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On Volumes and Chern-Simons Invariants

of Geometric 3-Manifolds

By Hugh M. Hilden, Maŕıa Teresa Lozano∗

and José Maŕıa Montesinos-Amilibia∗

Abstract. Let Mn(K) be the hyperbolic 3-manifold obtained by
n-cyclic covering of S3 branched over a hyperbolic knot K. A method to
compute the volume and the Chern-Simons invariant of Mn(K) is given.
The value of the volume of Mn is n times the value of the volume of
the corresponding hyperbolic orbifold. This volume can be obtained by
appying the Schläffli Formula for the volume to the cone-manifold family,
(K,α), with singularity K. The same approch is followed for the Chern-
Simons invariant, after proving a ”Schläffli Formula” for a generalized
Chern-Simons function on the family of cone-manifold structures (K,α).

0. Introduction

After the Mostow Rigidity Theorem [Mos], each geometrical invariant

of a hyperbolic 3-manifold is a topological invariant. Among the most

important geometric invariants we list are the volume and the Chern-Simons

invariant. In this paper we give a method to compute the volume and the

Chern-Simons invariant of the hyperbolic 3-manifold Mn(K), obtained as

an n-cyclic covering of S3 branched over a hyperbolic knot K.

The volume of Mn(K) is n times the volume of the geometric orbifold

S3(K, 2π/n), whose underlying space is S3 and the singularity is the knot K

with cyclic isotropy group of rank n. These orbifolds S3(K, 2π/n), belong to

the continuous family of cone manifolds S3(K,α), whose underlying space

is S3 and whose singular set is the knot K with angle α, 0 < α < α0. The

Schläffli Formula for the volume, (see [Vi], [C], [M]), applies to this family
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of cone manifolds (see [H]) and therefore we can obtain the volume of each

orbifold S3(K, 2π/n), and then the volume of the manifold Mn(K).

To follow the same program to compute the Chern-Simons invariant of

the geometric 3-manifold Mn(K), we associate a real number I(M,Σα) to

each geometric cone manifold (M,Σα),whose underlying space is M and

whose singular set is a nullhomologous knot Σ, with angle α, and with

constant curvature geometry (> 0, = 0, < 0). This number depends on

some choices and therefore is not an invariant of the cone manifold, but it

is equivalent (mod 1) to the Chern-Simons invariant if the cone-manifold

is a manifold, and is additive in appropriate branched coverings. If we

consider a one parameter family of cone manifolds, (S3,Σα(t)), we have a

function I(S3,Σα)(t). We prove a ”Schläffli Formula” for this function. One

formula of this type for a family of flat SU(2)-connections in the exterior

of a knot in a 3-manifold M was obtained by Kirk and Klassen [K-K1], and

after generalized for flat SL(2,C)-connections in [K-K2], but our context

is different. We consider in each compact cone-manifold of the family the

Riemannian connection.

In Sec. 1 we present some relevant concepts of cone-manifolds, namely

the jump and twist of a singular curve, which are related to the torsion of

a curve in a Riemannian manifold.

In Sec. 2 the number I(M,Σα) is defined, and some of its properties are

studied.

In Sec. 3 a ”Schläffli Formula” for the function I(S3,Kα)(t), where K

is a hyperbolic knot in S3 is stated and proved. Although the proof of the

Schläffli Formula for spherical cone-manifolds, that we give here, can eas-

ily be adapted to the hyperbolic cone-manifolds case, we have decided to

include a different proof, for the latter case, to emphasize its relationship

with the work in [Y] and [N-Z]. Finally we prove Theorem 3.9 which states

the formulas for Chern-Simons invariant and volume of the hyperbolic man-

ifold Mn(K). Detailed computations of these invariants for cyclic branched

coverings of rational knots appear in [HLM2].

1. Geometric cone manifolds

We are interested in 3-dimensional cone-manifolds with a fixed geomet-

ric structure (geometric cone-manifolds). A cone-manifold is a PL manifold

together with a, possibly empty, codimension two locally flat, submanifold
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called the singular set. (In a 3-dimensional cone-manifold the singular set

will consist of curves, but not graphs.) In this paper, a geometric cone-

manifold will be modeled on some space of constant curvature k (com-

pare [T]). Points off the singular set have neighborhoods homeomorphic to

neighborhoods in the model. Points on the singular set have neighborhoods

homeomorphic to neighborhoods constructed as follows: take an angle α

wedge in the model. (A wedge is the intersection or union of two half

spaces that intersect; the angle α is the dihedral angle where 0 < α < 2π).

Then identify the two boundaries of the wedge, using the natural rotation

by α, to form a topological space Wα. Points on the singular set have

neighborhoods homeomorphic to neighborhoods in this topological space.

The homeomorphism carries the singular set to the axis of rotation in the

topological space. Transition functions are isometries. A singular curve Σ

whose points have only neighborhoods homeomorphic to neighborhoods in

Wα will be called an α-curve. Note that if we let α be equal to 2π, then a

2π-curve is actually a regular geodesic. But, of course, in general Σ can be

thought of as a singular geodesic.

The differences between our definition of a cone manifold and the com-

mon definition of orbifold are:

1. In dimension three the singular set in a cone manifold is a curve,

not, as is sometimes the case in an orbifold, a graph.

2. The “cone angle” is any angle α, 0 < α � 2π. In an orbifold this

angle is always 2π/n.

Let (
−→
M 3,

−→
Σ α) be an oriented 3-dimensional cone-manifold

−→
M 3 of con-

stant curvature k, where the singular set
−→
Σ α consists of an oriented α-curve

(0 < α ≤ 2π) which is a nullhomologous knot in M3. Consider an oriented

meridian disc
−→
D of the neighborhood U = {p ∈ −→

M 3; d(p,
−→
Σ α) ≤ ε} of

−→
Σ α.

The orientation of
−→
D is chosen such that the orientation of

−→
D followed by

the orientation of
−→
Σ α coincides with the orientation of

−→
M . Let −→m = ∂

−→
D .

Call
−→
lc the canonical longitude of

−→
Σ α, i. e. lc = ∂U ∪ S where S is an

oriented surface in M3 bounded by
−→
Σ α, and

−→
lc ,

−→
Σ α are parallel.

Next, we shall define two invariants of the cone manifold associated to

the singular set, the twist and jump.

Case 1. k = −1: Let h : π1(U \Σ, o) −→ PSL(2,C) be the holonomy of

U \Σα. Then (see [GM]) h admits two liftings to SL(2,C). The image of
−→
lc

in SL(2,C) under these two liftings is the same since
−→
lc is nullhomologous
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outside
−→
Σ α. So up to conjugation in SL(2,C),

(1) h(−→m) = ±
[
ei

α
2 0

0 e−i
α
2

]
, h(

−→
l c) =

[
e

v
2 0

0 e−
v
2

]
were v = δ + iβ, δ is the length of

−→
Σ α, and β, −2π ≤ β < 2π, is the angle

of the lifted holonomy of
−→
Σ α (notice that h(

−→
l c) is well defined regardless

of the lifting).

Remark. There exists a 2 : 1 map λ : SU(2) × SU(2) −→ SO(4)

defined as follows.

R
4 is represented by matrices x =

[
u+ iv w + it

−w + it u− iv

]
= u

−→
1 + v

−→
i +

w
−→
j + t

−→
k , where

−→
1 =

[
1 0

0 1

]
,
−→
i =

[
i 0

0 −i

]
,
−→
j =

[
0 1

−1 0

]
,
−→
k =[

0 i

i 0

]
. S3 ⊂ R

4 are the matrices with determinant +1: u2+v2+w2+t2 =

1, i.e. S3 = SU(2). By stereographic projection S3 is R
3 + ∞ with the

standard orientation given by the vectors {−→i −−→
1 ,

−→
j −−→

1 ,
−→
k −−→

1 }. Define

λ : SU(2) × SU(2) −→ SO(4) as follows. λ(A,B) is the homomorphism of

R
4 −→ R

4 given by

x → AtxB

then λ(

[
eiα 0

0 e−iα

]
,

[
eiβ 0

0 e−iβ

]
) sends 1 to cos(α − β) + sin(α − β)i,

and j to cos(α + β)j + sin(α + β)k. The map λ is 2 : 1 since λ(A,B) =

λ(−A,−B). The restriction of λ to the diagonal λ̂(A) = λ(A,A) defines

a map λ̂ : S3 −→ SO(3) by λ̂(A) = {x → AtxA}, where trace(x) = 0

(this implies that x ∈ {0} × R
3). Using [GM] it is easy to see that any

homomorphism from π1(U \ Σ, o) −→ SO(4) lifts to two homomorphisms

into SU(2) × SU(2).

Case 2. k = 0 : Let h : π1(U \ Σ, o) −→ Iso+(E3) be the holonomy of

U \ Σα. Iso
+(E3) is R

3
� SO(3). Then h has two lifts to R

3
� SU(2) and

as in Case 1 the image of
−→
l c in these two lifts coincide. Up to conjugation

we have

(1’) h(−→m) =

(
−→
0 ,

[
ei

α
2 0

0 e−i
α
2

])
, h(

−→
l c) =

(
δ
−→
k ,

[
ei

β
2 0

0 e−i
β
2

])
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were δ is the length of
−→
Σ α, and β, −2π ≤ β < 2π, is the angle of the lifted

holonomy of
−→
Σ α.

Case 3. k = 1 : Let h : π1(U \ Σ, o) −→ SO(4) be the holonomy of

U \ Σα. As before we have two lifts of h into SU(2) × SU(2). We assume

up to conjugation in SU(2) × SU(2) that

(2)

h(−→m) =

(
±
[
ei

α
2 0

0 e−i
α
2

]
,±
[
ei

α
2 0

0 e−i
α
2

])
,

h(
−→
l c) =

([
eiγ 0

0 e−iγ

]
,

[
eiφ 0

0 e−iφ

])
In this case δ = γ − φ is length of

−→
Σ α, and β = γ + φ, −2π ≤ β < 2π, is

the angle of the lifted holonomy of
−→
Σ α

For any k 
= 0 we can normalize by multiplying the metric by a constant

such that the new cone manifold,
−→
Mn, belongs to case 1 or 3. This process

does not change angles.

1.1 Definition. Let (
−→
M 3,

−→
Σ α) be an oriented 3-dimensional cone-

manifold of constant curvature k, where
−→
Σ α is a nullhomologous knot in−→

M . The jump of
−→
Σ α is the equivalence class β in R/4πZ represented by

the angle β, −2π ≤ β < 2π of the holonomy of
−→
Σ α in the associated cone

manifold
−→
Mn, of constant curvature 1, 0, −1. The twist of

−→
Σ α, tw(

−→
Σ α), is

the real number β α
2π , and tw(

−→
Σ α) = β α

2π is an equivalence class in R/2αZ.

1.2 Remarks.

1) If α = 2π,
−→
Σ 2π is a regular geodesic in

−→
M 3. Then lc can be used

to give an orthonormal framing along
−→
Σ as follows. The e1-vector

is tangent to
−→
Σ ; the e2-vector defines a geodesic intersecting ∂U in

a point of lc; and e3 is determined by e1, e2 and the orientation of−→
M . This framing s can be extended to a neighborhood of Σ and is

used to define the real number

τ(
−→
Σ , lc) = τ(

−→
Σ , s) = −

∫
s(Σ)

θ23

where (θij) is the Riemannian connection form on the SO(3) ori-

ented frame bundle F (M) of M . In this case

tw(
−→
Σ ) = τ(

−→
Σ , lc) ≡ τ(Σ) (mod 2π)
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where τ(Σ) is the torsion of Σ. (See [Y] and [M-R].)

2) Let p : M̃ −→ M be a n-cyclic covering branched over the α-curve−→
Σ α in the cone-manifold (

−→
M,

−→
Σ α), where Σ is a nullhomologous

knot in M . If the branching index n of p satisfies nα ≤ 2π, then

M̃ inherits a natural cone-manifold structure from M with the nα-

curve Σ̃nα = p−1(Σα) as singular set. We say that

p : (
−→̃
M,

−→̃
Σ nα) −→ (

−→
M,

−→
Σ α)

is a covering between cone-manifolds. Then

tw(
−→̃
Σ nα) = n tw(

−→
Σ α) and tw(

−→̃
Σ nα) ≡ n tw(

−→
Σ α) (mod 2nα)

In fact, jump(
−→̃
Σ nα) = jump(

−→
Σ α) = β implies tw(

−→̃
Σ nα) =

β nα2π = n(β α
2π ) = n tw(

−→
Σ α). Therefore tw(

−→̃
Σ nα) ≡ n tw(

−→
Σ α)

(mod 2nα).

2. The number I(
−→
M,

−→
Σ α)

Next we define, I(
−→
M,

−→
Σ α), associated to an oriented cone-manifold

(
−→
M,

−→
Σ α), where the singular set Σα is an α-curve which is a nullhomologous

knot in M. This number (mod 1) is equal to the Chern-Simons invariant

of the Riemannian manifold M when α = 2π; and, if p : (
−→̃
M,

−→̃
Σ nα) −→

(
−→
M,

−→
Σ α) is a n-cyclic covering between cone-manifolds, then I(

−→̃
M,

−→̃
Σ nα) ≡

nI(
−→
M,

−→
Σ α).

Let (
−→
M,

−→
Σ α) be an oriented cone-manifold where the singular set Σ is

an α-curve which is a nullhomologous knot in M. Let −→m be a meridian of−→
Σ α. It follows from [Me, Th.4.3] that there exists a frame field

s :
−→
M \ (Σ ∪m) −→ F (

−→
M \ (Σ ∪m))

having special singularities at Σ ∪m.

Recall ([Y;Def. 1.3], and compare [Me]) that a frame field on a 3-

manifold N is special on a link J if it is an orthonormal frame field on
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N \ J which has the following behavior near each component K of J . Let

UK be an open neighborhood of radius ε of K. For each point x of UK \K
i) e3(x) is tangent to γ(x, y) and it has direction opposite to y, where

γ(x, y) is the unique geodesic in UK such that d(x, y) = d(x,K) =

length(γ(x, y)) = δ,

ii) e2(x) is tangent to
−→
S δ(y), where

−→
S δ(y) = {z ∈ UK |d(z,K) =

d(z, y) = δ}
It follows that in the limit e1(x) is tangent to

−→
K .

Following the notation of [Y] let Q be the Chern-Simons form defined

on the positively-oriented orthonormal frame bundle, F (
−→
M \ Σ)

Q =
1

4π2
(θ12 ∧ θ13 ∧ θ23 + θ12 ∧ Ω12 + θ13 ∧ Ω13 + θ23 ∧ Ω23)

where (θij) is the connection 1-form and (Ωij) is the curvature 2-form of

the Riemannian connection on the 3-manifold
−→
M \ Σ.

2.1 Proposition. Then

1

2

∫
s(M−Σ−m)

Q (mod 1)

is an invariant of (
−→
M,

−→
Σ α).

Proof. The value of 1
2

∫
s(M−Σ−m) Q is independent of the frame field s

because if s̄ is another frame field on
−→
M \(Σ∪m) having special singularities

at Σ ∪m, then s = s̄ on a neighborhood of Σ ∪m. Then the proof follows

as in [CS] for the closed case. �

Let s′ = (f1, f2, f3) be an orthonormal framing defined on a subset of−→
M \ Σ containing m such that f1(y) is the tangent vector to m at each

y ∈ m having the same direction as the e1-vectors of s near y, and f2(y) is

tangent to the meridian disc of Σ bounded by m.

2.2 Definition. We define

I(
−→
M,

−→
Σ α) =

1

2

∫
s(M−Σ−m)

Q − 1

4π
τ(m, s′) − 1

4π
tw(Σ)

I1(
−→
M,

−→
Σ α) ≡ I(

−→
M,

−→
Σ α) (mod 1)

I α
2π

(
−→
M,

−→
Σ α) ≡ I(

−→
M,

−→
Σ α) (mod

α

2π
)(3)
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The real number I(
−→
M,

−→
Σ α) depends only on the frame field s, since the

value of β is chosen so that −2π ≤ β < 2π. Is follows from Proposition

2.1 that the class I1(
−→
M,

−→
Σ α) is independent of the frame field s. The

class I α
2π

(
−→
M,

−→
Σ α) depends on the frame field s, but is independent on the

representative in the equivalence class β. In the case of α = 2π
n the cone-

manifold is an orbifold. Then α
2π = 1

n and

I α
2π

(
−→
M,

−→
Σ 2π

n
) = I 1

n
(
−→
M,

−→
Σ 2π

n
) ≡ I(

−→
M,

−→
Σ 2π

n
) (mod

1

n
)

is both independent of the frame field s and of the representative of the

equivalence class β. Then I 1
n
(
−→
M,

−→
Σ 2π

n
) (mod 1

n) is an invariant of the

orbifold (
−→
M,

−→
Σ , n), which will naturally be called the Chern-Simons in-

variant of that orbifold, denoted CS(
−→
M,

−→
Σ , n), i.e.

CS(
−→
M,

−→
Σ , n) := I 1

n
(
−→
M,

−→
Σ 2π

n
) (mod

1

n
).

The following remarks justify the above definition.

2.3 Remarks.

1) Suppose α = 2π. Then the cone-manifold (
−→
M,Σ2π) is a geometric

manifold
−→
M . The Chern-Simons invariant CS(

−→
M ) is well defined

mod 1. Because α
2π = 1 the two classes I1 and I α

2π
are equal and

then

I1(
−→
M,Σα) ≡ CS(

−→
M ) (mod 1)

This is a consequence of the extended torsion formula of

Meyerhoff-Ruberman [M-R] because we can consider a surface S

in M such that ∂S = Σ∪m which has the shape depicted in Figure

1 in a neighborhood of m. This surface exists because Σ is null-

homologous in M . Observe that τ(m, s′) = τ(m,S) ± 2π, where

τ(m,S) is the torsion of m with respect to the framing induced by

S, and tw(Σ) = τ(
−→
Σ , lc) = τ(

−→
Σ , S) ± 2π.
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L

m

S

Figure 1

2) Let p : (
−→̃
M,

−→̃
L nα) −→ (

−→
M,

−→
L α) be a n-cyclic covering between

cone-manifolds branched over
−→
L . Then

I(
−→̃
M,

−→̃
L nα) = n I(

−→
M,

−→
L α)

I1(
−→̃
M,

−→̃
L nα) ≡ n I1(

−→
M,

−→
L α) (mod 1)

Inα
2π

(
−→̃
M,

−→̃
L nα) ≡ n I α

2π
(
−→
M,

−→
L α) (mod

nα

2π
)

To prove this, note that the frame field s lifts to a frame field s̃ in M̃\
(Σ̃∩ m̃) having special singularities at Σ̃∩ m̃, then

∫
s̃(M̃−Σ̃−m̃) Q =

n
∫
s(M−Σ−m) Q. On the other hand, the frame field s′ lifts to a

frame field s̃′ in a subset of M̃ \Σ̃ containing m̃ such that τ(m̃, s̃′) =

nτ(m, s′). Finally, recall that tw(
−→̃
Σ ) = n tw(

−→
Σ ).

Note that if α = 2π
n then the n-cyclic covering of M branched

over Σ is a Riemannian manifold. This gives a procedure to compute

the Chern-Simons invariant of some manifolds.

3) Suppose α = 0 and the manifold is hyperbolic. Then I1(
−→
M,

−→
L 0) is

equal to the extended definition of the Chern-Simons invariant for

manifolds with cusps, made by Meyerhoff in [Me].

3. A ”Schläffli” Formula for I(S3,Kα).

In this section we deduce a ”Schläffli” formula for the invariants

I(S3,Kα), I1(S
3,Kα) and I α

2π
(S3,Kα) of a one parameter family of cone-

manifolds (S3,Kα(t)) where the angle α(t) and the function β(t) (one lift of
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β) are differentiable functions of t, and
−→
K is a hyperbolic knot in S3. We

suppose in the proof that β(t) ∈ [−2π, 2π] (otherwise the same result follows

for I1(S
3,Kα) and I α

2π
(S3,Kα) using a different lift I ′(S3,Kα1) associated

to β(t)).

First observe that dI(S3,Kα(t)) = dI1(S
3,Kα(t)) = dI α

2π
(S3,Kα(t)). We

distinguish two cases according as the curvature is negative or positive. As

a matter of fact, there is a proof of Case 1 analogous to the proff of Case

2. However, we have decided to include here a different proof, (more in the

line of [Y] and [N-Z]) to relate our result to the interesting work of these

mathematicians.

Case 1. The curvature of the cone manifold (S3,Kα(t)) is −1 for t ∈
(t0, t1).

We recall some notation and results of [Y] and [N-Z], in particular the

important Theorem 3.1 of [Y] and the formula (46) of [N-Z], which can be

thought of as a ”Schläffli” formula.

Let
−→
K be a hyperbolic knot in S3. Let N be the oriented complete

hyperbolic structure on S3 \K. Let U be the deformation space of N . For

u ∈ U , the corresponding hyperbolic manifold is denoted by Nu.

The holonomy of the hyperbolic structure Nu is ρu : π1(S
3 \ K) −→

PSL(2,C). Then, up to conjugation in PSL(2,C),

ρu(m) =

[
e

u
2 0

0 e−
u
2

]
ρu(lc) =

[
e

v
2 0

0 e−
v
2

]

Let s be an orthonormal framing on N \ m obtained as in the following

proposition.

3.1 Proposition. Let
−→
K be a hyperbolic knot in S3. Consider its

complete hyperbolic structure N . Then there exists an orthonormal framing

on S3 \ (K ∪m), where −→m is a meridian of
−→
K , having a special singularity

at K ∪m.

Proof. The proof follows the idea of the construction made in [Y], for

the Figure-Eight knot. Consider a tubular neighborhood E of K. Let m be

the boundary of a disc D in the interior of E such that D ∩K=one point.

First, define a framing s0 on the exterior of the Hopf link, H = S1 ∪ S2,
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with special singularity at H ([Y;pg 503]). Second, define an orientation-

preserving map φ : S3 → S3 such that

i) φ(K) = S1 and φ(m) = S2

ii) φ maps the neighborhood E of (K ∪ m) diffeomorphically onto a

similar neighborhood E0 of H, and φ(S3 \ E) ⊂ (S3 \ E0) ([Y;pg

501]). (E0 is a tubular neighborhood of S1 containing S2.)

Then the map φ induces a framing s on S3 \ (K ∪m) having special singu-

larity at K ∪m. �

By the Schmidt orthonormalization process applied to s with respect

to the hyperbolic structure of Nu, one obtains an orthonormal framing su
on Nu \m. By deforming it in a neighborhood of m if necessary, we may

assume that su has a special singularity at m.

Given any Riemannian manifold R, the differential form C is defined on

the positively-oriented orthonormal frame bundle by the following expres-

sion

C =
1

4π2
(4θ1 ∧ θ2 ∧ θ3 − d(θ1 ∧ θ23 + θ2 ∧ θ31 + θ3 ∧ θ12)

+
1

4iπ2
(θ12 ∧ θ13 ∧ θ23 + θ12 ∧ Ω12 + θ13 ∧ Ω13 + θ23 ∧ Ω23)

where (θi), (θij) and (Ωij) are, respectively, the fundamental 1-form, the

connection 1-form and the curvature 2-form of the Riemannian connection

on R.

Let s′ = (f1, f2, f3) be an orthonormal framing defined on a subset of−→
M \ Σ containing m such that f1(y) is the tangent vector to m at each

y ∈ m having the same direction as the e1-vectors of s near y, and f2(y) is

tangent to the meridian disc of Σ bounded by m. For u ∈ U let s′u be the

result of orthonormalizing s′ with respect to the hyperbolic metric of Nu.

3.2 Theorem of Yoshida. [Y; Theorem 3.1]. The function

(4) f(u) =

∫
su(Nu\m)

C − 1

2π

∫
s′u(m)

(θ1 − iθ23)

is a holomorphic function on a neighborhood of u0 in U , where u0 represents

the original complete hyperbolic structure N .
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3.3 Theorem. For u ∈ U

(5) Re(f(u)) =
1

π2
V ol(Nu) +

1

4π2
Im(uv)

Proof. Following the first part of the proof of Theorem 5.1 of [Y], for

each u ∈ U consider Xε, the closure of su(Nu\(Eε(e)∪m)) in F (Nu), where

Eε(e) is the ε-neighborhood of the end e of Nu. Then ∂Xε = s(∂Eε(e)∪R),

where R is mapped onto m by the bundle projection F (Nu) −→ Nu.

Then

Re(f(u)) =

∫
s(Nu\m)

Re(C) − 1

2π

∫
s′(m)

θ1

=
1

π2
V ol(Nu) − limε→0

∫
s(∂Eε(e))

1

4π2
Θ

where Θ = θ1 ∧ θ23 + θ2 ∧ θ31 + θ3 ∧ θ12.

To compute −
∫
s(∂Eε(e))

1
4π2 Θ, consider p : Ñu → Nu, the universal cover

of Nu and let du : Ñu → H3 be a developing map of Nu. We may assume

that the image by du of a connected component of p−1Eε(e) lies into the

hyperbolic cylinder around the t-axis

Eδ = {(r, γ.φ) ∈ H3|log cot(π
4
− γ

2
) ≤ δ},

Using these polar coordinates on Tε = ∂Eε and putting z = log r+ iφ on T̃ε,

the universal cover of Tε, then Tε is the quotient of T̃ε by the Z × Z-action

generated by the translations by {u, v}. Let I be the parallelogram spanned

by them. We have

−
∫
s(∂Eε(e))

1

4π2
Θ =

1

4π2

1 + sin2γ

cos2γ

∫
I
d log r ∧ dφ =

1

4π2

1 + sin2γ

cos2γ
Area(I)

As ε → 0, γ → 0 and Area(I) → Im(uv), which proves the theorem. �

3.4 Theorem [N-Z]. The real part of df(u) is equal to the real part of

g(u), where g is the holomorphic differential

(6) g(u) =
i

4π2
(vdu− udv)
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Proof. The generalized Schläffli formula (46) of [N-Z] with our choices

of orientation (change of sign on v) is

dV ol(Nu) = −π

2
d(

1

2π
Im(uv)) − 1

4
Im(vdu− udv)

Then

dRe(f(u)) =
1

π2
dV ol(Nu) +

1

4π2
dIm(uv)

= − 1

4π2
Im(vdu− udv) = Re(g(u)). �

The above theorem shows that g(u) is an exact holomorphic differential.

Thus the integral

h(u) =

∫ u

0
g(u) =

i

4π

∫ u

0
(vdu− udv)

defines a holomorphic function of u, such that h(u) − f(u) =constant. In

particular the imaginary part of df(u) is equal to the imaginary part of

g(u).

3.5 Theorem. Let (S3,Kα(t)) be a family of hyperbolic cone-manifold

structures in S3, where α(t) and β(t) are differentiable functions of t. Then

the following equation (”the Schläffli formula”) between differential forms

holds

(7) dI(S3,Kα) = − 1

4π2
βdα

Proof. Observe that

Im(f(u)) =

∫
su(Nu\m)

Q +
1

2π

∫
s′u(m)

θ23 =

∫
su(Nu\m)

Q − 1

2π
τ(m, s′u)
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and by (3) (Definition 2.2)

I(S3,Kα) =
1

2

∫
su(S3−K−m)

Q − 1

4π
tw(K) − 1

4π
τ(m, s′u)

Then

I(S3,Kα) ≡
1

2
Im(f(u)) − 1

4π
tw(K)

This implies that

dI(S3,Kα) =
1

2
Im(g(u)) − 1

4π
d(

1

2π
αβ)

Now, because u = iα, v = δ+iβ, we have that Im(g(u)) = 1
4π2 (αdβ−βdα).

One obtains

dI(S3,Kα) =
1

8π2
(αdβ − βdα) − 1

8π2
(αdβ + βdα) = − 1

4π2
βdα. �

Case 2. The curvature of the cone manifold (S3,Kα(t)) is 1 for t ∈ [t0, t1].

By a straightforward adaptation of an argument of Neuwirth [N, Chapter

III], we can assume that for each t ∈ [t0, t1] there exists a polyhedron

(we do not require it to be either convex or geodesic, only of the same

combinatorial type for each t ∈ [t0, t1]) Dt ⊂ S3 such that (S3,Kα(t)) is

the result of identifying the faces of Dt by isometries {g1, ..., gl} of S3. The

set of edges of Dt that project onto K is {A1, ..., Ah}; the set of edges

of Dt that project onto the meridian m of K is {B1, ..., Bk}. Denote Dt −
{A1, ..., Ah, B1, ..., Bk} by D0

t . Since K is a singular geodesic we can suppose

that for each t ∈ [t0, t1], A1 is part of a fixed geodesic γ, that a point P

in A1 ⊂ γ projects onto the same point π(P ) ∈ K and that an orthogonal

direction to K in P is also the same for each t. The identifications of pairs

of faces in Dt are realized by the isometries {g1(t), ..., gl(t)}. Let D be the

combinatorial polyhedron, then the family Dt defines a differential map

η : M4 = D × [t0, t1] −→ S3

such that η(P̂ , t) = P , for each t, η(A1 × [t0, t1]) ⊂ γ) and dη(v̂, t) = r(t)v,

where v̂ ∈ TP̂D, v⊥γ.
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There exists an orthonormal framing st on Xt = D0
t /{g1, ..., gl} having

special singularities at K ∪m obtained by orthonormalization with respect

to each Riemannian structure, of the framing s in S3 − (K ∪m). Let

µ : M4
0 = D0 × [t0, t1] −→ F (S3) = SO(4)

be the map defined by µ(x, t) = s̃t(η(x, t)) where s̃t(η(x, t)) is the framing

induced on D0
t by the framing st on Xt = D0

t /{g1, ..., gl}
By the Stokes formula

(8)

∫
M0

µ∗(dQ) =

∫
µ(M0)

dQ = 0 =

∫
∂µ(M0)

Q

Observe that ∂µ(M0) = µ(∂D0× [t0, t1])∪µ(−D×t0)∪µ(D×t1)∪C1∪C2,

where C1 and C2 are diffeomorphic to the image by µ of ((the boundary

of a small neighborhood of {A1, ..., Ah} in D)×[t0, t1]) and the image by µ

of ((the boundary of a small neighborhood of {B1, ..., Bk} in D)×[t0, t1])

respectively.

The faces ofD can be paired as (S1, g1S1), ..., (Sl, glSl), then µ(gi(x), t) =

dgi(µ(x, t)) for all x ∈ Si, i = 1, ...l and for all t ∈ [t0, t1]. This implies that

(9)

∫
µ(∂D0×[t0,t1])

Q =
l∑
i=1

(∫
µ(Si×[t0,t1])

Q−
∫
µ(giSi×[t0,t1])

Q

)
= 0.

On the other hand ∫
µ(Dt1 )

Q =

∫
s1(S3−K−m)

Q∫
µ(Dt0 )

Q =

∫
s0(S3−K−m)

Q(10)

Now we compute
∫
C1
Q and

∫
C2
Q.

Observe that the image of the quotient map

qt : µ(D0 × {t}) −→ µ(D0 × {t})/{dg1(t), ..., dgl(t)}
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is a 3-manifold X̂t with boundary which is diffeomorphic to the compacti-

fication of Xt with two tori: (K ∪m) × S1. The ”quotient” map

q : µ(D0 × [t0, t1]) −→ ∪t∈[t0,t1]X̂t := X

given by q(µ(x, t)) = qt(x), sends C1 and C2 to ∪t∈[t0,t1]∂X̂t = Ĉ1 ∪ Ĉ2.

3.6 Lemma.

(11)

∫
C1

Q =
1

4π2

∫
[t0,t1]

(βα′ − β′α)dt

where α(t) is the angle around K and β(t) is the jump of K.

Proof. Consider the following parametrization of Ĉ1:

ρ : K × S1 × [t0, t1] −→ Ĉ1

(φ, ψ, t) →
(
δ(t)e1(φ),

(
β(t)

2π
φ+

α(t)

2π
ψ

)
E23,

∂

∂t

)
where φ ∈ [0, 2π] is a parametrization of K, e1 is the first vector of st, E23

is the unit twist around e1, α(t) is the angle around K and β(t) is the jump

of K. Observe that ρ is well defined because the factor S1 projects onto

a point in (S3,Kα), and is described as a twist (E23) around a vector e1

tangent to K. The coefficient is
(
β(t)
2π φ+ α(t)

2π ψ
)
, because for φ0, ψ ∈ [0, 2π]

the angle is α, and for ψ0, φ ∈ [0, 2π] the angle is β.

To compute ρ∗Q, note that ρ∗θ12 = ρ∗θ13 = 0 and ρ∗Ω23 = dρ∗θ23, so

that ρ∗Q = 1
4π2ρ

∗θ23 ∧ dρ∗θ23. On the other hand ρ∗θ23

(
∂
∂φ

)
=

θ23

(
dρ
(
∂
∂φ

))
= β(t)

2π , and ρ∗θ23

(
∂
∂ψ

)
= θ23

(
dρ
(
∂
∂ψ

))
= α(t)

2π . There-

fore ρ∗θ23 = α(t)
2π dψ + β(t)

2π dφ, and dρ∗θ23 = −α′(t)
2π dψ ∧ dt − β′(t)

2π dφ ∧ dt.

Thus ρ∗Q = − 1
4π2

1
4π2 (βα′ − β′α)dφ ∧ dψ ∧ dt.∫

C1

Q = −
∫
K×S1×[t0,t1]

ρ∗Q

=
1

4π2

∫
K×S1×[t0,t1]

1

4π2
(βα′ − β′α)dφ ∧ dψ ∧ dt

=
1

4π2

∫
[t0,t1]

(βα′ − β′α)dt. �
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3.7 Lemma.

(12)

∫
C2

Q =
1

2π
(τ0(m) − τ1(m))

where τ0(m) and τ1(m) are the torsion of the meridian m of K in the

cone-manifold structures t0 and t1, respectively, with respect to the same

longitude.

Proof. The computation for C2 is analogous to the computation for

C1, but now the angle is constant (2π) and the jump is the torsion τt. Then

∫
C2

Q = −
∫
m×S1×[t0,t1]

ρ∗Q

= − 1

4π2

∫
m×S1×[t0,t1]

1

2π
τ ′tdφ ∧ dψ ∧ dt

= − 1

2π

∫
[t0,t1]

τ ′tdt =
1

2π
(τ0(m) − τ1(m)) . �

3.8 Theorem. Let (S3,Kα(t)) be a family of spherical cone-manifold

structures in S3, where α(t) and β(t) are differentiable functions of t. Then

the following equation (”the Schläffli formula”) between differential forms

holds

(13) dI(S3,Kα) = − 1

4π2
βdα

Proof. By (3), (8), (9), (10), (11) and (12), we have

I(S3,Kα1)−I(S3,Kα0) =
1

2

∫
s1(S3−K−m)

Q − 1

4π
τ1(m) − 1

4π
tw(Kα(t1))

− 1

2

∫
s0(S3−K−m)

Q +
1

4π
τ0(m) +

1

4π
tw(Kα(t0)).
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Using the fact that tw(Kα(t)) = α(t)β(t)
2π , we obtain

I(S3,Kα1) − I(S3,Kα0)
1

8π2
α(t0)β(t0)

µµ− 1

8π2
α(t1)β(t1) −

1

8π2

∫
[t0,t1]

(βα′ − β′α)dt

= − 1

8π2

∫
[t0,t1]

((βα′ − β′α) + (βα)′)dt = − 1

8π2

∫
[t0,t1]

2βα′dt

= − 1

4π2

∫
[t0,t1]

βα′dt

Therefore

dI(S3,Kα) = − 1

4π2
βdα. �

Suppose we compute directly the volume, and also the Chern-Simons

invariant of the complete hyperbolic structure of the exterior of a hyperbolic

knot K in S3, using the framing defined by the canonical longitude of

K. These are V (S3,K0) and I1(S
3,K0), respectively. Then the following

theorem applies.

3.9 Theorem. Let
−→
Mn(K) be the n-cyclic cover of S3 branched over

the hyperbolic knot K, and let (
−→
S 3,

−→
K α(t)) be a family of cone manifold

structures such that the angle α(t) ∈ (0, α0], the jump β(t) ∈ R/(4πZ) and

the length δ of K are differentiable functions of t. The Chern-Simons in-

variant of the geometric manifold
−→
Mn(K), can be obtained by the following

formulas.

(14) CS(
−→
Mn(K)) ≡ nI1(

−→
S 3,

−→
K 0) − n

4π2

∫ 2π
n

0
βdα (mod 1)

where β is any differentiable lift of the jump to the universal covering R of

R/(4πZ). The volume of the hyperbolic manifold
−→
Mn(p/q), n > n0, is

(15) V (
−→
Mn(K)) = nV (

−→
S 3,

−→
K 2π

n
) = nV (

−→
S 3,

−→
K 0) − n

2

∫ 2π
n

0
δdα.
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Proof. Lets prove (14). Let β be a differentiable lift to R of β(t),

then

(16) − 1

4π2

∫ 2π
n

0
βdα = Ĩ(

−→
S 3,

−→
K 2π

n
) − Ĩ(

−→
S 3,

−→
K 0)

where Ĩ(
−→
S 3,

−→
K α)(t) is a differentiable lift to R of I α

2π
(
−→
S 3,

−→
K α)(t). As

Ĩ(
−→
S 3,

−→
K α)(t) and I(

−→
S 3,

−→
K α)(t) are two lifts to the universal covering R

of R/( α2π ) for the same function I α
2π

(
−→
M,

−→
K α)(t), they differ by a multiple

of α
2π . In particular for α = 2π

n , they differ by k
n

Ĩ(
−→
S 3,

−→
K 2π

n
) = I(

−→
S 3,

−→
K 2π

n
) +

k

n
.

Then

Ĩ1(
−→
S 3,

−→
K 2π

n
) ≡ I1(

−→
S 3,

−→
K 2π

n
) +

k

n
(mod 1)

Ĩ1(
−→
S 3,

−→
K 0) ≡ I1(

−→
S 3,

−→
K 0) (mod 1).

From (16) we have

Ĩ(
−→
S 3,

−→
K 2π

n
) = Ĩ(

−→
S 3,

−→
K 0) − 1

4π2

∫ 2π
n

0
βdα ,

Ĩ1(
−→
S 3,

−→
K 2π

n
) ≡ I1(

−→
M,

−→
K 2π

n
) +

k

n

≡ I1(
−→
S 3,

−→
K 0) − 1

4π2

∫ 2π
n

0
βdα (mod 1)

And therefore

nI1(
−→
S 3,

−→
K 2π

n
) ≡ nI1(

−→
S 3,

−→
K 0) − n

4π2

∫ 2π
n

0
βdα (mod 1)

CS(
−→
Mn(K)) ≡ nI1(

−→
S 3,

−→
K 2π

n
)

≡ nI1(
−→
S 3,

−→
K 0) − n

4π2

∫ 2π
n

0
βdα (mod 1).
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To prove (15) note that V (
−→
S 3,

−→
K 2π

n
) is easly computed, (see [H]), by using

the Formula of Schläffli for the volume (see for instance [M]). In a one pa-

rameter family of polytopes in the hyperbolic space, dV = −(1/2)
∑

Eidαi,

where V is volume, the sum is taken over all the edges, Ei is the length

of the ith edge and αi is its dihedral angle. The volume of a cone man-

ifold is the volume of the polyhedron from which it is constructed before

identifications are made. If several edges of a polytope are identified and

the resulting identified edge is not part of the singular set then the sum

of the corresponding dihedral angles is 2π and, since the differential of the

constant 2π equals zero, these edges make no contribution to dV . Hence,

in our case (see [HLM1]),

dV (S3, (p/q)α) = −(1/2)δdα.

Therefore

V (
−→
S 3,

−→
K 2π

n
) = V (

−→
S 3,

−→
K 0) − 1

2

∫ 2π
n

0
δdα.

and this implies (15). �

See [HLM2] for a detailed computation of the Chern-Simons invariants

and volumes of the cyclic coverings of S3 branched over a rational knot p/q.
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