra over Q, and − : B →
B (a �→ a) the canonical involution of B. For an element a in B, we call

N(a) := aa the norm of a, and tr(a) := a + a the trace of a. Since B∞ :=

B ⊗Q R ∼= M2(R), we identify B∞ with M2(R) by fixing an isomorphism.

Let G be the B-unitary group of degree 2. We put

GQ :=

{
g ∈ M2(B) | g

(
0 1

1 0

)
tg =

(
0 1

1 0

)}
,

where tg =

(
a c

b d

)
for g =

(
a b

c d

)
. Then GQ is Q-rational points of G.

Let O be a maximal order of B. For any basis {u1, u2, u3, u4} of O over Z,

put

d(B) := |det(tr(uiuj))|
1
2 .

This number is independent of the choice of O and {u1, u2, u3, u4}. For a

natural number N , set

Γ(N) :=

{
g =

(
a b

c d

)
∈ GQ | a− 1, b, c, d− 1 ∈ NO

}
.

Let S2 := {Z ∈ M2(C) | tZ = Z, Im(Z) > 0} be the Siegel upper half

space of degree 2, and set

H :=
{
Z ∈ M2(C) | ZJ−1 ∈ S2

}
, J :=

(
0 1

−1 0

)
.
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For the group GR of R-rational points of G, we have

qGRq
−1 = Sp2(R) :=

{
g ∈ M4(R) | g

(
0 I

−I 0

)
tg =

(
0 I

−I 0

)}
,

where I :=

(
1 0

0 1

)
, q :=

(
I 0

0 J

)
. The group GR acts on H by g〈Z〉 =

(aZ + b)(cZ + d)−1 for g =

(
a b

c d

)
∈ GR, Z ∈ H. Though two pairs

(GR,H) and (Sp2(R),S2) are the same essentially, we here consider the

pair (GR,H). Since the Q-rank of GQ is 1, Γ(N) has only point cusps.

1.2. Modular forms

For any positive integer k, let Mk(Γ(N)) be the C-vector space of modu-

lar forms of weight k with respect to Γ(N). Namely, Mk(Γ(N)) is the space

of holomorphic functions f(Z) on H satisfying

f(g〈Z〉) = det(cZ + d)kf(Z) for all g =

(
a b

c d

)
∈ Γ(N).

An element f(Z) in Mk(Γ(N)) is called a cusp form if |f(Z) det(Im(Z))k/2|
is bounded on H. We denote by Sk(Γ(N)) the C-vector space of cusp forms

of weight k with respect to Γ(N). The following theorem is a dimension

formula by Arakawa.

Theorem 1.1 (Arakawa [A], Theorem). Assume k ≥ 5, N ≥ 3. Then

we have

dimC Sk(Γ(N))

=2−73−35−1[Γ(1) : Γ(N)](k − 1)(k − 3

2
)(k − 2)

∏
p|d(B)

(p− 1)(p2 + 1)

+ 2−43−1[Γ(1) : Γ(N)]N−3
∏

p|d(B)

(p− 1).
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1.3. Lattices

Let B− be the set of pure quaternions in B. We put

L := O ∩ B−, L∗ := {y ∈ B− | tr(xy) ∈ Z for all x ∈ L}.

Then L and L∗ are lattices of rank 3 in B−.

Lemma 1.2 (Arakawa [A], Lemma 1). Let {v1, v2, v3} be any basis of

L over Z. Then we have

det(tr(vivj)) = −2d(B)2.

For a rational prime number p, put Bp := B ⊗Q Qp. If p does not

divide d(B), then Bp
∼= M2(Qp). If p divides d(B), then Bp is a division

quaternion algebra over Qp. Put Op := O ⊗Z Zp, where Zp is the ring of

p-adic integers. Then Op is a maximal order of Bp. If p does not divide

d(B), then Op
∼= M2(Zp). If p divides d(B), then Op is the unique maximal

order of Bp. Moreover, we set Lp := L⊗Z Zp, L∗
p := L∗ ⊗Z Zp.

Then the following fact holds for L∗
p.

Lemma 1.3 (Arakawa).

L∗
p = {y ∈ Bp | tr(y) = 0, tr(yx) ∈ Zp for all x ∈ Lp}.

From the proof of Lemma 1.2 and Lemma 1.3, we get the next lemma.

Lemma 1.4. Let {u1, u2, u3} be any basis of L∗ over Z. Then we have

det(tr(uiuj)) = − 1

2d(B)2
.

Since the proof of Lemma 1.4 is similar to that of Lemma 1.2, we omit

it.
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1.4. Fourier expansions

Definition 1.5. Set

L∗
+ := {y ∈ L∗ | yJ > 0}, L+ := {x ∈ L | xJ−1 > 0}.

By Lemma 4 and Lemma 5 in Arakawa [A], the number of cusps of

Γ(1) is 1. Hence any cusp λ of Γ(N) has the form λ = ρσ−1 for some

Mλ :=

(
ρ ∗
σ ∗

)
∈ Γ(1). Here we take 1, 0 as ρ, σ when λ = ∞. The

matrix Mλ maps ∞ to λ. Set Wλ = M−1
λ Z. We can regard Z (resp. Wλ)

as the coordinate of some neighborhood of λ (resp. ∞).

Proposition 1.6 (Arakawa). Notation being as above, each modular

form f(Z) ∈ Mk(Γ(N)) has the following Fourier expansion

(1.6.1) det(−σZ + ρ)kf(Z) = aλ(0) +
∑
t∈L∗

+

aλ(t)e

[
1

N
tr(tWλ)

]
,

at each cusp λ. Here e[ · ] = exp(2πi · ). In particular, f(Z) ∈ Sk(Γ(N))

is equivalent to aλ(0) = 0 for any cusp λ.

For the proof of this proposition, we refer to §13 in Maass [M].

Let O× be the group of units in O. For any element ε ∈ O× and

x ∈ L, we have εxε ∈ L. The lattice L∗ also has this property. The Fourier

coefficients a(t) in the above Proposition satisfy

(1.7) aλ(εtε) = (Nε)kaλ(t)

for ε ∈ O×.

§2. Resolutions of singularities

In this section we deal with resolutions of cusp singularities of Γ(N) \ H.

We refer to Oda [O] for fundamental facts about toric varieties. For more

detailed information on this section, see Tsuchihashi [Ts]. Since our singu-

larities are analogous to Hilbert modular cusp singularities, see also Ehlers

[E] for cusp resolutions.
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We assume N ≥ 3 in this paper. Then Γ(N) acts freely on H. Since

the Q-rank of GQ is 1, rational boundary components of H with respect

to Γ(N) are 0-dimensional. Adding a finite number of points to Γ(N) \ H,

we get a normal compact algebraic variety Γ(N) \ H, which is called the

Satake-Baily-Borel compactification of Γ(N) \H. The variety Γ(N) \ H has

only cusp singularities. A toroidal compactification of Γ(N) \ H gives a

resolution of cusp singularities of Γ(N) \ H.

Setting

V := {x ∈ M2(R) | tr(x) = 0}, V+ := {x ∈ V | xJ−1 > 0},

we have H = V + iV+. The set V is a free R-module of rank 3, and V+

is an open convex cone in V . The set R+ := {r ∈ R | r > 0} acts on V+

in the usual manner. Put V+ := V+/R+. The set V+ is isomorphic to a

hyperbolic surface. Set O
×
N := {ε ∈ O× | ε ≡ 1 (mod NO)}. The group

O
×
N acts on V+ by x �→ εxε (x ∈ V+, ε ∈ O

×
N ). The group O

×
N also acts

on L in the same way. We have V = L ⊗Z R. If N ≥ 3, then O
×
N acts

properly discontinuously and freely on V+. We find that a pair (V+,O
×
N ) is

a Tsuchihashi cusp singularity (cf. [Ts]).

There exists a fan Σ of V such that

(i)
⋃

σ∈Σ−{0}
(σ − {0}) = V+,

(ii) for any compact subset K of V+, #{σ ∈ Σ | σ ∩K �= φ} < ∞,

(iii) Σ is O
×
N -invariant,

(iv) O
×
N acts freely on Σ − {0}, and

(v) #
(
(Σ − {0})/O×

N

)
< ∞.

Moreover, taking a O
×
N -invariant subdivision of Σ, we may suppose the

following conditions:

(vi) for any σ, τ ∈ Σ, #{ε ∈ O
×
N | ε · σ ∩ τ �= {0}} ≤ 1, and

(v) each σ ∈ Σ is nonsingular, i.e., σ is spanned by a part of a Z-basis

of L.

For a positive integer k(≤ 3), let Σk be the set of k-dimensional cones

in Σ. For any element τ of Σ1, v(τ) stands for the primitive element of L

with R≥0v(τ) = τ . Since each element of Σ is nonsingular, every element

σ ∈ Σ has k one-dimensional faces. For any σ ∈ Σk, Sσ denotes the

(k − 1)-simplex in V spanned by {v(τ) | τ ∈ Σ1, τ is a face of σ}. Put
∼
K := {Sσ | σ ∈ Σ−{0}}. Then |

∼
K| :=

⋃
σ∈Σ−{0}

Sσ is isomorphic to V+ by a
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natural map V+ → V+, and
∼
K gives a triangulation of V+. The group O

×
N

acts on freely on
∼
K by (iv). Set K :=

∼
K/O×

N . Then K gives a triangulation

of 2-dimensional compact topological manifold V+/O
×
N . This triangulation

describes a resolution of a cusp singularity of Γ(N) \ H.

§3. Defects

In this section we define defects of cusps for Γ(N).

Let Ω be the sheaf of the canonical differential forms. Since

H =
{
Z = X + iY ∈ M2(C) | tr(Z) = 0, Y J−1 > 0

}
,

we use the coordinate

(
z1 z2

z3 −z1

)
∈ H. Let ω = dz1 ∧ dz2 ∧ dz3 be the

standard volume element. For f ∈ S3m(Γ(N)), fω⊗m is Γ(N)-invariant.

Assume N ≥ 3. Then Γ(N) is torsion-free. Hence fω⊗m becomes a section

of H0(Γ(N)\H,Ω⊗m). Let Y (N) be a smooth compactification of Γ(N)\H

obtained by using a fan Σ in the previous section. We would like to know

the extendability of fω⊗m to a section of H0(Y (N),Ω⊗m).

Let λ be a cusp singularity of Γ(N) \ H. We define an invariant which

measures the obstruction for extending sections of multi-canonical system

of degree m (m ≥ 1). Let π : Y (N) → Γ(N) \ H be a cusp resolution

associated to Σ. We set

dm(λ) := dimC lim−→
λ∈U

H0(π−1(U − λ),Ω⊗m)/H0(π−1(U),Ω⊗m),

where U runs over a fundamental system of neighbourhoods of λ. This

number dm(λ) is called the m-th defect of λ.

Take a Z-basis α1, α2, α3 of L such that R≥0α1 + R≥0α2 + R≥0α3 is an

element of Σ. We can find a Z-basis β1, β2, β3 of L∗ such that tr(αiβj) = δij
(Kronecker’s delta). Each element t of L∗ can be written as t = t1β1 +

t2β2 + t3β3 (ti ∈ Z). We change the coordinates as

(3.1) xj = e

[
1

N
tr(βjZ)

]
, j = 1, 2, 3,
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where Z is the coordinate of H as described at the top of this section. If f

has the Fourier expansion as in Proposition 1.6, then we have

(3.2)

fω⊗m =f(dz1 ∧ dz2 ∧ dz3)
⊗m

=

(
2πi

N

)−3m

· 2−m · δ(L∗)−m

· (
∑
t∈L∗

+

a∞(t)xt11 x
t2
2 x

t3
3 )(x1x2x3)

−m

× (dx1 ∧ dx2 ∧ dx3)
⊗m,

where

δ(L∗) :=

∣∣∣∣∣∣
λ1 µ1 ν1

λ2 µ2 ν2

λ3 µ3 ν3

∣∣∣∣∣∣ , βj =

(
λj µj

νj −λj

)
(j = 1, 2, 3).

This δ(L∗) is uniquely determined by L∗ up to the sign ±.

Definition 3.3. For any positive integer m, we define

Λm(∞) := {y ∈ L∗
+ | tr(yx) ≤ m for some x ∈ L+}.

Let R3m(Γ(N)) be the space of all cusp forms f ∈ S3m(Γ(N)) such that

in (1.6.1) aλ(t) = 0 holds for any cusp λ of Γ(N) and for any element t of

Λm−1(∞). Let Pm(Y (N)) = dimC H0(Y (N),Ω⊗m) be the m-th plurigenus

of Y (N).

Proposition 3.4. Assume N ≥ 3. For any positive integer m, we

have Pm(Y (N)) = dimC R3m(Γ(N)).

Proof. Take an element f of S3m(Γ(N)). Since Γ(N) is a normal

subgroup of Γ(1), each cusp of Γ(N) has the same properties as the cusp

∞ (note that Γ(1) has only one cusp ∞ from Lemma 4 and Lemma 5 in

Arakawa [A]). Hence we only consider the extendability of fω⊗m to the

resolution of ∞ (for other cusps, moving each cusp to ∞ by using some

element of Γ(1), each cusp case reduces to ∞ case). Let x ∈ Y (N) −
Γ(N) \ H be a point on the resolution of ∞. We take a sufficiently small
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neighbourhood Ux at x. Then the coordinate (x1, x2, x3) on Ux is expressed

as (3.1) for some Z-basis α1, α2, α3 of L such that αi ∈ L+ (i = 1, 2, 3)

(R≥0α1 +R≥0α2 +R≥0α3 forms a polyhedral cone in L+, which is appeared

in the resolution of cusp singularities of Γ(N) \ H in the previous section)

and its dual Z-basis β1, β2, β3 of L∗. Then fω⊗m can be written as (3.2) on

Ux. Hence for any point x, fω⊗m|Ux becomes a section of H0(Ux,Ω
⊗m) if

and only if in (1.6.1) each t ∈ L∗
+ such that aλ(t) �= 0 satisfies tr(tv) ≥ m

for all v ∈ L+. This condition is equivalent to f ∈ R3m(Γ(N)). �

Proposition 3.5. For any positive integer m, we have

dm(∞) = #(Λm(∞)/ ∼),

where we write y1 ∼ y2 when y1 = εy2ε holds for some element ε in O
×
N .

Proof. For any element t ∈ L∗
t , put

Pt(Z) :=
∑
ε∈O

×
N

e

[
1

N
tr(εtεZ)

]
.

Then Pt(Z) is absolutely convergent over H. Since N ≥ 3, the norm of any

element of O
×
N is 1. From (1.7), each Fourier coefficient a∞(t) in (1.6.1) sat-

isfies a∞(εtε) = a∞(t) for ε ∈ O
×
N . Hence by Proposition 1.6, S3m(Γ(N))

is generated by Pt(Z) (t ∈ L∗
+). We have Pεtε(Z) = Pt(Z) for ε ∈ O

×
N .

Combining these facts with the proof of Proposition 3.4, we get the propo-

sition. �

As we saw above, the m-th defect dm(∞) of ∞ measures the extendabil-

ity of fω⊗m to a section of H0(Y (N),Ω⊗m).

§4. Results

Put N(L+) := min{N(x) | x ∈ L+}.
The following is our main result.

Theorem 4.1. Assume N ≥ 3. If

(4.1.1) N3 >

√
2 · 27 · 3 · 5π

N(L+)3/2d(B)
∏

p|d(B)(1 + 1
p2 )

,
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then Y (N) is of general type. Namely, Y (N) is of general type if N is fully

large.

Proof of Theorem 4.1.

We have the following inequality:

(4.2) Pm(Y (N)) = dimC R3m(Γ(N)) ≥ dimC S3m(Γ(N)) −
∑
λ

dm(λ).

Here the sum
∑

runs over cusp singularities of Γ(N). By Lemma 4 and

Lemma 5 in Arakawa [A], the number of cusps of Γ(1) is 1. The fixed

subgroup of the cusp ∞ in Γ(1) is

Γ(1)∞ :=

{(
a b

c d

)
∈ Γ(1) | c = 0

}
.

Since [Γ(1)∞ : Γ(1)∞ ∩ Γ(N)] = [O× : O
×
N ]N3, the number of cusps for

Γ(N) is [Γ(1) : Γ(N)]/([O× : O
×
N ]N3). Since Γ(N) is a normal subgroup of

Γ(1), each cusp of Γ(N) has the same property as the cusp ∞. Hence by

(4.2), we have

(4.3) Pm(Y (N)) ≥ dimC S3m(Γ(N)) − [Γ(1) : Γ(N)]

[O× : O
×
N ]N3

· dm(∞).

Lemma 4.4. Let y be an element of Λm(∞). If tr(yx) ≤ m for some

x ∈ L+, then N(y)N(x) ≤ 9m2.

Proof. It suffices to show N(y)N(x) ≤ 9 tr(yx)2 for y ∈ L∗
+, x ∈ L+.

Since B ⊂ M2(R), y and x can be expressed as y =

(
y1 y2

y3 −y1

)
, x =(

x1 x2

x3 −x1

)
, respectively. We have

(4.4.1)
y2 < 0, y3 > 0, −y2y3 − y2

1 > 0,

x2 > 0, x3 < 0, −x2x3 − x2
1 > 0,
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by definitions of L∗
+ and L+. Hence

9 tr(yx)2 −N(y)N(x)

= 9(x3y2 + 2x1y1 + x2y3)
2 − (y2

1 + y2y3)(x
2
1 + x2x3)

= A1 + A2 + A3,

where we set

A1 :=(x2x3y2y3 − x2
1y

2
1),

A2 :=(−x2
1y2y3) + (−x2x3y

2
1) − 2x2

1y
2
1,

A3 :=(2x1y1 + x3y2)
2 + (2x1y1 + x2y3)

2

+ 8(x3y2 + 2x1y1 + x2y3)
2 − 2x2

1y
2
1.

Since x2x3y2y3−x2
1y

2
1 > 0 by (4.4.1), A1 > 0. By (4.4.1), we have −x2

1y2y3 ≥
0, −x2x3y

2
1 ≥ 0. Using (4.4.1) again, A2 ≥ 0 holds. We consider A3. In the

case x1y1 ≥ 0, it is clear that A3 ≥ 0. We consider the case x1y1 < 0. We

now assume that (2x1y1+x3y2)
2, (2x1y1+x2y3)

2, and (x3y2+2x1y1+x2y3)
2

are smaller than x2
1y

2
1/4. Then we have

−3

2
x1y1 < x3y2 < −5

2
x1y1,(4.4.2)

−3

2
x1y1 < x2y3 < −5

2
x1y1,(4.4.3)

−3

2
x1y1 < x3y2 + x2y3 < −5

2
x1y1.(4.4.4)

By (4.4.2) and (4.4.3), −3x1y1 < x3y2 + x2y3 < −5x1y1. This inequality

contradicts (4.4.4). Hence one of numbers (2x1y1 +x3y2)
2, (2x1y1 +x2y3)

2,

and (x3y2 + 2x1y1 + x2y3)
2 is not smaller than x2

1y
2
1/4.

(i) The case (2x1y1 + x3y2)
2 ≥ x2

1y
2
1/4:

Since x3y2 > 0, x3y2 ≥ −5x1y1/2. Using (4.4.3), −4x1y1 < x3y2 + x2y3.

This inequality contradicts (4.4.4). Hence (x3y2 + 2x1y1 + x2y3)
2 ≥ x2

1y
2
1/4

holds. Thus we have A3 ≥ 0.

(ii) The case (2x1y1 + x2y3)
2 ≥ x2

1y
2
1/4:

As in the case (i), we have A3 ≥ 0.

(iii) The case (x3y2 + 2x1y1 + x2y3)
2 ≥ x2

1y
2
1/4:

We can easily see A3 ≥ 0. �
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Thus we have

dm(∞) ≤ #

({
y ∈ L∗

+ | N(y) ≤ 9m2

N(L+)

}
/ ∼

)
,

where ∼ is the same relation defined above. It suffices to evaluate the right

hand side of the above inequality. This cardinality is not larger than

cm := #

({
y ∈ L∗ | 0 < N(y) ≤ 9m2

N(L+)

}
/ ∼

)
.

We would like to compute cm.

Let {e1, e2, e3} be a basis of L∗ over Z. Any element x in V can be written

as x = x1e1 +x2e2 +x3e3 (x1, x2, x3 ∈ R). Let F be fundamental domain of

O
×
N in {x ∈ V | 0 < N(x) ≤ 1} under the action x → εxε (x ∈ V, ε ∈ O

×
N ).

Lemma 4.5. For any positive real number r, we put

br := # ({y ∈ L∗ | 0 < N(y) ≤ r} / ∼) .

Then

br ≤
(∫

F

dx1dx2dx3

)
r

3
2 + αr

3
2

holds for any small positive real number α if r is large enough.

Proof. The number br is expressed as

br = #({y ∈ L∗ | 0 < N(yr−
1
2 ) ≤ 1}/ ∼).

Such element yr−
1
2 in B− is considered as a lattice point with width r−

1
2

concerning the coordinate (x1, x2, x3). Hence we have lim
r→∞

brr
− 3

2 =∫
F
dx1dx2dx3. �

We next calculate I :=
∫
F
dx1dx2dx3. Set

E11 =

(
1 0

0 −1

)
, E12 =

(
0 1

0 0

)
, E21 =

(
0 0

1 0

)
.
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Then {E11, E12, E21} is a basis of V over R. Any element x in V is expressed

as x = x11E11 + x12E12 + x21E21 (x11, x12, x21 ∈ R). Since det(tr(eiej)) =

− 1
2d(B)2

(Lemma 1.4), we have I =
√

2d(B)
∫
F
dx11dx12dx21. Put

(
x11 x12

x21 −x11

)
J−1 = t

(
u xu−1

0 u−1

)
t

(
u xu−1

0 u−1

)
.

Here x, u and t satisfy x ∈ R, u > 0, and 0 < t ≤ 1, respectively. Moreover,

set y = u2. Then we have

∫
F

dx11dx12dx21 =2

∫ 1

0
t2dt

∫
O

×
N\H

dxdy

y2

=[O× : O
×
N ]

∫ 1

0
t2dt

∫
O1\H

dxdy

y2

=
π

9
[O× : O

×
N ]

∏
p|d(B)

(p− 1),

where O1 is the set of norm 1 units of O×, and H is the complex upper

half plane. The groups O
×
N and O1 act on H by using O1 ↪→ SL2(R). Note

that O
×
N ⊂ O1 because of N ≥ 3.

We return to the first stage. Using the result obtained above, we have

cm = b9m2/N(L+) ≤


3

√
2πd(B)[O× : O

×
N ]

N(L+)
3
2

∏
p|d(B)

(p− 1)


m3 +

αm3

N(L+)
3
2

.

By applying this evaluation and dimension formula of Arakawa to (4.3), the

proof of Theorem 4.1 is completed. �

By Theorem 4.1, we can easily see the following:

Theorem 4.6. Assume N ≥ 3. If

d(B) >

√
2 · 27 · 5π

32N(L+)3/2
∏

p|d(B)

(
1 + 1

p2

) ,

then Y (N) is of general type. Namely, Y (N) is of general type if d(B) is

fully large.
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§5. Examples

In this section, we give examples of 3-folds Y (N) of general type. We

first quote the result of Ibukiyama from [I]:

Theorem 5.1 (Ibukiyama [I]). Let p1, p2, · · · , p2r be distinct prime

numbers, and set m = p1 · · · p2r. Take a prime number q satisfying q ≡
5 (mod 8) and

(
q
pi

)
= −1 for any prime number pi �= 2 (Here (−) is the

Legendre symbol). Then we can show that

B = Q + Qα + Qβ + Qαβ, α2 = m, β2 = q, αβ = −βα

is an indefinite division quaternion algebra over Q with discriminant d(B) =

m and that for any rational integer a such that a2 ≡ m (mod q),

O = Z + Z
1 + β

2
+ Z

α(1 + β)

2
+ Z

(a + α)β

q

is a maximal order of B.

When the discriminant d(B) of B is small, we must take a large natural

number N in order to get a 3-fold Y (N) of general type. If d(B) is fully

large, then we can get a 3-fold Y (N) of general type with small level N by

Theorem 4.6. Using the above theorem, we give such examples.

Example 5.2. (1) We put

B = Q + Qα + Qβ + Qαβ, α2 = 6, β2 = 5, αβ = −βα.

Then B is an indefinite division quaternion algebra over Q with d(B) = 6,

and

O = Z + Z
1 + β

2
+ Z

α(1 + β)

2
+ Z

(1 + α)β

5

is a maximal order of B. We can easily see that

L = Zβ + Z
α(1 + β)

2
+ Z

(1 + α)β

5
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and that N(L+) ≥ 1/10. If N ≥ 32, then the inequality (4.1.1) holds.

Threfore Y (N) is of general type for N ≥ 32.

(2) We put

B = Q + Qα + Qβ + Qαβ, α2 = 213486, β2 = 5, αβ = −βα.

Then B is an indefinite division quaternion algebra over Q with d(B) =

2 · 3 · 7 · 13 · 17 · 23 = 213486, and

O = Z + Z
1 + β

2
+ Z

α(1 + β)

2
+ Z

(4 + α)β

5

is a maximal order of B. We can easily see that

L = Zβ + Z
α(1 + β)

2
+ Z

(4 + α)β

5

and that N(L+) ≥ 1/10. If N ≥ 3, then the inequality (4.1.1) holds.

Therefore Y (N) is of general type for N ≥ 3.
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