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Mixed Hodge Structures of Siegel Modular Varieties

and Siegel Eisenstein Series

By Takuya Miyazaki

Abstract. In this paper we study the mixed Hodge structure on
the middle degree cohomology of the Siegel modular variety of level n.
We attach some global automorphic forms to its highest weight quotient
space and also show a vanishing of the next weight quotient. As an
appendix, we also consider the universal family of abelian varieties over
the moduli space and treat its middle degree mixed Hodge structure
similar to the above case.

1. Introduction

The purpose of this paper is to give a description of some graded quo-

tients associated with the weight filtration on the mixed Hodge structure

defined for the middle degree cohomology group of Siegel modular variety.

Here is a more precise statement of the main result.

Let Hg be the Siegel upper half space of degree g. The Siegel modular

group Γg = Sp(g,Z) acts on it properly discontinuously as usual by

Z �→ γ〈Z〉 = (AZ +B)(CZ +D)−1, for Z ∈ Hg, γ =

(
A B

C D

)
∈ Γg.

Moreover the principal congruence subgroup of level n ≥ 3 of Γg : Γg(n) =

ker(Γg → Sp(g,Z/nZ)), acts freely. Then the quotient space Vg(n) =

Γg(n)\Hg becomes to be a smooth (open) algebraic variety over C of di-

mention N = 1
2g(g + 1), and is known to be quasi-projective because there

exists a projective minimal compactification: Baily-Borel-Satake compacti-

fication ([3], [20]).

The cohomology group Hi(Vg(n),Q) has the mixed Hodge structure by

Deligne [5, 6]. Let {Wk} be the weight filtration. Then we have the following

main result.
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Main theorem. Let Vg(n)
∗ be the minimal compactification of a Siegel

modular variety, and N = 1
2g(g + 1) be its dimension. Then for g ≥ 2, we

have that

(i) dimGrW2NHN (Vg(n),C) = the number of 0-dimensional cusps in Vg(n)
∗.

(ii) GrW2N−1H
N (Vg(n),C) = {0}.

The main ingredients of the proof are Poincaré residue map of the mixed

Hodge structures, toroidal compactification of Siegel modular variety and

some regularity results on the Eisenstein series proved by Shimura [22].

Let us explain the contents of this paper. We review the mixed Hodge

structure of the cohomology groups of a non-singular algebraic variety in §2.

We explain about the edge component of mixed Hodge structure on Hi(V,C)

in §3. The Poincaré residue map is also explained in this section. After brief

review on the toroidal compactification of a Siegel modular variety in §4, we

rewrite in §5 a Fourier-Jacobi expansion of Siegel modular forms of weight

g+1 in the local coordinates of a smooth compactification of Vg(n). There we

describe the image of a modular form by the Poincaré residue map in terms

of the constant term of its Fourier expansion. In §6, we give two examples

of the smooth compactification in case of g = 2, 3 as in Namikawa [16] and

Nakamura [15], and explain about degenerate boundary coordinates. In §7,

we review the holomorphic Siegel Eisenstein series. We restate the main

result in §8, and give a proof for it. There we use theorems of Shimura [22]

for the holomorphy of the Eisenstein series of low weight. In the last section

§9, as an appendix, we remark some results about the weight filtrations

in the case of the universal family of principally polarized abelian varieties

which is similar with the case of Siegel modular varieties.

The author would like to express his gratitude to Professor Takayuki Oda

for kindly teaching many things to him and constant warm encouragement.

The author is supported by JSPS Research Fellowships for Young Scientists.

2. Mixed Hodge structures

We recall briefly the theory of mixed Hodge structures for a smooth

algebraic variety defined by P. Deligne. The references are [5], [6].

Given a smooth quasi-projective algebraic variety V over C of dimension

N , it can be imbedded into a smooth projective variety Ṽ as a Zariski open

subset, and D = Ṽ − V is a finite union of smooth irreducible divisors
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{Di}i∈I which have at most simply normal crossings (theorem of Nagata

and the resolution of singularities by Hironaka). Choose such an embedding:

j = V ↪→ Ṽ . Then {Hi(V,C)}i∈Z make the mixed Hodge structures defined

as follows.

Definition 2.1. A mixed Hodge structure (abbreviated M.H.S.) is

triple data: {HZ,W•, F •};
(i) HZ is a Z-module of finite type,

(ii) A finite increasing filtration W• on HQ = HZ ⊗Q,

(iii) A finite decreasing filtration F • on HC = HZ ⊗C;

with following requirement. Denote alsoW• the naturally induced filtration

on HC and define F p(GrWk HC) to be the image of F pHC ∩ WkHC →
GrWk HC, then for all k ∈ Z, {GrWk HQ, F

•} is the pure Q-Hodge structure of

weight k. W• and F • are called as weight and Hodge filtration respectively.

Write Hp,q = GrpFGr
q

F
GrWk HC, (F

•
is the complex conjugation to F •).

Then the definition means that

(i) Hp,q = 0, if p+ q �= k, and

(ii) GrWk HC =
⊕

p+q=k

Hp,q : direct sum decomposition, Hp,q = H
q,p
.

(When these properties are satisfied, F and F are said to be k-opposite to

each other.)

For a smooth (open) algebraic variety V , the mixed Hodge structures on

H∗(V,C) are obtained in the following manner. First for the holomorphic

de Rham complex Ω•
V , there are isomorphisms (Grothendieck [10]):

H∗(V,C) � H∗(V,Ω•
V ) � H∗(Ṽ , j∗Ω

•
V ).

We take the subcomplex Ω•
Ṽ

(logD) of j∗Ω•
V , the logarithmic de Rham

differential complex as follows. The sheaf Ω1
Ṽ

(logD) is the locally free O
Ṽ

-

module generated by sections dzi
zi

(1 ≤ i ≤ l), dzj (l + 1 ≤ j ≤ N) at

a point where D is defined locally by {z1 · · · zl = 0} with a local coordi-

nates {zi}1≤i≤N of Ṽ . Setting Ωk
Ṽ

(logD) =
∧k Ω1

Ṽ
(logD), we obtain the
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complex Ω•
Ṽ

(logD), and the natural inclusion Ω•
Ṽ

(logD) ↪→ j∗Ω•
V is a quasi-

isomorphism of complexes (Deligne [5] (3.1.8)). Therefore we get isomor-

phisms:

H•(V,C) � H•(Ṽ , j∗Ω
•
V ) � H•(Ṽ ,Ω•

Ṽ
(logD)).

Thus we can identify the singular cohomology of V with the hypercohomol-

ogy of the logarithmic differential complex on Ṽ (Deligne [5], (3.1.5)).

With this identification the Hodge and weight filtrations on H•(V,C)

are induced by the following filtrations on the complex. For any com-

plex C• in abelian category, define a subcomplex σ≥p as (σ≥pC•)i = Ci

if i ≥ p, and = 0 if i < p. (This filtration is called as the stupid

filtration.) Applying this to Ω•
Ṽ

(logD), we have a filtration on complex:

F • = {F pΩ•
Ṽ

(logD)}p∈Z,

F pΩ•
Ṽ

(logD) = σ≥pΩ
•
Ṽ

(logD).

On the other hand, the weight filtrationW• = {WpΩ
•
Ṽ

(logD)}p∈Z is defined

by

WpΩ
k
Ṽ

(logD) =


0 (p < 0)

Ωk
Ṽ

(logD) (p > k)

Ωk−p
Ṽ

∧ Ωp

Ṽ
(logD) (0 ≤ p ≤ k).

For each p, one has inclusions F pΩ•
Ṽ

(logD) ↪→ Ω•
Ṽ

(logD), WpΩ
•
Ṽ

(logD) ↪→
Ω•
Ṽ

(logD) and these induce maps between hypercohomologies. Define the

Hodge and weight filtration on H•(V,C) = H•(Ṽ ,Ω•
Ṽ

(logD))) as follows.

F pHi(V,C) = image of Hi(Ṽ , F pΩ•
Ṽ

(logD)) → Hi(Ṽ ,Ω•
Ṽ

(logD))(1.1)

Wp+iH
i(V,C) = image of Hi(Ṽ ,WpΩ

•
Ṽ

(logD)) → Hi(Ṽ ,Ω•
Ṽ

(logD))(1.2)

Observe that though the weight filtration is constructed over C in the above,

it can be defined over Q (Deligne [5], (3.2.4)). Write D =
⋃
i∈I Di = Ṽ − V

with a finite (ordered) index set I. Each Di is a smooth irreducible divisor

which is also projective, for Ṽ is projective. We fix one orientation for each

Di. Consider the disjoint union of all m-fold intersections of {Di},

D[m] =
∐

{i1<···<im}⊂I
Di1 ∩ · · · ∩Dim : disjoint union.
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It is a complex manifold of dimension of N − m. We set D[0] = Ṽ . We

consider the Poincaré residue maps Res[m]:

Res[m] :WmΩ•
Ṽ

(logD) → im∗Ω
•
D[m] [−m],

where im : D[m] → Ṽ are natural maps and, for any complex C•, define

C•[m] as (C•[m])i = Ci+m. With local coordinates on Ṽ it is given by

ω ∧ dzi1
zi1

∧ · · · ∧ dzim
zim

�→ ω|Di1
∩···∩Dim

,

for holomorphic differential forms ω on Ṽ . Here the order of components

Dij = {zij = 0} is taken to be increasing. Moreover it should be noted

that we must consider the contribution of orientation to the target com-

plex (Deligne [5], (3.1.4), (3.1.5)), but we omit the explicit suitable nota-

tion. Res[m] becomes a morphism of complexes. It is surjective, trivial on

Wm−1Ω
•
Ṽ

(logD), and induces an isomorphism of complexes:

Res[m] : GrWm Ω•
Ṽ

(logD) � im∗Ω
•
D[m] [−m],

(Deligne [7], [5]). Hence there is an isomorphism of hypercohomologies:

Res[m] : Hi(Ṽ , GrWm Ω•
Ṽ

(logD)) � Hi(Ṽ , im∗Ω
•
D[m] [−m])(1.3)

� Hi−m(D[m],C)(−m).

The last term defines a pure Hodge structure of weight i +m by classical

Hodge theory. ((−m) means the (−m)-th Tate twist.) Then it follows that

a spectral sequence for hypercohomology of filtered complex

FE
p,i−p
1 = Hi(Ṽ , GrpFGr

W
m Ω•

Ṽ
(logD)) ⇒ Hi(Ṽ , GrWm Ω•

Ṽ
(logD))

degenerates at E1- term because, by the above residue map, this is identified

with de Rham-Hodge spectral sequence for H∗(D[m],C). And the induced

filtration on the right hand term becomes to be i+m-opposite to its complex

conjugation (Deligne [5], (3.2.6), (3.2.7)). On the other hand, the left hand

side of the isomorphism (1.3) gives an E1-term of a spectral sequence

WE
−m,m+i
1 = Hi(Ṽ , GrWm Ω•

Ṽ
(logD)) ⇒ Hi(Ṽ ,Ω•

Ṽ
(logD)) � Hi(V,C).
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It is shown that each of its differentials d1 (the connecting homomorphisms

of a long exact sequence of hypercohomologies induced from a short exact

sequence 0 → GrWm−1 → Wm/Wm−2 → GrWm → 0 ) is strictly compatible

with the filtration on WE
−m,i+m
1 induced above ([5], (3.2.8)). Then it is

proved that a unique filtration is defined on WE2-term from the one on

WE1. (There are different types of filtrations on WE2 which canonically

induced from the filtration F • on the complex Ω•
Ṽ

(logD), but now these are

coincident with each other.) Also we get dj = 0, j ≥ 2, hence above spectral

sequence WEr degenerates at WE2-term ([5], (3.2.9), (3.2.10)). Thus we

obtain a filtration on GrWm+iH
i(V,C) = WE2 which is i+m-opposite to its

complex conjugation, which is proved to coincide with the filtration defined

by (1.1), (1.2). Therefore {H•(V,C),W•, F •} defines a M.H.S. ([5], (3.2.5)).

Together with [5, (3.2.13)] and [6, (7.2.8)] we have the following.

Theorem 2.2. (Deligne)

(i) A spectral sequence FE
p,q
1 = Hq(Ṽ , GrpFΩ•

Ṽ
(logD)) ⇒ Hp+q(V,C) degen-

erates at FE1-terms.

(ii) A spectral sequence Hi(Ṽ , GrWp Ωk
Ṽ

(logD)) ⇒ Hi(Ṽ ,Ωk
Ṽ

(logD)) degen-

erates at E2-terms.

(iii) There is an isomorphism of spectral sequences

GriFEr(RΓ(Ω•
Ṽ

(logD)),W ) � Er(RΓ(GriFΩ•
Ṽ

(logD)),W ),

here RΓ(K•) is a filtered complex with filtration W• which is derived from

an acyclic bi-filtered resolution K ′ • of a bi-filtered complex K•.

2. Residue map on edge parts

In this section we define a certain homomorphism from subspaces of a

weight quotient space of H i(V ) to the cohomology groups Hj(D[m]), which

is induced from the Poincaré residue map. This construction is necessary

in the proof of the main result (§7).

We begin with isomorphisms:

GrWm+iH
i(V,C)

= H(Hi−1(Ṽ , GrWm+1Ω
•
Ṽ

(logD))
d1→ Hi(Ṽ , GrWm Ω•

Ṽ
(logD))

d1→ Hi+1(Ṽ , GrWm−1Ω
•
Ṽ

(logD)))
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= H(Hi−m−2(D[m+1],C)(−m− 1)
d1→ Hi−m(D[m],C)(−m)

d1→ Hi−m+2(D[m−1],C)(−m+ 1)).

Here H(∗ → ∗ → ∗) means the cohomology of the 3-terms complexes. The

first isomorphism comes from E2-terms of the spectral sequence in (ii) of

Theorem(1.2). The second one is obtained on passing to the targets of the

Poincaré residue map Res[m] in §2.

By the first isomorphism, GrWm+iH
i(V,C) is regarded as a subquotient

space of Hi(Ṽ , GrWm Ω•
Ṽ

(logD)).

Lemma 3.1. Let {F •} be the Hodge filtration on GrWm+iH
i(V,C), then

F iGrWm+iH
i(V,C) injects into the Hi(Ṽ , GrWm Ω•

Ṽ
(logD)).

Proof. By Theorem(1.2), we have

GriFGr
W
m+iH

i(Ṽ ,Ω•
Ṽ

(logD)) � GriFWE2(RΓ(Ω•
Ṽ

(logD)),W )

� WE2(Gr
i
FRΓ(Ω•

Ṽ
(logD)),W ) � WE2(RΓ(Ωi

Ṽ
(logD)),W ),

last of which equals the cohomology of the next complex;

� H(Hi−1(Ṽ , GrWm+1Ω
i
Ṽ

(logD)[−i])

d1→ Hi(Ṽ , GrWm Ωi
Ṽ

(logD)[−i]) d1→ Hi+1(Ṽ , GrWm−1Ω
i
Ṽ

(logD)[−i])).

Since the first term of above 3-term complex is zero space, we know

that the space GriFGr
W
m+iH

i(Ṽ ,Ω•
Ṽ

(logD)) can be seen as a subspace of

Hi(Ṽ , GrWm Ωi
Ṽ

(logD)). Also we have that

Hi(Ṽ , GrWm Ωi
Ṽ

(logD)) = GriFHi(Ṽ , GrWm Ω•
Ṽ

(logD)).

On the other hand, we have F i+1Hi(Ṽ , GrWm Ω•
Ṽ

(logD)) = {0}. In fact,

since the Poincaré residue map Res[m] is compatible with the Hodge filtra-

tion on Hi(V,C), we get

F jHi(Ṽ , GrWm Ω•
Ṽ

(logD)) � F j−mHi−m(D[m],C)(−m).

Here the Hodge types of Hi−m(D[m],C)(−m) is only {(p+m, q+m)}, where

p+ q = i−m, and p, q ≥ 0. Therefore for j > i, considering above Hodge
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type, we obtain that F j−mHi−m(D[m],C)(−m) = {0}. Hence combining

this with above, the lemma follows. �

By this lemma, we can consider a restriction of the Poincaré residue

map on this edge subspace and this restriction map gives a isomorphism of

F iGrWm+iH
i(V,C) into its image. By an abuse of notation, we denote this

homomorphism

Res[m] : F iGrWm+iH
i(V,C) → Hi−m(D[m],C)(−m).

by the same symbol as the Poincaré residue map on the complexes. More-

over the following lemma shows that the domain of above map is a subquo-

tient of the space of global sections of Ωi
Ṽ

(logD).

Lemma 3.2.

GriFGr
W
m+iH

i(V,C) � GrWm+iH
0(Ṽ ,Ωi

Ṽ
(logD)).

Proof. This results from Theorem (1.2). �

4. Toroidal compactification of Vg(n)

In this section, we recall the construction of toroidal compactification of

a quotient variety of Hermitian symmetric space. Main references are, for

example, Ash, Mumford, Rapoport, Tai [1], Namikawa [16], [17], Nakamura

[15].

4.1. Minimal compactification

First we recall the Baily-Borel-Satake minimal compactification. The

Siegel upper half space Hg is analytically isomorphic to Dg = {τ = tτ ∈
Mg(C); 1 − τ τ̄ > 0} by Hg � z �→ (z −

√
−11g)(z +

√
−11g)

−1. Dg

is a bounded symmetric domain in C
1
2
g(g+1). We set D′

g = {τ = tτ ∈
Mg(C); 1 − τ τ̄ ≥ 0} ⊃ Dg, which is a union of Dg and its boundary

components. We take the only rational boundaries defined over Q. Then

we set D∗
g = Dg ∪ {rational boundary components of Dg}. According to

this, we also define for the Siegel upper half space

H∗
g = Hg ∪ {rational boundary components of Hg}.
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The action of Sp(g,Q) on Hg extends to H∗
g and we make the quotient

Vg(n)
∗ = Γg(n)\H∗

g. Then Vg(n)
∗ becomes a compact Hausdorff space by

defining a suitable topology on H∗
g ( called Satake topology ). This is the

minimal compactification of Vg(n), which is a projective variety with singu-

larities on Vg(n)
∗ − Vg(n) (Satake [20]).

4.2. Rational boundary components

We fix some symbols to denote rational boundary components of Hg.

Symbols :

{Fα}; Γg(n)-equivalence classes of rational boundary components of Hg.

Fα � Hg0 (0 ≤ ∃g0 ≤ g).
Pα = {g ∈ Sp(g,R); gFα = Fα} ; maximal Q-parabolic subgroups associ-

ated to Fα.

Wα ⊂ Pα; a unipotent radical.

Uα ⊂Wα; the center of Wα, � {b ∈Mg1(R) ; tb = b} = Qg1 , g1 = g − g0.
Ωα; a self dual open cone, � {b ∈Mg1(R); tb = b, b > 0} = Q+

g1 .

Among {Fα}, the standard boundaries F st
g0 can be chosen for each g0.

The maximal Q-parabolic subgroup Pg0 associated to this standard bound-
ary is given as follows:

Pg0
=



A′ 0 B′ ∗
∗ u ∗ ∗
C ′ 0 D′ ∗
0 0 0 tu−1

 ∈ Sp(g,R)

(
A′ B′

C ′ D′

)
∈ Sp(g0,R),

u ∈ GL(g1,R)

 ,

Wg0 =




1g0 0 n
tm 1g1

tn b
0 0 1g0 −n
0 0 0 1g1

 ∈ Pg0

tnm+ b = tmn+ tb

 ,

Ug0 =




1g0 0 0
1g1

0 b
0 0 1g0 0
0 0 0 1g1

 ∈Wg0

tb = b

 = Qg1 .

All rational boundaries Fα are transformed into one F st
g0 � Hg0 by the

action of Sp(g,Z) = Γg ; Fα = γαF
st
g0 , ∃γα ∈ Γg. Under this situation we

first construct a partial compactification in direction of a rational boundary

component Fα.
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4.3. Partial compactification

Fix F = F st
g0 , a standard rational boundary and we consider specially

the partial compactification for it. Let Pg0Z = PZ = Pg0 ∩ Γg, Ug0Z =

UZ = Ug0 ∩ Γg, Pg0(n) = P (n) = Pg0 ∩ Γg(n), Ug0(n) = U(n) = Ug0 ∩
Γg(n), UC = UZ ⊗C. We make a next map;

e : Hg → Hg0 × Vg0g1 × (UZ\UC), Z =

(
z1 z2
z2 z3

)
�→ (z1, z2, e

(
z3
n

)
),

here e(z) = exp(2π
√
−1z) = (exp(2π

√
−1zk,l))k,l, Vg0g1 is the space of

g0 × g1-matrices with coefficients in C. Tg1 = UZ\UC is a complex torus of

dimension 1
2g1(g1 +1), � (C×)

1
2
g1(g1+1). It can be seen that the above map

e factors through U(n)\Hg. Then, the image T ◦
g0,g1 of e is an open subset

of Tg0g1 = Hg0 × Vg0g1 × Tg1 , and U(n)\Hg is isomorphic to this image. We

identify them, thus consider T ◦
g0,g1 in Tg0g1 .

For the third factor of complex torus Tg1 , there exists a toroidal embed-

ding as following. We remark that UZ � Qg1Z � Homalg−grp(Gm, Tg1) �
π1(Tg1), where Qg1Z is the Z-lattice of symmetric integral matrices in Qg1 .

Take Q̂g1 to be a dual real vector space of Qg1 , and denote by 〈 , 〉 :

Q̂g1 × Qg1 → R the natural pairing. Then the dual lattice M of Qg1Z is

defined by

M = {ŷ ∈ Q̂g1 ; 〈ŷ, y〉 ∈ Z for ∀y ∈ Qg1}.

Let Q+
g1 be the set of positive definite real quadratic forms in Qg1 . By Q+

g1

we denote the rational closure in the space of nonnegative real quadratic

forms which is, by definition, the convex hull of the set of nonnegative

integral quadratic forms. The group GL(g1,Z) operates on Qg1 as y �→
uytu for u ∈ GL(g1,Z), and the action preserves Q+

g1 and Q+
g1 . Every

element of Q+
g1 can be transformed by a unimodular integral matrix u to

uytu =

(
0 0

0 y
′

)
; y′ > 0 (Namikawa [16]).

On Q+
g1(� Ωg0), we consider a GL(g1,Z)-admissible cone decomposition

Σg1 = {σ} which satisfies following properties:

(1) each σ ∈ Σg1 is a rational convex cone, namely, generated by finite

number of semipositive integral quadratic forms,

(2) σ ∈ Σg1 , τ ≺ σ (τ is a face of σ) ⇒ τ ∈ Σg1 , σ, τ ∈ Σg1 ⇒ σ∩ τ ∈ Σg1 ,

(3) the decomposition is invariant under the action of GL(g1,Z),
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(4) there are only a finite number of classes of σ’s modulo GL(g1,Z),

(5)
⋃
σ∈Σg1

σ = Q+
g1 .

Later we glue all partial compactifications into one Ṽg(n). For this pur-

pose, we have to assume that the family of cone decompositions {ΣFα
g1 }, each

of which is associated to a rational boundary Fα, satisfies next compatibility

conditions:

(6) if Fα = γFβ with γ ∈ Γg(n), then ΣFα
g1 = γΣ

Fβ
g1 , via the natural

isomorphism γ : Ωα → Ωβ.

(7) if g′1 < g1, for natural embedding Q+
g′1

→ Q+
g1 : y′ �→

(
0 0

0 y′

)
, the

restriction of Q+
g1 to Q+

g′1
is the cone decomposition Σ

Fβ
g1 .

A family of cone decompositions for each rational boundaries satisfying

from (1) to (7) is called Γg(n)-admissible collection. For given admissible Σg1

for Q+
g1 , we can construct an affine torus embeddings {Tσ} of Tg1 to every

σ ∈ Σg1 . Set the dual cone of σ to be σ̂ = {ŷ ∈ Q̂g1 ; 〈ŷ, y〉 ≥ 0 for ∀y ∈ σ}.
Tg1 = Spec C[M ] = Spec C[zij , z

−1
ij ; 1 ≤ i ≤ j ≤ g1]. Then we get an

embedding

Tg1 ↪→ Tσ = Spec C[zA; A ∈ σ̂ ∩M ],

where zA =
∏

1≤i≤j≤g1 z
Aij

ij , and σ̂ ∩M is a sub-semigroup of M .

From the property (1), Tσ becomes an algebraic scheme. And from (2)

{Tσ}σ∈Σg1
can be glued with each other (i.e. for σ′ ≺ σ (σ̂ ≺ σ̂′), use

natural open embedding Tσ′ ⊂ Tσ). Then we get a torus embedding Tg1 ;

Tg1 ↪→ Tg1 =
⋃

σ∈Σg1

Tσ (gluing).

The scheme Tg1 is not necessary of finite type, but locally of finite type. Here

the natural action of Tg1 on its image in Tg1 by the product of torus extends

to all over Tg1 . Each of the Tg1-orbits in Tg1 is in one-to-one correspondence

to cones σ ∈ Σg1 (Namikawa [16, Theorem(4.6)], [17, Prop.(6.12)]):

Σg1 � σ ↔ O(σ) ∈ {Tg1-orbits ⊂ Tg1}.
O(σ) = { lim

t→∞
tηz; z ∈ Tg1}.

Here η ∈ σ◦ ∩ Q+
g1Z , t

ηz = (tηijzij)i,j , and η is considered as an element of

one parameter subgroup Qg1Z . In this correspondence, one get also σ′ ≺
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σ ⇔ O(σ) ⊂ O(σ′). Besides, for {0} ∈ Σg1 , we have {0̂} ∩ Q̂g1Z = Q̂g1Z .

Therefore T{0} = Tg1 is the Tg1-orbit corresponding to {0} ∈ Σg1 , and

Tg1 ↪→ Tg1 defines a Zariski open subset.

Then we set Tg0g1 ↪→ Xg,g1 = Hg0 × Vg0g1 × Tg1 , and define the partial

compactification (U(n)\Hg)Σg1
of T ◦

g0,g1 ⊂ Tg0g1 in the direction of F st
g0 as

(U(n)\Hg)Σg1
= the interior of the closure of T ◦

g0,g1 in Xg,g1 .

(Namikawa [16, Prop.(6.3)]). For this we have the following proposition

(Namikawa [16, Prop.(6.6), (6.9)]):

Proposition 4.1. P (n) = P (n)/U(n) acts properly discontinuously

on (U(n)\Hg)Σg1
. Moreover, if level n ≥ 3, then this action is without fixed

points.

Therefore the quotient P (n)\(U(n)\Hg)Σg1
has a structure of normal

analytic space. (We remark that P (n)(↪→ GL(g1,Z)) is considered as a

subgroup of finite index.) On the other hand, let

OΣg0
=

⋃
σ∩Q+

g1
�=φ,σ∈Σg1

Hg0 × Vg0g1 ×O(σ) ⊂ Xg,g1 ,

then OΣg0
⊂ (U(n)\Hg)Σg1

and one can see that the quotient P (n)\OΣg0
is

a closed subset in the above normal analytic space. By the reduction theory

of Siegel, we have the following:

For any point p ∈ OΣg0
, there is a neighborhood Y of p in (U(n)\Hg)Σg1

such that if z1 = M · z2, ∃M ∈ Γg(n) for z1, z2 ∈ e−1(Y ) ∩ Hg1 then

M ∈ Pg0(n).
This means, near P (n)\OΣg0

, the variety Vg(n) = Γg(n)\Hg is locally

isomorphic to P (n)\(U(n)\Hg)Σg1
. Therefore we can glue these in a neigh-

bourhood of each boundary point, and put an analytic structure on these

neighbourhoods from the one on P (n)\(U(n)\Hg)Σg1
. The above procedure

(partial compactification, and gluing pieces nearby boundary orbits) for all

Γg(n)-equivalent classes of rational boundaries, is canonically compatible by

the properties of Γg(n)-admissible family of cone decompositions. Finally

we obtain a toroidal compactification Ṽg(n) of Vg(n), with underlying set

Ṽg(n) =
⋃

0≤ g0≤ g

⋃
{Fg0} mod Γg(n)

Pg0(n)\OΣg0
, ( Pg\Og = Vg(n) ).
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It is shown that Ṽg(n) is a compact normal space, and by choosing certain

suitable cone decompositions, it becomes a smooth and projective variety

over C. Moreover Ṽg(n) − Vg(n) = D =
⋃
Di is a finite union of smooth

irreducible divisors with simply normal crossing.

4.4. The Map from Ṽg(n) to Vg(n)
∗

As a set, Vg(n)
∗ is a disjoint union of modular varieties of lower dimen-

sion = Vg(n) & V (g−1) & · · · & V (0). Here V (i) =
∐

{Fi} mod Γg(n) Γ′
i \Fi is

the i-th rational boundary component (Fi � Hi, 0 ≤ i ≤ g − 1). Moreover,

Vg(n)
∗ is a projective over C. We have a holomorphic map from Ṽg(n) to

Vg(n),

π : Ṽg(n) → Vg(n)
∗.

The restriction of π over a rational boundary component Γ′
i \Fi comes from

the naturally extended map:

(U(n)\Hg)Σg1

pFg0→ Vg(n)
∗,

and the inverse image of a rational boundary is given by

p−1
Fg0

(Γ′
g0\Fg0) = OΣg0

(Namikawa [16], §6). Then π gives an identity on the open stratum Vg(n)

and

π−1(V (g0)) =
∐

{Fg0} mod Γg(n)

Pg0(n)\OΣg0
.

Later we consider the intersections of the boundary divisors Di of Ṽg(n)

inside π−1(V (g0)). A description of these intersections in local coordinates

can be given from the local structure of

OΣg0
=
⋃

Hg0 × Vg0g1 ×O(σ)

or more precisely from the local structure of⋃
σ∩Q+

g1
�=φ,σ∈Σg1

O(σ).

Details are discussed in §6.
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5. Poincaré residue maps on the space of holomorphic Siegel

modular forms

From now on we set V = Vg(n), and N = dimV = 1
2g(g + 1). The

space of holomorphic Siegel modular forms of weight g+1 is identified with

a subspace of HN (V,C). By use of the Poincaré residue map, we study the

weight filtrations on this subspace of HN (V,C). In §3, it is shown that the

Poincaré residue map defined for the edge part of GrWm+NHN (V,C), can be

transferred to the space Γ(Ṽ ,ΩN
Ṽ

(logD)) (cf. Lemma (3.1) and (3.2)). For

ω ∈ Γ(Ṽ ,ΩN
Ṽ

(logD)), denote the pull-back of ω to Hg by

ω0 = f(z1, · · · , zN )dz1 ∧ · · · ∧ dzN .

in the coordinates of Hg.

Lemma 5.1. If g ≥ 2, Γ(Ṽ ,ΩN
Ṽ

(logD)) ∼= Mg+1(Γg(n)). Here

Mg+1(Γg(n)) is the space of holomorphic Siegel modular forms on Hg of

weight g + 1 for Γg(n),

Mg+1(Γg(n)) = {f : Hg → C; holomorphic

| f(γ〈Z〉) = det(CZ +D)g+1f(Z) for ∀γ =

(
A B

C D

)
∈ Γg(n)}.

Proof. This is a standard fact (e.g. Chai-Faltings [4, Chap. V]). But

for our purpose, we here review its proof.

We put ωs =
∧

1≤ i≤ j≤ g dzij where Z = (zi,j)i, j=1,···,g ∈ Hg. For γ =(
A B

C D

)
∈ Γg(n), it is well known that γ∗ωs = det(CZ+D)−(g+1)ωs, see

for example Maass [13, §3, p.23]. From the Γg(n)-invariance of ω0 = f(Z)ωs,

f(z) is a holomorphic modular form of weight g + 1. Thus the inclusion

Γ(Ṽ ,ΩN
Ṽ

(logD)) ⊂Mg+1(Γg(n)) is shown. The converse inclusion is proved

as followings.

We fix a g0, 0 ≤ g0 ≤ g − 1, and denote by {F0, F1, · · · , Fr} all of

the Γg(n)-equivalence classes of g0-th rational boundaries (� Hg0) of Hg.

We take F0 as the standard g0-th rational boundary (= F st
g0 ) of Hg, and

write corresponding maximal Q-parabolic subgroup as P0 ⊂ Sp(g,R). Each
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Fl transformed into F0 by some γl ∈ Γg = Sp(g,Z), and we fix γl ∈ Γg
such that Fl = γlF0 for l = 1, · · · , r . Then Fourier-Jacobi expansion of

f ∈Mg+1(Γg(n)) at Fl is

j(γ−1
l , Z)g+1f(Z) = a0(z

l
1, z

l
2;Fl) +

∑
{T}
aT (zl1, z

l
2;Fl)e(

trTzl3
n

),

where

γ−1
l 〈Z〉 =

(
zl1 zl2
zl2 zl3

)
, with zl1 ∈Mg0(C), zl3 ∈Mg1(C), g1 = g − g0,

and

j(γ, Z) = det(CZ +D) for γ =

(
A B

C D

)
.

Here {T} runs all the set of nonzero non-negative, half-integral symmetric

matrices of degree g0. Recall that for g ≥ 2, the non-negativity of T is a

consequence of the Koecher principle.

We make a toroidal compactification Ṽg(n) of Vg(n) by taking a Γg(n)-

admissible family of cone decompositions. We consider the map π : Ṽg(n) →
Vg(n)

∗. And for V (l) ⊂ Vg(n)
∗, let m = m(l) be the greatest integer such

that π−1(V (l)) ∩ im(D[m]) �= φ. (Here we concern ourselves with the max-

imally degenerate boundary in π−1(V (l)).) Then local coordinates system

at a point of π−1(V (l))∩ im(D[m]) is written as {(zi), (uj), (qk = e(wk/n))}.
Here zi, 1 ≤ i ≤ 1

2g0(g0 + 1) (resp. uj , 1 ≤ j ≤ g0g1) run those upper

triangle coefficients of zl1 (resp. zl2). For 1 ≤ k ≤ 1
2g1(g1 + 1) = d, wk is a

linear combination of uppertriangle coefficients of zl3. Now we can rewrite

above Fourier-Jacobi expansion in this coordinates as follows.

j(γ−1
l , Z)f(Z) = a0((zi), (uj);Fl) +

∑
{T}
aT ((zi), (uj);Fl)q

t1
1 · · · qtdd .

Note that for nonnegativity of T , all tn ≥ 0, n = 1 · · · d, and (t1, · · · , td) �=
(0, · · · , 0).

Remark. For example, if g1 = 2, writing

zl3 =

(
τ1 τ2
τ2 τ3

)
, T =

(
t1 t2
t2 t3

)
,
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then

e

(
tr

(
t1 t2
t2 t3

)(
τ1 τ2
τ2 τ3

))
= e(t1(τ1 + τ2) + t3(τ2 + τ3)− (t1 + t3 − 2t2)τ2)

= qt11 q
t1+t3−2t2
2 qt33 .

Now for the semi-positivity of T , we have that t1, t3 ≥ 0 and t1 + t3−2t2 =

(1, −1)T

(
1

−1

)
≥ 0.

On the other hand, since we have that

∧dzl1,i ∧ dzl2,j ∧ dzl3,k = const.× ∧dzi ∧ duj ∧
dqk∏d
k=1 qk

,

the form ω is described with the above local coordinates as

ω = cl

{
(a0((zi), (uj);Fl)

+
∑
{T}
aT ((zi), (uj);Fl)q

t1
1 · · · qtdd

}
∧ dzi ∧ duj ∧

dqk∏
qk
,

where cl �= 0 is a constant which depends on γl. (Ash, Mumford, Rapoport,

Tai [1] chap.4) If we take g0 = 0 then it is shown that ω0 = f(Z)ωs defines

a meromorphic differential form at most with poles of order one on rational

boundaries. This settles the proof of Lemma (5.1). �

Moreover by the definition of Res[m], we also conclude the following

lemma.

Lemma 5.2. With local coordinates at one point of π−1V (l)∩ im(D[m]),

the image of ω by residue map: Res[m] ω ∈ F i−mHi(D[m],C)(−m), is de-

scribed as

Res[m] ω = cl · a0((zi), (uj);Fl) ∧ dzi ∧ duj .
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We rewrite above statement by Siegel’s Φ-operator (cf. Maass [13, §13] ).

For f ∈Mk(Γg(n)), Siegel’s Φ-operator is defined as

Φf(Z1) = lim
t→∞

f

(
Z1 0

0
√
−1 t

)
, Z1 ∈ Hg−1.

This is well defined and defines a holomorphic Siegel modular form of weight

k for Γg−1(n) on Hg−1.

In Fourier expansion f(Z) =
∑

{T} a(T )e(tr(TZ)/n),

Φf(Z1) =
∑
{T1}

a(T1)e(tr(T1Z1)/n),

a(T1) = a

(
T1 0

0 0

)
; T1 is of rank ≤ g − 1.

Iterating this, then

Φjf(Zj) =
∑
{Tj}

a

(
Tj 0

0 0

)
e(tr(TjZj)/n), Zj ∈ Hg−j .

Then each cusp component of Res[d] ω is written as (0-th term of Φj(f)) ∧
dzi ∧ duj (cf. Chai-Faltings [4, Chap. V, Prop. 1.6]). Hence to show our

main results we need to find a modular form of weight g+ 1 which remains

non zero under the action of Siegel Φ-operator at one specified cusp, but

vanishes at all other cusps. This is obtained by an Eisenstein series in §7.

6. Structure of degenerate coordinates over an Satake rational

boundary

Let π : Ṽg(n) → Vg(n)
∗ is the natural morphism defined in §§ 4.4, and

D[m] as in §1. In order to know explicitly the local defining equations of

D[m], in this section we investigate the structure of π−1(V (g0)) ∩ im(D[m]),

where V (g0)(⊂ Vg(n)
∗) is a union of g0-th rational boundary components.

Now Ṽg(n) can be taken to be a smooth projective variety. Indeed, as in

Igusa [11], there is a Γg(n)-admissible family of cone decomposition: the

central cone decompositions. When we make a toroidal compactification

associated with these cone decompositions, it is a normalized blowing-up of

Satake compactification at some ideals defining boundary components. This
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is non-singular projective variety over C if g ≤ 3 (in this case it is the same

as the Delony-Voronoi compactification by Namikawa [16]). If g ≥ 4, we

take a suitable subdivision of the central cone decompositions and we can

get a smooth projective compactification (Namikawa [17, (7.20), (7.26)]).

As in §5, define the torus coordinates {qk}k=1,...,d, d = 1
2g1(g1 + 1), g1 =

g − g0, for the cone decompositions of the space {z3 = tz3 ∈ Mg1(C)}.
Then within π−1(V (g0)), the intersections of divisors im(D[m]) are defined

as common zeros of m coordinates among {qk}k=1,...,d. Remark that inside

π−1(V (g0)) the coordinates {qk} are the only those which can determine

the boundary components. Hence over the g0-th rational boundaries the

number of degenerated coordinates can be at most d = 1
2g1(g1 + 1) in the

toroidal compactification. We get the following:

Lemma 6.1. π−1(V (g0))∩im(D[m]) is non-empty for only m ≤ 1
2g1(g1+

1), g1 = g − g0. Especially the locus iN (D[N ]), N = 1
2g(g + 1) intersects

with only π−1(V (0)).

We have two examples which appear in Namikawa [16] and Nakamura

[15].

Example 1. g = 2.

V2(n)
∗ = V2(n) & V (1) & V (0). Each cone in the Delony-Voronoi (ab-

breviated D-V) decomposition Σ2 of Q+
2,Z is transformed into one of the

followings by the action of GL(2,Z).

σ0 =

{(
0 0

0 0

)}
, σ1 =

{(
0 0

0 λ

)
; λ ≥ 0

}
,

σ2 =

{(
λ1 0

0 λ2

)
; λ1, λ2 ≥ 0

}
,

σ3 =

{(
λ1 + λ2 −λ2

−λ2 λ2 + λ3

)
; λ1, λ2, λ3 ≥ 0

}
.

For Q+
0,Z, Q

+
1,Z ↪→ Q+

2,Z, we can restrict Σ2 on Q+
0,Z,Q

+
1,Z then get Σ0 =

{σ0}, Σ1 = {σ0, σ1}. We have a bilinear form on Q2: Q2 × Q2 → R :

(y, y′) �→ tr(yy′). Now σ3 ∩ Q+
2,Z is generated by(

1 0

0 0

)
,

(
0 0

0 1

)
,

(
1 −1

−1 1

)
,
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hence dual bases in σ̂3 ∩M are(
1 1/2

1/2 0

)
,

(
0 1/2

1/2 1

)
,

(
0 −1/2

−1/2 0

)
.

We take coordinates as

q1 = e

(
z1 + z2
n

)
, q2 = e

(−z2
n

)
, q3 = e

(
z2 + z3
n

)
,

and construct affine torus embeddings:

Tσ3 = Spec C[q1, q2, q3] = {t = (t1, t2, t3)}
⊃ Tσ2 = {t ∈ Tσ3 ; t2 �= 0}
⊃ Tσ1 = {t ∈ Tσ3 ; t1 �= 0, t2 �= 0}
⊃ Tσ0 = {t ∈ Tσ3 ; t1 �= 0, t2 �= 0, t3 �= 0} � T2.

Moreover the orbit for each {σi} is written as

O(σ0) = T2,

O(σ1) = {(t1, t2, 0); t1 �= 0, t2 �= 0},
O(σ2) = {(0, t2, 0); t2 �= 0},
O(σ3) = {(0, 0, 0)}.

We have for instance σ2 ≺ σ3 ⇔ O(σ3) ⊂ O(σ2) etc.

Now we consider the structure of the D-V compactification over a Satake

rational boundary.

(1) π−1(V2(n)) = V2(n).

(2) π−1(V (1)) (g0 = g1 = 1),

OΣ1 =
⋃

σ∩Q+ �=φ,σ∈Σ1

H1 ×C×O(σ)

= H1 ×C×O(σ1) = H×C× {t3 = 0}.

Therefore, in π−1(V (1)) =
⋃
P1(n)\OΣ1 , the number of degenerating coor-

dinates is ≤ 1.
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(3) π−1(V (0)) (g0 = 0, g1 = 2),

OΣ2 =
⋃

σ∩Q+
2 �=φ,σ∈Σ2

O(σ)

=
⋃
{σ2}

O(σ2) ∪
⋃
{σ3}

O(σ3)

=
⋃
{t1 = t3 = 0} ∪

⋃
{t1 = t2 = t3 = 0}.

Here, {σ2} and {σ3} denote the set of GL(2,Z)-transformations of σ2 and σ3

respectively. Hence, in π−1(V (0)) =
⋃
P0(n)\O, the number of degenerating

coordinates is ≤ 3. Also D[2] is a disjoint union of P1’s whose image in Ṽg(n)

intersect with each other at i3(D
[3]) = {points}.

Example 2. g = 3.

V3(n)
∗ = V3(n)&V (2)&V (1)&V (0). Each cone of the D-V decomposition

of Σ3 is transformed into one of the followings by the action of GL(3,Z).

σ0 =


 0 0 0

0 0 0

0 0 0


 , σ1 =


 0 0 0

0 0 0

0 0 λ

 ; λ ≥ 0

 ,
σ2 =


 0 0 0

0 λ1 0

0 0 λ2

 ; λ1, λ2 ≥ 0

 ,
σ3 =


 0 0 0

0 λ1 + λ2 −λ2

0 −λ2 λ2 + λ3

 ; λ1, λ2, λ3 ≥ 0

 ,
σ4 =


 λ1 0 0

0 λ2 0

0 0 λ3

 ; λ1, λ2, λ3 ≥ 0

 ,
σ5 =


 λ4 0 0

0 λ1 + λ2 −λ2

0 −λ2 λ2 + λ3

 ;
λ1, λ2

λ3, λ4
≥ 0

 ,
σ6 =


 λ1 + λ4 −λ1 0

−λ1 λ1 + λ2 −λ2

0 −λ2 λ2 + λ3

 ;
λ1, λ2

λ3, λ4
≥ 0

 ,
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σ7 =


 λ4 + λ5 −λ5 0

−λ5 λ1 + λ2 + λ5 −λ2

0 −λ2 λ2 + λ3

 ;
λ1, λ2, λ3

λ4, λ5
≥ 0

 ,

σ8 =


 λ4 + λ5 + λ6 −λ5 −λ6

−λ5 λ1 + λ2 + λ5 −λ2

−λ6 −λ2 λ2 + λ3 + λ6

 ;
λ1, λ2, λ3

λ4, λ5, λ6
≥ 0

 .
As in the case of g = 2, we consider subdecomposition Σ0 = {σ0}, Σ1 =

{σ0, σ1}, Σ2 = {GL(2,Z)-transformations of σ0, σ1, σ2}.
For each generator of σ8 ∩Q+

3 over Z, 1 0 0

0 0 0

0 0 0

 ,
 0 0 0

0 1 0

0 0 0

 ,
 0 0 0

0 0 0

0 0 1

 ,
 1 −1 0

−1 1 0

0 0 0

 ,
 0 0 0

0 1 −1

0 −1 1

 ,
 1 0 −1

0 0 0

−1 0 1

 ,
the dual bases as in case g = 2 are 1 1/2 1/2

1/2 0 0

1/2 0 0

 ,
 0 1/2 0

1/2 1 1/2

0 1/2 0

 ,
 0 0 1/2

0 0 1/2

1/2 1/2 1

 ,
 0 −1/2 0

−1/2 0 0

0 0 0

 ,
 0 0 0

0 0 −1/2

0 −1/2 0

 ,
 0 0 −1/2

0 0 0

−1/2 0 0

 .
Then we set as coordinates:

q1 = e

(
z1 + z2 + z3

n

)
, q2 = e

(−z2
n

)
, q3 = e

(−z3
n

)
,

q4 = e

(
z2 + z4 + z5

n

)
, q5 = e

(−z5
n

)
, q6 = e

(
z3 + z5 + z6

n

)
.

Now we get an affine torus embedding:

Tσ8 = Spec C[q1, q2, q3, q4, q5, q6] � {t = (t1, t2, t3, t4, t5, t6)}.
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Also the orbits associated with cones are

O(σ0) = T3

O(σ1) = {(t1, t2, t3, t4, t5, 0 ); ti �= 0, i = 1, 2, 3, 4, 5}
O(σ2) = {(t1, t2, t3, 0 , t5, 0 ); ti �= 0, i = 1, 2, 3, 5}
O(σ3) = {(t1, t2, t3, 0 , 0 , 0 ); ti �= 0, i = 1, 2, 3}
O(σ4) = {(0 , t2, t3, 0 , t5, 0 ); ti �= 0, i = 2, 3, 5}
O(σ5) = {(0 , t2, t3, 0 , 0 , 0 ); t2 �= 0, t3 �= 0}
O(σ6) = {(0 , 0 , t3, t4, 0 , 0 ); t3 �= 0, t4 �= 0}
O(σ7) = {(0 , 0 , t3, 0 , 0 , 0 ); t3 �= 0}
O(σ8) = {(0 , 0 , 0 , 0 , 0 , 0 )}.

(1) π−1(V3(n)) = V3(n).

(2) π−1(V (2)) (g0 = 2, g1 = 1),

OΣ1 =
⋃

σ∩Q+
1 ,σ∈Σ1

H× V2,1 ×O(σ)

= H2 × V2,1 ×O(σ1)

= H2 × V2,1 × {t6 = 0}.

Hence in π−1(V (2)) =
⋃
P2(n)\OΣ1 , the number of degenerating coordinates

is ≤ 1.

(3) π−1(V (1)) (g0 = 1, g2 = 2),

OΣ2 =
⋃

σ∩Q+
2 ,σ∈Σ2

H1 × V1,2 ×O(σ)

=
⋃
{σ2}

H1 × V1,2 ×O(σ2) ∪
⋃
{σ3}

H1 × V1,2 ×O(σ3)

=
⋃

H1 × V1,2 × {t4 = t6 = 0} ∪
⋃

H1 × V1,2 × {t4 = t5 = t6 = 0}.

Hence in π−1(V (1)) =
⋃
P1(n)\OΣ2 , the number of degenerating coordinates

is ≤ 3.

(4) π−1(V (0)) (g0 = 0, g1 = 3),

OΣ3 =
⋃

σ∩Q+
3 ,σ∈Σ3

O(σ)
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=
⋃
{σ4}

O(σ4) ∪
⋃
{σ5}

O(σ5) ∪
⋃
{σ6}

O(σ6) ∪
⋃
{σ7}

O(σ7) ∪
⋃
{σ8}

O(σ8)

=
⋃
{t1 = t4 = t6 = 0} ∪

⋃
{t1 = t4 = t5 = t6 = 0}

∪
⋃
{t1 = t2 = t5 = t6 = 0} ∪

⋃
{t1 = t2 = t4 = t5 = t6 = 0}

∪
⋃
{t1 = t2 = t3 = t4 = t5 = t6 = 0}.

Hence in π−1(V (0)) = P0(n)\OΣ3 , the number of degenerating coordinates

is ≤ 6.

Remark 6.2. We can obtain that D[N−1] is a union of P1
C. Indeed

the components of D[N−1] correspond to those N − 1 dimensional cones in

Σg. By the construction of the partial compactification each components of

D[N−1] contains an affine line A1 as Zariski dense subset. Then we obtain

our assertion.

7. Eisenstein series

In this section we review the some basic facts on holomorphic Eisenstein

series. These are used in the proof of main results in §8 and §9.

7.1. Siegel Eisenstein series of higher weights

Let {e0, · · · , er} be the set of all 0-dimensional cusps in Vg(n)
∗, and

choose e0 to be the standard one. Fix an element γi ∈ Γg such that ei = γie0.

Then we have only to construct holomorphic Siegel modular forms of weight

g + 1 for Γg(n) on Hg such that the constant term of its Fourier expansion

at some ei does not vanish. Equivalently we construct holomorphic Siegel

modular forms of weight g + 1 such that Φg
i f = a0(ei) �= 0, here Φi is the

Siegel operator at ei.

We consider Siegel Eisenstein series of weight k for Γg(n) on Hg associ-

ated with each ei. It is defined for k > g + 1, Z ∈ Hg as

Eei(Z; k) =
∑

σ∈Γg(n)∩Pi\Γg(n)

j(γ−1
i σ, Z)−k,

where j(σ, Z) = det(CZ + D), σ =

(
A B

C D

)
∈ Γg(n), Pi = γiP0γ

−1
i ,

and P0 is the stabilizer of e0 in Sp(g,R), that is the standard maximal
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Q-parabolic subgroup:

P0 =

{(
A B

0 D

)
∈ Sp(g,R), A,D ∈ GL(g,R)

}
.

Proposition 7.1. (i) For k > g + 1, the above infinite series is ab-

solutely convergent, and it defines a holomorphic modular form of weight k

for Γg(n). We call this series Siegel Eisenstein series of weight k.

(ii) The constant term of the Fourier expansion of the series at the cusp ei
of Eei(Z; k) does not vanish, and the constant terms at the other cusps ej
not Γg(n)-equivalent to ei are equal to zero.

Proof. Statements for the absolutely convergence and the constant

term of Fourier expansion at ei are well known (Maass [13, §14]). We prove

the last statement. Now we define a relation for elements of Γg.

For N1, N2 ∈ Γg, N1
n∼ N2 ⇔ ∃M ∈ Γg(n)

such that N = N−1
1 MN2 ∈ P0 ∩ Γg.

Then we claim that:

For γi, γj ∈ Γg which are not equivalent to each other and γie0 = ei, γje0 =

ej, the constant term of the Fourier expansion at ej of Eei(Z, k) is equal to

zero. That is,

Φg(
∑

σ∈Γg(n)∩Pi\Γg(n)

j(γ−1
i σ, Z)−k|γj) = 0.

Proof of the claim.

Φg(
∑

σ∈Γg(n)∩Pi\Γg(n)

j(γ−1
i σ, Z)−k|γj) = Φg(j(γj , Z)−k

∑
j(γ−1

i σ, γj〈Z〉)−k)

= lim
λ→∞

∑
j(γ−1

i σγj ,
√
−1λ1g)

−k =
∑

lim
λ→∞

j(γ−1
i σγj ,

√
−1λ1g)

−k.

We put γ−1
i σγj = Nσ =

(
Aσ Bσ
Cσ Dσ

)
∈ Γg (Nσ depends on σ under fixed

γi, γj). Then j(γ−1
i σγj ,

√
−1λ1g) = det(

√
−1λCσ +Dσ) is a polynomial in

λ (including the case of degree 0). And if the degree of this polynomial is
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greater than 0, then we have limλ→∞ |det(
√
−1λCσ+Dσ)| → ∞ as λ→∞.

Hence in the above infinite series the term associated to this Nσ is equal

to zero. Therefore we want to know in which case det(
√
−1λCσ +Dσ) is a

constant independent of λ.

Because Nσ ∈ Γg, we have Cσ
tDσ = Dσ

tCσ for Cσ, Dσ (It means

that Cσ and Dσ make a symmetric pair). Suppose rank Cσ = r, then

we can take U1, U2 ∈ GL(g,Z) such that U1Cσ =

(
C1 0

0 0

)
tU2, where

C1 is a r × r matrix and its determinant is not zero. Write formally as

U1D =

(
D1 D2

D3 D4

)
U−1

2 , then we get U1Cσ
t(U1Dσ) = U1Cσ

tDσ
tU1 =

U1Dσ
t(U1Cσ). This means that U1Cσ and U1Dσ is also a symmetric pair.

In particular, since

(
C1 0

0 0

)(
tD1

tD2
tD3

tD4

)
=

(
D1 D2

D3 D4

)(
tC1 0

0 0

)
,

we get C1
tD1 = D1

tC1 and D3 = 0. Under this consideration, we investi-

gate det(
√
−1λCσ +Dσ) in the followings. Our consideration is separated

into three cases.

(Case 1) rank Cσ = g.

In this case, since det(
√
−1λCσ +Dσ) = detCσ det(

√
−1λ1g +C−1

σ Dσ)

and det(
√
−1λ1g + C−1

σ Dσ) has non-zero degree g-term, we obtain that

|det(
√
−11gCσ +Dσ)| → ∞ as λ→∞.

(Case 2) 0 < rank Cσ = k ≤ g − 1.

First we have

0 �= det((
√
−1λCσ +Dσ)

= detU−1
1 det(

√
−1λ

(
C1 0

0 0

)
tU2 +

(
D1 D2

0 D4

)
U−1

2 ).

where C1 ∈Mk(Z) is of rank k, D2 ∈Mg−k,k(Z), and detD4 �= 0. Moreover

we have that

det(
√
−1λ

(
C1 0

0 0

)
tU2 +

(
D1 D2

0 D4

)
U−1

2 )

= det(
√
−1λ

(
C1 0

0 0

)
tU2U2 +

(
D1 D2

0 D4

)
) detU−1

2 . (∗)
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Here we considerthe matrix tU2U2 =

(
V ∗
∗ ∗

)
, with tV = V ∈ Mk(Z),

for U2 ∈ GL(g,Z). Then the k × k symmetric matrix V is of full rank.

Indeed if V is not invertible then take a nonzero vector v in KerV , and

make w = (v, 0) ∈ Rg. Then twtU2U2w = |U2w|2 = 0, for w �= 0,∈ Rg,

which contradicts to the condition that detU2 �= 0. Therefore we obtain

that

(∗) = det(
√
−1λ

(
C1V ∗

0 0

)
+

(
D1 D2

0 D4

)
)× (nonzero constant)

= det(
√
−1λC1V +D1)× (nonzero constant)

= det(
√
−1λ1k + ∗)× (nonzero constant).

( We remark that detC1V �= 0 in the last equality.)

Thus, since det(
√
−1λ1k + ∗) has a nontrivial term of degree k of λ, the

term |j(Nσ,
√
−1λ1g)

−k| associated with this Nσ vanishes, when λ→∞.

(Case 3) rank Cσ = 0.

This means γ−1
i σγj ∈ P0 ∩Γg. Since σ ∈ Γg(n), it contradicts to that γi

and γj is not equivalent to each other.

These prove the above claim. �

Proof of the Proposition 7.1. Now we take two cusps ei = γie0
and ej = γje0 which are not Γg(n)-equivalent with each other. Suppose

γi
n∼ γj , thus there exists an element M ∈ Γg(n) such that N = γ−1

i Mγj ∈
P0∩Γg. Then we have the following equality for those maximal Q-parabolic

subgroup corresponding to each of ei, ej

Pj = γjP0γ
−1
j =M−1γiNP0N

−1γ−1
i M =M−1PiM,

which contradicts to the choice of ei and ej . Therefore, together with above

claim, the proposition is proved. �

7.2. Eisenstein series of low weight

As far as GrW2NHN (Vg(n),C) is concerned, what we want to obtain is

a holomorphic modular form of weight g + 1. But for k = g + 1, above

infinite series which defines Eei(Z, k) does not converge. Therefore some

modification is needed for above series to make sense. For this purpose we
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consider a series Eei(Z, s; g+1) as below. This infinite series of Z ∈ Hg, s ∈
C is defined as

Eei(Z, s; g + 1) =
∑

σ∈Γg(n)∩Pi\Γg(n)

j(γ−1
i σ, Z)−(g+1)|j(γ−1

i σ, Z)|−s.

This series absolutely converges for Re s > 0, and is known to be mero-

morphically continued to all s-plane (after some modification [22, p.426],

then by a theory of Langlands [12], Arthur [2]). Moreover, we recall some

theorems of Shimura ([22, Theorem (7.1)]).

Theorem 7.2. (Shimura)

(i) If g ≥ 2, Eei(Z, s; g + 1) is holomorphic in s at s = 0, and moreover

Eei(Z, s; g + 1)|s=0 defines a holomorphic function of Z ∈ Hg.

(ii) The same result as in (ii) of Proposition (7.1) is valid for the con-

stant terms of the Fourier expansions of Eei(Z, s; g+1)|s=0 at 0-dimensional

cusps.

Shimura proved this theorem by explicit calculations of the Fourier co-

efficients of some related Eisenstein series at some cusp (image of an inter-

twining operator) and showing its analytic continuation. He also get some

other statement on Eisenstein series (see remarks below). We remark, in

the case of g = 1, Eisenstein series of weight 2 of above type (without

non-trivial character) does not define a holomorphic function of Z ∈ Hg at

s = 0. (This is, in other terms, the residue theorem for a Riemann surface.)

The holomorphy of above Eisenstein series at s = 0 is a property of Siegel

(g ≥ 2) modular forms.

8. Weight filtration of HN (V,C)

Finally we state some results about the graded quotients GrW• HN (Vg(n),

C). N = 1
2g(g + 1) is the dimension of Vg(n). For some related other

results, in particular in the case of g = 2, see also Oda-Schwermer [19].

By the definition of W• on Ω•
Ṽ

(logD), we obtain that WmHN (Vg(n),C) =

0 for m ≤ N, and W2NHN (Vg(n),C) = HN (Vg(n),C). By Deligne [5]

Cor(3.2.17), we also know thatWNHN (Vg(n),C) is the image of the natural

map: HN (Ṽg(n),C) → HN (Vg(n),C).

Theorem 8.1. Assume that g ≥ 2.
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(i) The dimension of the space GrW2NHN (Vg(n),C) is equal to the number of

0-dimensional rational cusps in Vg(n)
∗. The corresponding classes to this

space are constructed by the global automorphic Siegel Eisenstein series of

weight g + 1 for Γg(n) on Hg.

(ii) GrW2N−1H
N (Vg(n),C) = {0}.

Proof. First we prove (i). We consider induced residue map:

Res[N ] : HN (Ṽg(n), Gr
W
N Ω•

Ṽ
(logD)) � H0(D[N ],C)(−N).

In the right hand side of above isomorphism, D[N ] = {points} is a finite

union of points. Hence,

H0(D[N ],C)(−N) =
∐

p∈D[N ]

C(−N) a direct sum of C(−N).

Therefore the Hodge type of this space is only of (N,N), and the whole

space is itself an edge component. Then from Lemma (3.1) we can consider

a restriction of Res[N ] to this subspace:

Res[N ] : GrW2NHN (Vg(n),C) → H0(D[N ],C)(−N),

which defines an isomorphism into its image. Also as in §3, we consider the

map Res[n] on Γ(Ṽg(n),Ω
N
Ṽ

(logD)). By §6, iN (D[N ]) must be all contained

within the fiber of π over 0-dimensional cusps of Vg(n)
∗.

Now we apply Theorem (7.2) to Eei(Z, s = 0; g+1). Then for ẽ ∈ i(D[n])

we obtain that

ẽ-component of Res[N ] Eei(Z, 0 ; g + 1)

=


a0(Eei(Z, 0; g + 1); ei) �= 0, if π(ẽ) = ei

0, if π(ẽ) = ej �= ei

For f ∈ Mg+1(Γg(n)), we have shown that Res[N ]f ∈ ∐ẽ∈i(D[N ]) C(−N) is

determined by the constant terms of Fourier expansions at π(ẽ)’s. On the

other hand, in the above consideration we have attached to each of cusps

in Vg(n)
∗ one Eisenstein series with nonzero residue. Thus we get (i) of the

theorem.
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We want to prove (ii). Recall that D[N ] is a union of boundary compo-

nents of codimensionN−1 of a toric variety of dimensionN = 1
2g(g+1), and

is a union of P1’s (see Remark 6.2. For g = 2, 3, see Igusa [11], Namikawa

[16]). Then in the residue map:

Res[N−1] : HN (Ṽg(n), Gr
W
N−1Ω

•
Ṽ

(logD)) � H1(D[N−1],C)(−N + 1),

we have that the target space:

H1(D[N−1],C)(−N + 1) �
∐

H1(P1,C)(−N + 1) = 0.

Therefore we obtain (ii). �

Remarks.

(1) For lower weight quotient it might be need to consult with properties of

something like Klingen Eisenstein series as nearly holomorphic forms studied

by Shimura.

(2) We know that Fourier coefficients of above Siegel Eisenstein series are all

in Qab by the results of Shimura [22, Theorem (7.1)]. This arithmetic struc-

ture of Fourier coefficients should be compatible with the rational structure

of the de Rham realization of the mixed Hodge structure.

(3) The following is suggested by T.Oda. Start with the exact sequence of

relative cohomology:

· · · → HN (Vg(n),Q) → HN (∂V g(n),Q) → HN+1
c (Vg(n),Q) → · · · ,

where V g(n) is the Borel-Serre compactification of the Siegel modular vari-

ety, ∂V g(n) its boundary, and H∗
c(∗) means the cohomology with compact

support. Then we can consider the above sequence as an exact sequence

of mixed Hodge structure thanks to the theory of mixed Hodge structure

on the cohomology of links (A.H.Durfee and M.Saito [8]). Then we have

that the term HN (Vg(n),Q) has weight N, · · · , 2N . On the other hand

HN+1
c (Vg(n),Q) has weight 2, · · · , N +1. (This is a dual of HN−1(Vg(n),Q)

with weight N − 1, · · · , 2N − 2.) Then the term HN (∂V g(n),Q) has pos-

sible weight 2, · · · , 2N . Hence, for the weight compatibility of above exact

sequence, we conclude that HN (Vg(n),Q) maps surjectively to those spaces

with weights N, · · · , 2N derived from HN (∂V g(n),Q).
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9. An appendix: On a mixed Hodge structure of universal family

over V2(n)

Let A
f→ V2(n) be the universal family of principal polarized abelian

varieties of dimension 2 with level n structure. The f is a proper smooth

morphism and a fiber over Z mod Γ2(n) is the complex torus C2/(1, Z)(Z)4.

Denote by e the canonical 0-section of f . The family A is an open quasi-

projective variety over C of dimension 5. We realize a compactification Ã

of A as a smooth irreducible divisor in Ṽ3(n) − V3(n) (Namikawa [16]). In

terms of §6 example (2), its local defining equation in Ṽ3(n) is given by

{t6 = 0}. It is a smooth compactification of A. We can write Ã−A =
⋃
i Yi

with each Yi a smooth irreducible divisor of Ã. The structure of Y [m] is

following.

m = 0 Y [0] = P̃2(n)\H2 × V2,1 ×O(σ1) = P̃2(n)\H2 × V2,1.

m = 1 Y [1] =
⋃
P̃1(n)\H1 × V1,2 ×O(σ2).

O(σ2) = {t4 = t6 = 0} ⊂ C3 = {(t4, t5, t6)}.

m = 2 Y [2] =
⋃
P̃1(n)\H1 × V1,2 ×O(σ3) ∪

⋃
P̃0(n)\O(σ4).

O(σ3) = {t4 = t5 = t6 = 0} ⊂ C3 = {(t4, t5, t6)},
O(σ4) = {t1 = t4 = t6 = 0} ⊂ C6 = {(t1, t2, t3, t4, t5, t6)}.

m = 3 Y [3] =
⋃
P̃0(n)\O(σ5) ∪

⋃
P̃0(n)\O(σ6),

O(σ5) = {t1 = t4 = t5 = t6 = 0} ⊂ C6,

O(σ6) = {t1 = t2 = t5 = t6 = 0} ⊂ C6.

m = 4 Y [4] =
⋃
P̃0(n)\O(σ7).

O(σ7) = {t1 = t2 = t4 = t5 = t6 = 0} ⊂ C6.

m = 5 Y [5] =
⋃
P̃0(n)\O(σ8),

O(σ8) = {t1 = t2 = t3 = t4 = t5 = t6 = 0}.
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The Y [1] above is a fiber space over V1(n) whose fiber is an extension by

P1’s of 2-copies of an elliptic curve E � C2/(1, z)(Z)2, z mod Γ1(n) ∈ V1(n).

Theorem 9.1. In the above case, we have that

(i) the dimension of the space of GrW10H5(A,C) is equal to the number of

0-dimensional cusps in V2(n)
∗. And its cohomology classes are constructed

by using the global Siegel Eisenstein series of degree two and weight four.

(ii) GrW9 H5(A,C) = {0}.

Proof. (i). Since H0(Y [5],C)(−5) has only edge components, we can

restrict residue map on GrW10H5(A,C) by Lemma (3.1).

Res[5] : GrW10H5(A,C) → H0(Y [5],C)(−5).

We may consider Res[5] (the same symbol as above) the canonical map from

Γ(Ã, Ω5
A(logY )) to H0(Y [5],C)(−5) as before (Lemma (3.2)).

We first consider Γ(A,Ω5
A). For f is a smooth morphism, one has an

exact sequence

0 → f∗Ω1
V2(n) → Ω1

A → Ω1
A/V → 0.

Then Ω5
A �

3∧
f∗Ω1

V⊗
2∧

Ω1
A/V � f∗Ω3

V⊗
2∧

Ω1
A/V . Therefore Γ(A,Ω5

A) �

Γ(V, f∗Ω5
A) � Γ(V,Ω3

V ⊗ f∗
2∧

Ω1
A/V ). Since each fiber of f is an abelian

variety, its space of invariant differential is identified with the cotangent

space at e. Hence we have f∗e∗Ω1
A/V � Ω1

A/V . Moreover as f is proper

and its (geometric) fiber is connected, f∗OA � OV . Then we conclude the

following isomorphisms:

f∗Ω
1
A/V � f∗(f∗e∗Ω1

A/V ⊗OA) � e∗Ω1
A/V . (∗)

Here ωA/V :=
2∧
e∗Ω1

A/V � e∗
2∧

Ω1
A/V is an invertible sheaf which defines

an automorphic factor (Chai-Faltings [4]). Since we know Ω3
V � ω⊗3

A/V by

Kodaira-Spencer map, Γ(V, Ω3
V ⊗ ωA/V ) is isomorphic to the holomorphic

Siegel modular forms of weight 4: M4(Γ2(n)). Because every element in

M4(Γ2(n)) extends holomorphically to rational boundaries (Koecher princi-

ple), by above isomorphism (∗), one has Γ(Ã,Ω5
Ã
(logY )) � M4(Γ2(n)). As
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in §5, take ω0 = f(z1, z2, z4)dz1∧dz2∧dz4∧dζ1∧dζ2 for ω ∈ Γ(Ã,Ω5
Ã
(logY )).

Here zi, i = 1, 2, 4 are coordinates in V2(n), ζ1 = z3 and ζ2 = z5 are coordi-

nates in fiber variety (use the same symbol in §6 example 2). The function

f(Z) is in M4(Γ2(n)). In terms of the local coordinates for the smooth

compactification given in §6 example 2, we have the following description

of ω0.

ω0 = C · {a0(f) +
∑
{T}
aT (f)(q1q3)

t1 · qt1+t4−2t2
2 · (q4q5)t4}

5∧
i=1

dqi
qi
,

where q1, · · · , q5 are defined as in the example 2, §6 and T =

(
t1 t2
t2 t4

)
are

half integral semipositive matrices. Then ẽi (∈ Y [5])-component of Res[5]ω

is equal to a0(f): the constant term of a Fourier expansion of f(Z) at a

0-dimensional Satake boundary.

We consider the Siegel Eisenstein series of weight 4:

Eei(Z; 4) =
∑

σ∈Pi∩Γ2(n)\Γ2(n)

j(γ−1
i σ, Z)−4.

This series absolutely converges and satisfies the properties of Proposition

(7.1). Thus (i) follows as before in the case of modular variety.

We can prove (ii) in the same way as in §8, Theorem (8.1). Indeed, Y [4]

is a union of P1’s, hence H5(Ã,GrW4 Ω•
A(logY )) � H1(Y [4],C)(−4) = 0,

which implies (ii) immediately.

We remark that the Leray spectral sequence for A
f→ V2(n),

Ep,q
2 = Hp(V2(n), R

qf∗Q) ⇒ Hp+q(A,Q),

degenerates at E2-terms (Liebermann’s trick). �

Remark. To see the situation concretely we discussed only the case

of g = 2 in this section. However after some more work we will also ob-

tain similar results for a Hodge structure of the universal family Ag over

Vg(n), g ≥ 2. The results are the followings.

(i) dimGrW2MHM (Ag,C) = the number of 0-dimensional cusps in Vg(n)
∗ .

(ii) GrW2M−1H
M (Ag,C) = 0.
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Here M = 1
2g(g + 1) + g is the dimension of Ag. The proof is completely

similarly as the case of g = 2.
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