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A Brooks Type Integral with Respect

to a Set-Valued Measure

By Anca-Maria Precupanu

Abstract. A generalization of the set–valued Brooks integral [3]
with respect to a set–valued measure whose values are subsets of a
Hausdorff locally convex topological vector space is presented.

The construction of this new kind of integral is based on Weber’s re-
sult [19] concerning the existence of a family of semi–invariant pseudo–
metrics which generates the uniformity of a uniform semigroup (in our
case, the semigroup of convex, bounded, closed subsets of a Hausdorff
locally convex topological vector space).

Several properties of the new integral are given and also a theorem
of Vitali type is established.

1. Introduction

In recent years, the study of set–valued measures has been developed

extensively because of their applications in the mathematical economics,

optimization and optimal control [11],[16],[17].

Significant contributions in this area were made by Artstein [2],

Castaing–Valadier [4], Costé [5], Alò, de Korvin and Roberts [1], Brooks

[3], Drewnowski [7], Godet–Thobie [9], Papageorgiou [13],[14], Hiai [10].

We recall that, recently, Papageorgiou [14] introduced a set–valued inte-

gral with respect to a h–set–valued measure in the sense of Alò, de Korvin

and Roberts [1], of bounded variation using the set of Bochner integrals

of a Banach valued function with respect to measure selectors of the given

multimeasure.

Our purpose is to define a new kind of integral using Brooks’ procedure

[3] adapted in the setting of a set–valued measure whose values are subsets

of a Hausdorff locally convex topological vector space X and with respect

to the Γµ–convergence in submeasure defined with the aid of a family of
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pseudometrics which generates the uniformity of the semigroup K(X) of

the convex, closed, bounded subsets of X.

Very briefly the organization of the paper is as follows. In section 2 we

precise the terminology and notations, recall some properties of multimea-

sures and some basic results concerning the Γµ–convergence in submeasure.

In section 3 we define and study some basic properties of the integral of

simple functions and in section 4 we present our set–valued integral with

some natural properties and we prove a theorem of Vitaly–type for this kind

of integral.

2. Terminology and notations

Let X be a Hausdorff locally convex topological vector space (briefly

H.l.c.t.v.s.), τ its topology and V a base of absolutely convex closed neigh-

borhoods of the origin 0 in X. A(X) is the family of all nonvoid subsets of

X, C(X) is the subfamily of A(X) of all closed subsets of X and K(X) is

the subfamily of A(X) of convex, closed, bounded subsets of X.

On A(X) we define the equivalence relation ”ρ” by AρB iff A = B,

where A denotes the closure of A ⊂ X with respect to τ .

The quotient A(X)/ρ may be identified with C(X). It is easy to see

that the addition (A,B) −→ A + B in A(X) is compatible with ρ. Hence

(A(X),+) admits a factorization by ρ and the resulting quotient semigroup

may be identified with (C(X), +̇), where +̇ is the Minkowski addition that

is

A+̇B = A+B, for every A,B ∈ A(X)

(see [7]).

Now let U be the invariant uniformity on X compatible with τ and Ũ
the exponential extension of U to A(X), that is the uniformity Ũ defined

by the following base of vicinities:

W(U) = {(A,B) ∈ A(X)×A(X); A ⊂ B+̇U, B ⊂ A+̇U}, (∀)U ∈ U .

The topology on A(X) induced by Ũ will be denoted by τ̃ .

Using the equivalence relation ρ we may identify (A(X), τ̃)/ρ with (C(X), τ̃)

and the separated uniform space associated with (A(X), Ũ)/ρ with

(C(X), Ũ).
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In particular, if X is metrizable, then (A(X), Ũ) becomes a semime-

trizable space for the Hausdorff semimetric between sets; if, besides, X is

complete, then so is C(X).

When τ is determined by a norm ‖ · ‖, the Hausdorff semimetric is given

by

d(A,B) = inf{t > 0; A ⊂ B + tU1, B ⊂ A+ tU1},

where U1 = {x ∈ X; ‖x‖ ≤ 1}.
If (X,U) is a complete uniform space, then so is (C(X), Ũ). It is easy to

see that (C(X), +̇, Ũ) is a Hausdorff uniform commutative semigroup with

the unit {0} and K(X) is a closed subsemigroup in which the cancellation

law

A+̇C = B+̇C =⇒ A = B

holds in it.

Instead of {0} we will usually write simply 0. According to a result

of Weber [19] there exists a family P = {p} of semiinvariant pseudomet-

rics on C(X) taking values in [0, 1], which generates the uniformity Ũ .

(A pseudometric p is semiinvariant if p(A+̇C,B+̇C) ≤ p(A,B) for every

A,B,C ∈ C(X).)

If p ∈ P we denote by

|A|p = p(A, 0),(2)

where 0 represents the set {0}.
From the semiinvariance of p ∈ P we easily obtain the following proper-

ties:

|A+̇B|p ≤ |A|p + |B|p, (∀)A,B ∈ C(X),(3)

|A+̇B|p ≥ |A|p − |B|p, (∀)A,B ∈ C(X).(4)

Beside X we consider S a nonvoid set, P(S) the family of all subsets of S

and R a ring of subsets of S.

In the following we shall consider set–valued maps µ from S to X, that

is set–valued functions µ defined on R taking values in the semigroup K(X)

with the supplementary property µ(∅) = 0.

Definition 2.1. A set–valued map µ from R to X is said to be:

I. an additive set–valued measure (multimeasure) if
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µ(A ∪B) = µ(A)+̇µ(B), (∀)A,B ∈ R with A ∩B = ∅;(5)

II. a σ–additive multimeasure if for every sequence (An)n≥1 ⊂ R with

Ai ∩Aj = ∅ (i �= j) and ∪∞
n=1An ∈ R holds

µ

( ∞⋃
n=1

An

)
=

• ∞∑
n=1

µ(An)(6)

(the sum from the right side of the equality is considered with respect to

the topology τ̃ and the Minkowski addition +̇).

In what follows by a set–valued measure or a multimeasure we shall

mean an additive set–valued measure.

Definition 2.2. Let µ be a set–valued measure from R to X and

p ∈ P an arbitrary pseudometric from the family P.

The function µ̃p : R −→ IR+ defined by

µ̃p(A) = sup

{
n∑

i=1

µ(Ai)p

}
,(7)

where the supremum is taken on all finite partitions (Ai)
n
i=1 of A ∈ R with

Ai ∈ R is said to be the p–variation of µ.

It is easy to see that if µ is additive (respectively σ–additive) so is µ̃p.

µ̃p may be extended to P(S) by

µ̃p(E) = inf{µ̃p(A); E ⊆ A ∈ R}, (∀)E ∈ P(S)(8)

which is a submeasure in Drewnowski sense [6].

Now P(S) may be organized as a ring with respect to symmetrical dif-

ference ∆ as addition and the intersection ∩ as product.

Furthermore the family Γµ = {µ̃∗p; p ∈ P} of submeasures on P(S)

generates a topology τΓµ
on P(S) such that (P(S),∆,∩; τΓµ) becomes a to-

pological ring for which the family BΓµ of subsets Vk,ε = {A ⊂ S; µ̃∗p(A) < ε,

p ∈ K}, where K is a finite subset in P and ε > 0, is a base of neighborhoods

of ∅ for this topology [6].

In what follows we shall write P(S)(Γµ) for (P(S),∆,∩; τΓµ) and R(Γµ)

for a topological subring R of P(S)(Γµ).
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We shall also denote by Rµ the hereditary subring of R of all Γµ–

integrable members of R that is the family of all sets A ∈ R such that

µ̃p(A) <∞ for every p ∈ P.
If µ is a set–valued measure from R to X, then µ satisfies the following

property:

(α) For every B ∈ Rµ and for every vicinity W from Ũ in K(X) there exists

ε > 0 such that for every finite family {(αi, βi)}ni=1 of real numbers

such that |αi − βi| < ε, (∀)i = 1, 2, . . . , n and for every finite disjoint

sequence (Ai)
n
i=1 of subsets of R, the following relation holds(

n∑
i=1

αiµ(Ai ∩B),
n∑

i=1

βiµ(Ai ∩B)

)
∈W.

Next we denote by IRS the set of all functions f from S to IR. For every

finite K ⊂ P and ε > 0 we consider

WK(ε) = {(f, g) ∈ IRS ×RS ; µ̃∗p ({s ∈ S; |f(s)− g(s)| ≥ ε}) < ε, p ∈ K}.

The family of all subsets Wk(ε) constitutes a base of vicinities for a

uniformity UΓµ on IRS .

We shall also use the notation IRS(Γµ) for (IRS ,UΓµ).

Definition 2.3. A net (fα) from IRS is said to be convergent in Γµ–

submeasure to f ∈ IRS , denoted fα
Γµ−→ f, if fα converges to f in IRS(Γµ).

Remarking that the function ϕ which associates to every E ∈ P(S) its

indicatrice function is an isomorphism between the uniform space P(S)(Γµ)

and the uniform subspace Y of IRS(Γµ) of all indicatrice functions of subsets

of S, where IR is endowed with its natural uniform structure, it is legitimate

to use the notation Eα
Γµ−→ E for the convergence in P(S)(Γµ).

3. Integration of simple functions

Definition 3.1. A function f ∈ IRS is said to be a simple Γµ–inte-

grable function if: a) it assumes only a finite number of distinct values

ai ∈ IR; b) f−1({ai}) = Ai ∈ R; c) if ai �= 0 then Ai ∈ Rµ.
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In this case if T ∈ R the integral of f over T is defined by

∫
T

fdµ =
n∑

i=1

aiµ(T ∩Ai).(9)

We remark that if χT denotes the characteristic function of T , then

f =
n∑

i=1

aiχAi
.

It is easy to see that the integral of f is independent of the representation

of f as a finite combination of this type.

In what follows we shall denote by E(Γµ, X), or briefly E(Γµ), the set of

all Γµ–integrable simple functions.

From the definition 3.1 we immediately obtain

Theorem 3.2. If f, g ∈ E(Γµ), then:

I. f + g ∈ E(Γµ) and
∫
T
(f + g)dµ =

∫
T
fdµ+

∫
T
gdµ, (∀)T ∈ R;

II. for every p ∈ P, p(
∫
T
fdµ,

∫
T
gdµ) ≤

∫
T
|f − g|dµp, (∀)T ∈ R.

III. the set–valued map ν(T ) =
∫
T
fdµ, (∀)T ∈ R,

is a multimeasure and if moreover µ is σ–additive then so is ν.

IV. lim

T
Γµ−→∅

∫
T

fdµ = 0.

Proof. I), III) and IV) may be immediately obtained from the defi-

nition 3.1.

To prove II) let f =
∑n

i=1 aiχAi
and g =

∑m
j=1 bjχBj

. We observe that

it is possible to find a finite family (Ek)
s
k=1 ⊂ R such that f =

∑s
k=1 akχEk

and g =
∑s

k=1 bkχEk
. Next, for every p ∈ P we have

p

(∫
T

fdµ,

∫
T

gdµ

)
= p

(
• s∑
k=1

akµ(T ∩ Ek),
• s∑
k=1

bkµ(T ∩ Ek)

)
≤

≤
s∑

k=1

p(akµ(T ∩ Ek), bkµ(T ∩ Ek)) ≤

≤
s∑

k=1

|ak − bk|µ(T ∩ Ek)p ≤
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≤
s∑

k=1

|ak − bk|µ̃p(T ∩ Ek). �

Theorem 3.3. Let (fα)α∈I be a Cauchy net in IRS(Γµ) of simple Γµ–

integrable functions.

The net (
∫
T
fαdµ)α∈I is uniformly Cauchy with respect to T ∈ R if and

only if the following two conditions hold:

I. for every neighborhood V of the origin in K(X) there exists α0 ∈ I

and a neighborhood Vµ of ∅ in R(Γµ) such that
∫
T
fαdµ ∈ V for every

α ≥ α0 and every T ∈ Vµ;

II. for every neighborhood V of the origin in K(X) there exist α0 ∈ I and

M ∈ Rµ such that
∫
T
fαdµ ∈ V for every α ≥ α0 and every T ∈ R

with T ⊂ S \M.

Proof. First let us assume that the net (
∫
T
fαdµ)α∈I is uniform

Cauchy with respect to T ∈ R and let V be an arbitrary neighborhood

of the origin in K(X). Then there exists a symmetrical vicinity W from

Ũ such that W 2(0) ⊂ V. By virtue of hypothesis there exists α0 ∈ I such

that (
∫
T
fαdµ,

∫
T
fα0dµ) ∈ W for every T ∈ R and α ≥ α0. Now, from the

theorem 3.2, IV), there exists a neighborhood Vµ of ∅ in R(Γµ) such that∫
T
fα0dµ ∈W (0) for T ∈ Vµ. Hence

∫
T
fαdµ ∈ V for α ≥ α0 and T ∈ Vµ that

is I) is satisfied. To obtain II) it is sufficient to take M = {s ∈ S; fα0 �= 0}.
We see that M ∈ Rµ and

∫
T
fα0dµ = 0 for every T ∈ R with T ⊂ S \M ,

that is II) is proved.

Conversely, let W1 be a vicinity of Ũ and W a symmetrical vicinity of

Ũ such that that W 2 + W 2 + W 2 ⊂ W1 (W exists because of the uniform

continuity of the addition in K(X).)

Let j0 ∈ J, Vµ and M ∈ Rµ corresponding to W (0) by virtue of hy-

potheses I) and II). (α0 can be chosen to satisfy simultaneously I) and II).

According to (α) from section 1, to M and W it corresponds δ > 0

such that for every n ∈ N, every {(αi, βi)}ni=0 with αi, βi ∈ IR such that

|αi − βi| < δ, i = 0, 1, 2, . . . , n and (Ei)
n
i=0, a finite disjoint sequence of

members of R, the following relation holds(
n∑

i=0

αiµ(Ei ∩M),
n∑

i=0

βiµ(Ei ∩M)

)
∈W.
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Let Mα,α′ = {s ∈ S; |fα(s)− fα′(s)| ≥ δ}.
We see that Mα,α′ ∈ R for every α, α′ ∈ J and since (fα) is a Cauchy

net in IRS(Γµ) there exists α1 ≥ α0 such that Mα,α′ ∈ Vµ for α ≥ α1 and

α′ ≥ α1.

Now, taking into account that W 2 +W 2 +W 2 ⊂W1 we obtain for every

T ∈ R,

(∫
T

fαdµ,

∫
T

fα′dµ

)
=


∫

T∩Mα,α′

fαdµ,

∫
T∩Mα,α′

fα′dµ


+

+


∫

T\(Mα,α′∪M)

fαdµ,

∫
T\(Mα,α′∪M)

fα′dµ


+

+


∫

(T\Mα,α′ )∩M

fαdµ,

∫
(T\Mα,α′ )∩M

fα′dµ


 ∈

∈ W (0)×W (0) +W (0)×W (0) +W 2 ⊆
⊆ W 2 +W 2 +W 2 ⊂W1

for every α ≥ α1, α
′ ≥ α1; hence the net {

∫
T
fαdµ} is uniform Cauchy with

respect to T ∈ R. �

4. Integration with respect to a multimeasure

Lemma 4.1. Let {fα}α∈I and {gβ}β∈J be two nets in E(Γµ, X) both

convergent in IRS(Γµ) to the same function. If (
∫
T
fαdµ) and (

∫
T
gβdµ)

are Cauchy nets uniformly with respect to T ∈ R, then for every vicinity

W from Ũ , there are α0 and β0 such that for every α ≥ α0 and β ≥ β0,

(
∫
T
fαdµ,

∫
T
gβdµ) ∈W uniformly in T ∈ R.

Proof. Let W be a vicinity from Ũ and let W1 be a symmetrical

vicinity of Ũ such that W 2 +W 2 +W 2 ⊂W1.

Let δ > 0 corresponding to W1 by virtue of the condition (α).

We denote by Mα,β = {s ∈ S; |fα(s)− gβ(s)| > δ}.
Using the theorem 3.3 we obtain α0, β0, a Γµ–integrable set M in S and

a neighborhood Vµ of ∅ in R(Γµ) such that
∫
T
fαdµ ∈W1(0) and

∫
T
gβdµ ∈

W1(0) for α ≥ α0, β ≥ β0, T ∈ Vµ with T ⊂ S \M, T ∈ R.
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By virtue of hypotheses there exist α1 ≥ α0 and β1 ≥ β0 such that

Mα,β ∈ Vµ for α ≥ α1 and β ≥ β1 and every T ∈ R.
In the same way as in theorem 3.3 we find that (

∫
T
fαdµ,

∫
T
gβdµ) ∈W

for α ≥ α1, β ≥ β1 and every T ∈ R. �

Definition 4.2. A function f ∈ IRS is said to be Γµ–integrable if there

exists a net {fα} in E(Γµ) such that fα
Γµ−→f and {

∫
T
fαdµ} is a Cauchy net

in K(X) uniform with respect to T ∈ R.
In this case the element of the completion K̃(X) of K(X) defined by∫

T
fdµ = lim

α

∫
T

fαdµ is said to be the Γµ–integral of f on T ∈ R.

By virtue of Lemma 4.1 the notion of Γµ–integral is well–defined.

Remark. If X is a Banach space and C(X) is endowed with Hausdorff

distance, then C(X) becomes a complete metric space in which K(X) is a

closed subspace, that is also complete.

Now, let µ be a multimeasure from S to X, ν its variation and ν∗ the

corresponding submeasure defined as in (8). Then the Γµ–integral of a

function f ∈ IRS , defined as in definition 4.2 is just the integral studied by

Brooks in [3].

In what follows we shall denote by L(Γµ, X) the set of all Γµ–integrable

functions.

Evidently E(Γµ, X) ⊂ L(Γµ, X).

Now we can obtain some remarkable properties of Γµ–integrable func-

tions.

Theorem 4.3. If f, g ∈ L(Γµ, X) we have:

I. f + g ∈ L(Γµ, X) and
∫
T
(f + g)dµ =

∫
T
fdµ+

∫
T
gdµ, (∀)T ∈ R;

II. the set–valued map defined by ν(T ) =
∫
T
fdµ, (∀)T ∈ R,

is a multimeasure and if moreover µ is σ–additive then so is ν;

III. lim

E
Γµ−→∅

E∈R

ν(E) = 0;
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IV. if S /∈ Rµ, then the family {BM}M∈Rµ, where the nonvoid set BM is

associated to M ∈ Rµ by BM = {T ∈ R;T ∩M = ∅} constitutes a

filterbase F on R and for every f ∈ L(Γµ, X), lim
F

∫
T

fdµ = 0.

Proof. We immediately obtain I) and II) from the definition 4.2 and

the analogous properties for simple integrable functions (see theorem 3.2).

To prove III) let W be a symmetrical vicinity of K̃(X), the completion

of K(X), and let g ∈ E(Γµ, X) such that (
∫
T
fdµ,

∫
T
gdµ) ∈ W for every

T ∈ R.
Let Vµ be a neighborhood of ∅ in R(Γµ) such that

∫
T
gdµ ∈ W (0) for

T ∈ Vµ. But
∫
T fdµ ∈W 2(0) for T ∈ Vµ that is III) is satisfied.

To prove IV) it is sufficient to remark that M = {s ∈ S; g(s) �= 0} is

Γµ–integrable and then for T ∈ BM we have
∫
T
fdµ ∈W (0) that is IV). �

Theorem 4.4. Let {fα}α∈D be a net of Γµ–integrable functions,

Cauchy in IRS(Γµ). The net {
∫
T
fαdµ}α∈D is uniform Cauchy with respect

to T ∈ R if and only if the following two conditions are satisfied:

I. for every neighborhood V of the origin in K̃(X) there exist an index

α0 and a neighborhood Vµ of ∅ in R(Γµ) such that
∫
T
fαdµ ∈ V for

α ≥ α0 and T ∈ Vµ;

II. for every neighborhood V of the origin in K̃(X) there exist an index

α0 ∈ D and a Γµ–integrable set M such that
∫
T
fαdµ ∈ V for α ≥ α0,

and T ∈ R, T ⊂ S \M.

Proof. The necessity can be obtained in the same way as in the the-

orem 3.3 using the theorem 4.3, III) and IV).

Conversely, let {fα}α∈D be a Cauchy net in IRS(Γµ) of Γµ–integrable

functions which satisfies the conditions I) and II) from theorem.

By virtue of the Γµ–integrability of fα, for every α ∈ D, there exists a net

{fα,β}β∈Dα in E(Γµ, X) such that fα,β
Γµ−→fα and lim

β

∫
T

fα,βdµ =

∫
T

fαdµ

uniformly in T ∈ R.
Now let us consider {fα,ϕ(α); (α,ϕ) ∈ D ×

∏
α

Dα} the diagonal approx-

imation associated to {fα,β ;α ∈ D,β ∈ Dα} (see Kelley [12], Chap.II).
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If U is a symmetrical vicinity in IRS(Γµ) there exists ϕU ∈
∏
α

Dα such

that for every ϕ ∈
∏
α

Dα withϕ ≥ ϕU we obtain (fα, fα,ϕ(α)) ∈ U for every

α ∈ D. But {fα}α∈D is a Cauchy net in IRS(Γµ) and then for U there exists

α1 ∈ D such that (fα, fα′) ∈ U for α ≥ α1 and α′ ≥ α1. From here we

obtain (fα,ϕ(α), fα′,ϕ(α′)) ∈ U3 for (α,ϕ) ≥ (α1, ϕU ) and (α′, ϕ′) ≥ (α1, ϕU ),

that is {fα,ϕ(α)}α∈D is a net in E(Γµ, X) which is Cauchy in IRS(Γµ).

Now let V0 be a neighborhood of the origin in K̃(X) and let W be a

symmetrical vicinity of K̃(X) such that W 2(0) ∈ V0.

For this W (0) there exist α0,Vµ and M such that the conditions I) and

II) of theorem are simultaneously satisfied.

Then there exists ϕ1 ∈
∏
α∈D

Dα such that for every ϕ ∈
∏
α

Dα with

ϕ ≥ ϕ1 we have (
∫
T
fα,ϕ(α)dµ,

∫
T
fαdµ) ∈ W for every α ∈ D and every

T ∈ R.
Now if (α,ϕ) ≥ (α0, ϕ1) we obtain

∫
T
fα,ϕ(α)dµ ∈ V0 for T ∈ Vµ or

T ∈ R with T ⊂ S \ M, that is the net {
∫
T
fα,ϕ(α)dµ} is a Cauchy net

uniform with respect to T ∈ R. Consequently, there exists α1 such that for

α ≥ α1 and α′ ≥ α1 we have (
∫
T
fαdµ,

∫
T
fα′dµ) ∈ W 2 uniformly in T ∈ R

whence the theorem follows. �

Remark. On L(Γµ, X) we can introduce a uniform structure which we

shall call the uniform structure of the Γµ–mean.

To see this let W be the uniform structure on K̃(X). For every W ∈ W
we consider

EW = {(f, g) ∈ L(Γµ, X)× L(Γµ, X); (

∫
T

fdµ,

∫
T

gdµ) ∈W, (∀)T ∈ R}.

It is easy to see that the family {EW }W∈W is a base of vicinities for a

uniform structure TW on L(Γµ, X).

Let M(L(Γµ, X)) be the uniform structure induced on L(Γµ, X) by

IRS(Γµ).

The uniform structure on L(Γµ, X) defined by sup{M(L(Γµ, X)), TW }
is said to be the uniform structure of the Γµ–mean convergence.

The convergence of a net {fα}α∈D to f with respect to this uniformity

considered on L(Γµ, X) is called then convergence in Γµ–mean and we de-

note it by fα −→ f (Γµ–mean).
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Definition 4.5. A net {fα}α∈D of Γµ–integrable functions is said to

be Γµ–equiintegrable if {fα} satisfies the conditions I) and II) of theorem

4.4.

Now, we can prove a Vitali type theorem.

Theorem 4.6. Let {fα}α∈D be a net of L(Γµ, X). Then a function

f ∈ IRS is Γµ–integrable and fα −→ f (Γµ–mean) if and only if the fol-

lowing two conditions hold:

I. fα
Γµ−→f ;

II. {fα}α∈D is a Γµ-equiintegrable net.

Proof. The necessity may be easily obtained from the theorem 4.4.

Conversely, let {fα}α∈D be a net of L(Γµ, X) which satisfies the con-

ditions I) and II) of the theorem. For every α ∈ D there exists a net

{fα,β}β∈Dα of E(Γµ, X) such that fα,β −→ f (Γµ–mean).

Let {fα,ϕ(α);α ∈ D,ϕ ∈
∏
α

Dα} be the corresponding diagonale appro-

ximation. As in the proof of the theorem 4.4 we obtain that fα,ϕ(α) −→ f

(Γµ–mean) and then f ∈ L(Γµ, X).

Moreover lim
α,ϕ

∫
T

fα,ϕ(α)dµ =

∫
T

fdµ uniformly with respect to T ∈ R.

Now let W be a symmetrical vicinity of K̃(X).

There exists (α1, ϕ1) ∈ D ×
∏
α

Dα such that for every (α,ϕ)≥(α1, ϕ1),

(
∫
T
fdµ,

∫
T
fα,ϕ(α)dµ)∈W and

∫
T
fα,ϕ(α)dµ,

∫
T
fαdµ)∈W, uniformly in T ∈

R.
If α ≥ α1, then (

∫
T
fαdµ,

∫
T
fdµ) ∈ W 3 uniformly in T whence the

theorem follows. �
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Şt. Univ. Iaşi 29 (1984), 41–48.
[16] Rockafellar, R. T., Integral functional, normal integrands and measurable

selectors, Lecture Notes in Math. N◦. 543, Springer–Verlag, Berlin, 1976.
[17] Strassen, V., The existence of probability measures with given marginals,

Ann. Math. Statist. 36 (1965), 423–439.
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