- The abelianization of the level d mapping class group

(LW dEBER DT —)V k)

ek 5%



The abelianization of the level d mapping class group

Masatoshi Sato

Abstract

In this paper, we determine the abelianization of the level d mapping class group for d = 2 and
odd d when g > 3. For an even d greater than 2, we determine the abelianization of the group up
to a cyclic group of order 2. To compute them, we extend the homomorphism of the Torelli group
defined by Heap to a homomorphism of the level 2 mapping class group.
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1 Introduction

Let g be a positive integer, and r either 0 or 1. We denote by ¥, , a closed oriented connected surface
of genus g with r boundary components. We denote by Diff (X, ,,0%, ) the topological group of
orientation-preserving diffeomorphisms of ¥, which fix the boundary pointwise with C* topology.



The mapping class group M, . of &y, is defined by M, , = mo Diff, (T 9,7 024 »). Fix the symplectic
basis {A;, B;}{_, of the first homology group H; (X, ,; Z) such that A4; ‘Aj = B;-B; = 0and A;-B; = §;;
for 1 <17 < j < g, where d;; is the Kronecker delta. Then the natural action of M, on thls group
gives rise to the classical representation p : M, . — Sp(2g; Z) onto the integral symplectic group. The
kernel 7, , of this representation is called the Torelli group.

For an integer d > 2, the level d mapping class group M, .[d] C M, is defined by the kernel of
the mod d reduction M, . — Sp(2g; Z4) of p. The level d congruence subgroup I',[d] of the symplectic
group is defined by the kernel of modd reduction map Ker(Sp(2g; Z) — Sp(2g;Z4)). This is equal
to the image of M, .[d] under p. The group M,[d] arises as the orbifold fundamental group of the
moduli space of nonsingular curves of genus g with level d structure. In particular, for d > 3, the level
d mapping class groups are torsion-free, and the abelianizations of the level d mapping class groups
are equal to the first homology groups of the corresponding moduli spaces.

In this paper, we compute the abelianizations, that is the first integral homology groups, of M, ,[d]
and I'y[d]. We determine especially Hy (M, .[d]; Z) for d = 2 and odd d > 3, and H, (T, [d]; Z) for all
d > 2. This is an analogous result in Satoh [34] and Lee-Szczarba [26] for the abelianizations of the level
d congruence subgroups of Aut F,, and GL(n; Z). To determine the abelianization H; (M, ,[2]; Z), we
construct an injective homomorphism 8, : Mg 1[2] — Map(H1(Z,; Z2), Zsg). This function is defined
using Rochlin functions of mapping tori. We will show that this is an extension of a homomorphlsm
of the Torelli group defined by Heap [11]. To determine the abelianization H; (M, .[d];Z) for odd d,
we construct the Johnson homomorphism of modulo d on M, ,.[d].

Historically, McCarthy [27] proved that the first rational homology group of a finite index subgroup
of My, which includes the Torelli group vanishes for r = 0. More generally, Hain [10] proved that
this group vanishes for any r > 0.

Theorem 1.1 ((McCarthy [27], Hain [10])). Let g > 3 and r > 0. If M be a finite index subgroup of
M., that includes the Torelli group, then we have

Hi(M;Q) =0.

Farb raised the problem to compute the abelianization of the group M, ,[d] in Farb [9] Problem

5.23 p.43. Recently, Putman [32] also determined the abelianization of the level d congruence subgroup
of the symplectic group and the level d mapping class group for odd d when g > 3. See also [33].

' This paper is organized as follows. In Section 2, we construct the injective homomorphism S, : -
Mg 1[2] = Map(H,(%,;Z3), Zs), for spin structures o of ¥,, to determine the abelianization of the
level 2 mapping class group. Let n be a positive integer. For a (4n—1)-manifold M and a spin structure
o of M, the Rochlin function R(M, o) is defined as the signature of a compact 4n-manifold which spin
bounds (M, ). See, for example, Turaev [35]. The homomorphism B, (y) is defined as the difference
R(M,,o0) — R(M¢,U) for a mapping torus M, of ¢ € M, 1[2] (Definition 2.1). Turaev [35] proved
that it is written as the Brown invariant of a pin“ bordism class represented by a surface embedded
in the spin manifold M, (Lemma 2.9). In section 4, we see that this homomorphism is an extension
of Heap’s homomorphism (Lemma 2.12). In section 5, We compute the value of it by examining the
pin~ bordism class of the surface F' in M,. The main theorem in this paper is illustrated as follows.
For homology classes {z;}j—; in H1(Xy,1;Z2), define a map I : H1(Z,,1;Z2)" — Zs by

I(z1, 22, ,2p) = Z (z; - £;) mod 2,
1<i<j<n

where z; - z; is the intersection number of z; with z;. We denote by Zg[H; (X, 1;Z2)] the free Zg-
module generated by all formal symbol [X] for X € Hy(X,:). Define a map Ay : H1(Z,1;2)" —



Zs[H:1(Xy,1;Z2)] by

Af (1,22, ,xn) = [0] + Z[mi] + 3 () 4 a)]

=1 1<i<ji<n
+ Z (—l)l(a’i’z"’zk)[mi +z; + zi]
1<i<j<k<n

+‘ B (—1)1(“’22’"' ’”")[wl +x9+2x3+ -+ .’L‘n] € Zs[Hl (Eg’l; Zg)]
Theorem 1.2. Let g > 3 be an integer. Denote by Ly 1 C Zg[H1(Z,,1;Z2)] the submodule generated
b .
Y [O], 4Ag($1,$2), 2A3($1,$2,.'E3), Ag(.’ﬂl,wz, cee ,.’En) € Zs[Hl(Zg,l;Zg)],
forn >4 and {z;}7, C H1(X,,1;Z2). Then, we have
H1(Mg[2];Z) = Zs[H1(Zg,15Z2)] /Ly ,1,
as Mg 1-module.

For a group G and a G-module M, denote by Mg the coinvariant of the action of G on M. We
will show that the kernel of the homomorphism ¢ : H(Z,r; Z)r, (2 = H1(M,,,[2]; Z) induced by the
inclusion is isomorphic to Z; (See Remark 3.16). By the 5-term exact sequence coming from the exact
sequence 1 — T, . — M, .[2] — T'4[2] — 1, we have: '

Corollary 1.3. Let g > 3 be an integer, and r either 0 or 1. The sequence
0 — Zo > Hi(Zg,r;Z)p,19) —— H1(My,[2;Z) —— Hi(T,[2];Z) —— 0

1S exact.

In Section 3, we will prove Theorem 1.2 using the result of Section 4 on the abelianization of the
level d congruence subgroup of the symplectic group. We also determine the abelianization of the level
2 mapping class group of a closed surface in Section 3.4. In Section 4, we determine the abelianization
of T'y[d] for every integer d > 2 (Corollary 4.2). To do it, we investigate the commutator subgroup of
the level d congruence subgroup of the symplectic group. This mainly relies on the work of Mennicke
[29] and Bass-Milnor-Serre [3] on congruence subgroups of the symplectic group. In Section 5, we
compute the abelianization of the level d mapping class group for d > 3. The main tool is the Johnson
homomorphism of modulo d on the level d mapping class group. This derives from the extension
of the Johnson homomorphism defined by Kawazumi [23]. Let H denote the first homology group
Hi(X,,,;Z). Denote by A>H/H the cokernel of the homomophism

H — AH :
z = Y9I (AiAB)Az.
Then, the abelianization of the level d mapping class group is written as:

Theorem 1.4. Let g > 3 be an integer. For an odd integer d > 3, we have
Hy(M,ld]; Z) = (A°H/H © Z4) ® Hy(Ty[d]; Z)
— Z¢(14g3_g)/3’
Hi(Mgald};Z) = (A’H ® Z4) ® H1(T,[d]; Z)
_ Zfi4g3+5g)/3'

For even d > 4, we do not know the abelianization of M, .[d]. But we have the following exact
sequence.

Proposition 1.5. Let g > 3 be an integer , and r either 0 or 1. For an even integer d > 4,
Z; —— Hi(Zg,r;Z)r ) —— Hi(My,r[d];Z) —— Hi(Ty[d};Z) —— 0

18 exact.



2 The abelianization of the level 2 mapping class group

In this section, we will define a family of homomorphisms
ﬂo-,a: : Mg’1[2] e Zg,

for a spin structure o of X, and an element z in H;(X,;Z,) (Definition 2.1). This family determines
the abelianization of the level 2 mapping class group. In Section 2.4, the homomorphism f, . is proved
to be an extension of the homomorphism wy,, : Z,1 — Zo defined in Heap [11] p.26 to the level
2 mapping class group. We calculate the values of this homomorphism on generators of the level 2
mapping class group using the Brown invariant in Section 2.5..

2.1 Spin structures

In this section, we define spin structures of an oriented vector bundle and introduce some properties.
We also define spin structures of mapping tori which come from those of a fiber X, to construct the
homomorphism £, . : Mg 1[2] = Zs.

2.1.1 Definition of Spin structures

Let f : E — V be a smooth oriented real vector bundle of rank n > 2 with a metric on a smooth

manifold V. We denote by P(E) the oriented frame bundle associated to this bundle. When the Stiefel-

Whitney class wy of E vanishes, we define a spin structure of E by a right inverse homomorphism of

the homomorphism f. : H,(P(E);Zs) — H1(V;Z,). Denote by spin(E) the set of spin structures of

E. .
Since P(E) is a principal GL(n) bundle and w, vanishes, we have the exact sequence

0 s Zy —1— Hy(P(E);Zs) —L Hi(V;Zs) —— 0

arising from the fibration GL(n) — P(E) — V. For o € spin(E), consider a splitting H; (P(E); Z) =
H\(V;Z2) ® Zy induced by o : Hy(V;Z2) — Hi(P(E);Z>). Under this splitting, we denote by
ko : Hi(P(E); Z3) — Z the projection to the second factor. Spin structures ¢ of E are equivalent to
left inverse homomorphisms k, of j : Zy — H;(P(E);Zs) as above. In this way, we can consider a spin
structure as an element of H'(P(E); Z,) = Hom(H; (P(E);Z5),Zs) which evaluates to 1mod?2 € Z,
on a homotopically nontrivial loop in a fiber f~!(z) = GL4(n). We will define the Spin(n) group in
Section 2.3 which is the double cover of the special orthogonal group SO(n). Thus, if we endow a fiber
metric on E, spin structures are equivalent to principal Spin(n) bundles which are double covers of
oriented orthonormal frame bundles associated to E. In detail, for example, see Lee-Miller-Weintraub
[25] Section 1.1.

For an oriented smooth n-manifold V, we define the spin structure of V by the spin structure of
the tangent bundle TV. We denote spin(T'V'), the set of spin structures of TV, simply by spin(V) .
Note that a spin structure of V' is equivalent to a spin structure of V x (—¢,€)*, for € > 0 and k > 0.

2.1.2 Spin structures of mapping tori

Fix a closed disk neighborhood N (o) of a point ¢ in 4. The mapping class group 7 Diff 4 (Z,, N(co))
is the group consisting of isotopy classes of orientation-preserving diffeomorphisms of ¥, which fix
the neighborhood N(cp) pointwise. By restricting each diffeomorphism to Y, —Int N(cp), the group
mo Diff . (¥4, N(co)) is isomorphic to M, ;. Hence, we identify these two groups. We also identify
the kernel Ker(mo Diff; (X,, N(co)) — Sp(2g;Z>)) of the mod 2 reduction of the homomorphism p :
mo Diff  (£4, N(co)) = Sp(2g; Z)) with M 1[2].

For ¢ = [f] € M1, denote the mapping torus of ¢ by M, := %, x [0,1]/ ~, where the equivalence
relation is given by (f(z),0) ~ (z,1). We denote the mapping torus M, simply by M. To construct
the homomorphism S, , : My 1[2] = Zsg on the level 2 mapping class group, we must consider spin



structures of the mapping tori M induced from those of ¥,. In the following, we define a map
6 : spin(Xy) — spin(M,,). & :

Fix a spin structure on X,. Since ¢ € M, 1[2] acts on H, (X4; Zy) trivially, the Wang exact sequence
is written as

0 —— Hl(Eg;Z2) —_— Hl(M; Z2) —_— Hl(Sl;Zz) — 0.

Since ¢ € M,,1[2] preserves N(co) pointwise, we have a natural embedding I : N(co) x ST — M. This
embedding gives the splitting

Hy(M;Z) = Hy(Sy; Z2) © Hi (S Z5).

In order to define the spin structure on M, we will construct homomorphisms from each direct summand
to Hl(P(M), Zg)

Let {vo,v1} be a frame of T, N(co), and vg:(¢) € T;S' a nonzero tangent vector. For N(c) x
S1 C M, define the framing [:8" P(N(co) x S1) by i(t) = (vp cos 27t + vy sin 27t, v cos 27t —
U sin 27t, vg1 (¢)). This framing induces the homomorphism

Hi(S%;Z) — Hy(P(N(co) x SY); Za) —25s Hy(P(M); Zs), 1)

where inc, is the homomorphism induced by the inclusion map.

Next, consider the natural smooth map P(X,; x (—¢,€)) — P(M) induced by the inclusion of a
tubular neighborhood X, x (—¢,€) C M for small € > 0. Using the spin structure o of ¥, we have the
homomorphism :

Hi(Sg;Z2) —Z— Hy(P(S, X (—€,€)); Zg) —2s Hy(P(M); Zs). (2)

Thus, we have constructed the homomorphism Hi(M;Zy) — H;(P(M);Zs). In this way, we obtain
the map 6 : spin(X,) — spin(M).

2.2 A homomorphism §,, : Mg [2] = Zsg

In this section, we will construct a homomorphism S, , which determines the abelianization of the
group M, 1[2], using Rochlin functions of mapping tori. In Section 2.2.1, we define the map Bo,z :
Mg 1[2] = Zg. In Section 2.2.2, we show that it is a homomorphism.

2.2.1 Rochlin functions of mépping tori

First we review the simply transitive action of H;(X4;Z3) on spin(¥,). Let M be an oriented n-
manifold with second Stiefel-Whitney class we = 0. By the Serre spectral sequence of the fibration
GL,(n) — P(M) — M, we have the exact sequence

1 —— Zy —1 s H{(P(M);Zy) —— Hy(M;Zs) — 1.

For z € H'(M;Z,), we denote again by z 1 Hi(M;Z;) — Hi(P(M);Zs) the composite of z :
Hy(M;Zy;) — Z; and the inclusion j : Z, — H;(P(M);Zs). Let o be a spin structure of M.
Since = : Hy(M;Zy) — H1(P(M);Zs) factors through j : Zo — Hy(P(M);Zs), the homomorphism
o+z: Hi(M;Zs) — Hi(P(M);Zs) is also a spin structure. In this way, H*(M;Z2) acts on spin(M)
simply transitively.

Next, we review the definition of Rochlin functions. It is known as Rochlin’s theorem that every
spin 3-manifold bounds a spin 4-manifold. For ¢ € M, 1[2], choose a compact oriented spin manifold
V' which is spin bounded by the mapping torus M = M,. Denote by SignV the signature of the
4-manifold V. Then a Rochlin function of (M, o) is defined by

R(M,0) := SignV mod 16 € Z.

This is well-defined by Rochlin’s theorem, and is called the Rochlin function. Let 6 : spin(Z,) —
spin(M,) be the map defined in Section 2.1.2.



Definition 2.1. For x € H1(X,;Z;) and o € spin(X,), define the map

Bow: Myi[2] » (%z) /87

by Bo,e(p) = (R(My,0(0)) — R(My,0(c + z)))/2 modS8.

As we will show in Section 2.3, the image Im 3, . is in Zg. Denote by Map(H1(Xy; Z2); Zs)
the free Zg-module consisting of all maps Hi(X4;Z3) — Zs. We define the map S, : Mga1[2] =
Map(Hl (Eg; Z,); Zs) by 50(90)(58) = ﬂa,z(w)'

2.2.2 A spin manifold bounded by Mapping tori

In the following, we will prove that the map 8, : M, 1[2] — Map(H; (X,; Z2); Zs) is a homomorphism.
To prove this, we construct a compact spin 4-manifold W which is spin bounded by mapping tori with
spin structure (o).

Lemma 2.2. Let g be a positive integer. For a spin structure o of Xy, the map fo : My1[2] —
Map(H1(Xy;Z2); Zg) is a homomorphism.

Proof. Let Py := S? — II2_, Int D; denote a pair of pants, where {D;} are mutually disjoint disks and
Int D; is the interior of D; in S2. Pick paths a, 8, € 71 (Py, o) going once round boundary components
as in Figure 1. Denote by Diff,, (¥4, N(co))[2] the kernel of the representation of Diff (X,, N(c)) on
Hy(3g;Z,). Consider 3y bundles with its structure group Diff (Z4, N(co))[2]. For ¢, € M,1[2],
there exists a ¥, bundle p : W = W, ,, — P such that the topological monodromy m (Po,z0) =
Mg,1[2] sends a, B, and v € m1(Po, o) to ¢, ¥, and (p3p) ™' € M, 1[2], respectively. This bundle is
unique up to diffeomorphism. For example, see Huseméller [14] Thm 13.1 p.59. Note that the boundary
OW is diffeomorphic to the disjoint sum M, IT My, IT M,y)-1. First, assume that for ¢, € M, 1[2]

Figure 1: loops in a pair of pants

and o € spin(X,), there exists a spin structure on the 4-manifold W which is spin bounded by the
mapping tori M, IT My I M(,)-1 with spin structure 6(c). By Rochlin’s theorem, we have
R(M,,0(0)) + R(My,0(0)) — R(Myy,0(0)) = Sign Wy,
R(My,0(0 + z)) + R(My,0(c + x)) — R(Myy,0(c + z)) = Sign W,  mod 16.
Hence, we obtain f, .(0¥) = Bs,z(¢) + Bo,2(¥). This shows that the map S, is a homomorphism.

In the following, we define a spin structure of W which induces the spin structure §(c) on the
mapping tori. Since ¢, € My 1[2] act on Hy(X,; Z,) trivially, we have the splitting

Hy(W;Zy) = Hi(Xy;Z2) & Hi(Po; Zs)



by the inclusion map N(co) x Py — W. In order to define the spin structure on W, we will construct
homomorphisms from each direct summand to H; (P(W);Zy). By the local triviality of the bundle
W — Py, we have a neighborhood ¥, x (—€,€)2 C W of the fiber on zo € P. For a spin structure
o € spin(X,), define the homomorphism

Hy(S45Z2) —— Hi(P(S, X (—¢€,€)2); Zs) —2%s Hy(P(W); Zs). 3)

We will construct the homomorphism Hi(Po; Zs) — Hy(P(W);Z,). In the disk D? = {(z,y) €
R?|2? + y? < 1}, choose two mutually disjoint disks D;, Dy C Int D?. Choose an orthonormal
frame {vg, v} of R?. Let s : D> — Dy — Dy — P(D? — D; — Dy) = (D? — Dy — D) x R? be the
trivial framing defined by s(z) = (z,vg,v]). By identifying Py with D2 — D; — D,, we have the map
I': Py = P(N(co) x Py) by I'(x) = (vo, v1, s(z)), where {vo,v1} is a frame of T, N(co) in Section 2.1.2.
This map and the inclusion N(cp) x Py — W induce the homomorphism

Hi(Py; Zo) LN Hi(P(N(co) X Po); Za) —2s Hy(P(W);Zs). (4)

Define the spin structure of W by the homomorphisms (3) and (4).

To prove that the spin structure of W induces the spin structure 6(o) on each boundary component
M, we must check that some diagrams commute. The homomorphism (3) is equal to the composite
of (2) and the homomorphism H;(P(M);Z2) = Hy(P(M x [0,€)); Z3) — H; (P(W);Z5) induced by
inclusion, where M x [0, €) is a collar neighborhood of M in . Hence we only have to show that the
diagram '

H,(8D;;Zs) e, H,(Po; Zy)

z;l i;j
Hy(P(N(co) x SY);Zs) —2%s Hy(P(N(co) x Py); Zo)

commutes. Let Iy : D; — P(N (co) x 8D;) be the map defined by z (vo,v1,851(x)). Then, the
homomorphism (inclp). : Hy(8Di;Zs) — Hy (P(N(co) x P);Zs) is different from each of (I’inc),
and (inc i)*. Since there are only two kinds of right inverse homomorphisms of the homomorphism
Hi(P(N(co) x P)|n(co)xopi; Z2) — Hi(8D;;Zs) induced by the projection, the homomorphisms
(I'inc), and (inc I). coincide. ’ ‘

As above, the manifold W induces the spin structure 6(c) on boundary components M, My, and
Mpy)-1- O

2.3 Pin~ structures and Brown invariants

Brown defined an invariant of a closed surface F with a pin~ structure, called the Brown invariant.
In this section, we will define pin~ structures of the surface, and review the Brown invariants and its
relation to Rochlin functions stated by Turaev [35)].

2.3.1 Definition of Pin™ structures

Let n > 2 be an integer. The spin group Spin(n) is defined as the central Z, extension of SO(n).
Similarly, the pin~ group is a central Z, extension of the group Q(n). But there are two kinds of
central extensions of this group. Hence, we first give a precise definition of the group Pin™ (n).

The Spin group and the pin~ group are constructed through a Clifford algebra. Let V be a real
vector space of dimension n with a positive definite inner product. Denote the inner product by (z,9)
for z,y € V, and the tensor algebra by T'(V) := @%2,V®/ with V& := R. Let I, be the n x n
identity matrix. We define the clifford algebra as C1™(V) := T(V)/K, where K is the ideal generated
by {vw + wv + 2(v,w) |v,w € V}. The spin group and the pin~ group are defined as

- Spin(V) :={a € CI" (V) |a = vivy - - - vg, [g| = 1,k is even},
Pin™ (V) :={a € CI" (V) |a = v1v2 - - - g, Jvi| = 1}.



By the definition, we can consider Spin(V') as a subgroup of Pin™ (V). Denote by Spin(n) := Spin(R™)
and Pin™ (n) := Pin~ (R").

For v € V, denote the reflection ,, : V' — V across the (n — 1)-plane orthogonal to v through the
origin as r,(z) = z — 2(z, v)v. Define the surjective homomorphism Pin™ (V) — Oo(V) by

Pin™ (V) - O(V)

VIV2 * "V B2 Ty1Tw2 *:  Tok-

Then, the group Pin™ (V') is proved to be a central Z, extension of O(V), and Spin(V) a central Z,
extension of SO(V'). For more detail, see Atiyah-Bott-Shapiro [2] Section 3.

Next, we introduce a correspondence between pin~ structure and spin structure shown by Kirby
and Taylor. Let £ be a (not necessarily orientable) bundle with a fiber metric. A pin~ structure of
bundle ¢ is defined by the principal Pin™(n) bundle associated to the bundle ¢, where Pin™(n) acts on
R™ via its covering projection to O(n). Denote by det ¢ the determinant line bundle of the bundle £.
Then £ @ det { has a canonical orientation. Kirby-Taylor [24] showed many correspondences between
the set of pin~ structures, spin structures, and pin™ structures of the vector bundles ¢ & (kdet §) for
integer £ > 0. We need a special case of their lemma.

Lemma 2.3 ((Kirby-Taylor [24] Lemma 1.7)). Let n > 2 be an integer, and & be a n-plane bundle
over CW-complex X. Then, there exists a natural bijection

Pin™ () — Spin(¢ @ det ).

Remark 2.4. Let M be a closed non-orientable n-manifold embedded in a spin (n + 1)-mdnifold w.
Then, we have a spin structure TM & N (M) induced by W, where N(M) is a normal bundle of M.
Since N(M) = det TM, M has a natural pin~ structure induced by the spin structure on TM &N (M).

2.3.2 Quadratic functions and quadratic enhancements

l

We restrict ourselves to spin structures and pin~ structures of compact surfaces. For a closed surface
F, these structures are considered as functions on H; (F;Z5).

Definition 2.5. Let F be a compdct oriented surface. If a function q : Hy(F;Z2) — Zo satisfies

gz +y) =q(@) +aly) +z -y,
we call g a quadratic function. |

The set of spin structures on a compact oriented surface F is known to correspond bijectively
to the set of quadratic functions. We review this correspondence. Let o be a spin structure of F.
For v € Hy(F;Zs), choose a simple closed curve K C F such that v = [K] € Hy(F;Z,). Let
NK denote a normal bundle of K in F. Choose a unit tangent vector field sg : K — TK and
a nonzero section s : K — NK. As in Section 2.1, the spin structure o induces a homomorphism
ko : Hy(P(F');Z2) = Zs. Define a quadratic function by

9o (v) = ks (s ®sk) +1 € Zy. (5)

This number does not depend on the choice of the representative of a homology class v, the orientation
of K, and the choice of vector field skx. This is equivalent to the correspondence in Johnson [21]
Theorem 3A p.371. In this way, we consider a spin structure as a quadratic function.

Since the group Spin(n) is a subgroup of Pin™ (n), a pin~ structure on a vector bundle is a natural
generalization of a spin structure to a nonorientable bundle. There is also a generalization of a quadratic
function as follows.

Definition 2.6. Let F' be a (not necessarily orientable) compact surface. If a function § : Hy(F;Zy) —
Z, satisfies 4(x +y) = §(z) + §(y) + 2z - y, we call § the quadratic enhancement.
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Similar to the correspondence between spin structures and quadratic functions, the set of quadratic
enhancements also corresponds bijectively to the set of pin~ structures. A pin~ structure a of a (not
necessarily orientable) compact surface F' induces a quadratic enhancement g, as follows. For an
element v € Hy(F;Zs), choose a simple closed curve K C F which represents v. Then the bundle
E :=TF®det TF has the canonical orientation and the spin structure corresponds to a pin~ structure
a. Then the restriction E|x can be written as E|x = TK & N(K) ®det TF|k. If we fix the orientation
of K, the bundle E' = N(K) & det TF|k gets also oriented.

Let sk : K — TK be a unit tangent vector field on TK. Choose a framing s : K — P(E') so
that the induced homomorphism s ® sk : Hy(K;Z,) — H; (P(E); Z) is equal to the homomorphism
H\(K;Zy) - H(P(E);Z5) induced by the spin structure of E.

Definition 2.7. Count the number w(s) of right half twists that the normal bundle N(K) in TF makes
in a complete traverse of K with respect to the framing s : K — P(E') along K. Define the number

doa(v) = w(s) + 2 € Zy.

This induces the map §o : Hy(F;Zy) — Zs. We call it the quadratic enhancement of a pin~ structure
a.

This number does not depend on the choice of the representative of a homology class, the orientation
of K, and the choice of framings sx and s. In detail, see Kirby-Taylor [24] section 3.

A quadratic enhancement is a natural generalization of a quadratic function as follows. Assume
that F' is an oriented surface with spin structure o. The spin structure ¢ can be considered as a
pin~ structure. By the orientability of F, the normal bundle NK has even number of half twists
with respect to the trivialization s : K — P(E') in Definition 2.7. Hence, the image of the quadratic
enhancement g, is in 2Z4 C Z4. By the definition of the quadratic enhancement (Definition 2.6),
the function §,/2 satisfies the condition of quadratic functions in Definition 2.5. Moreover, it is
equal to the quadratic function g, of the spin structure o. This is shown by comparing Definition
2.7 and equation 5. For example, let s : K — NK be the frame such that the homology class
[s ® sk] € Hi1(P(F); Z3) in equation 5 is in the image of o : Hy(F;Zy) — Hy(P(F);Z,). Then the
value g(v) of the quadratic function is equal to 1, and NK makes even number of full twists with
respect to the frame s : K — P(E'). By the definition of the quadratic enhancement, the value
Go(v)/2 is also 1.

2.3.3 Brown invariants

Brown defined an invariant of second pin~ bordism classes, called the Brown invariant. This invariant
is a generalization of an Arf invariant. We review this invariant and its relation to Rochlin functions
stated by Turaev [35].

Definition 2.8. Let F' be a closed surface with its pin~ strucure a. Then, the Brown invarant B, € Zg
of a is defined by the equation

VIHL(F;Z2)|exp(27V/=1Ba/8) = > exp(2mv/=14a()/4).

z€H1(F;Z2)

If F' is an oriented surface F' with pin™ structure comes from a spin structure, its Brown invariant
is in 4Zg, and it is equal to 4 times the Arf invariant (See Brown [7] p.374 Theorem 1.20.).

Let M be a closed spin 3-manifold. Consider a closed surface F' which represents s € Ho(M;Zy).
Then, the surface F' has canonical pin~ structure « induced by the spin structure of the bundle TM|r

as in Remark 2.4. Furthermore, the pin~ bordism class [F,a] € Qgi“_ does not depend on the choice of
a representative of s € Ha(M;Z3) (Kirby-Taylor [24] (4.8)). For 0,0’ € spin(M), Turaev [35] showed
that the difference R(M, o) — R(M,o') is written by the Brown invariant of these pin~ structures.



Lemma 2.9 ((Turaev [35] Lemma 2.3)). Let M be a closed orientable 3-manifold with spin structure
o. For a cohomology class © € HY(M;Zs), let F C M denote the closed surface which represents the
Poincaré dual of x € H'(M;Z;). Denote the pin~ structure o of F induced by a spin structure o of
M. Then we have

R(M,o) — R(M,o +z) = 2B,,.

We apply the lemma to the case when M is a mapping torus M, of ¢ € M,,[2]. By the Serre
spectral sequence of the fibration ¥, - M — S, we have

0 —— HY(S,;20) —— HY(M;Z,) 5 Zy y 0. 6)

The natural embedding I : N(co)xS' — M induces the splitting H'(M; Zy) = H'(Z,; Z2)$Z,. Hence,
by identifying Hi(Xy; Z2) with H'(Sy;Zy) C H*(M; Z,) by the Poincaré duality, the homology group
Hy(Xg;Z2) acts on spin(M). Let x be an element in Hy (S¢; Z5), and ¢ € H'(Z,;Z,) C HY(M,;Z5) its
Poincaré dual. Choose a closed surface F, in M which represents the Poincaré dual of ¢ € H!(M; Z5).
By Lemma 2.9, we obtain f,,:(¢) = Ba, € Zs, where B,_ is the Brown invariant of F,, with a pin~
structure induce by a spin structure (o) of M,

2.4 Heap’s homomorphism

In this section, we review the homomorphism w,y : Zy; — Z defined by Heap [11], and show that
the homomorphism B, . : M, 1[2] = Zg defined in Section 2.2 is the extension of his homomorphism
We,y to the level 2 mapping class group (Lemma 2.12). In fact, he constructs many homomorphisms on
Johnson subgroups, and calculate the specific homomorphisms We,y in his paper. He claims in Theorem
6.2 that the homomorphisms w,,, has all the information of the Birman-Craggs homomorphisms on
the Torelli group. But unfortunately, his proof has an error, and this is not true. We will show that
the kernel of the homomorphism H;(Z,, »; Z) — H1(M, ,[2]; Z) induced by the inclusion is nontrivial
(Lemma 3.8), and the homomorphism w,, : Zy,1 — Zj factors through H; (M, 1[2];Z) (Lemma 2.12).
These lemmas show that 1 € B | is in the kernel of every w,,,, where B3 | is a Zy-module defined in
Section 3.2.

First we define a spin 3-manifold M, for ¢ € M, 1[2]. Let o be a spin structure of %,, and endow
the spin structure (o) on the mapping torus M,,. Denote by M, = (M,—N(co) x SY)U(ON(co) x D?)
the manifold obtained by the elementary surgery on N(co)x.S! C M, »- We can choose the spin structure
of ON(co) x D? so that it induces in the boundary ON(cp) x S! the same spin structure induced by
6(0). Hence, the elementary surgery is compatible with the spin structure, and M, has the induced
spin structure. )
~ Next, we define Heap’s homomorphism we . For a group G, denote by Q5"™(G) the spin bordism
group of K(G,1)-space QP™(K(G,1)). Let G be an abelian group. For a closed spin n-manifold
(M, o), an homotopy class of a continuous map f : M — K(G,1) depends only on the induced
homomorphism f* : Hy(M;Z) — G. Hence the bordism class [M, g, f] € QP"(G) depends only on
the cohomology class ¢ € H 1(M; @) determined by f and a spin structure o. We denote this bordism
class in QPI"(G) by [M, g, c] instead of [M, o, f].

If ¢ is contained in Z;;, we have a natural isomorphism H(X,;Z) =~ H,; (M;,;Z), denote by
c, € HY (M,; Hi1(24;Z)) the cohomology class determined by this isomorphism. Heap [11]defined the
map )
No2 - Ig,l — Qme(-[-{l (Eg; Z))’

which maps ¢ € Zy1 to [M(,,0(0),c,], and showed that this is a homomorphism.

We can define a homomorphism 7,2[2] : Mg 1[2] — Q™ (H;(Z,;Z2)) in the same way. If
¢ is contained in My [2], we have an isomorphism H;(%,;Z2) = Hy(M);Z,). Denote by ¢, €
HY(M, o3 H1(Xg;Zs)) the cohomology class determined by this isomorphism.

Proposition 2.10. Let g be a positive integer. For a spin structure o of ¥,, the map

Mo2[2] : Mga[2] & Q™ (H1 (S5 Z2))
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defined by 1,,2[2](p) = [M,,0(0),¢,] is a homomorphism.

Proof. The proof is almost the same as that of Theorem 6.1 in Heap [11]. In Section 2.2.2, we
saw that the mapping tori M,, M,, and M(,y)-1 are spin bounded by We.w. If we attach 2-
handles IT}_; D* x D? to W, 4 along N(co) x S in each boundary component, we obtain a com-
pact 4-manifold W, , with boundary oW, = M, I M, 1T M(’ oy)-1- We also have a natural iso-
morphism Hy (W, ,;Z2) = Hi(%,;Z2). Let F : W, — K(Hi(34;Z3),1) be a map which in-
duces the isomorphism Hy (W, 3 Z2) = H1(%,;Z3). This map bords (M,,,6(0),¢p), (M),,0(0),cy),
anq (M(¢¢)_1,0(U),5(¢¢)—1). Thus we have [M_,,0(0),Cpy] = [M],0(0),2,] + [My,0(0),¢y] €
Q;pm(Hl(Eg;Zg)). O

For a homology class y € H'(Zy; Z) = Hom(H;(Z,;Z), Z), we have the commutative diagram
Hi(3g;2) —— Z

modZJv lmodZ
Hl(Eg; Z2) M—z) Zz.

Since a homomorphism between groups induces a unique continuous map between K (G, 1) spaces up
to homotopy, the above diagram induces the commutative diagram

Iy % OFNHI(552) L 0Pn(Z) =7z,

l (mod 2)*1 (mod 2)*l

Mgaf2) 22 qepin g, (5, 7,)) medDey quvingg,) o g
where the left vertical map is the inc!usion. Heap denote by wsy : Zy1 — Zs the_composite of
the homomorphisms 74,2 : Ty — Q" (H1(3,;2)) and y, : QP (H(Z452)) = QP™(Z) for y €
H1 (Eg; Z)
Lemma 2.11. Let o be a spin structure of £,, and y be an element in Hy (X4;Z). For a mapping
class 1 € Z, 1, we have
(ymod 2).n,,2[2](¢) = 4wo,y (V) € Zs

Proof. Since the above diagram commutes, it suffices to show that the right vertical map is the inclu-
sion. We explain the isomorphisms Q3*""(Z) = Z, and Q5" (Z,) = Zs in more detail.

For an [M', 0, c] € Q37" (Z), choose a closed oriented surface F, C M’ which represents the Poincaré
dual of ¢ € H*(M;Z). Then F, has the spin structure o induced by o € spin(M). By the Atiyah-
Hirzebruch spectral sequence, the homomorphism .

0P (Z) = 0

defined by [M',0,c] + [F¢, 0] is isomorphic. For example, see Conner [8] Section 7. Similarly, for
[M',0,c] € QF™(Z,), choose an embedded closed surface F, ¢ M’ which represents the Poincaré dual
of c € H'(M';Z5). The surface F, has the pin~ structure . induced from the spin structure of M’.
Then, there is an isomorphism

QP"(Zy) — QBT
given by [M',0,c] + [Fe,a.] (See, for example, Anderson-Brown-Peterson [1] Introduction).
A spin structure of a closed manifold can be considered as a pin~ structure. Hence we have a

natural homomorphism Q"™ — QP As above, the diagram
2 2 g
90P(Z) —— Q"

— |

Q;pin(z2) . = Qgin_
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commutes. As Arf invariants gives an isomorphism Q;pi“ & Z5 (For example, see Hopkins-Singer [12]

pp-336-337), Brown invariants also gives the isomorphism Q2" = Zg (Kirby-Taylor [24] Lemma 3.6).
As stated in Section 2.3.3, the diagram ‘

: o
QP —— Zy

! |

Qgin_ — Zg

also commutes, where Zy — Zg is defined by a — 4a.
By the commutative diagrams as above, we have (ymod 2).7,.2(¢) = 4w,y (V) € Zg for ¢y € T, 1
and y € H(X,; Z). O

Lemma 2.12. Let o be a spin structure of £,, and y be an element in Hi(X4;Zy). For a mapping
class 1 € Mg 1[2], we have

ﬂa,z(lb) = x*ﬂa,2[2]((P) € Zs.

Proof. Denote by ¢ € Hl(EQ; Z,) C H'(M,; Zs) the Poincare dual of = € H;(Z,; Z2). We can choose
a surface F, in M — (N(co) x S') which represents the Poincaré dual of ¢ € H'(M,; Z,) with a pin~
structure a.. Then, by Lemma 2.9 and the isomorphism Q3" (Z2) = Zg above, we have

Boe(¥) = Ba, = T4No,2[2]()-

2.5 The value of j,,

Let C be a nonseparating simple closed curve. In Introduction, we denote by p : Mgy.» — Sp(2¢9;Z)
the classical representation on the first homology group Hi (%, ; Z). Mennicke found a generating set
for the level d congruence subgroup of the symplectic group as follows.

Theorem 2.13 ((Mennicke [29] p.128)). Let g > 2 be an integer. For an integer d > 2, the level
d congruence subgroup I'y[d] C Sp(2g;Z) is generated by p(tc)? for all nonseparating simple closed
curves C in X, .

Using this result, Humphries ([13] p.314 Proposition 2.1) showed that the level 2 mapping class
group M, .[2] is generated by squares of the Dehn twists along all nonseparating simple closed curve
when g > 3. In this section, we will compute the value of the homomorphism 3, defined in Section
2.2 on the generators of M, ;[2], using Brown invariants.

For a homology class z € H, (X, ; Z3), define the map i, : Hy(X,,;Zs) — Zg by

. 1 ifz-y=1mod2,
iz (y) = . _
0 ifz-y=0mod2.

Note that this is not a homomorphism. For example, if z-y = 1, we have 2i,(y) = 2. This is not equal
to 75(2y) = 0. For a spin structure o of X, denote by g, : Hi(Z,,,; Zs) — Zo the quadratic function
as in Section 2.3.2. ‘

Proposition 2.14. Let g be a positive integer, and o a spin structure of ¥4. For a nonseparating
simple closed curve C in ¥, — N(cp), we have

Bo(tg) = (=1)%Dij) € Map(H1(Zy; Z2), Zs).
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Figure 2: the symplectic basis

Figure 3: the neighborhood N(C})

Proof. We denote by {4;, B;}{_; the symplectic basis in H; (X, ,;Z) represented by the simple closed
curves in Figure 2. Let C; be the oriented simple closed curve as described in Figure 3. For a
nonseparating simple closed curve C, choose a mapping class ¢ = [f] € M1 such that ¢(C;) = C.
By the relation (See, for example, Wajnryb [36] Lemma 20 p.430)

plo, 90_1 =tc,, 4 (7)
we have

Bo,x (t2C) = Boe (‘pté‘l 90_1)
= (R(thélcp‘l’a(a)) - R(Mg:t%lcp‘ha(a + .’L‘)))/2

The map f~' x id : £, x [0, 1] = X4 x [0,1] induces an diffeomorphism between the mapping tori
Mgz, o-1 and Mz . Under the diffeomorphism, the spin structures 6(c) and 6(c + z) of Mgz, o1
1 1 1

corresponds to §(p*o) and 8(¢*o + ;1 (z)) of Mz, , respectively. Thus, we have
1

Bea(t&) = (R(Mg, ,0(¢°0)) = R(My, ,6(¢"0 + 97 (2))))/2.
= Boroprie) (81)-

Since we have
(—1)"“’*"(01)2'[01](go:l(x)) = (_1)‘10(‘?(01))i[¢(cl)](x) = (_1)%(0)1'[0](%)’

it suffices to show that g, (t,) = (~1)qﬂ(ol)i[ol].

First, we calculate the value f,,4,4 B, (t3,). Consider the compact submanifold M; := N(C;) x
[0,1]/ ~C M. Choose the compact surface Fi C M; as shown in Figure 4. For the arc r = Cy N
(3g — Int N(C1)) as in Figure 3, denote another subsurface Fy := r x S C M. Let ¢ € H(S,; Zs)
be the Poincaré dual of the homology class A1 + By € Hy(Xy; Z2). Under the splitting H'(M;Z,) =
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N(C1) x 1

N(Cy) x 0

..............................................................

Figure 4: the surface F; C M;

H'(Z4;Z2)®H" (S'; Zs) of (6), the surface F := Fy UF; represents the Poincaré dual of ¢ € H(M; Z,).
Let.a denote the pin~ structure of F' induced by the spin structure of M. By Lemma 2.9 proved by
Turaev, the value 8y 4,48, (tzcl) equals to the Brown invariant B,. Hence we investigate the quadratic
enhancement g, : Hy(F;Zs) — Z4 of the pin~ structure of F. Pick the oriented simple closed curves
z, y, and z which represent a generating sét of Hi(F;Zy) = Z3 as in Figure 4. In the splitting
Hy(M;Z) = Hi(X4;Z) @ H,(S*;Z), these curves represent the homology classes A1, B; € Hi(X,;Z),
and [S'] € H;(S';Z), respectively. Consider the subsurface ¥y x {1/2} C M with the orientation of
Y. Then, this surface inherits the spin structure o. Denote the quadratic function of this surface by
¢-- In the last paragraph of Section 2.3.2, we state that a quadratic enhancements is a generalization
of a quadratic function. Hence, the quadratic enhancement §,(z) and G, (y) of (F, ) and the quadratic
function ¢,(z) and g, (y) of (£, x {1/2},0) are both calculated by the number of half twists made by
the surfaces along simple closed curves x and y. Since the surface F has a half twist along each of z
and y with respect to ¥, x {1/2}, we have

q\a(w) =-1+ 2QO'(A1)y q&(y) =1+ 2%(31)

Since the framing [ : S* — P(N,, x 8') in (1) twists once with respect to T'N,, and is compatible with

the spin structure 6(c) of M, we have
da(z) = 0.
By the condition of the quadratic enhancements (Definition 2.6), we also have
da(T +y) = 2+ 2¢, (A1) + 20, (B1), Ga(y +2) = 1429,(B1), a(z + ) = 1+ 2¢, (A1),
da(z +y +2) = 29, (A1) + 2¢,(By).

Hence the Brown invariant B, satisfies
VIHU(F;Z)|exp(2rv/=1B,o/8) = > exp(2nv/~14a(z)/4)
z€H1(F;Z2) .
=2exp(2nv-1(2¢,(B1) + 1)/4) + 2.
This shows IBO',A1+B1 (t201) = Ba = (-1)‘1&?(31)‘

Let V be a submodule of H;(Xy;Zs) generated by {By, Az, Bo--- , Ay, B,}. Next, we show that
Bo(ty,) = 0 for z € V. For a homology class z € V, we denote by C, a simple closed curve
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in ¥y — N(C1) which represents z. Let F' denote the subsurface C, x S! in M, and denote by
¢ € H'(X,;Zs) the Poincaré dual of z € H; (¥4;Z3). Then, the subsurface F' represents the Poincaré
dual of ¢’ € H'(M;Zs). Choose a generators z' := [C,, x to], y' := [to x S1] of Hy(F'; Z,) = Z3, where
to € C; is a point. Note that F” is orientable, and a spin structure o’ of F' is induced by that of M.
Since spin group naturally injects into pin~ group, we can consider o' as the pin~ structure of F’. As
in the previous paragraph, Since the surface F' has no twist along C, with respect to ¥, x {1/2}, we
have
dor (2') = 2¢, ().

Since the framing [ : S* — P(N,, x S) in (1) twists once with respect to TN,,, we have
da(y) = 0.

This shows that ;. (t%,) = B, = 0.
Finally, we prove fs,4,+2(t%,) = Bo,4, (t%,) for z € V. We have

Boria(td,) = (R(M, o) — R(M, 0 + Ay +2)),2
= (R(M,0) — R(M,0 + A1))/2 + (R(M,0 + A1) — R(M,0 + A; + z))/2
= ﬁo'yAl (tél) + ﬂa‘i‘Al s (tzcl)'

Since we have f5,4,(t%,) = 0, it follows that 85,4, 42 (t3,) = Be, 4, (t2,).
Thus, for all z € H;(X,;Z,), we have

Boa(t8,) = (=1)9 (i ().

This completes the proof. O

3 Proof of Theorem 1.2 :

In this section, we prove Theorem 1.2 (which determines the Sp(2g; Z)-module structure of the abelian-
ization Hy(My,,[2]; Z)), assuming Corollary 4.2 (which determines H; (T',[d]; Z)) in Section 4. We also
determine the abelianization of the level 2 mapping class group for closed surfaces.

In Section 3.1, we construct a surjective homomorphism & : Z[H; (2, ,; Z;)] — Hi(Mgy,[2];Z).
With this homomorphism, we calculate the order of the homology group H; (My,1[2); Z) in Section 3.2
and 3.3.

3.1 A homomorphism &, : Z[S;] - H;(M,,[d]; Z)

Let R be either Z or Z4 and v an element in H;(X, ,; R). If there does not exist v’ € Hi(%,,;K)
and a nonunit n in R such that v = nv', we call the element v € H;(Z, ,; R) primitive. Since the
intersection form is nondegenerate, the element v in H; (X, ,; R) is primitive if and only if there exists
w € Hi(Zg,,; R) such that v-w € K is a unit. We denote by H;(Z, ,; R)P" the set of primitive
elements in Hi(X,,,; R). Let Sg denote the set Hy(X,,; Zq)P"/{£1}.

In this section, we define the homomorphism ®4 : Z[S4] — H1(M, ,[d]; Z). In particular, we will
show that this homomorphism is surjective when d = 2 in Lemma 3.4.

3.1.1 A homomorphism &, : Z[S;] — H; (M, .[d];Z) for general d > 2

The level d mapping class group acts on the set of isotopy classes of nonseparating unoriented simple
closed curves. We will prove that Sy corresponds bijectively to the orbit space of this action in Lemma,
3.2. Note that any element of Hy (X, ; Z)P" is known to be represented by an oriented simple closed
curve. For example, see Meeks-Patrusky [28]. ‘
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Lemma 3.1. Let g be a positive integer, and r either 0 or 1. For an integer d > 2, the mod d reduction
map Hy(Xyr;Z)P" — Hq (X, Zq)P" is surjective.

Proof. Let vq € Hi(Z,,;Z4)P", and choose v € H; (%, ,;Z) so that vmodd = vy € Hy (2, Zq)Pm.
If v is not primitive, there exists an integer ¥ > 2 and a primitive element w € Hi(X,,.; Z)P" such
that v = kw. Since vy is primitive, k and d are coprime. Thus there exist integers k', d' € Z such that
kk' +dd' = 1. Choose w' € H1(Z,,»; Z)P" such that w - w' = 1. We have

(v+dw') - (—d'w+kw') = kk' + dd' = 1.
Hence, v + dw' € Hi(X,,,; Z) is primitive and v + dw' modd = vq € H; (Xg,r; Zg). O

Lemma 3.2. Let g be a positive integer, r either 0 or 1, and d > 2. Let C; and C} be nonseparating
simple closed curves in Xy, that represent the same class in Hy(2, ,;Z4)/{£1}. Then, there evists a
mapping class [f] € M, .[d] such that f(Cy) = C}.

Note that the correspondence result of Lemma, 3.2 was proved for integer coefficients and separating
curves (Theorem 1A) by Johnson [19], and for nonseparating curves by Putman [31] (p.853 Lemma,
6.2).

Proof. Fix orientations of C; and C so that [C1] = [C]] € H1(Z, »; Z4). Choose a simple closed curve
Cy with intersection number [C1] - [C3] = 1, and let u denote the homology class ([C1]1=1[C1])/d €
Hi(24,,;Z). When we have a primitive vector, we can find another primitive vector so that the
intersection number is any integer we want, in particular —u - [C5]. Since [C]] € Hy(Z,,;Z) is
primitive, there exists v € H1(Xg,; Z) which satisfies [C]] - v = —u - [Cy]. If we set o := [C] + dv, we
have

[Ci]- a5 =[C1] - ([Ca] + dv)
= (du+[C1]) - [Co] +d[C1] - v
=du-[Co] +1+d[C!] v
=1.

In particular, the vector a4 is primitive. By Lemma A.3 in Putman [31], there exists C} such that
[C3] = a4, and intersect C] transversely at a single point. :

Choose a diffeomorphism f : ¥, — X, . that satsifies f(Cy) = C}, f(Cs) = Cj, flox,,, =idsx, .
Denote by {Y;}7%;” a set of elements of Hy(Z,.,;Z) such that {[C1],[C2]} U {Y;}2972 is a symplectic
basis. Since we have f.([Ci]) = [C;] modd for i = 1,2, the symplectic action of f on Hi(3gr;Z4)
induces an action on the submodule of H (2, ; Za) spanned by {[¥;]}72;2%. Fori = 1,2, let N(C;) be a
closed tubular neighborhood of C;, and let F be the surface F = Xy r—UInt N(C;). The action of the
mapping class group M1 r41 of F on Hy(F;Z4)/ Im(H, (OF;Zq) — H, (F;Zy)) induces a surjective
homomorphism Mgy_1 41 = Sp(29 — 2; Z) — Sp(2g — 2; Z4). Hence there exists g € Diff (F,0F) such
that

9:(Y3) = f7H(Y:) € Hy(F; Zy).

Since the diffeomorphism f of ¥, . maps the simple closed curve C; to C!, [f(gUidy N(C:))] € My, [d]
is the desired mapping class. O

Denote by tc € M,,, the Dehn twist along a simple closed curve C C %,,. By Lemma 3.2,
for simple closed curves C; and Oy in X, ,, we have a mapping class ¢ € M, ,[d] represented by
a diffeomorphism f such that f(C1) = C;. By the relation 7, the mapping classes tél and t%; are
conjugate in M, ,[d]. Hence we have the following.

Corollary 3.3. Let g be a positive integer,  either 0 or 1, and d > 2. Denote by C1 and Cy the
simple closed curves in X, such that their homology classes satisfy [C1] = [C2) € H1(X,,; Za). Then,
the dehn twists t&, and t&, represent the same element of H; (Mg, [d]; Z).
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Now, we define the homomorphism Z[Sq] — H;(M, .[d];Z). By Lemma 3.1 and Corollary 3.3,
we can define the map @4 : Sg — Hi(M, . [d]; Z) by ®4([C]) := [t4]. We denote it simply by ([C]).
Extend this map to a homomorphism of Z-modules

B, : Z[S4] = Hy(Mg,[d]; Z).

3.1.2 A surjective homomorphism & : Zs[H; (3, ; Z2)] — Hy (M, ,[2]; Z)

We consider the case when d = 2. Then, we have Sy = H;(Z, ;Z2) — 0. Define ®,([0]) := 0 and
extend ®, : Z[S,] — H1(M,,-[2];Z) to a homomorphism Z[H; (Zy,,; Z2)] = Hi(M, . [2]; Z).

~ In the following, we denote the extended homomorphism Z[H\(Zy,r;Z3)] = H1 (M, +[2]; Z) of &
simply by ®.
Lemma 3.4. Let g > 3 be an integer, and r either 0 or 1. The homomorphism ® : Z[H,(%g,r; Zo)] —
Hy(M,,+[2];Z) is surjective, and it induces a homomorphism Zg[H; (Xg,r;Z2)] = H1(M,,[2];Z) on
the quotient module Zg[H1 (X, r; Z2)].

Proof. As stated in Section 2.5, Humpbhries [13] proved that the level 2 mapping class group is generated
by squares of Dehn twists along nonseparating curves using Mennicke’s result (Theorem 2.13). Hence,
® is surjective. Consider the 5-term exact sequence

Hi(Zgr; Z) pm, 12y —— Hi(Mg,[2);Z) —— Hy(T,[2;Z) — 0 (8)

of the exact sequence 1 — T, , — M, .[2] — T[,[2] — 1. Johnson determined the coinvariant
Hy(Zg,r;Z) m,,,[2)- In datail, see Theorem 3.6 and 3.7. In particular, H; (Z, .; Z) M, (2 is proved to be
a Zz-module. We will prove that Hi(I'4[2];Z) is a Zs-module in Corollary 4.2. Hence H; (M, ,[2]; Z)
is a Zg-module. This shows that & factors through the quotient module Zg[H; (%, ,; Z2)]. O

3.2 An upper bound for the order |H;(M,;[2]; Z)|
In this section, we examine the kernel of the homomorphism
v Hy(Zg,r3 Z) p,, (2] = Hi( Mg, [2]; Z) ‘
induced by inclusion, and give an upper bound for the order of Hy(M, 1[2];Z) as follows.

Proposition 3.5.. Let g > 3 be an integer. Then, we have
|H1(Mga[21; Z)] < B 1/ (1) || H1(Ty[2]; Z))-

First, we review the Z;-module B}, defined by Johnson [20]. To each z € Hi(Z,.; Z), we attach
a formal symbol 7. Let R be the commutative polynomial ring in the variables {Z}, with coefficient
in Z. Denote by J the ideal of this polynomial ring generated by .

z+y-ZT+y+z-y), z°-7,

for z,y € H1(Xy,r; Z),
Let R, denote the submodule of R consisting of polynomials with degree at most n. Define the
module B™ by

and denote

B}, :=B’ and B2, := B%
Let {4;,B;}_, denote the symplectic basis defined in Proposition 2.14. Let a be the element
¥, 4;B; € B*. There is a homomorphism B! — B, defined by = ~ za. Let B3, be the cokernel
of this homomorphism and let B2 ; denotes the quotient module B2/ (o). Then, B, is a submodule
of B} . Johnson showed that the coinvariant Hi (Zy,r; Z) u, 2] 2nd the module BY , are isomorphic
as Sp(2g; Z)-module as follows.
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Theorem 3.6 ((Johnson [22] Theorem 1 p-139, Theorem 4 p.141)). Let g > 3 be an integer, and r
either 0 or 1. We have I

LA 3
= B,

72

9,7

re

Theorem 3.7 ((Johnson [22] Corollary p.134, Theorem 5 p.141)). Let g > 3 be an integer, and r
either 0 or 1. We have
My,r[2],Z,,] = Igz,r'

Next, we examine the kernel of ¢ : B3 . = Hy (T ,; Z)m, . 12) = Hi(My,,[2]; Z) to prove Proposition
3.5.

Lemma 3.8. Let g > 3 be an integer, and r be either 0 or 1. Then, we have
1€ Ker.:.

Since we have the isomorphism H;(Z, ,; Z) M,.[2] = B3, and the exact sequence (8), Proposition
3.5 follows immediately from this lemma. ‘

of Lemma 3.8. As in Figure 5, choose the simple closed curves C;, Cs, D; so that [Ci] = By,[Cs] =
A1 € Hi(%g,r;Z2). We denote (X), the image of X in H; (My,-[2]; Z) under the homomorphism in
3.1.2 by (X). Then, by Lemma 12a in Johnson [20], we have 1(4;B1) = [tp,]. By the chain relation

Figure 5: the curves

(See for example Wajnryb [36] Lemma, 21(iii) pp.430-431), we have tp, = (tc, tc,)®. The commutative
relation and the braid relation (Wajnryb [36] Lemma 21(ii)(iii) p.430) shows

(testcs)® = (toy (torteston tonte,)? = (5, 18, (tol 2, to,))?.
Applying the relation (7), these three equations imply
W(A1B1) =2 (A1) +2(B1) + 2 (41 + By). (9)
Note that the homomorphism ¢ has a naturaiity property
Hp(@)) = pu(a) (10)

for a mapping class ¢ € Mg, and z € B3 . If we choose ¢ € M,, such that p(4;) = A,
¢(B1) = By + Bs, by the naturality (10) and equation (9), we have

UAL(BL ¥ B2)) = e (A1 B1)) = 2 (A1) + 2(By + By) + 2(A; + By + By) . (11)

In the same fashion, by Lemma 12b in Johnson [20], we have the equation ¢(4; B; (Ba+1)) = [tp, tBi] €
Hi(My,-[2];Z). The chain relation (Wajnryb [36] Lemma 21(iii) p.431) shows tp,tpy, = (toytostos)*
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By the commutative relation and the braid relation, we also have

(tC1 tCth’s)4 =tc tc, (tC1 tC’s)tcth’stC1 lo, (tC1 tC'3)t02t03,
=tciteytey (toz tC3tC2)tCI toyto, (t02 tC3tC2),
=1ic (tcltcztcl)tcs (tcl tCztcl)tCl toytostes,
= tg, toste; (teytos )te, te, tostosto,
= 18, (test, 1o, ) (tostostontd, toy torton) (tostas e, tortor ) (tes i, toh) s,

By applying the relation (7), we have the equation

[tcltozt‘éa] = <B1> + (A1> + <Bl + Bz) + <A1 + Bl) + (Al + B1 + Bz) + (Al + Bg) — (Bg)
in Hy(M,,1[2];Z). Hence we obtain
(B2 (B + 1) = [tout)]
[(tC1 t02t03)4] - [t%)’z]
= (B1) + (A1) + (B1 + Bs) + (A1 + By)
+ (Al + B; +Bz) + (Al +Bg> - (BQ) .

Since 24;B1(Bs + 1) = 0 in B3 ., we have 1(24;B;(B; + 1)) = 1(0) = 0. Applying the previous
equality, we see that
2(A1+ By + By) = =2((B1) + (A1) + (B1 + Ba) + (A1 + B1) + (A1 + Bs) — (By)).
Put this into the equation (11), then we have
WA (B1 + B)) = 2(A1) + 2(By + B,)

—2((A1) + (B1) — (B2) + (A1 + B1) + (A1 + Bs) + (B + By))
= —2(By) +2(By) —2(A1 + B1) — 2(A; + By). (12)

Since A1 By = A1 (B + Bs) + 4, B1, by equations (9) and (12), we have

L(Zl-.gz) = L(Zl (Bl + Bz) +Zli§1)
=2(A1) +2(B2) —2(A;1 + By).

If we choose ¢ € M, so that p.(A1) = A1, p«(B2) = A1 + Bs, by the naturality of ¢ (10), we have
L(Zl (Zl + Fz)) = LPx (Zlﬁz) = QDL(Ale) =2 <A1> +2 <A1 + B2> -2 (Bz) .

Combining the last two equalities, we have
(A1) = (A1 (4 + By)) — (4, Bs)
=4(A,).
Since A; + B; = A; + By + 1, by the previous equality, we have
L(l) = L(Al + B —Zl —El)
4((A1 + B1) — (A1) = (B1)).

As we stated in Lemma 3.4, Hy (M, ,[2];Z) is a Zg-module. Hence we have 8 (4;) = 8(B;) = 0.
Therefore, applying equation (9), we have

4((A1 + B1) — (A1) — (B1)) = 4((A1 + B1) + (A1) + (B1)) = 1(24,B;) = 0.

Since 24;B; = 0 € B3 ., combining last two equality, we have ((1) = L(ZZlfl) =40) =0

€
Hi(M,,,[2];Z). O
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3.3 A lower bound for the order |H;(M,;[2]; Z)|

In this section, we give a lower bound for the order of Hy(M,[2];Z),

|Hy(Mg1[2);Z)] > ﬂzgy o Zg 29) o ngg)l'

Using this result, we determine the abelianization H;(M, 1[2];Z) as Z-module in Proposition 3.15,
and complete the proof of Theorem 1.2.

Let o be a spin structure of ¥4, and {z; }7_1 elements in Hy (X, ,; Z2). For n > 1, define an element
A% (21,22, ,2,) in Zs[H1(2g,r; Z2)] by

n

AN (21,39, ,2,) = [0] + Z(_1)40($j)[xj] + Z (_l)qa(wﬁmk)[mj + 2]
7j=1

1<j<k<n

4.+ (_l)qo(w1+w2+"~+wkn)[xl +xo 4+ xn]
We also define AY = [0]. Note that A? is commutative, that is,
AZ(@1,@2, 1, T, Tit1,+ ,Tn) = AL(T1, 82, , Tig1, i, + , Tn).

Lemma 3.9. Let n > 1 be an integer and o a spin structure of X,. For {z;}j1 C Hi(Zg,r;Z2), we
have

1. A2+1($17$27' . 7wn—17znaxn+1) = Ag(wla'T:?) y Tp—1,Tn +$n+1)
—1
+A:((L’1,Z’2, e ax’n—lrz’n) + A:(x1>$2a' o ;zn—lvxn-l—l) - ZAZ (wl,CI:Q,' t axn—l)y
1 —
2. ApTH(@1, %2, Tty Ty Bn) = 2A70(T1, T, Tne1, Ty).

Proof. First we prove (i). For X € Hy(%,,,;Z2), let A? , denote the element

AZ,X(zi: T2, 7$ﬁ) = (_l)qa(X)[X] + Z(_l)qv(mﬁ_x)[xj + X]

Jj=1
+ ) (~nw @t 4y 4 X
1<j<k<n
+oee o ()T ettt X gy 4oy b 2, + X]
in Zg[H1(2g,r; Z2)]. The element APt (1,22, , Tp_1, Tn, Tnt1) in Zg[Hy(E,..; Zs)] consists of two
kinds of terms, the terms with valuables [Y] and with valuables [V + z,.1], for ¥ a linear com-

bination of {z;}7; € Hi(X,,;Zs). Hence A2t (z),x,, - yTn—1,Ln,Tni1) is equal to the sum of

A (z1,%2,** ,Tn—1,Ts) and A?,wn+1($1,$2,"' ,Zn—1,Zn). Thus we have

Al e (@122, Tn1,®n) = AP (@1, D0, 0, T, Ty Tngt) — AP (21, T2, -+, Tny, Tn).  (13)

In the same way, we have

—1 -1
ALt (@120, Basy) =AR(@1, T2, o1, Tng1) — AV Y21, Ta, -+, Tnot), (14)
- -1
Az,zi+mn+1(mlyz2a“' axn—l) =AZ($1,$27"' ,xn_1,$n+$n+1) _AZ (‘Tl’$27"' )xn—l)' (15)
Similarly, the element A7, (1,3, - ,Zn_1,Zn) consists of the terms with valuables [Z + z;,14]

and with valuables [Z + z,, + Tn 1], for Z a linear combination of {z;}725' € Hy(Z,,;Z). Hence, we
have ' ’ '

n — ANn—1 n—1 ..
Ag’zn+1 (éUl,.’l?z, e 7wn—laxn) = Ao-,wn+1(x171'27 T 73771—1) + Ao"m"+mn+1 (wlaz% 7-7;11——1)-
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Put (13), (14), and (15) into this equality, then we obtain what we intended to prove.
Next we prove (ii). By (i), we have

Ag(z17m2a T axnamn) =

AZ(z1,@2,+ ,Tn-1,0) + 2A0(21, %2, -+, Tne1, @) — 2A7 (21,20, -+ ,Tn_y). (16)

By the definition of A}, we have A”(z1,z2, -+ ,2n_1,0) = 2A%(z1,22, -+ ,Tp—1). Putting it to
equation 16, we obtain what we intended to prove. : , O

We defined 3, . in Definition 2.1. In the following, we also denote by Bo,« the homomorphism
Hi(Mg1[2); Z) — Zs induced by By ..

Lemma 3.10. Let n > 1 be an integer and o a spin structure of X,. For {z; }ie1 C Hi(Xg,15Z2) and
z € H1(2y;Z2), the homomorphism B, 5 : Hi(My1[2];Z) — Zg satisfies

0, ifr-z; =0mod2 for any j =1,2,--- ,n,
Bo o ®(A™ (21, 2, - - ,-’Bn))={ f T -z for any j

271 otherwise.

Proof. The statement is equivalent to

Boa®(A7 (21,22, -+ ,20)) =277 = 2" ] (1 = g, (2)).
Jj=1

We prove it by induction on n. In Proposition 2.14, we proved that B, ,®((—1)%®z;) = i, (z).
Assume that the equation holds for 1,2,--- ,n. By Lemma 3.9, we have
ﬂU,EQ(AZ—Fl (iEl,.'Eg, e 7xnaxn+1))
:ﬂa’xd)(A;‘(xl, T2, ,Tp—1,Typ + .’En+1)) + ﬂa,zQ(A:(zl, T,y Tp—1, wn))
+ Boa®(AG(x1,%2, + ,Tn1,Tny1)) — 285, P(A? (21, 22, - - - \Tn_1))-

By induction, this is equal to

n—1 .
2" —2n ! H (1 - iwj (.1:))(2 - i2n+wn+1 ("L’) —lg, (.’12) - iﬂﬂn-}-l (:E))
Jj=1

The number 2 — 2ptanys (T) = Gz, (T) — ig,,, () is equal to 2, if the intersection numbers z - z, =
T ZTn+1 = 0mod2, and is equal to 0, otherwise. Hence, it is equal to 2(1 — ., (z))(1 — 4c, ., (z)). This
proves the lemma. » O

_ Denote the homology classes X, by X2;_1 := A;, and Xo; = B; forj = 1,2,--- , g. For convenience,
we denote Xpy2y = X,, forn =1,2,---2g.

Lemma 3.11. Let n > 1 be an integer and o a spin structure of 3g. Assume {ix}i_; are mutually
dintinct integers such that 1 < iy < 2g, and {ji}{_, are also mutualy distinct integers such that
1 <1 <2g. Then, the homomorphism Bo x, +x.,++X., * H1(Mg1[2]; Z) — Zg satisfies
Bo, Xy +Xig++Xi, BAGT (X1, Xy -+, X5,))
— {0 if {XiUXiza o 'Xip} n {Xj1+ga Xj2+ya T anq+y} = (Z),

271 otherwise.

Proof. Since {X}}:2, is a symplectic basis, the intersection number (Xiy + Xip +---+ X)) - Xj, =
Omod2foranyl=1,2,---,qif and only if {X;,, Xsp, - - X3, }N{ X}, 49, Xjtg, - s Xjg+g} =0. Unde
this equvalence, the statement of this lemma is a special case of Lemma 3.10. O
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Let fs, fst, and fo,, denote the homomorphisms Bo. x> Bo,x, +Box, — Bo, X +X., and Bo x, + Bo,x, +
Bo.xu = Boxo+ X, = Bo,Xo+Xu = Bo,Xu+ X, + Bo, X, +X,+x, from Hy(M,1[2];Z) to Zs, respectively. By

calculating values of f;, fs, and fe on ®(AX(X,, Xj,, -+, X j»)) using this lemma, we obtain the
following.

Corollary 3.12. Letn be a positive integer, and o be a spin structure of ¥,. Assume s,t,u are integers
such that 1 < s <t <wu<2g, and {jr} are mutually distinct integers 1 < j1 < jo < ---jn < 2g.

n 2n1 if {Xs} C{X; » X )"'9X'n s
fs(q)(Aa(le,ij, .. 7Xjn))) — { } { Jit+gs>jatg J +g}
0 otherwise,

n 2n—1 7'f XsaX C{X; ’X‘ P 7X'n )
Fal® (AL, Xy, X)) = WX X1} © Kok Kt 222 ik}
0 otherwise,

n : . 2n—1 'Lf Xsanyu c{X; aX‘ 7"'7X'n )
fstu(Q(Aa(XjUijv"' ,X ))) = { { ' } ) { Nt izt ’ +g}

0 otherwise.

Y

2g 2g
Define a homomorphism ¥ : Hy (M, 1[2];Z) — Z2° & Zg ?) ) z§ ) by

\II(SD) = ({fs((p)}ii]—_lv {fSt((p)}1SS<tS2ga {fstu(¢)}1§8<t<u§2_q)~
By Corollary 3.12, we can calculate the image of ¥.
Lemma 3.13. For g > 3,
. 2g 2g
Im¥ = Z% @2z§2) @4z§3).
Proof. The set {A7(Xj,, Xjp, -+, X5,) ) oiehli?, <y, is a basis of Zg[H1(Z,1;%s)]. Since & :
Zs[H1(Xg,15Z2)] = H1(M,1[2]; Z) is surjective as in Lemma 3.4 when g > 3, we only need to examine
the value of ¥ on ®(A}(X;,,Xj,, -, X;,)) € Hi(M,1[2]; Z), using Corollary 3.12. '
For 1 <1 < 2g, we have
1, if X, = X4,
0, otherwise,

Foru®(AL(X3)) = 0.

fLB(AL (X)) = { FuB(AL(X) =0,

For 1<i<j<2g,

2, if {X,} C {Xirg, Xjno},
scp A2 X,,X — ) gr<+JTg
fs2 (8 ( 7)) {0, otherwise,
2, if {X6, Xt} = {Xivg, Xjug),

SUQ A2 X@,X =0.
0, otherwise, fotu®(AG( i)

[ ®(AL(Xs, X5)) = {
For1<i<j<k<2g,

47 if {Xs} C {Xi+g:Xj+g7Xk+g}a

SB(AS (X, X5, X)) =
fe2(Aq( 3> &) {0, otherwise,
4, if {X,, X, Xirgy Xirg, X ,
Fa® (A3 (X0, X5, X)) = {3 .t}c{ +0 Xitg: Kieeo)
0, otherwise,
4, if {Xs, Xe, Xu} = {Xirg, Xjug, X ,
fstuQ(Ag(Xig-Xj,Xk)): 1 { ) t } { +g Jt+g k+g}
0, otherwise.

We also have Y®(A2 (X, X;,, -+ ,X;,)) = 0for n > 4 and ¥@([0]) = ¥(0) = 0. Hence we have
obtained the image of ¥ as stated. O
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By this lemma, we obtain the lower bound as follows.

Corollary 3.14. For g > 3, we have

: . 29 (¥) (%)
|Hi(M1[2Z)] 2 |Z5° © 25" © Z,°).
Now, we determine the abelianization H; (M, 1[2]; Z) as Z-module.

Proposition 3.15. For g > 3, we have

2g Zgi
Hi(Mg1[2,Z) = Z¥ @ zﬁz) & zgs).
Proof. We obtained the lower bound for the order of Hy(M,,1[2]; Z) in Corollary 3.14. In Proposition
3.5, we also obtained the upper bound. Hence we have

122 02\ & 28| < | (M 112 2)] < 1B2 /) () || Fa (T, 21 2)]

’ 2g), (2
As we defined below Proposition 3.5, the Z,-module BS”I is isomorphic to Z () , and we
will prove that Hy(T,[2]; Z) = Z2¢ @ 2392‘9 in Corollary 4.2. Hence we have

1B31/ (D I1Hw (Ty[2); 2)| = |23 © zf’g) )

By Lemma 3.13, the homomorphism

2g 2g
U Hi(Mg1[2;Z) = 2 & 2z§2) @4z§3)

is surjective. Since the orders of these two groups coincide, the surjective homomorphism ¥ is isomor-
phic. O

Remark 3.16. For g > 3, the kernel of the homomoi‘phism v: B3, — Hi(My1[2]; Z) is equal to (1).

Let (B5)« : H1(My,1[2];Z) - Map(H;(Zg;Zs), Zs) be the induced homomorphism by 3,. Since

the homomorphism ¥ : Hl(Mg,1[2] Z) - 72¥ o 2Z( ) ) 4Z( /) factors through (8,)«, we have the
following.

Corollary 3.17. Let o be a spin structure of X,. For g > 3,
(Bo )« : H1(Mg,1[2]; Z) — Map(H1(Zg; Z2), Zs)
1s injective.
Now, we prove Theorem 1.2.

of Theorem 1.2. Let L7 ; denote the submodule in Zg[H, (X, 1; Z2)] generated by
[0],4A3((L’1,£L'2), 2A3(3}1,1‘2,.’E3), Ag(xlax% T ,xn)"

First, we prove that L7, is contained in the kernel of® : Zg[H;(Z,,1;Z2)] — Hi(M,1[2];Z).
By Lemma 3.10, the elements [0], 4A2(zq,22), 2A% (71, 22,23), and {A? (21,22, - - ) Tn)}a<n<2g iD
Zg[H1(Xg,1;Z2)] are contained in the kernel of (8,).® : Zg[Hi( Yg.1;Z2)] & Map(H1(Zy;Zs),Zg).
Since the homomorphism (). is injective as in Corollary 3.17, we have Ker ® = Ker((8,).®). Hence -
we have proved that L7 ; C Ker ®.

Next, we prove that the homomorphism . : Zg[H:1(Xy,1;Z2)]/Lg; — H1(Mg1(2];Z) induced
by @ is isomorphic. By Lemma 3.9 (i)(ii), A%(z1,%2, -+ ,T,) is written as a sum of the elements
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{A3(Xiy, Xiy, -+, X, ) }m<n for distinct integers {ik}5;- By the commutativity of A?, we may
assume i1 < 43 < --- < i,. In particular, L7 ; is generated by

[O]a4A§(Xi1>Xi2)72A3(X11’X12aX )An(Xil)Xim"' X'in)

for 1 <1 <y <--- <in < 2¢. Since {AX(X:,, Xy, -+, Xi,) I’Eﬁiw <in<2g 18 a basis of the free
Zg-module Zg[H;(X,,1;Z2)], we have

29 2
|Z8[H1(Eg,1§zz)]/Lalﬂ = |Zzg e Z(z) @Z(3g)|.

This is equal to the order of H; (M,,1[2]; Z). Since the homomorphism @ is surjective as in Lemma 3. 4,
the induced homomorphism @, : Zg[H1(Z,,1;Z2)]/ L7, — Hi1(M,y1[2]; Z) is isomorphic. In particular,
the submodule L§ ; does not depend on the choice of a spin structure o of ¥,.

Finally, we will show that the submodules L3, and L, in Zg[H; (g1 Z2)] coincide. If we choose
the spin structure o¢ of ¥, such that its quadratic function o, satisfies g, (X;) =0 for 1 <i < 2g,
we have

qo—O(Xil +X, +-+ Xi") = Z (X,‘j . X,k)mon = I(Xil,Xiz, cee ,X,’n).
1<j<k<n
Hence we have Af(Xy,, Xy, ,Xi,) = A2 (Xi,, Xiy, -+, Xi,). Since L7 is generated by these
elements, it is contained in the submodule Lg1. As A% (z1,2a, - ,%,) is written as the sum of the ele-
ments {A"(X,I,X,z, “+, Xi, ) }mgn for distinct integers {ix}7_,, we can show that AR (1,22, -+, zn)
is written as the sum of {Af(X;,,Xi,, -, Xi,.)}m<n in the same way. Thus, the submodules L7y
and Ly 1 in Zg[H1 (X, 1;Z5)] coincide. Hence Theorem 1.2 is proved.

3.4 The abelianization of the level 2 mapping class group of a closed surface

In this section, we determine the abelianization of the level 2 mapping class group of a closed surface
.

As stated in Section 2.1.2, the mapping class group M, ; is isomorphic to Diff ; (24, N(co)).-
Thus, the inclusion lef_,_(Eg,N (co)) — Diff4 £, induces the homomorphism r : M,; — M,. It
is Well-known that this is surjective, for example, see Ivanov [16] p.582. Since the modd reductlon
Mg,l — Sp(29;Za) of p : My1 — Sp(2g;Z) factors through the homomorphism r, the restriction

Mg 1[d] = M,[d] of the homomorphism r is also surjective.

Consider the case d = 2. The homomorphism M,,[2] — M,[2] induces the homomorphism
Hy(Zg,132Z) m, 1121 = Hi(Zg5Z) m,[2) between the coinvariants. By Theorem 3.6 and 3.7 proved by
Johnson, the comvariant Hy(Zy; Z) M, .[2) 18 isomorphic to BS’,T. Moreover, the diagram

Hi(Zg13Z) pmy 12y — B3,

l !

Hy(Zg0; L) pm, .20 — Bio

commutes (See, Johnson [22] Proof of Lemma 9 p.134), where the left vertical map is the quotient
map. Hence, under the identification By, = Hi(Z,1;Z)a, ,[2), the kernel of the homomorphism
H1(Zg,15Z) my 1121 = H1(Zyg; Z) A, [2) is generated by

g
Z 4;B;, ZZiEYeBS’J for X = Ay, By, , A, B,.
=1 i=1

By the 5-term exact sequence, the diagram
Hy(T[2;2) —— Hi(Zo,15Z) M, a12) — Hi(Mg[2[;Z) —— Hi(T4[2];Z)

| l l |

Hy(Ty[2;Z) —— Hl(Ig§z)Mg[2] E— H1(M9[2]k;Z) — Hi([y[2);Z)
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commutes. Hence, Ker(Hy (Mg,1[2];Z) — Hy(M,y[2];Z)) is generated by the images of these elements
under the homomorphism H (Zy,1; Z) m, 2] = H1(M,,1(2]; Z). Therefore, Hy (M,[2]; Z) is isomorphic
to the quotient of Zs[Hl (X4,1;Z2)]/Lgy,1 by the images of these elements under .

We write 1(A4;B;), «(4;B;X) as elements of Zg[H1(Xg,15Z3)]/Lg1. As we saw in Lemma 3.8, we
have
W(A1B1) = 28A (A1, By) + 4 (A1) + 4(By),

and

t(A1B1(By +1)) = —@A}(A1, By, Bo) + 28A2(Ay, By) + 28A2(By, B,) — 4(By)
= ®AJ(A1, By, By) + 20A%(Ay, By) + 20A2(By, By) + 4 (Bs) .

Hence for X = Ay, By, -+ , Ay, By, we have

[4 (Zzﬁz)
L(Z, Elji:)

3{2A3(A4i, Bi) + 4[A;] + 4[By]},
= ®{AJ(4s, Bi, X) + 2A3(Ai, X) + 2A%(B;, X) + 4[X]} + u(AB;).
Proposition 3.18. Let g > 3 be an integer. Denote by Lg‘ the submodule of Zs[H1(X,;Z5)] generated
by .
[0]7 4A(2)(w1,$2), 2A(3)(Z'1,.T2,$3), Ag($17x2a e 7wn)’
g
Z{'?A%(Ai, B;) + 4[Ai] + 4[Bi]},

i=1

g
> {A¥(Ai, Bi, X) + 2A2(4;, X) + 2A2(B;, X) + 4[X]},
=1 ,

for {zi}i=; C H1(Zg;Z3) and X = Ay, By,--- , Ay, B,. Then, we have

Zg[Hy (X5 Z5)]/Lg = H1(M,[2]; Z).

4 The abelianization of the level d congruence subgroup of the
symplectic group

In this section, we determine the abelianization of the level d congruence subgroup Ty [d] of the sym-
plectic group Sp(2g;Z).

4.1 The abelianization of the level d congruence subgroup

Iﬁ this section, we calculate the abelianization of the level d congruence subgroup (Corollary 4.2)

assuming Proposition 4.1.

Denoting the n x n identity matrix by I, let J be the matrix ( (3. Iog) The group Sp(2g; Z)
S\

consists of 2g x 2g integral matrices A which satisfy tAJA = J. A matrix 4 € [y[d] can be written as
A = Iy + dA" with an integral 2g x 2g matrix A’. Denote the (i, j)-element of a matrix u by u(i, 7)-
For an even integer d, define the subgroup I'y[d, 2d] of the symplectic group by

Tyld,2d) := {A € Ty[d]| A'(g +i,i) = A'(i,9 +4) = Omod 2 for i = 1,2,--- , g}.

This subgroup was proved to be a normal subgroup of Sp(2g; Z) in Igusa [15] Lemma 1.(i).
We will prove in this section:
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Proposition 4.1. Let g > 2 be an integer. For an odd integer d > 2, we have

Ly [dz] = [Fg[d]’ Ly[d]].

For an even integer d > 2, we have

Ty[d*,2d%) = [Ty[d], T [d]].

Before proving Proposition 4.1, we calculate the abelianization of the congruence subgroup I'y[d]
using this proposition. First, we compute the module I'y[d]/T,[d?] = H;(T,[d]; Z) when d is an odd
integer. Denote by spy,(Z4) the additive group of all 2g x 2g matrices X with entries in Z, such that
*XJ+ JX =0. For A:= I, + dA’, the equation *tAJA = J shows A’ modd is contained in $Pa,(Za).
For A, B € I'y[d], we have

AB = I, +d(A' + B') mod d. (17)

Hence, we can define a homomorphism m : I',[d] — SPagy(Zag) by m(A) = A'. For 1 <i,j < 2g, denote
the 29 x2g matrix e; ; which has 1 in the (4, j)-element, and 0 in the other elements. The homomorphism
m is surjective because the images of oy +d(eij — €g1ig+7), Iog +d€; it g, I2g +deiry i € Ty[d] generate
$P24(Z4). This is the restriction of the homomorphism of the level d congruence subgroup of GL(2¢g;Z)
defined in Lee and Szczarba [26] p.16. See also Putman [32]. Then, we have the exact sequence

1 —— Ty[d®] —— T4[d] —=— spy,(Zg) — 1. - (18)

This shows that Hy(Ty[d]; Z) & sp,, (Z4) & Z20F.
Next, we consider the case when d is even. We compute the group I',[d]/T,[d?,2d%] = H; (Tyld}; Z).
Since I'y[d?, 2d?] lies in Kerm, sequence (18) gives another exact sequence

o, L , _Lyld
Fg [d27 2d2] Fg [dQ, 2d2]

= &y, (Zg) — 0. (19)

For a matrix A = Iy + d®A’ € T;[d?], define the surjective homomorphism m} : T,[d2] — Z29 by
my(A4) == ({A'(g+14,i)}y, {A' (g +i,9)}{_;) mod 2.

By the definition, the kernel of mj is equal to I'y[d?, 2d?]. Since the images of Ing+d%e1 44, Iog+d2e; i1 q
under m/ generate Z5%, this induces the isomorphism [y[d?]/T,[d?,2d?] = Z2°. The exact sequence
(19) is consequently wrriten as '

0 N Z;g N Pg [d] m

7 rg[d2,2d2] > 5p2g(Zd) —_— 0 (20)

The orders of Iy + de;y,,; and Iy + de; it 4 are equal to 2d, because the images of d times of these
elements under m/ generates Z%g‘ When we showed that m is surjective to obtain the exact sequence
(18), we saw that the images of elements Ipg + d(e; ; — €j4+,itg), I2g + deit g, Tng + de; ;+g generate

$P24(Za). Hence these elements generate I'y[d]/T'y[d?, 2d?]. This shows H; (T,[d];Z) = Zzgz_g @ Z29.
Corollary 4.2. Let g > 2 be an integer. For d > 2, /

Zigzﬂ if d is odd,

2
2% 9@ 22  ifdis even.

Hl(rg[d]§ Z)= {
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4.2 Proof of Proposition 4.1

In this section, we prove Proposition 4.1 to complete the calculation of the abelianization of the level
d congruence subgroup. For a homology class y € H; (4,7 Z), define the transvection T, € Sp(2g; Z)
so that which acts on Hi(X4;Z) as Ty(z) := z + (y - 2)y. If y is represented by an oriented simple
closed curve C, this is the image of the Dehn twist to under the surjective homomorphism p : M, —
Sp(2g; Z).

By fixing the symplectic basis {4;, Bi}fil as in Introduction, we consider that the symplectic group
acts on H; (X, ;Z) = Z29. To prove the proposition, we need two lemmas.

Lemma 4.3. Let g > 2 be an integer. We have
1. [Tj‘fz] =0¢€ Hi(Ty[d]; Z) for any integer d > 2.

2. [Tjj] =0¢€ Hi(Ty[d]; Z) for an odd integer d > 2.

- Lemma 4.4. Let g > 2 be an integer. If d is an even integer, we have

Ty[d*,2d%] C [Ty d], T, [d]).

Before showing these lemmas, we prove the proposition assuming the lemmas. Since I'y[d?] is the
kernel of the homomorphism m in (18), we have

[T, [d], T, [d] € T[]

for every d > 2. Further, if d is even, it is shown that
[Tyld], Tg[d]] C Ty[d?, 2d°]
in Igusa [15] Lemma 1.(ii). By Lemma 4.4, it suffices to prove

Ty[d?] C [[y[d],T,[d]], for d odd.

Theorem 2.13 proved by Mennicke is essential in this proof. By Lemma 4.3, we have sz € [Iyld],Ty[d]]
when d is odd. Hence, by Theorem 2.13, we obtain

T,[d%] C [Ty[d],T,[d]] if d is odd.

This shows Proposition 4.1. o
In the following, we prove Lemma 4.3 and 4.4. To prove (i) of the Lemma 4.3, we prepare some
lemmas. A straightforward computation shows:

Lemma 4.5. Let g > 2 be an integer. For d > 1, we have

2 - — — —dyaia
T51A1+b131+a2A2 = (sz)(a1b1+1)a2 (Tgl+A2TA2dTBld)bla2 (Tz1+A2TA1dTA2d) ! 2T51A1+b1B1'
If we-put a; = 1,as = —1,b; = 0, we obtain
[T4,14,] + (T4, _4,] = 2[T4,] + 2[T4,].

~ We denote by §;; the Kronecker delta. The following lemma is a special case of Corollary 2 proved by
Johnson. '

Lemma 4.6 ((Johnson [22] Corollary 2)). Let {a;,b;}5_; and {a!,b}}5_; be two sets of elements in

Hy\(Xy,r;Z) such that a;-b; = a;-b; = ;5. Then, there exists X € Sp(2g; Z) which satisfies X (a;) = a,
and X (b;) = b}.

Using the relation XT, X ! = Tx(,) for x € H1(Z,;Z) and X € Sp(2g;Z) which comes form (7),
the above lemmas show:
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Lemma 4.7. Let g > 2 be an integer. If z,y € Hy(2g,r;Z) satisfy z-y = 0, and {z,y} can be extended
to form a symplectic basis of Hy (X, ;Z), then we have

Remark 4.8. Fori=1,2,3,4, let D; C S? be mutually disjoint disks. By the assumption of x,y in
Lemma 4.7, we can choose an embedding i : S* — I D; — X, . such that [i(0D1)] = -[i(8D2)] = z,
[i(0Ds)] = ~[i(8D4)] = y € Hi(Z,,;Z) as in Figure 6. If we write the Lantern relation of this
embedding as

ti(oD1)ti(0D2) ti(0Ds) ti(0Dg) tay = teytes-

Since tyop,) for i = 1,2,3,4 and t., mutually commute, the image of the d-powers of this relation

Figure 6: Lantern relation

under the homomorphism Mg, — Sp(2g;Z) also shows the above relation.

Put z = kA; + As, y = A; in the eqzuation of Lemma, 4.7, and take the summation over k =
1,2,---,d. By the definition, we have [T3¢] = 2d[T§ ] = 0, that is (i) of Lemma 4.3.

Next, we will show (ii) of Lemma 4.3. Replace z by = + ky in the equation of Lemma 4.7 and take
d times the equation. By (i) of Lemma 4.3, the equation is written as

d[Tail+2ky] = d[T:+2(k+1)y]‘
If d is odd, we obtain

diT3] = [T, ] = d[Ty). (21)
If we put a; = by = 2, and a2 = 1 in Lemma 4.5, we have
[T2dA1+2Bl+A2]
=5[T4,] + 2(T8, 1 a,] - [T4,] - [TH) + 274, 1 4,] - [T4,] - [TL]) + (T2 ! (22)
Az B1+A Az B; A1+Az A Az 2A142B;

If we apply the equation (21) to d times the equation (22), we have

[T4] = d[T4,] = 0 € Hy(T,[d]; Z). (23)

This completes the proof of Lemma 4.3. )
Next, we prove Lemma 4.4. We have already known that [T5%'] = 0 € H;(T,[d];Z). By Theorem

2.13, we obtain
- Ty[2d?] C [Ty[d], Ty [d]].

Hence, it suffices to prove the inclusion between the quotient groups

Ty[d?, 2d%)/Ty[2d%] C [Ty[d], T [d])/T[2d%).
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When d is even, for matrices A = Iy, + d?A’', B = I, + d?>B' € T'j[d?], we have
AB = Iy + d*(A' + B') mod 24.

Similar to the homomorphism m, define the homomorphism m/ : Ty[d?] — spy,(Z2) by m'(4) = A'.
Then, we have
Kerm' = {A € Ty[d’]| A’ = 0mod 2} = T',[2d?].

The homomorphism m’ induces the isomorphism I'y[d?]/T,[2d2] = $Poy(Z2). We calculate the images
of I'y[d?,2d?] and [T'y[d],T,[d]] under this isomorphism.
Define the sub Zjy-module

Vi={Xe Py (Z2) | X (i,g + i) = X (g9 +i,i) = 0}.
By the definition, we have m(T'y[d?,2d?]) C V. The images of
Iog + d*(egtij + €o1ii)s g + & (€i,g45 + €g) Tog + (€35 — egujgri) € Tyld, 2% (24)

under m' generates V. This shows m'(Ty[d?,2d?]) = V.
For A= I, +dA', B = I, + dB’' € T';[d], we have

ABA™'B™' =L, + d®*(A'B' — B'A') mod 242.

Itweput A' = egii5, B' = €= €gtjgtis A' = €ji—€giygrj, B' = €igyi, and A' = e; g j+ej 414, B =
€g+4,j, We get the elements (24). Hence we have

m'(Fg[d2,2d2]) =VcC m'([I"g[d],Fg[d]).

This proves the lemma.

5 On the abelianization of the level d mapping class group for
d>3

In this section, we prove Theorem 1.4 and Proposition 1.5 which describe the abelianization of the
level d mapping class group for d > 3. The exact sequence

1=Z,, - My,ld = Tyld —1
plays an important role. By the 5-term exact sequence, we have the exact sequence
Hy(Zyr;Z) — Hi(M,,,[d]; Z) — Hy(Ty[d];Z) — 0.
Lemma 5.1. Let g > 3 be an integer, and r either 0 or 1. Ford > 2, the homomorphism Hy(Z, ,;Z) —
Hy (M, . [d]; Z) factors through Hy(Zyr;Z) @ Zg.

Proof. For any pair of simple closed curves {Cy, C}} which bounds a subsurface of genus 1 in Y41, the
mapping class t¢, tagl is in the Torelli group Z,,;. Johnson [17] showed that Z,; is generated by all

pairs of twists t¢, tail, for g > 3 and such an bounding pair {C;,C{}. In particular, 1, is also generated
by pairs of twists as above. Johnson ([19] Lemma 11) also shows that any pair of simple closed curves
C3, Cy which bounds a subsurface in 3, ,. satisfies (tcztaél)d € [My.r[d], Z,..].

Therefore for a mapping class ¢ € I, ., we have [p%] = 0 € H{(M,,[d];Z). This proves the
lemma. O
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We have already determined the abelianization of level d congruence subgroup of the symplectic
group in Section 4. To prove Theorem 1.4, we will construct a splitting of the exact sequence

Hi(Z4,r;Z) ® Zg — H1 (Mg, [d}; Z) — Hy1(Ty[d]; Z) — 0

for r = 0,1 and odd d. The splitting of the above exact sequence comes from the mod d reduction of
the Johnson homomorphism defined on the level d mapping class group for d > 2. We construct this
homomorphism.

Forn > 2, let F, denote the free group of rank n, and denote by H := F,,/ [F, F,] the abelianization
of Fy,. Let Aut F;, be the automorphism group of the free group F,. For a commutative ring R with
unit element, denote the tensor algebra of H ® R by

T .= ﬁH®m®R.

m=0

Let T} be the subalgebra T} := [I.>;H®™ ® Rin T for i é 1.

Definition 5.2. The map 0 : F,, — 1+T1 is called R-valued Magnus expansion of F,, if 6 : F,, — 1+Ty
is a group homomorphism, and for any v € F,, the map 6 satisfies

8(7) =1+ 7] (mod Ty).

In detail, see Kawazumi [23] Section 1 and Bourbaki[5] Ch.2, Section 5, no.4, 5. In the following,
we put R := Z4 for an integer d > 2. We denote by 6,, : F, - H®™ @ Z, the m-th component
of . Denote by I‘g the kernel of the homomorphism F,, — H ® Zg, then the restriction of 0, to
I — H®? ® Z,; is an Aut F,-equivariant homomorphism (See Bourbaki[5] Ch.2, Section 5, no.5.).
Define the level d IA-automorphism group as IA,[d] := Ker(Aut F,, = GL(n; Z4)). Let H* denote the
dual Z-module Hom(H, Z), and define the mod d Johnson homomorphism by -

T4 : IAn[d] — Hom(H,H®2®Zd) EH*®H®2®Zd.
e ([z] = b2(p(2)) - b2(2))

Then, the map 74 is an Aut F,,-equivariant homomorphism, as in Johnson [18] Lemmas 2C and 2D,
and Kawazumi [23] Theorem 3.1. See also Satoh [34].

Next, we define the mod d Johnson homomorphism on the level d mapping class group. Choose
symplectic generators {a;, b;};_; of m1(X,1) which represent the symplectic basis {A;, B;}. Then we
have the isomorphism 71 (Xy,1) = Fy,, and H = H;(%,1; Z). The action of M, 1[d] on the fundamental
group of the surface induces the homomorphism M, 1 [d] —+ I A,[d]. By composing this homomorphism,
we have a homomorphism 74 : My ;[d] - H* ® H®? ® Z4. By the isomorphism

H*@ H®? @ Z, = H®® 9 Z,.
given by the Poincaré duality, we denote it as
Td - Mg,l[d] — H®3 R Zq.

By the definition, this homomorphism is independent of the choice of the generators of 71(X,,1). In
Kawazumi [23] Theorem 3.1, he also showed that the restriction of 74 to Z,; is equal to the modd
reduction of the Johnson homomorphism. Similar mod d Johnson homomorphisms are constructed in
Broaddus-Farb-Putman [6] and Perron [30], independently.

To determine the abelianization of M, .[d] for an odd integer d, we calculate the image of the
mod d Johnson homomorphism on the level d mapping class group.

Lemma 5.3. Let g > 3 be an integer. For an odd integer d > 3,

Im7y = AH ® Zy
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Proof. By the Theorem 2.13, M, ;[d] is generated by d-th powers of Dehn twists along all nonsepa-
rating curves and the Torelli group Z, ;. Since Talz,, is equal to the mod d reduction of the Johnson
homomorphism 7, we have 74(Z, 1) = A*H ® Z4. Since 74 is M g,1-equivalent, we only have to calculate
'rd(t%l) for the simple closed curve C; as shown in Figure 5. By the definition of Td, we have

d(d—1)

5 Bi®B, ®B, € A*HQZ,.

7a(td,) =

If d is odd, it is equal to 0. Hence we have Im 7y = A3H ® Zg. O

Next, We will define the Johnson homomorphism 74 for closed surfaces. As stated in Section 3.4,
we have the surjective homomorphism M, ;[d] - M,[d]. As in Introduction, consider H as a subspace
of A3H.

Lemma 5.4. For g > 3, the homomorphism 74 : My1[d] = AH ® Zg induces the well-defined
homomorphism
M,ld) - A*H/H ® Z4.

Proof. Tt is known that Ker(My,[d] — M,[d]) is generated by twisting pair ToT;* and separating
twist Toyx, ,, where {C, C'} is a pair which bounds subsurface of genus g—1 (see Birman [4] pp156-160).
Johnson [18] (Lemmas 4A p.230, Lemma 4B p.232) calculated the value of the Johnson homomorphism
on the dehn twists Tss,, along the boundary curve and bounding pairs TCTCT,I. Since Td|z,, coincide
with mod d reduction of the Johnson homomorphism, we have 17a(Tsx,,) = 0, and 74(TcTS') €
H®Zq C A°H®Zy. Since H® Zy C A°H ® Z, is a Sp(2g; Z)-invariant subspace, we see that 74
induces homomorphism M,[d] - A*H/H ® Z,. O

Now, we prove Theorem 1.4 and Proposition 1.5, using the homomorphism defined as above. Wi
need to review Johnson’s result. :

Theorem 5.5 (Johnson [22] Theorems 3, 6). For g > 3, the abelianization of the Torelli group is
written as

H\(Z,1;Z) = A*H @ B?

9,12

Hi(T,;Z) = A*H/H & B2 ,.
of Theorem 1.4. Let d > 3 be an odd integer. Consider the homomorphism

Td : Mg,l[d] S ANH® Zg,,
Ta: Myld] = A*H/H ® Zg,

defined in Lemma 5.1. By Theorem 5.5 proved by Johnson, 74 induces the isomorphism

Hi(ZT,1;2) ®Zy = AN°H ® Z4,
Hi\(T;;Z)®Zy = A*H/H ® Zg,

when d is odd. Hence, we have the splitting of the exact sequence
Hy(Zgr;Z) ® Za — Hi (Mg, [d}; Z) — Hy(Ty[d];Z) — 0,
by the homomorphism 74. This shows that

(A*H ® Z4) @ H1(T,[d); Z), when r =1,

Hi(My,d;Z) = {(A3H/H® Z4) ® Hi1(Ty[d];Z), when r = 0.
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of Proposition 1.5. Let d be an even integer. By Theorem 5.5 proved by Johnson, we have

(A*H®Zs) o B2, if r =1,

Hy(Zyr;Z =
1(Zy, )T,1d) {(A3H/H®Zd)€9392,0, ifr=0.

Since the restriction of 74 to Zy; is equal to the mod d reduction of the Johnson homomorphism, we
have '

(A*H ® Z4) N Ker(H; (Zg,1[d); Z)r,[a) = H1(My1[d];Z)) = 0,
(A°H/H ® Za) N Ker(Hy (Z[d]; Z)r,1q) = Hi(M,][d]; Z)) = 0.

Since the homomorphism Hi(Z,,.;Z) — H; (M, ,[2]; Z) induced by the inclusion factors through the
group Hi(M, .[d]; Z), we also have

By NKer(Hi(Zya[d); Z)r,1q — Hi(Mya[d]; Z)) C (1),
B0 N Ker(H(Zo[d]; Z)r,q — Hi(M,[d]; Z)) C (1).
Hence, the sequence
Zy —— H1(Zyr; Z)r,) —— Hi(Mg,[d];Z) —— Hi(T,[d];Z) —— 0
is exact. O
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