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A Note on Four-Manifolds with

Free Fundamental Groups

By Alberto Cavicchioli and Friedrich Hegenbarth

Abstract. In this paper we study the homotopy decomposition
problem for closed connected 4-manifolds with free fundamental groups.
For this we apply obstruction theory and give a detailed description of
Whitehead’s exact sequence for the named class of manifolds.

1. Introduction and results

If M ′ is a closed simply-connected 4-manifold, then there is the well-

known exact sequence (see [12]):

0 −−−→ H4(M
′; Z)

b′−−−→ Γ(Π2(M
′)) −−−→ Π3(M

′; Z) −−−→ 0.

Here Γ(·) is Whitehead’s quadratic functor on abelian groups. One might

think of Γ(Π2(M
′)) as a subgroup of Π2(M

′) ⊗Z Π2(M
′). Let

[M ′] ∈ H4(M
′; Z) denote a fundamental class of M ′. The element

b′([M ′]) ∈ Γ(Π2(M
′)) ⊂ Π2(M

′) ⊗Z Π2(M
′)

can be interpreted as the intersection form λM ′ over H2(M
′; Z), via Poincaré

duality.
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In this note we shall prove a similar result for closed connected topologi-

cal 4-manifolds with free fundamental groups. We shall always assume that

the considered manifolds are all orientable although our results also work

in the general case, provided the first Stiefel-Whitney classes coincide.

Let M4 be a closed connected orientable TOP 4-manifold with free

fundamental group Π1(M) ∼= ∗pZ (free product of p factors Z). We can

assume that M is provided with a CW-structure, up to homotopy. Let

Λ = Z[Π1(M)] be the integral group ring of Π1(M). For a right Λ-module

A, let A be the associated left Λ-module induced by the canonical anti-auto-

morphism − : Λ → Λ (see [1] and [11]).

The following is our main theorem.

Theorem 1.1. Let M4 be a closed connected orientable topological

4-manifold with Π1(M) ∼= ∗pZ. Then the sequence

0 → H4(M ; Z)
b→ Γ(Π2(M)) ⊗Λ Z → Π3(M) ⊗Λ Z

→ H3(M ; Λ) ⊗Λ Z → 0

is exact. Moreover, Γ(Π2(M))⊗Λ Z is a subgroup of Π2(M)⊗Λ Π2(M) and

the element b([M ]) ∈ Π2(M) ⊗Λ Π2(M) can be identified with the intersec-

tion form λM : H2(M ; Λ) ×H2(M ; Λ) → Λ via Poincaré duality.

It is shown in Section 2 that Π2(M) is a free Λ-module. It can also be

seen that Π3(M\
◦

D4) is Λ-free (Lemma 3.3). As a consequence (applying

the Whitehead theorem [13]) we obtain an alternative proof of a result due

to Matumoto and Katanaga (see [10]).

Corollary 1.2. Any closed connected 4-manifold M with Π1(M) ∼=
∗pZ can be obtained by attaching a 4-disc to a bouquet ∨p(S

1∨S3)∨ (∨qS
2).

Recently, Hambleton and Teichner (see [6]) have constructed a non-

singular Hermitian form λ of rank 4 over Λ = Z[Z] which is not extended

from the integers. This together with the realization theorem of Freedman

and Quinn (see [5]) yields an example of closed 4-manifold M with Π1(M) ∼=
Z which is not homotopy equivalent to the connected sum of S1 × S3 with

a simply-connected manifold.
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Our main result is related to Theorem 1 of [3]. From this follows im-

mediately a criterion for the homotopy decomposition of 4-manifolds with

free fundamental groups.

Corollary 1.3. Let M4 be a closed connected orientable TOP

4-manifold with Π1(M) ∼= ∗pZ. Then M is simple homotopy equivalent

to the connected sum #p(S
1 × S3)#M ′ for some simply-connected closed

4-manifold M ′ if and only if the intersection form λM over Λ is extendable

from the integers.

In our case any homotopy equivalence is simple because the Whitehead

group of Π1(M) ∼= ∗pZ vanishes (see for example [5]).

In particular, M ′ is determined by the isomorphism λM ′ ∼= λM⊗ΛZ over

Z as shown in [2]. Moreover, M ′ is unique, up to TOP homeomorphism, if

λM ′ is even (see [5]).

We also remark that under the hypothesis of Corollary 1.3 the manifolds

M and #p(S
1 × S3)#M ′ are s-cobordant. This can be obtained by using

some results of [7], Section 2. A complete proof can be found in [4]. Note

that this fact was first proved for the case when χ(M) = 2χ(K(Π1, 1))

by Hillman (see [8]). Finally, we observe that in case Π1
∼= Z, the mani-

folds in Corollary 1.3 are also topologically homeomorphic (apply the re-

sults of Freedman-Quinn’s book [5]). This corrects a previous statement of

Kawauchi (see Theorem 1.1 of [9]).

To prove Theorem 1.1 we first construct a map φ : M → #p(S
1 × S3) of

degree 1 (Lemma 2.1). This map serves to define maps

α : #p(S
1 × S3)\

◦
D4 → M and β : M ′\

◦
D4 → M (see Section 2). A ho-

motopy equivalence between

(#p(S
1 × S3)#M ′)\

◦
D4 and (#p(S

1 × S3)\
◦

D4) ∨ (M ′\
◦

D4)

yields then a map

α#β � α ∨ β : (#p(S
1 × S3)#M ′)\

◦
D4 → M

which induces isomorphisms on Π1 and on Π2 (see Section 2). Finally, in

Section 3 we shall complete the proof of Theorem 1.1.
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2. The map α#β

Let M4 be a given closed connected orientable 4-manifold with

Π1(M) ∼= ∗pZ. Choosing an isomorphism of Π1(M) with ∗pZ yields a

basis (e1, e2, . . . , ep) of H1(M ; Z). Let (u1, u2, . . . , up) be the dual basis in

H1(M ; Z) ∼= Hom(H1(M ; Z),Z) and let v1, v2, . . . , vp ∈ H3(M ; Z) be the

Poincarè duals of e1, e2, . . . , ep, respectively. Then we have

ui ∪ vj = δij ωM

for each i, j = 1, 2, . . . , p. Here ωM ∈ H4(M ; Z) is determined by the orien-

tation of M , i. e. ωM is the dual of the fundamental class

[M ] ∈ H4(M ; Z). The cartesian product of the elements ui and vi defines a

map

ϕ =

p∏
i=1

(ui × vi) : M → C =

p∏
1

(S1 ×K(Z, 3)).

Since K(Z, 3) = S3 ∪ {cells of dimension ≥ 5}, we can assume that

ϕ : M →
p∏
1

(S1 × S3).

The obstruction for deforming ϕ to a map

M → ∨p(S
1 × S3)

belongs to (see also the appendix in Section 4)

H3(M ; Π2(∨p(S
1 × S3))) ∼= 0

and

H4(M ; Π3(∨p(S
1 × S3))) ∼= Π3(∨p(S

1 × S3)) ⊗Λ Z ∼= ⊕pZ.

Therefore the i-th component of this obstruction in ⊕pZ is just the ob-

struction for extending the map ui × vi : M
(3) → S1 × S3 to M , hence it is

zero.

Now we consider the wedge ∨p(S
1×S3) as the connected sum #p(S

1×S3)

with p− 1 four-dimensional discs adjoined along the 3-spheres which serve
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to define the connected sums. In other words, #p(S
1 × S3) embeds into

∨p(S
1 × S3), up to homotopy.

Lemma 2.1. The map ϕ : M → ∨p(S
1 × S3) can be deformed into a

map

φ : M → #p(S
1 × S3).

Moreover, φ is of degree 1 by choosing an appropriate orientation of

#p(S
1 × S3).

For a proof we refer to [3], Lemma 13.

Remark. By [11], the Λ-module

H2(M ; Λ) = Ker(H2(M ; Λ)
φΛ
∗−−−→ H2(#p(S

1 × S3); Λ))

is stably Λ-free, hence Λ-free. In particular, we have

H2(M ; Z) ∼= H2(M ; Λ) ⊗Λ Z ∼= H2(M̃ ; Z) ⊗Λ Z ∼= Π2(M) ⊗Λ Z,

where M̃ is the universal covering space of M . Therefore any element

x ∈ H2(M ; Z) can be represented by a map S2 → M .

By Freedman’s result (see for example [5]) there is a simply-connected

closed 4-manifold M ′ with integral intersection form λM ′ ∼= λM ⊗Λ Z (also

use [2]).

By the above remark we can represent a basis

x1, x2, . . . , xr ∈ H2(M
′; Z) ∼= H2(M ; Z) ∼= ⊕rZ

by maps of 2-spheres into M , i. e. there exists a map

β : M ′\
◦

D4 � ∨rS
2 → M.

Obviously, the induced homomorphism

β∗ : H2(M
′\

◦
D4; Z) → H2(M ; Z)
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is bijective.

Lemma 2.2. There exists a map

α : (#p(S
1 × S3))\

◦
D4 → M

such that the composition

(#p(S
1 × S3))\

◦
D4 α−−−→ M

φ−−−→ #p(S
1 × S3)

is homotopic to the inclusion.

Proof. For simplicity, we set Y = #p(S
1 × S3) and denote the

q-skeleton of Y by Y (q). Then there is a map

∨pS
1 = Y (1) → M

such that its composition with φ is the canonical inclusion. There is an

obstruction map

H2(Ỹ
(2), Ỹ (1)) → Π1(M)

for extending over the 2-skeleton of Y . Here Ỹ (q) denotes the universal cov-

ering space of Y (q). However, composition of this map with

φ∗ : Π1(M) →∼= Π1(Y ) shows that we can extend it over the 2-skeleton of

Y . There is then an obstruction in the cohomology group H3(Y ; Π2(M))

with local coefficients for extending over Y (3) = Y \
◦

D4. Since

Π2(M) ∼= H2(M̃) ∼= H2(M ; Λ) is stably Λ-free, we have

H3(Y ; Π2(M)) ∼= H1(Y ; Π2(M)) ∼= 0.

The first isomorphism follows from Poincaré duality with local coefficients

(see for example [1] and [11]). Obviously, one has to consider Π2(M) as

Λ-right and as Λ-left module by making use of the involution − : Λ → Λ

defined by ∑
ngg =

∑
ngg

−1
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for any g ∈ Π1(M) and ng ∈ Z. Therefore the map α : Y \
◦

D4 → M can be

defined. Now the obstructions for homotopy are in H2(Y ; Π2(M)) ∼= 0 and

in H3(Y ; Π3(M)). Looking at the diagram

Π3(M)
φ∗−−−→ Π3(Y )�

�∼=

H3(M ; Λ) −−−→
φΛ∗

H3(Y ; Λ)

one sees that φ∗ : Π3(M) → Π3(Y ) is surjective because the homomorphism

Π3(M) → H3(M ; Λ) ∼= H3(M̃ ; Z)

is onto by the Hurewicz theorem. Therefore it is possible to construct

an extension α : Y (3) → M such that φ ◦ α is homotopic to the inclusion

Y (3) ⊂ Y . This can be seen as follows. We choose α and consider the

difference cochain

d(i, φ ◦ α) : H3(Ỹ
(3), Ỹ (2)) → Π3(Y )

between φ ◦ α and the inclusion i : Y (3) ⊂ Y . Since H3(Ỹ
(3), Ỹ (2)) is Λ-free

and φ∗ : Π3(M) → Π3(Y ) is surjective, we can lift d(i, φ ◦ α) to

d̃ : H3(Ỹ
(3), Ỹ (2)) → Π3(M).

We can now use d̃ to change α in order to obtain a map

α′ : Y \
◦

D4 = Y (3) → M such that the difference cochain of α and α′ is

d̃. Then φ ◦ α′ is homotopic to the inclusion. This completes the proof. �

Now we observe that there is a homotopy equivalence

(#p(S
1 × S3)\

◦
D4) ∨ (M ′\

◦
D4) � (#p(S

1 × S3)#M ′)\
◦

D4,

hence the maps α and β define a map

α#β � α ∨ β : (#p(S
1 × S3)#M ′)\

◦
D4 → M.

Corollary 2.3. The map α#β induces isomorphisms on Π1 and on

Π2.
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3. The homotopy type

In Section 2 we have constructed a map

α#β : (#p(S
1 × S3)#M ′)\

◦
D4 → M.

In this section we are studying the problem of its extension to

#p(S
1 × S3)#M ′ = M1.

First we observe that any extension must be a homotopy equivalence.

Lemma 3.1. If α#β extends to a map h : M1 → M , then h must be a

homotopy equivalence.

Proof. By the construction of

α ∨ β : (∨p(S
1 × S3)\

◦
D4) ∨ (M ′\

◦
D4) → M,

the following diagram commutes, up to homotopy:

M1
h−−−→ M

c

�
�φ

#p(S
1 × S3) #p(S

1 × S3).

Here c denotes the collapsing map. Both maps φ and c are of degree one,

hence also h must be of degree one. The kernel KerhΛ
∗ of

hΛ
∗ : H2(M1; Λ) → H2(M ; Λ) is stably Λ-free and finitely generated (see

[11]), hence Λ-free. On the other hand,

KerhZ
∗ = Ker(H2(M1; Z)

hZ
∗→ H2(M ; Z))

is isomorphic to KerhΛ
∗ ⊗Λ Z. But KerhZ

∗ = 0 by Corollary 2.3. There-

fore, hΛ
∗ is an isomorphism. It follows from duality that h is a homotopy

equivalence. �
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The obstruction for extending α ∨ β belongs to

H4(#p(S
1 × S3)#M ′; Π3(M)) ∼= H0(#p(S

1 × S3)#M ′; Π3(M))

∼= Π3(M) ⊗Λ Z.

More precisely, it is the image of a generator by the composite map

Π4(M1,M1\
◦

D4) ⊗Λ Z
∂∗⊗Λ1−−−−→ Π3(M1\

◦
D4) ⊗Λ Z

(α∨β)∗⊗Λ1−−−−−−−→ Π3(M) ⊗Λ Z.

We are going to get information on the obstruction by using Whitehead’s

exact sequence for a 4-complex X (see [12]):

H4(X; Λ) −−−→ Γ(Π2(X)) −−−→ Π3(X)
H∗−−−→ H3(X; Λ) −−−→ 0.

Here H∗ is the Hurewicz homomorphism and Γ(·) is the quadratic functor

on abelian groups. This is then an exact sequence of right Λ-modules.

In our case the group Π2(X) is Z-free, hence there is a natural inclusion

τ : Γ(Π2(X)) → Π2(X) ⊗Z Π2(X). The Λ-module structure on Γ(Π2(X))

is then compatible with this inclusion. Recall also that there is a natural

identification of Γ(Π2(X)) with H4(K(Π2(X), 2); Z).

Lemma 3.2. Let X be either M or M1. Then tensoring the Whitehead

sequence by ⊗ΛZ yields the following exact sequence:

H4(X; Z) → Γ(Π2(X)) ⊗Λ Z → Π3(X) ⊗Λ Z → H3(X; Λ) ⊗Λ Z → 0.

Proof. Considering the universal coefficient spectral sequence

TorΛp (Hq(X; Λ),Z) ⇒ Hp+q(X; Z),

we get TorΛ1 (H3(X; Λ),Z) ∼= H4(X; Z). Recall that H2(X; Λ) is Λ-free and

that H4(Π1(X); Z) ∼= 0. Thus the result follows. �
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For X = M or M1, we consider the following diagram with exact rows:

Π4(X,X\
◦
D4) ⊗Λ Z

∼=−→ H4(X,X\
◦
D4; Λ) ⊗Λ Z

∂∗⊗1

�
�∂∗⊗1

0 −→ Γ(Π2(X\
◦
D4)) ⊗Λ Z −→ Π3(X\

◦
D4) ⊗Λ Z −→ H3(X\

◦
D4; Λ) ⊗Λ Z −→ 0

∼=
�

�
�

H4(X; Z) −→ Γ(Π2(X)) ⊗Λ Z −→ Π3(X) ⊗Λ Z −→ H3(X; Λ) ⊗Λ Z −→ 0.

The exactness of the middle row will be a consequence of the next result.

Lemma 3.3. H3(X\
◦

D4; Λ) is a free Λ-module

Proof. For X = #p(S
1 × S3)#M ′ we have

X\
◦

D4 � (#p(S
1 × S3)\

◦
D4) ∨ (M ′\

◦
D4),

hence the result follows immediately.
For X = M , we consider the exact sequence of the pair

X\
◦

D4 = X(3) ⊃ X(2) :

0 → H3(X\
◦

D4; Λ) → H3(X\
◦

D4, X(2); Λ)
∂∗→ H2(X

(2); Λ)
i∗→ H2(X

(3); Λ) → 0.

Now H2(X
(3); Λ) ∼= H2(X; Λ) is Λ-free, hence Ker i∗ = Im ∂∗ is a direct

summand of H2(X
(2); Λ). But X(2) is a wedge of 1-spheres and 2-spheres

so H2(X
(2); Λ) is Λ-free too. Therefore Ker ∂∗ ∼= H3(X\

◦
D4; Λ) is a di-

rect summand of the free Λ-module H3(X\
◦

D4, X(2); Λ), hence it is free as

Λ-module. �

Lemma 3.4. The homomorphism

∂∗ ⊗Λ 1: H4(X,X\
◦

D4; Λ) ⊗Λ Z → H3(X\
◦

D4; Λ) ⊗Λ Z

is zero.
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Proof. Note that H4(X,X\
◦

D4; Λ) ⊗Λ Z ∼= H4(X,X\
◦

D4; Z). It will

be sufficient to prove that H3(X\
◦

D4; Λ) ⊗Λ Z ∼= H3(X\
◦

D4; Z) because the

boundary homomorphism H4(X,X\
◦

D4; Z) → H3(X\
◦

D4; Z) is zero. But

H3(X\
◦

D4; Λ) ⊗Λ Z ∼= H3(X\
◦

D4; Z)

follows again from the universal coefficient spectral sequence

TorΛp (Hq(X\
◦

D4; Λ),Z) ⇒ Hp+q(X\
◦

D4; Z). �

We can rewrite the above diagram as follows.

Π4(X,X\
◦
D4) ⊗Λ Z Π4(X,X\

◦
D4) ⊗Λ Z

∼=−→ H4(X,X\
◦
D4; Λ) ⊗Λ Z

∆∗

� ∂∗⊗1

�
�∂∗⊗1

0 −→ Γ(Π2(X\
◦
D4)) ⊗Λ Z −→ Π3(X\

◦
D4) ⊗Λ Z −→ H3(X\

◦
D4; Λ) ⊗Λ Z −→ 0

∼=
�

�
�

H4(X; Z) −→ Γ(Π2(X)) ⊗Λ Z −→ Π3(X) ⊗Λ Z −→ H3(X; Λ) ⊗Λ Z −→ 0.

Corollary 3.5. The image of a generator of Π4(X,X\
◦

D4)⊗Λ Z ∼= Z

under ∆∗ coincides with the image of a generator of H4(X; Z) in

Γ(Π2(X)) ⊗Λ Z ∼= Γ(Π2(X\
◦

D4)) ⊗Λ Z.

Proof. Note first that Γ(Π2(X)) ∼= H4(K(Π2(X), 2); Z). It was shown

in [3], Proposition 8, that Γ(Π2(X)) is Λ-free. The above diagram, before

tensoring with ⊗ΛZ, is therefore a resolution of the bottom row. The result

then follows from this and the identification of

TorΛ1 (H3(X; Λ),Z) ∼= H4(X; Z). �

Remark. The homomorphism H4(X; Z) → Γ(Π2(X)) ⊗Λ Z must be

injective. Otherwise, S3 = ∂D4 i→ X\
◦

D4 would be extendable over a disc
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D4
1

i1→ X\
◦

D4. Then S4 = D4 ∪ D4
1

i∪i1→ X would be a degree one map,

implying X homotopy equivalent to S4.

It was shown in [3] (proof of Proposition 8) that

Γ(Π2(X)) ⊂ Π2(X) ⊗Z Π2(X) induces an inclusion

Γ(Π2(X)) ⊗Λ Z ⊂ (Π2(X) ⊗Z Π2(X)) ⊗Λ Z ∼= Π2(X) ⊗Λ Π2(X).

Here the bar denotes the left Λ-module structure provided by the canonical

anti-automorphism on Λ. Via Poincaré duality the image of the generator

of

Π4(X,X\
◦

D4) ⊗Λ Z

under ∆∗ is then the intersection form

λX : H2(X; Λ) ⊗Λ H2(X; Λ) → Λ.

Summarizing we have obtained the following result.

Theorem 3.6. Let X be an oriented closed connected TOP four-

manifold with free fundamental group. Then there is the following exact

sequence:

0 → H4(X; Z)
b→ Γ(Π2(X)) ⊗Λ Z → Π3(X) ⊗Λ Z

h̄→ H3(X; Λ) ⊗Λ Z → 0,

where h̄ is induced by the Hurewicz homomorphism and

b([X]) ∈ Γ(Π2(X)) ⊗Λ Z ⊂ Π2(X) ⊗Λ Π2(X)

is determined by the intersection form

λX : H2(X; Λ) ⊗Λ H2(X; Λ) → Λ.
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We can identify the obstruction for extending α ∨ β to M1 by using the

above sequence. More precisely, we consider the following diagram:

Π4(M1\
◦

D4) ⊗Λ Z Π4(M1\
◦

D4) ⊗Λ Z

∆∗

�
�

0 −−−→ Γ(Π2(M1\
◦

D4)) ⊗Λ Z −−−→ Π3(M1\
◦

D4) ⊗Λ Z

(α∨β)∗∗

�∼=
�(α∨β)∗

0 −−−→ H4(M ; Z)
b−−−→ Γ(Π2(M)) ⊗Λ Z −−−→ Π3(M) ⊗Λ Z.

Let S3
1 = ∂(M1\

◦
D4), then

θ = (α ∨ β)∗∗ ◦ ∆∗([S
3
1]) − b([M ]) ∈ Γ(Π2(M)) ⊗Λ Z

is the obstruction for extending the map α ∨ β.

If we consider the obstruction θ in Π2(M) ⊗Λ Π2(M), then it can be

interpreted via Poincaré duality as the difference of the intersection forms

over Λ, i.e.

θ = λZ
M ′ ⊗Z Λ − λΛ

M

This links with the main theorem of [3].

4. Appendix

Now we consider the special case H2(M ; Q) ∼= 0 and explicitely realize

a homotopy equivalence between M and the connected sum #p(S
1 × S3).

The proof is much clearer and simpler than the one given in [3]. As shown

in Section 2, H2(M ; Λ) is Λ-free. Since Λ is not Noetherian, we need to see

why H2(M ; Λ) is finitely generated. It follows from the spectral sequence

of the universal covering M̃ → M and of H2(BΠ1; Z) ∼= 0 that H2(M ; Z) ∼=
H2(M ; Λ) ⊗Λ Z. Therefore, if H2(M ; Z) ∼= ⊕rZ, then H2(M ; Λ) ∼= ⊕rΛ.

Now the assumption H2(M ; Q) ∼= 0 implies that H2(M ; Λ) ∼= H2(M̃ ; Z) ∼=
Π2(M) ∼= 0, hence

H3(M ; Λ) ∼= H3(M̃ ; Z) ∼= Π3(M̃) ∼= Π3(M)
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by the Hurewicz theorem.

Using the spectral sequence

TorΛi (Hj(M ; Λ),Z) ⇒ Hi+j(M ; Z),

we easily obtain H3(M ; Λ) ⊗Λ Z ∼= H3(M ; Z) ∼= ⊕pZ.

Let us choose generators

f = ∨pfi : ∨p S3 → M

and

e = ∨pei : ∨p S1 → M

for H3(M ; Z) ∼= ⊕pZ and H1(M ; Z) ∼= ⊕pZ, respectively. We can always

assume that their intersection numbers satisfy ei · fj = δi j , for any i, j =

1, 2, . . . , p.

Then we have a map

ψ : ∨p (S1 ∨ S3) → M

which goes into the 3-skeleton of M .

Lemma 4.1. The restriction

ψ : ∨p (S1 ∨ S3) → M (3)

is a homotopy equivalence.

Proof. Obviously ψ induces isomorphisms on Π1 and on Π2
∼= 0.

Let (g1, g2, . . . , gp) be a basis of Π1(M) ∼= ∗pZ.

The homology sequence of the pair (M,M (3))

0 → H4(M,M (3); Λ) ∼= Λ → H3(M
(3); Λ) → H3(M ; Λ) ∼= (⊕pΛ)/σΛ → 0,

where σ = (g1 − 1, g2 − 1, . . . , gp − 1) ∈ ⊕pΛ, yields H3(M
(3); Λ) ∼= ⊕pΛ.

On the other hand, H3(∨p(S
1 ∨S3); Λ) ∼= ⊕pΛ and ψ induces an isomor-

phism on H3(· : Λ) by construction. This completes the proof. �

Let γ : M (3) → ∨p(S
1 ∨ S3) be a homotopy inverse of ψ.
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Lemma 4.2. The composition

M (3) γ−−−→ ∨p(S
1 ∨ S3) ⊂ ∨p(S

1 × S3)

extends to a map ϕ : M → ∨p(S
1 × S3).

Proof. The obstruction for extending γ belongs to

H4(M ; Π3(∨p(S
1×S3))) ∼= Π3(∨p(S

1×S3))⊗Λ Z ∼= H3(∨p(S
1×S3); Λ)⊗Λ Z.

The spectral sequence

TorΛi (Hj(∨p(S
1 × S3); Λ),Z) ⇒ Hi+j(∨p(S

1 × S3); Z)

gives isomorphisms

H3(∨p(S
1 × S3); Λ) ⊗Λ Z ∼= H3(∨p(S

1 × S3); Z) ∼= ⊕pZ,

hence Π3(∨p(S
1 × S3)) ⊗Λ Z ∼= ⊕pΠ3(S

1 × S3).

Therefore the i-th component of the obstruction is just the obstruction

for extending

M (3) γ−−−→ ∨p(S
1 ∨ S3)

i-th−−−→ S1 ∨ S3 ⊂ S1 × S3

to a map M → S1 × S3. Since the above composition is

(ui × vi)|M(3) : M (3) → S1 × S3

(see Section 2), it extends to M , and hence the i-th component of the

obstruction vanishes. Thus ψ extends to a map ϕ : M → ∨p(S
1 × S3) as

required. �

Remark. The extension ϕ : M → ∨p(S
1 × S3) when composed with

the inclusion ∨p(S
1 × S3) ⊂

∏p
1(S

1 × S3) is homotopic to

p∏
i=1

(ui × vi) : M →
p∏
1

(S1 × S3)
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by construction, i.e. ϕ : M → ∨p(S
1 × S3) is a deformation as requested at

the beginning of Section 2.

Now we can proceed as in Lemma 2.1 to obtain the following result.

Theorem 4.3. Let M be a closed connected orientable 4-manifold such

that Π1(M) ∼= ∗pZ and H2(M ; Q) ∼= 0. Then there exists a homotopy

equivalence

φ : M → #p(S
1 × S3).
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