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Minimal Discrepancy for

a Terminal cDV Singularity Is 1

By Dimitri MARKUSHEVICH

Abstract. An answer to a question raised by Shokurov on the
minimal discrepancy of a terminal singularity of index 1 is given. It
is proved that the minimal discrepancy is 1 (it is 2 for a non-singular
point and 0 for all other canonical singularities of index 1). A rough
classification of terminal singularities of index 1 based on finding certain
low degree monomials in their equations, and the toric techniques of
weighted blow ups are used. This result has been generalized to terminal
singularities of index r > 1 by Y.Kawamata; his theorem states that
the minimal discrepancy is 1/r.

This note provides a proof for the following fact cited by Shokurov in
[Sho|, Remark (4.10.2), with a reference to my verbal communication.

THEOREM 0.1. Let (Y, P) be a three-dimensional isolated compound
Du Val (¢DV) singularity. For any resolution w : (Y, P) — (Y, P), let E =
UIE™ E; denote its exceptional locus, (E = n=*(P)), Ei(i = 1,...,m) being
its irreducible components. The discrepancy coefficients a; are determined
by the formula

Kf/ =71"Ky + Z CLjEj
codimg E;=1

and when codimf,E s 1

mde(m) =  min
codimy E;=1

denotes the minimal discrepancy coefficient of w. Then there exists a res-
olution ™ with at least one exceptional component of codimension 1, such
that mdc(m) = 1.
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A generalization of this theorem to terminal singularities of index r > 1
was obtained by Kawamata [Kaw]. It states that any resolution contains
an exceptional divisor of discrepancy 1/r.

1. Reminder on terminal singularities

DEFINITION 1.1. A c¢DV singularity is a germ of an algebraic variety
(or of an analytic space) (Y, P) which is formally equivalent to the germ of
a hypersurface singularity ({f = 0},0) in the affine space A%, where

(11) f(t,SC,y,Z) :an(t,a:,y)—l—zg(t,x,y,z),

where X, stands for A,, D, or E,, and fx, is one of the following polyno-
mials:

fAn :t2+x2+yn+1 (nz 1)

fo, = +a?y+y" ! (n>4)

fos =2+ a3+ 4

fE'7 = t2 +$3 +$y3

fos =1 +2° +y°.

Let us order the symbols A,, Dy, E; by

A, <Dy <E Vn>1Vk>4Y1=6,7,8
X< Xm Vn<mVX=AD,E.

The singularity (Y, P) is said to be c¢X,, if X, is minimal in a representation
of (Y, P) by equation (1.1).

According to Reid [Reid-1], the isolated cDV-points are exactly terminal
singularities of index 1; this implies in particular that the minimal discrep-
ancy coefficient is positive in any resolution having at least one exceptional
divisor. Remark, that the singularities fx, = 0, where X,, runs over the
symbols A,(n > 1), D,(n > 4), Eg, E7, Eg, are exactly canonical singular-
ities in dimension 2 up to analytic equivalence; ‘canonical’ means that all
the discrepancies a; are non-negative. Look [Reid-2| for further properties
of these and related classes of singularities. We state here for future use a
criterion for a hypersurface singularity to be canonical.

THEOREM 1.2. A necessary condition for a hypersurface {f = 0} C
K", f = > amzx™, to have a canonical singularity at zero is that the point
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(1,...,1) lies above the Newton diagram A(f) of the function f. The
condition is also sufficient provided f is a non-degenerate series in the
sense of Khovanskit, that is for any face A < A(f), the polynomial fan =
Y omeA amx™ defines a non-singular (maybe empty) hypersurface in (k*)".

PROOF. See [Mar-2], Theorem 3, and also [Reid-2] for the “necessary”
part. In fact, the sufficiency follows immediately from the structure of the
Khovanskii embedded toric resolution of a non-degenerate singularity [Kho|:
in any coordinate patch of this resolution the exceptional locus I' is either
empty, or its irreducible components I' satisfy the hypotheses of Proposition
2.3 below, and dpr = 1 since the intersection I' N (k*)™ is non-singular by
the non-degeneracy assumption. So the non-negativity of the discrepancy
ar implies a, > 0 (in the notation of Proposition 2.3), which is equivalent
to saying that the point (1,...,1) lies above the face A. O

PropoOSITION 1.3.  Let (Y, P) be an isolated cDV singularity. Then it
is formally equivalent to a hypersurface singularity ({f = 0},0), where f is
one of the following polynomials:

(i) f=t2+ 22+ 92+ 2" (n>2)if (Y,P) is cAy;

(ii) f =t* + 2% + g(y, ), where jog = 0, if (Y, P) is cA, (n > 2);

(iii) f = t> + g(z,y, 2), where jog = 0 and g3(z,y, 2) is not divisible by
a square of a linear form, if (Y, P) is cDy;

(iv) f =12+ 2%y + g(z,y, 2), where jsg = 0, if (Y, P) is cD,, (n > 5);

() f=t>+23 4 g(x,y,2), where jsg = 0 and jsg = g4 + g5 contains at
least one of the monomials

3

(12) 24,y23,y22’2,25,y24,y22 756237563/'22

with a non-zero coefficient, if (Y, P) is cE, (n =6,7,8).
(We denote by jrg the k-th jet of g, and by gi the homogeneous compo-
nent of degree k of g).

Proor. (i), (ii), (iii) and (iv) are easy consequencies of the Morse
Lemma and Definition 1.1. (v) follows from the following Proposition. O

PROPOSITION 1.4. Assume that the equation f =0, where

(1.3) f=t+2°+g(z,y,2) (jsg=0)
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defines an isolated singularity at 0 € A*. Then it is a cE, point, if and only
if g contains, possibly after a permutation of y,z, one of the monomials

(1.2).

PRrROOF. For reader’s convenience, I reproduce the proof given in [Mar-
1]; see also Corollary 3 in [Mar-2]. O

Sufficiency. By a change of variables y — y + az, one can reduce the
problem to the case when ¢ contains one of the monomials 24, z23, 2%, If
the coefficient of z* is non-zero, then after a homothety, we have

(1.4) 2+ a3+ g(x,0,2) = 2 + 23 + 2 F(t, z, 2),

where the exponents of all the monomials of n lie above the Newton diagram
of fgs(t,r,2) =t>+ 23 + 2*. By Lemma in Sect. 2 of [Mar-2], the function
(1.4) is formally equivalent to fg,, hence (1.3) defines a ¢DV singularity
whose hyperplane section y = 0 is Fg, hence it is of type < cFg. As it
is neither cA,, nor cD,, it is cEg. The cases when ¢ contains the sum
c12t + w23 +e32° with ¢p = 0,¢0 # 0 or ¢1 = ¢ = 0,¢3 # 0 are considered
in a similar way.

Necessity. Suppose that all the monomials (1.2) and those obtained by
the permutation y <> z have zero coefficients in g. Then f has the following

form:
5
(15) f=t+2"+) > Agpez®y’ 2" + fo5(2,y, 2)
=4 at+b+e=k
a>6-—k

We should verify that the generic section of the hypersurface f = 0 by
a plane u = 0, where u = a1t + asx + asy + aqz is a linear form, is a
non-canonical singularity. Apply the coordinate change t — t,z — xz,y —
Lu,z— zin (1.5). In new coordinates,
3
(16) f = t2 + .7}3 + Z Z Aabcdxaybzctd
B4 atbtet+d=k
a > max{0,6 — k}
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The hyperplane section © = 0 becomes y = 0 in new coordinates, and
substituting y = 0 into (1.6), we obtain the surface singularity ¢(¢, z, z) = 0,
where
(1.7) p=1"+2"+) > Apocar®zt?.
k24 a4 cet+d=k
a > max{0,6 — k}

Hence, there exists a face A of the Newton diagram of f spanned by the
exponents of three monomials 2, 2> and z%2°t? such that Aggeq # 0. Let
w = (wy,wy,ws) be the normal of A normalized so that < w,m >=1 for
m € A. Then we have wy = 1/2,wy = 1/3,w3 = 1(1 - 4 — 9). As ws
should be positive, we have very few possibilities for the values of a,d. In
the case when a = d =0, we have k = a4+ c+d > 6, hence c = k > 6, and
|lw| = w1 + w2 + wsg < % + % + % = 1. This is equivalent to say that the
point (1,...1) lies on or under A, hence, by Theorem 1.2, the singularity
is non-canonical. If d = 1,a = 0, then £ > 6,c =k —1 > 5, and w3 < %.
Ifa =1,d =0, we have k > 5, and w3 < 2 < L. Ifa =1,d = 1, we

3c 6
havek:25,c:k:—223,andw3§é§1—18. If a = 2,d = 0, then
k> 4,¢c> 2 and wy < % < %. In all the cases, |w| < 1, hence the

singularity is non-canonical.
2. Weighted blow ups

We fix the lattice N = Z"™ C V = R" and the coordinate octant 7 =
R} = {(y1,---,yn) € R"|y; > 0V i}. Then the affine space A™ can be
thought of as the toric variety

X; = Xy N, = Speck[T* N N7,

where 7%, N* denote the dual objects in the dual R-vector space W = V* ~
R™
M =N*={we W|w(N) CZ}
™ ={w € Ww, > 0}.

See, e.g. [Da] for more details on toric varieties.
DEFINITION 2.1. Let o = (a,..., ) € N NInt (7) be a primitive

lattice vector in the interior of 7. The weighted blow up o, : A} — A" is
the toric morphism defined by the subdivision of the standard coordinate
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octant 7 into a minimal fan having the ray R4 -« as one of its edges. The
n-dimensional cones of this fan are

Yo ={<ajeq,....ep > <e1,q,....ep >, ..., <e€1,€2, ..., >},

and the fan itself is the union of ¥,, and the set of all the faces of the cones
from X,,.

The discrete valuation v, = ordg, of the function field k(A"™) =
k(y1,...yn) associated to the prime exceptional divisor E,, of o, is given by
the formula

Vo (y™) =< a,m >,

where m € M, y™ = y{"* -- -y, and <, > denotes the natural coupling
between M and N. For a function f =} -\ any™ we have

(2.1) va(f) = (lrgiﬁ)va(xm) = arfnli;éno <a,m>.

Let Y = {f = 0} be a hypersurface in A", and Y, C Al its proper
transform in A]. Let I' be any component of Y, N E, of dimension n — 2
such that Y, is normal at the generic point of I'. Then FE, is Cartier at
the generic point of I', and the multiplicity d = dr in E,ly, = dI" is well
defined. Let or be the valuation on k(Y,) induced by v,:

or(h) = min va(h), h € k(Yy).
hly,=h,hek(AL)

Then we have
LEMMA 2.2. op(h) = {évp(h)].

PROOF. Let ¢ be a local parameter of Oy, r, and z that of Op_ g, -
One can choose z in such a way that vz = t% with v invertible in O A, T
For any h € k(Y,) we can write h = ut® with u invertible in Oa_ 1, then
k = wvr(h), and we are done. [J

Now, let
dyl/\.../\dyn>

f

wQ = resy <
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be a base of I'(Y, wy ). The valuation v,, and hence op, extends in an obvious
way to the canonical differentials. We have

ProproSITION 2.3. If I is not a toric subvariety of A, then the fol-
lowing formula holds:
vr(oawo) = aadr,

where oltwo is the lift of wy to the weighted blow up, aq = —vo(f) + |a| — 1,
and o] = oq + ...+ .

ProOOF. It is well-known that the form of the canonical differential

d d
p="P A A
U1 Yn

is invariant up to a multiplicative constant under toric changes of variables.
This implies that ordpry = —1 for any toric divisor D, in particular, for
D = E, we have v,(v) = —1. Hence

y <dy1/\.../\dyn
o [
f

Now, let X, ~ (A!\ {0})"~! x Al C X5, be the open subset corresponding
to the one-dimensional cone 0 = R4 -a € 3. The exceptional divisor
EoN Xy = (AY\ {0})" ! is given by z, = 0. We can choose any coordinate
system z; = xm(l), ey Zp = ™" associated to a basis of M of the following
form: mW ... m™ 1 is a basis of MNat, and m(™ € Into*NM completes
it to a basis of M. Then

f=2Nfolz1,. . 2), N =wa(f),
folz1,.ovzn) = 9021, oy 2n—1) + 2091 (21, - -y Zn—1) + - ..

> = —Va(f) +va(y1 - yn) + va(V) = da-

s0, Y, is defined by the equation fy = 0. As X,N{z, = 0} is an open subset
of E,, whose complement in E, is a union of toric subvarieties, we see that,
by our hypotheses, the intersection

EoNYyNXy ={2za=go(z1,...,2n_1) =0} C (AT\ {0} !

is non-empty and contains a component I' of multiplicity dr. We have

—N+|a|-1
dyi N ... Nd z
il yn:un dzi N ... Ndzy,

f fo
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with u invertible on X, which implies the result. O

REMARK 2.4. If the hyperplane H = {w € W| < a,m >= v,(f)}
contains a (n — 1)-dimensional face of the Newton diagram of f, then all
the components of E, NY, are non-toric.

3. Proof of Theorem 0.1

Let (Y, P) = ({f = 0},0) be an isolated cDV singularity defined by one
of the equations (i)—(v) of Proposition 1.3. We will use the notations of
Section 2 in the case n = 4 with coordinates (y1, y2,ys3,y4) = (¢, 2, vy, 2).

DEFINITION 3.1. A vector a € N NInt 7 is called an admissible weight
for the equation f, if E, NY, contains at least one simple non-toric compo-
nent I' and aq = —va(f) + |af =1 = 1.

If « is admissible, then Y is normal at the generic point of I', dp = 1,
and by Proposition 2.3, we have vr(ciwg) = 1. But the orders of o wg on
prime exceptional divisors are exactly the discrepancy coefficients, so for
the partial resolution o, : Y, — Y we have an exceptional divisor I' with
discrepancy ar = 1. Then any resolution of ¥ which dominates o, has an
exceptional divisor of discrepancy 1.

The following theorem gives a list of admissible weights for all the cDV
singularities.

THEOREM 3.2. The following weights are admissible for the singularity
(Y, P) defined by one of the equations (i)—(v) of Proposition 1.3, after an
eventual linear change of coordinates (ya,ys,ya):

(1) a = (1,1,1,1) in the case cA, (n > 1);

(2) o =(2,1,1,1) in the case cDy;

(3) a=(2,1,2,1) in the case cDy, (n > 5);

(4) = (3,2,1,2) in the case cE,, if f does not contain any one of the
monomials y3,y3;

(5) o =(2,2,1,1) in the case cEy, if g4(0,y3,y4) # 0;

(6) a = (3,2,1,¢) with € =1 or 2 in the case cEy, if g4(0,y3,y4) = 0
and gs contains ;.
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PrOOF. (1) f=t*+a*+y*+2" (n>1)or f =t>+2%+g(y, z) with
j2g = 0; a = (1,1,1,1). Make an ordinary blow up 0 = 0(11,11) : A* —
A

Y1 = 2421,Y2 = 2422,Y3 = 2423,Y4 = 24 -
We have:

o' f =2 fo, N=vo(f) =2, |a| =4, aa = —va(f) +]a| -1 =1,
fo(z1, 22,23, 24) = 23 + 23 + 23 + 22 or 23 4 23 + 240(23, 2),

EanNYy={2+224+23=21=0}or {22423 =12 =0}

In the first case the last intersection is a simple irreducible non-toric divisor,
and in the second it is the union of two simple irreducible non-toric divisors
I'yurls.

(2) f =y} +9(y2,¥3,¥4), g =93 +gs+ ..., g3 is not divisible by the
square of a linear form; o = (2,1,1,1). Look at the open subset X, C A%
defined in the proof of Proposition 2.3 and choose coordinates on X, as
indicated there, for example,

21 = Y1y Sz = y2y3_1723 =Y3yy 2 = Y2
We have:

orf = zivfo, N =v,(f) =3, |a| =5, ao = —va(f) + |a] =1 =1,
fo(z1, 22, 23, 24) = gg(l,zgl,zglzg_l) + 24 (23 +g4(1,22_1,22_123_1)) +...,

XoNEoNYy ={gs(1,25", 25 ' 257") = 24 = O}

The intersection is empty iff g3(y2,y3,v4) = y2ysys. In this case all the
components of F, NY, are toric, and we should apply a linear change of
coordinates, say y2 — Y2,Y3 — Y3, ¥s — Y3 + ya4, and repeat the same
construction. Then the above intersection will contain a simple component
D= {1+2"=2 =0}

3) f=yi+95ys+9(y2,93,94), g =ga+ 95+ .. = (2,1,2,1). We
choose

2=y 2 = Y1z 23 = Yaly 2 =Y -

We have:

orf = zivfo, N =v,(f) =4, |a| =6, ag = —vo(f) + o] =1 =1,
fO(Zl,ZQ,Zg, Z4) = 2% + leZ_I +g4(170723_1) + Z4§(21,ZQ,Z3),
X, NE,NY, = {z% + 21251 —l—g4(1,0,z§1) = z4 = 0}.
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This intersection is non-empty and reduced irreducible independently of
the vanishing or non-vanishing of g4(1,0, 23 1). If g4(1,0, 23 ") = 0, then the
invertible factor z; cancels out and we have X, N E, NY, = {z1 + 25 L=
Z4 = O}

4) f = v2+ 93 + g(y2,93,54), j3g = 0, and g does not contain the
monomials y3,43; o = (3,2,1,2). We choose

z1 = y1y3_3722 = y2y3_2,2:3 = Yoy, 2 = U3 .
We have:

onf =2 fo, N=va(f) =6, |a| =8, an = —va(f) + | =1 =1,
fo(z1, 22, 23, 24) = z% + zg’ + c1z§ + coz2 + C3z§Z§1
+C42223_1 + C5Z%Z3_2 + cg,

where

CLYsY3 + Coyays + C3Y2Y3Ya + cay3ys + CsY3YL + coYs = N .a(Y2s Y3, Ya)

is the a-principal part of g, and

C C C
XgﬂEaﬂYa:{Z%—i—zg(z%—l—(cl—l—z—?’+Z—g)zQ+CQ+Z—4)+CG22420}.
3 3 3

This intersection is non-empty and reduced irreducible because all its slices
{23 = 0} are. Indeed, the equation 27 + z9(23 + Az + B) + C = 0 is
irreducible for any A, B,C € k.

(5) f =i+ 93+ 9(y2.u3.91), J3g = 0, 9a(0,y3,94) # O take o =
(2,2,1,1). Choose coordinates

2= Yiys 2 = Y1y S 23 = YsYs 2 = U -
We have:

onf =z fo, N=wa(f) =4, la| =6, ag = —va(f) +|a] =1 =1,
fo(21, 20, 23, 24) = 25 + 2722323 + 94(0,1, 23 ") + 24G(21, 22, 23, 24),
Xy NEyNY, ={23 +94(0,1,25") = 24 = 0} .

The last intersection has one or two irreducible components of multiplicity
1.
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(6) f =yt +y5+9(y2 Y3 9a), jag =0, 94(0,y3,y1) = 0, g5 contains y3;
take o = (3,2,1,1). Choose coordinates

-3 -2 -1
21 =Y1Y3 22 = Y2Y3 , 23 =Y3Yy ,24 = Y3 .

Remind, that in the case cFE, we should suppose that g contains one of the
monomials (1.2). So,

5(0,y3,74) Zczy i, co #0,

and at least one of the coefficients c3, ¢4, c5 is different from 0. We have:

orf =2 fo, N=va(f) =5, |a| = 7aa=*va()+|a|*1—1
f0(21,22723,24)—Z1Z4+2224+Zz 0Ciz3 + 2 Y0 ¢25 "
+Z49(217 22,28, 24),
X, NE, ﬁYa—{ZZ 0Ci%3 +2221 0Cizg —Z4—O}

The above conditions on ¢; imply that the intersection is always non-empty.
But it may be multiple. There are no components of multiplicity 1 only if
¢, =0(:=0,1,2,3) and:

95(07 Y3, y4) = y’?f(y?) - 71y4)5_k7 71 75 0 (k = 07 17 27 3)7
or g5(0,y3,v4) = y3(ys — 11y4)*(ys — v2y4)%, 11 # 0,72 # 0,71 # 72,
or g5(0,y3,y4) = (y3 — 11y4)>(y3 — 12y4)?, M1 # 0,72 # 0,71 # 2.

In all the cases the change of variables y3 — w3, y4 — y3 — Y1y4 brings us
to the case (4), in which the existence of a simple non-toric component has
been verified for the weight o = (3,2, 1, 2).

Thus, we can suppose that the polynomial defining Y, in X, N E, has
a simple factor of the form 1 — ;23 ! giving rise to the wanted component
of multiplicity 1. O
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