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Minimal Discrepancy for

a Terminal cDV Singularity Is 1

By Dimitri Markushevich

Abstract. An answer to a question raised by Shokurov on the
minimal discrepancy of a terminal singularity of index 1 is given. It
is proved that the minimal discrepancy is 1 (it is 2 for a non-singular
point and 0 for all other canonical singularities of index 1). A rough
classification of terminal singularities of index 1 based on finding certain
low degree monomials in their equations, and the toric techniques of
weighted blow ups are used. This result has been generalized to terminal
singularities of index r > 1 by Y.Kawamata; his theorem states that
the minimal discrepancy is 1/r.

This note provides a proof for the following fact cited by Shokurov in

[Sho], Remark (4.10.2), with a reference to my verbal communication.

Theorem 0.1. Let (Y, P ) be a three-dimensional isolated compound

Du Val (cDV) singularity. For any resolution π : (Ỹ , P ) −→ (Y, P ), let E =⋃i=m
i=1 Ei denote its exceptional locus, (E = π−1(P )), Ei(i = 1, . . . ,m) being

its irreducible components. The discrepancy coefficients aj are determined

by the formula

KỸ = π∗KY +
∑

codimỸ Ej=1

ajEj ,

and when codimỸ E is 1

mdc(π) = min
codimỸ Ej=1

aj

denotes the minimal discrepancy coefficient of π. Then there exists a res-

olution π with at least one exceptional component of codimension 1, such

that mdc(π) = 1.
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A generalization of this theorem to terminal singularities of index r > 1

was obtained by Kawamata [Kaw]. It states that any resolution contains

an exceptional divisor of discrepancy 1/r.

1. Reminder on terminal singularities

Definition 1.1. A cDV singularity is a germ of an algebraic variety

(or of an analytic space) (Y, P ) which is formally equivalent to the germ of

a hypersurface singularity ({f = 0}, 0) in the affine space A4, where

f(t, x, y, z) = fXn(t, x, y) + zg(t, x, y, z),(1.1)

where Xn stands for An, Dn or En, and fXn is one of the following polyno-

mials:
fAn = t2 + x2 + yn+1 (n ≥ 1)

fDn = t2 + x2y + yn−1 (n ≥ 4)

fE6 = t2 + x3 + y4

fE7 = t2 + x3 + xy3

fE8 = t2 + x3 + y5 .

Let us order the symbols An, Dk, El by

An < Dk < El ∀ n ≥ 1 ∀ k ≥ 4 ∀ l = 6, 7, 8

Xn < Xm ∀ n < m ∀ X = A,D,E.

The singularity (Y, P ) is said to be cXn if Xn is minimal in a representation

of (Y, P ) by equation (1.1).

According to Reid [Reid-1], the isolated cDV-points are exactly terminal

singularities of index 1; this implies in particular that the minimal discrep-

ancy coefficient is positive in any resolution having at least one exceptional

divisor. Remark, that the singularities fXn = 0, where Xn runs over the

symbols An(n ≥ 1), Dn(n ≥ 4), E6, E7, E8, are exactly canonical singular-

ities in dimension 2 up to analytic equivalence; ‘canonical’ means that all

the discrepancies aj are non-negative. Look [Reid-2] for further properties

of these and related classes of singularities. We state here for future use a

criterion for a hypersurface singularity to be canonical.

Theorem 1.2. A necessary condition for a hypersurface {f = 0} ⊂
kn, f =

∑
amxm, to have a canonical singularity at zero is that the point
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(1, . . . , 1) lies above the Newton diagram ∆(f) of the function f . The

condition is also sufficient provided f is a non-degenerate series in the

sense of Khovanskĭı, that is for any face ∆ ≺ ∆(f), the polynomial f∆ =∑
m∈∆ amxm defines a non-singular (maybe empty) hypersurface in (k∗)n.

Proof. See [Mar-2], Theorem 3, and also [Reid-2] for the “necessary”

part. In fact, the sufficiency follows immediately from the structure of the

Khovanskĭı embedded toric resolution of a non-degenerate singularity [Kho]:

in any coordinate patch of this resolution the exceptional locus Γ is either

empty, or its irreducible components Γ satisfy the hypotheses of Proposition

2.3 below, and dΓ = 1 since the intersection Γ ∩ (k∗)n is non-singular by

the non-degeneracy assumption. So the non-negativity of the discrepancy

aΓ implies aα ≥ 0 (in the notation of Proposition 2.3), which is equivalent

to saying that the point (1, . . . , 1) lies above the face ∆. �

Proposition 1.3. Let (Y, P ) be an isolated cDV singularity. Then it

is formally equivalent to a hypersurface singularity ({f = 0}, 0), where f is

one of the following polynomials:

(i) f = t2 + x2 + y2 + zn (n ≥ 2) if (Y, P ) is cA1;

(ii) f = t2 + x2 + g(y, z), where j2g = 0, if (Y, P ) is cAn (n ≥ 2);

(iii) f = t2 + g(x, y, z), where j2g = 0 and g3(x, y, z) is not divisible by

a square of a linear form, if (Y, P ) is cD4;

(iv) f = t2 + x2y + g(x, y, z), where j3g = 0, if (Y, P ) is cDn (n ≥ 5);

(v) f = t2 + x3 + g(x, y, z), where j3g = 0 and j5g = g4 + g5 contains at

least one of the monomials

z4, yz3, y2z2, z5, yz4, y2z3, xz3, xyz2(1.2)

with a non-zero coefficient, if (Y, P ) is cEn (n = 6, 7, 8).

(We denote by jkg the k-th jet of g, and by gk the homogeneous compo-

nent of degree k of g).

Proof. (i), (ii), (iii) and (iv) are easy consequencies of the Morse

Lemma and Definition 1.1. (v) follows from the following Proposition. �

Proposition 1.4. Assume that the equation f = 0, where

f = t2 + x3 + g(x, y, z) (j3g = 0)(1.3)
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defines an isolated singularity at 0 ∈ A4. Then it is a cEn point, if and only

if g contains, possibly after a permutation of y, z, one of the monomials

(1.2).

Proof. For reader’s convenience, I reproduce the proof given in [Mar-

1]; see also Corollary 3 in [Mar-2]. �

Sufficiency . By a change of variables y → y + az, one can reduce the

problem to the case when g contains one of the monomials z4, xz3, z5. If

the coefficient of z4 is non-zero, then after a homothety, we have

t2 + x3 + g(x, 0, z) = t2 + x3 + z4 + η(t, x, z),(1.4)

where the exponents of all the monomials of η lie above the Newton diagram

of fE6(t, x, z) = t2 + x3 + z4. By Lemma in Sect. 2 of [Mar-2], the function

(1.4) is formally equivalent to fE6 , hence (1.3) defines a cDV singularity

whose hyperplane section y = 0 is E6, hence it is of type ≤ cE6. As it

is neither cAn, nor cDn, it is cE6. The cases when g contains the sum

c1z
4 + c2xz

3 + c3z
5 with c1 = 0, c2 �= 0 or c1 = c2 = 0, c3 �= 0 are considered

in a similar way.

Necessity . Suppose that all the monomials (1.2) and those obtained by

the permutation y ↔ z have zero coefficients in g. Then f has the following

form:

f = t2 + x3 +
5∑

k=4

∑
a + b + c = k

a ≥ 6 − k

Aabcx
aybzc + f>5(x, y, z)(1.5)

We should verify that the generic section of the hypersurface f = 0 by

a plane u = 0, where u = α1t + α2x + α3y + α4z is a linear form, is a

non-canonical singularity. Apply the coordinate change t → t, x → x, y →
1
α3

u, z → z in (1.5). In new coordinates,

f = t2 + x3 +
∑
k≥4

∑
a + b + c + d = k

a ≥ max{0, 6 − k}

Aabcdx
aybzctd(1.6)
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The hyperplane section u = 0 becomes y = 0 in new coordinates, and

substituting y = 0 into (1.6), we obtain the surface singularity φ(t, x, z) = 0,

where

φ = t2 + x3 +
∑
k≥4

∑
a + c + d = k

a ≥ max{0, 6 − k}

Aa0cdx
azctd.(1.7)

Hence, there exists a face ∆ of the Newton diagram of f spanned by the

exponents of three monomials t2, x3 and xazctd such that Aa0cd �= 0. Let

w = (w1, w2, w3) be the normal of ∆ normalized so that < w,m >= 1 for

m ∈ ∆. Then we have w1 = 1/2, w2 = 1/3, w3 = 1
c (1 − a

3 − d
2). As w3

should be positive, we have very few possibilities for the values of a, d. In

the case when a = d = 0, we have k = a + c + d ≥ 6, hence c = k ≥ 6, and

|w| = w1 + w2 + w3 ≤ 1
2 + 1

3 + 1
6 = 1. This is equivalent to say that the

point (1, . . . 1) lies on or under ∆, hence, by Theorem 1.2, the singularity

is non-canonical. If d = 1, a = 0, then k ≥ 6, c = k − 1 ≥ 5, and w3 ≤ 1
10 .

If a = 1, d = 0, we have k ≥ 5, and w3 ≤ 2
3c ≤ 1

6 . If a = 1, d = 1, we

have k ≥ 5, c = k − 2 ≥ 3, and w3 ≤ 1
6c ≤ 1

18 . If a = 2, d = 0, then

k ≥ 4, c ≥ 2, and w3 ≤ 1
3c ≤ 1

6 . In all the cases, |w| ≤ 1, hence the

singularity is non-canonical.

2. Weighted blow ups

We fix the lattice N = Zn ⊂ V = Rn and the coordinate octant τ =

Rn
+ = {(y1, . . . , yn) ∈ Rn|yi ≥ 0 ∀ i}. Then the affine space An can be

thought of as the toric variety

Xτ = XV,N,τ := Speck[τ∗ ∩N∗],

where τ∗, N∗ denote the dual objects in the dual R-vector space W = V ∗ �
Rn:

M = N∗ = {w ∈ W |w(N) ⊂ Z}
τ∗ = {w ∈ W |w|τ ≥ 0}.

See, e.g. [Da] for more details on toric varieties.

Definition 2.1. Let α = (α1, . . . , αn) ∈ N ∩ Int (τ) be a primitive

lattice vector in the interior of τ . The weighted blow up σα : An
α −→ An is

the toric morphism defined by the subdivision of the standard coordinate
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octant τ into a minimal fan having the ray R+ ·α as one of its edges. The

n-dimensional cones of this fan are

Σn = {< α, e2, . . . , en >,< e1, α, . . . , en >, . . . , < e1, e2, . . . , α >},

and the fan itself is the union of Σn and the set of all the faces of the cones

from Σn.

The discrete valuation vα = ordEα of the function field k(An) =

k(y1, . . . yn) associated to the prime exceptional divisor Eα of σα is given by

the formula

vα(ym) =< α,m >,

where m ∈ M, ym = ym1
1 · · · ymn

n , and < , > denotes the natural coupling

between M and N . For a function f =
∑

m∈M amym we have

vα(f) = min
am �=0

vα(xm) = min
am �=0

< α,m > .(2.1)

Let Y = {f = 0} be a hypersurface in An, and Yα ⊂ An
α its proper

transform in An
α. Let Γ be any component of Yα ∩ Eα of dimension n − 2

such that Yα is normal at the generic point of Γ. Then Eα is Cartier at

the generic point of Γ, and the multiplicity d = dΓ in Eα|Yα = dΓ is well

defined. Let ṽΓ be the valuation on k(Yα) induced by vα:

ṽΓ(h) = min
h̃|Yα=h,h̃∈k(An

α)
vα(h̃), h ∈ k(Yα).

Then we have

Lemma 2.2. ṽΓ(h) =
[

1
dΓ

vΓ(h)
]
.

Proof. Let t be a local parameter of OYα,Γ, and z that of OAα,Eα
.

One can choose z in such a way that vz = tdΓ with v invertible in OAα,Γ.

For any h ∈ k(Yα) we can write h = utk with u invertible in OAα,Γ, then

k = vΓ(h), and we are done. �

Now, let

ω0 = resY

(
dy1 ∧ . . . ∧ dyn

f

)
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be a base of Γ(Y, ωY ). The valuation vα, and hence ṽΓ, extends in an obvious

way to the canonical differentials. We have

Proposition 2.3. If Γ is not a toric subvariety of An
α, then the fol-

lowing formula holds:

vΓ(σ∗
αω0) = aαdΓ,

where σ∗
αω0 is the lift of ω0 to the weighted blow up, aα = −vα(f) + |α| − 1,

and |α| = α1 + . . . + αn.

Proof. It is well-known that the form of the canonical differential

ν =
dy1

y1
∧ . . . ∧ dyn

yn

is invariant up to a multiplicative constant under toric changes of variables.

This implies that ordDν = −1 for any toric divisor D, in particular, for

D = Eα we have vα(ν) = −1. Hence

vα

(
dy1 ∧ . . . ∧ dyn

f

)
= −vα(f) + vα(y1 · · · yn) + vα(ν) = aα.

Now, let Xσ � (A1 \ {0})n−1 ×A1 ⊂ XΣ be the open subset corresponding

to the one-dimensional cone σ = R+ ·α ∈ Σ. The exceptional divisor

Eα ∩Xσ = (A1 \ {0})n−1 is given by zn = 0. We can choose any coordinate

system z1 = xm(1)
, . . . , zn = xm(n)

associated to a basis of M of the following

form: m(1), . . . ,m(n−1) is a basis of M∩α⊥, and m(n) ∈ Intσ∗∩M completes

it to a basis of M . Then

f = zNn f0(z1, . . . , zn), N = vα(f),

f0(z1, . . . , zn) = g0(z1, . . . , zn−1) + zng1(z1, . . . , zn−1) + . . .

so, Yα is defined by the equation f0 = 0. As Xσ∩{zn = 0} is an open subset

of Eα whose complement in Eα is a union of toric subvarieties, we see that,

by our hypotheses, the intersection

Eα ∩ Yα ∩Xσ = {zn = g0(z1, . . . , zn−1) = 0} ⊂ (A1 \ {0})n−1

is non-empty and contains a component Γ of multiplicity dΓ. We have

dy1 ∧ . . . ∧ dyn
f

= u
z
−N+|α|−1
n

f0
dz1 ∧ . . . ∧ dzn
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with u invertible on Xσ, which implies the result. �

Remark 2.4. If the hyperplane H = {w ∈ W | < α,m >= vα(f)}
contains a (n − 1)-dimensional face of the Newton diagram of f , then all

the components of Eα ∩ Yα are non-toric.

3. Proof of Theorem 0.1

Let (Y, P ) = ({f = 0}, 0) be an isolated cDV singularity defined by one

of the equations (i)–(v) of Proposition 1.3. We will use the notations of

Section 2 in the case n = 4 with coordinates (y1, y2, y3, y4) = (t, x, y, z).

Definition 3.1. A vector α ∈ N ∩ Int τ is called an admissible weight

for the equation f , if Eα ∩Yα contains at least one simple non-toric compo-

nent Γ and aα = −vα(f) + |α| − 1 = 1.

If α is admissible, then Y is normal at the generic point of Γ, dΓ = 1,

and by Proposition 2.3, we have vΓ(σ∗
αω0) = 1. But the orders of σ∗

αω0 on

prime exceptional divisors are exactly the discrepancy coefficients, so for

the partial resolution σα : Yα −→ Y we have an exceptional divisor Γ with

discrepancy aΓ = 1. Then any resolution of Y which dominates σα has an

exceptional divisor of discrepancy 1.

The following theorem gives a list of admissible weights for all the cDV

singularities.

Theorem 3.2. The following weights are admissible for the singularity

(Y, P ) defined by one of the equations (i)–(v) of Proposition 1.3, after an

eventual linear change of coordinates (y2, y3, y4):

(1) α = (1, 1, 1, 1) in the case cAn (n ≥ 1);

(2) α = (2, 1, 1, 1) in the case cD4;

(3) α = (2, 1, 2, 1) in the case cDn (n ≥ 5);

(4) α = (3, 2, 1, 2) in the case cEn, if f does not contain any one of the

monomials y4
3, y

5
3;

(5) α = (2, 2, 1, 1) in the case cEn, if g4(0, y3, y4) �= 0;

(6) α = (3, 2, 1, ε) with ε =1 or 2 in the case cEn, if g4(0, y3, y4) = 0

and g5 contains y5
3.
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Proof. (1) f = t2 +x2 + y2 + zn (n ≥ 1) or f = t2 +x2 + g(y, z) with

j2g = 0; α = (1, 1, 1, 1). Make an ordinary blow up σ = σ(1,1,1,1) : Ã4 −→
A4:

y1 = z4z1, y2 = z4z2, y3 = z4z3, y4 = z4 .

We have:

σ∗f = zN4 f0, N = vα(f) = 2, |α| = 4, aα = −vα(f) + |α| − 1 = 1,

f0(z1, z2, z3, z4) = z2
1 + z2

2 + z2
3 + zn−2

4 or z2
1 + z2

2 + z4g̃(z3, z4),

Eα ∩ Yα = {z2
1 + z2

2 + z2
3 = z4 = 0} or {z2

1 + z2
2 = z4 = 0}

In the first case the last intersection is a simple irreducible non-toric divisor,

and in the second it is the union of two simple irreducible non-toric divisors

Γ1 ∪ Γ2.

(2) f = y2
1 + g(y2, y3, y4), g = g3 + g4 + . . . , g3 is not divisible by the

square of a linear form; α = (2, 1, 1, 1). Look at the open subset Xσ ⊂ A4
α

defined in the proof of Proposition 2.3 and choose coordinates on Xσ as

indicated there, for example,

z1 = y1y
−2
2 , z2 = y2y

−1
3 , z3 = y3y

−1
4 , z4 = y2 .

We have:

σ∗
αf = zN4 f0, N = vα(f) = 3, |α| = 5, aα = −vα(f) + |α| − 1 = 1,

f0(z1, z2, z3, z4) = g3(1, z
−1
2 , z−1

2 z−1
3 ) + z4(z

2
1 + g4(1, z

−1
2 , z−1

2 z−1
3 )) + . . . ,

Xσ ∩ Eα ∩ Yα = {g3(1, z
−1
2 , z−1

2 z−1
3 ) = z4 = 0}.

The intersection is empty iff g3(y2, y3, y4) = y2y3y4. In this case all the

components of Eα ∩ Yα are toric, and we should apply a linear change of

coordinates, say y2 → y2, y3 → y3, y4 → y3 + y4, and repeat the same

construction. Then the above intersection will contain a simple component

Γ = {1 + z−1
3 = z4 = 0}.

(3) f = y2
1 + y2

2y3 + g(y2, y3, y4), g = g4 + g5 + . . .; α = (2, 1, 2, 1). We

choose

z1 = y1y
−2
2 , z2 = y1y

−1
3 , z3 = y2y

−1
4 , z4 = y2 .

We have:

σ∗
αf = zN4 f0, N = vα(f) = 4, |α| = 6, aα = −vα(f) + |α| − 1 = 1,

f0(z1, z2, z3, z4) = z2
1 + z1z

−1
2 + g4(1, 0, z

−1
3 ) + z4g̃(z1, z2, z3),

Xσ ∩ Eα ∩ Yα = {z2
1 + z1z

−1
2 + g4(1, 0, z

−1
3 ) = z4 = 0}.
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This intersection is non-empty and reduced irreducible independently of

the vanishing or non-vanishing of g4(1, 0, z
−1
3 ). If g4(1, 0, z

−1
3 ) = 0, then the

invertible factor z1 cancels out and we have Xσ ∩ Eα ∩ Yα = {z1 + z−1
2 =

z4 = 0}.
(4) f = y2

1 + y3
2 + g(y2, y3, y4), j3g = 0, and g does not contain the

monomials y4
3, y

5
3; α = (3, 2, 1, 2). We choose

z1 = y1y
−3
3 , z2 = y2y

−2
3 , z3 = y2y

−1
4 , z4 = y3 .

We have:

σ∗
αf = zN4 f0, N = vα(f) = 6, |α| = 8, aα = −vα(f) + |α| − 1 = 1,

f0(z1, z2, z3, z4) = z2
1 + z3

2 + c1z
2
2 + c2z2 + c3z

2
2z

−1
3

+c4z2z
−1
3 + c5z

2
2z

−2
3 + c6,

where

c1y
2
2y

2
3 + c2y2y

4
3 + c3y2y

2
3y4 + c4y

4
3y4 + c5y

2
3y

2
4 + c6y

6
3 = gN,α(y2, y3, y4)

is the α-principal part of g, and

Xσ ∩ Eα ∩ Yα = {z2
1 + z2(z

2
2 + (c1 +

c3

z3
+

c5

z2
3

)z2 + c2 +
c4

z3
) + c6 = z4 = 0}.

This intersection is non-empty and reduced irreducible because all its slices

{z3 = 0} are. Indeed, the equation z2
1 + z2(z

2
2 + Az2 + B) + C = 0 is

irreducible for any A,B,C ∈ k.

(5) f = y2
1 + y3

2 + g(y2, y3, y4), j3g = 0, g4(0, y3, y4) �= 0; take α =

(2, 2, 1, 1). Choose coordinates

z1 = y1y
−1
2 , z2 = y1y

−2
3 , z3 = y3y

−1
4 , z4 = y3 .

We have:

σ∗
αf = zN4 f0, N = vα(f) = 4, |α| = 6, aα = −vα(f) + |α| − 1 = 1,

f0(z1, z2, z3, z4) = z2
2 + z−3

1 z3
2z

2
4 + g4(0, 1, z

−1
3 ) + z4g̃(z1, z2, z3, z4),

Xσ ∩ Eα ∩ Yα = {z2
2 + g4(0, 1, z

−1
3 ) = z4 = 0} .

The last intersection has one or two irreducible components of multiplicity

1.



Minimal Discrepancy 455

(6) f = y2
1 + y3

2 + g(y2, y3, y4), j3g = 0, g4(0, y3, y4) = 0, g5 contains y5
3;

take α = (3, 2, 1, 1). Choose coordinates

z1 = y1y
−3
3 , z2 = y2y

−2
3 , z3 = y3y

−1
4 , z4 = y3 .

Remind, that in the case cEn we should suppose that g contains one of the

monomials (1.2). So,

g5(0, y3, y4) =
5∑

i=0

ciy
5−i
3 yi4, c0 �= 0,

and at least one of the coefficients c3, c4, c5 is different from 0. We have:

σ∗
αf = zN4 f0, N = vα(f) = 5, |α| = 7, aα = −vα(f) + |α| − 1 = 1,

f0(z1, z2, z3, z4) = z2
1z4 + z3

2z4 +
∑5

i=0 ciz
−i
3 + z2

∑3
i=0 c

′
iz

−i
3

+z4g̃(z1, z2, z3, z4),

Xσ ∩ Eα ∩ Yα = {∑5
i=0 ciz

−i
3 + z2

∑3
i=0 c

′
iz

−i
3 = z4 = 0} .

The above conditions on ci imply that the intersection is always non-empty.

But it may be multiple. There are no components of multiplicity 1 only if

c′i = 0 (i = 0, 1, 2, 3) and:

g5(0, y3, y4) = yk3 (y3 − γ1y4)
5−k, γ1 �= 0 (k = 0, 1, 2, 3),

or g5(0, y3, y4) = y3(y3 − γ1y4)
2(y3 − γ2y4)

2, γ1 �= 0, γ2 �= 0, γ1 �= γ2,

or g5(0, y3, y4) = (y3 − γ1y4)
3(y3 − γ2y4)

2, γ1 �= 0, γ2 �= 0, γ1 �= γ2.

In all the cases the change of variables y3 → y3, y4 → y3 − γ1y4 brings us

to the case (4), in which the existence of a simple non-toric component has

been verified for the weight α = (3, 2, 1, 2).

Thus, we can suppose that the polynomial defining Yα in Xσ ∩ Eα has

a simple factor of the form 1− γ1z
−1
3 , giving rise to the wanted component

of multiplicity 1. �
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