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Abstract

We study the dynamics of homoclinic classes on three dimensional
manifolds under the robust absence of dominated splittings. We prove
that, C*-generically, if such a homoclinic class contains a volume-expanding
periodic point, then it contains a hyperbolic periodic point whose index
(dimension of the unstable manifold) is equal to two. We also furnish an
example which shows that a similar result is not always true in higher
dimensions.

1 Preliminaries

1.1 General notations

We consider a closed (compact and boundaryless) smooth manifold M with
a Riemannian metric. The space of Cl-diffeomorphisms of M is denoted by
Diff'(M). We fix a distance function on Diff' (M) and furnish Diff*(M ) with
the Cl-topology. For f € Diffl(M ), we denote the set of periodic points of
f by Per(f) and the set of hyperbolic periodic poits of f by Pery(f). For
P € Per(f), by per(P) we denote the period of P, i.e., the least positive integer
k that satisfies f¥(P) = P. For x € M, we denote the orbit of = by O(z, f) or
simply by O(z). We put J(P) := det(dfP*"¥)(P)) and call this value Jacobian of
P. A periodic point P is said to be volume-ezpansive (resp. volume-contracting,
conservative) if |J(P)| > 1 (resp. |J(P)| < 1, |J(P)| = 1). For g sufficiently
close to f, one can define the continuation of P. We denote the continuation of
P of g by P(g).

In the following, we assume that P is a hyperbolic periodic point. The
indez of a hyperbolic periodic point P (denoted by ind(P)) is defined to be the
dimension of the unstable manifold of P. By W*(P, f) (resp. W*(P, f)), we
denote the stable (resp. unstable) manifold of P. We also use the simplified
notation W#(P) (resp. W*(P)). Two hyperbolic periodic points P and Q are
said to be homoclinically related if W*(P) and W*(Q), W¥*(Q) and W*(P)
both have non-empty transversal intersections. We say that P has a homoclinic
tangency if there exists a point z € W*(P) N W*(P) at which T,W*(P) and
T, W#*(P) do not span T, M.



1.2 Linear cocycles

Let (%, f, E, A) be a linear cocycle, where ¥ is a topological space, f is a home-
omorphism of ¥, F is a Euclidean vector bundle over ¥ and A is a bundle map
compatible with f, more presicely, A is a bundle map of E such that for each
xz €%, A(z, -) is a linear isomorphisms from E(z) to E(f(z)). We often write
A(z) in the meaning of A(z, -) and denote the linear cocycle only with E or
'A when the meaning is clear from the context. In our application, we treat
linear cocycles for which ¥ is some invariant set of M, f is the restriction of a
diffeomorphism of M to ¥, E is the restriction of the tangent bundle of M to X
and A is the restriction of the differential df to E. We can naturally define the
n-times iteration of A, denoted by A™, and inverse of A, denoted by A~!. We
say that a linear cocycle (%, f, E, A) is periodic if each pomt z € ¥ is periodic
for f.

On each fiber, there is a norm which we denote by || - ]| A linear cocycle is
said to be bounded by K > 0 if the following inequality holds:

max{supllA(w)ll, supnA—l(x)H} <K
T€EX TeX

In the case where A is the restriction of some differential on some compact
manifold, A is always bounded by some constant. For linear cocycles, we can
canonically define the invariant subcocycle, direct sum between some cocycles,
and quotient of the cocycle (for the details, see section 1 of [BDP]).

1.3 Dominated splittings

Let (%, f, E, A) be a linear cocycle and suppose that F is a direct sum of some
invariant subbundles (%, f, F, A|r) and (%, f,G, A|g) of E, where A|F is the
restriction to F. Given a positive integer n, we say that the sphttlng E=F&G
is an n-dominated splitting if the following holds:

IA™ (@) F@) AT (f" (@)l @)l <1/2, forall z € .

We say that a linear cocycle (%, f, E, A) has a dominated splitting if there exists
two invariant subbundles F', G of E and an integer n such that £ = F®G is an
n-dominated splitting. An f-invariant set A C M is said to admit a dominated
splitting if the linear cocycle (A, f,T M|, df) admits a dominated splitting.

1.4 Robust cycles

Let f € Diff'(M) and let T and ¥ be two transitive hyperbolic invariant sets
of f. We say that f has a heterodimensional cycle associated to I" and ¥ if the
following holds:

1. The indices (the dimension of the unstable manifolds) of the sets ' and &
are different.



2. The stable manifold of I" meets the unstable manifold of 3 and the same
holds for stable manifold of ¥ and the unstable manifold of T.

We say that the heterodimensional cycle associated to I" and ¥ is Cl-robust
if there exists a Cl-neighborhood U of f such that, for each g € U, g has a
heterodimensional cycle associated to the continuations I'(g) of I' and ¥(g) of
DI

2 Introduction

Given a hyperbolic periodic point P of a C!-diffeomorphism f, we define the
homoclinic class of P, denoted by H(P, f), to be the closure of the points of the
transversal intersections between the stable manifold and the unstable manifold
of P. The theory of Smale’s generalized horseshoe tells us that H(P, f) coincides
with the closure of hyperbolic periodic points that are homoclinically related
to P. In the study of uniformly hyperbolic systems, homoclinic classes play an
important role and it is expected that they also will be important in the research
of non-hyperbolic dynamics (see chapter 10 of [BDV]).

There are several studies about the properties of non-hyperbolic homoclinic
classes. For example, Abdenur, et al. [ABCDW] investigated the indices of
periodic points in homoclinic classes and showed that, C!-generically, the col-
lection of indices in a homoclinic class forms an interval of natural numbers.
Bonatti, Diaz, and Pujals [BDP] proved that the robust absence of the dom-
inated splitting on a homoclinic class implies the C'-Newhouse phenomenon,
i.e., locally generic coexistence of infinitely many sinks or sources and in [BD1],
Bonatti and Diaz showed, under the robust absence of dominated splittings and
some conditions on the Jacobians, a homoclinic class exhibits very complicated
dynamics called universal dynamics. Recently, Gourmelon [Gou2] proved that,
under the absence of dominated splittings on a homoclinic class, one can create
a homoclinic tangency inside the homoclinic class. «

We can find similar interests among the works about the effects of the absence
of the domination. Wen [W] proved the non-existence of dominated splittings
implies the creation of a homoclinic tangency. The result of Gan [Gan] says
that the existence of a dominated splitting of index 4 is equivalent to the non-
existence i-eigenvalue gap.

Keeping these results in mind, we study of non-hyperbolic homoclinic classes
by pursuing the following problem: What are the effects that the absence of
dominated splittings on a homoclinic class gives rise to? Or, how the existence
of the dominated splittings on a homoclinic class is disturbed?

To state our problem clearly, we prepare some notations. A homoclinic class
H(P, f) is said to be wild if there exists a C'-neighborhood U of f such that,
for every g € U, the corresponding homoclinic class H(P, g) does not admit
dominated splittings. For a homoclinic class H(P, f), we define the indez set of
H(P, f), denoted by ind(H(P, f)), as follows:

ind(H(P, f)) :=={ind(Q) e N| Q € Perp(f)NH(P, f) }.



Then, the problem that we are to study is the following: Does the wilderness of
H(P, f) give some information about ind(H (P, f))?

There are some examples of wild homoclinic classes in the hterature (for
example, see [BD2]). They are created by using the heterodimensional cycles.
Hence, to assure the robustness of the wilderness, every example requires at
least two hyperbolic periodic points with different indices. So, it is natural to
ask whether this is the only mechanism that brings the wilderness. For instance,
the following question would be interesting.

Question 1. Let M be a closed smooth manifold. If f € Diff*(M) has a
hyperbolic periodic point P of f such that H(P, f) is wild, then # ind(H (P, f)) >
27

Here is a partial answer to this problem. In this article, we prove the follow-
ing theorem.

Theorem 1. For C'-generic diffeomorphisms of a three-dimensional smooth
closed manifold, if there exists a wild homoclinic class H(P, f) that contains an
index-one volume-expanding hyperbolic periodic point, then 2 € ind(H (P, f)).

Let us see an immediate corollary of this theorem.

Corollary. For C'-generic diffeomorphisms of a three-dimensional closed smooth
manifold, if there exists a wild homoclinic class that contains two hyperbolic
periodic points and one of them is volume-expanding and the other is volume-
contracting, then ind(H (P, f)) = {1, 2}.

Thus, under some assumptions on Jacobian, we can give a p051t1ve answer .
to Question 1.

This theorem can be interpreted as a qualification of homoclinic classes to
be “basic pieces.” To explain this, let us review the idea of [BDP], that is, the
wilderness of a homoclinic class scatter its hyperbolicity to any direction. Thus,
by using their technique, it is not difficult to prove that, under the wilderness,
one can create an index bifurcation by an arbitrarily small perturbation. How-
ever, this argument does not tell us whether the bifurcation happens inside the
homoclinic class or not. If homoclinic classes are to deserve as basic pieces,
then it is desireble that a phenomenon which local (linear algebraic) informa-
tion hints can be observed inside the original homoclinic classes. From this
viewpoint, Theorem 1 is seen to be a kind of localization result about index
bifurcations.

Let us reintroduce our theorem from a different viewpoint. Aiming at the
global understanding of C'-dynamical systems, Palis suggested the famous Palis
conjecture (see [P]). Recently, Bonatti and Diaz asked a stronger version of this
conjecture:

Question 2 (Question 1.2 in [BD2]). Let M be a smooth closed manifold.
Does there exist a C-open and dense subset © C Diff*(M) such that every
f € O cither verifies the Aziom A and the no-cycle condition or has a C*-
robust heterodimensional cycle?



Our study gives a partial answer to this question. In fact, we prove the
following:

Theorem 2. Let f be a C-diffeomorphism of a three-dimensional closed smooth
manifold. If f has a wild homoclinic class that contains an indez-1 volume-
expanding hyperbolic periodic point, then f can be approzimated by a diffeomor-
phism with a robust heterodimensional cycle.

Note that Wen [W] and Gourmelon [Gou2] already give positive answers
to the Palis conjecture under similar hypothesis. The novelty of our result
is that we can create a connection between two saddles. Roughly speaking,
outside Axiom A diffeomorphisms with no-cycles, by linear algebraic arguments
and Franks’ lemma,; it is not difficult to create an index bifurcation with an
arbitrarily small perturbation. On the other hand, in general, it is difficult to
create a cycle between two saddles, since we need the information about the
reccurence between two saddles. Our proof suggests one senario to the creation
of the connection between two saddles.

In Theorem 1 and 2, we confined our attention to three-dimensional cases.
Let us see what happens in the other dimensions. In dimension two, it is easy
to determine ind(H (P)). It is {0} (sink), {2} (source), or {1}. We would like
to point out that, in dimension two, there is no example of wild homoclinic
classes in C-topology. If one can comstruct such a homoclinic class, it is a
counterexample of the conjecture of Smale about the density of the Axiom A
and no-cycle condition diffeomorphisms (see [9]).

Let us consider what happens in dimensions larger than three. Intuitively
speaking, by the idea of [BDP], it seems that the wilderness of a homoclinic class
H(P) makes its index set large, since the wilderness scatters the hyperbolicity.
So, it is natural to expect that if H(P) is a wild homoclinic class, ind(H (P)) =
[1,m — 1], where m is the dimension of the ambient manifold and [1,m — 1]
is the interval of natural numbers. However, in general, this is not true. In
appendix, we give an example that says this idea has some limitation in higher
dimensional cases. Let us state the precise statement of the example.

Theorem 3. For every four-dimensional smooth closed manifold M, there ex-
ists a diffeomorphism f that satisfies the following: There exist a hyperbolic
fized point P of f, Cl-neighborhood U of f and a residual subset R of U such
that for every g € R, H(P,g) does not admit any kind of dominated splittings
and ind(H(P,g)) = {2,3}.

This theorem says that a wild homoclinic class may have an index deficiency.
More precisely, it is not always true that one can construct a saddle with any
prescribed index, even from the Cl-generic viewpoint.

Finally, let us explain the organization of this article. In section 3, we
introduce our strategy for the proofs of Theorem 1 and 2. We furnish some part
of the proof. We discuss the contents of section 4 and section 5 at the end of
the section 3. In appendix, we prove Theorem 3.
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3 Outline of the proof

In this section, we explain the strategy for the proof of Theorem 1 and 2. First,
we explain how to prove Theorem 2. The proof is divided into two propositions.

We say that a hyperbolic periodic point P has a homothetic tangency, if P
has a homoclinic tangency and the restrictions of dfP*"")(P) to TW*(P) and
TW*(P) are both homotheties (a linear endomorphism of a linear space is said
to be a homothety if it is equal to rId, where r is some real number and Id is
the identity map).

Roughly speaking, the first proposition states that, under the robust ab-
sence of dominated splittings, one can create a homothethic tangency inside the
homoclinic class by an arbitrarily small perturbation.

Proposition 3.1. Let f € Diffl(M) with dim M = 3 and let P be a volume-
expanding indez-1 hyperbolic periodic point of f. If H(P) is wild then one can
find a C'-diffeomorphism g arbitrarily C*-close to f such that the following
properties hold.

1. There ezists a volume-expanding hyperbolic periodic point Q of index 1.
2. The differential dgper(Q)(Q) has only positive and real eigenvalues.

3. Two periodic points P(g) and Q are homoclinically related.

4. Q has a homothetic tangency.

The second proposition says that from a homothetic tangency one can create
a heterodimensional cycle by an arbitrarily C!-small perturbation.

Proposition 3.2. Let f € Diff'(M) with dim M = 3, and let Q be a volume-
expanding hyperbolic periodic point of f with ind(Q) = 1. If dgper(Q)(Q) has
only positive and real eigenvalues and Q has a homothetic tangency, then one
can find a C*-diffeomorphism g arbitrarily C*-close to f such that the following
properties hold.

1. There exists a hyperbolic periodic point R of g with ind(R) = 2.

2. Let Q(g) be the continuation of Q of g. Then g has a heterodimensional
cycle associated with two periodic points Q(g) and R.

We need the following result in [BDK].

Lemma 3.1 (Theorem 1 in [BDK]). Let f be a C'-diffeomorphism with a
heterodimansional cycle associated to saddles @ and R with ind(Q) — ind(R) =



+1. Suppose that at least one of the homoclinic classes of these saddles is non-
trivial. Then there are diffeomoropshims g arbitrarily C-close to f with robust
heterodimensionalc cycles associated to two transitive hyperbolic sets containing
the continuations Q(g) and R(g).

We can summarize the results of Proposition 3.1, Proposition 3.2, and Lemma
3.1 as follows:

Proposition 3.3. Let f € Diffl(M) with dim M = 3, and let P be a volume-
expanding indez-1 hyperbolic periodic point of f. If H(P) is wild, then one can
find a C-diffeomorphism g arbitrarily C'-close to f and a hyperbolic periodic
point R of g with ind(R) = 2 such that g has a robust heterodimensionalc cycle

associated to two transitive hyperbolic sets containing the continuations P(g)
and R(g).

It is clear that Proposition 3.3 implies Theorem 2.
Let us concentrate on the proof of Theorem 1. For the proof, we need some
generic properties about C!-diffeomorphisms.

(R1) We denote the set of Kupka-Smale diffeomorphisms by R; and the set of
Kupka-Smale diffeomorphisms such that none of the periodic points are
conservative by R/. These are residual sets. One can prove the genericity
of R} by modifying the usual proof of Kupka-Smale theorem (see [R], for
example) with the fact that the volume-conservativeness of a hyperbolic
periodic point is a closed property in the C-topology.

(R2) By R2 we denote the set of diffeomorphisms f such that following holds:
Any chain reccurence class C containing a hyperbolic periodic point P
satisfies C = H(P). For the proof, see [BC].

(R3) By R3 we denote the set of the diffeomorphisms f satisfying the follwoing:
Let P and @ be hyperbolic periodic points of f and ind(P) = ind(Q). If
H(P)N H(Q) # 0 then P and Q are homoclinically related. We will give
the proof of the genericity of R later.

The following lemma is easy to prove, so the proof is left to the reader.

Lemma 3.2. Let P and Q be hyperbolic periodic points and assume there exists
a heterodimensional cycle associated to two transitive hyperbolic invariant sets
I and ¥ such that I' contains P and ¥ contains Q. Then P and Q belong to
the same chain recurrence class.

Let us give the proof of Theorem 1 using Proposition 3.3.

Proof of Theorem 1. For f € Diff* (M), let PerhN (f) be the set of hyperbolic
periodic points whose periods are less than N. For every f € R}, we take an
open neighborhood U (f) C Diff!(M) of f such that every g € Uy (f) satisfies
the following conditions: ,

1. For each P; € Pery (f), one can define the continuation P;(g).
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2. There is no creation of periodic points with period less than N, in other
words, the set {P;(g)} exhausts the periodic points whose periods are less
than N of g.

3. For each P; € Per} (f), the signature of log|J(P;(g))| is independent of
the choice of g.

Since f is Kupka-Smale, Pery, (f) is a finite set. From now on, for each I/ N (f), we
are going to create an open and dense set Oy C Un(f) as follows. First, for each
g € Un(f), we define an open set V; n[g] as follows: if P; is a volume-contracting
periodic point (note that by assumption P; cannot be conservative) or arbitrarily
C'-close to g one can find a C'-diffeomorphism ¢’ such that H(P;, ') admits a
dominated splitting, then let V; y[g] be the empty set. Otherwise let V; n[g] be
the open set obtained by Proposition 3.3. Then, put V; n(f) = Ugeuy () Vi,n[9]-
Since each V; n[g] are open, V; n(f) is open. Let us put Wi n(f) := Un(F) \
Vin(f) and O; n(f) := Vi,n(f) UW; n(f). By construction, O; n(f) is open
and dense in Uy (f) and for every g € O; n(f), if P;(g) is volume-expanding and
H(P;,g) is wild, then g has a robust cycle associated with transitive hyperbolic
sets containing P;(g) and some hyperbolic periodic point of index 2.

Now, put On(f) := N;O0; n(f). Since each O; n(f) is open and dense, so is
On(f) in Un(f) and the set Oy := User; On(f) is an open and dense subset
of Diffl(M ). Then, put R« := NyOp. By Baire’s category theorem, this is
a residual subset of Diffl(M ) and satisfies the following property: If f € R.
and there exists a hyperbolic and volume-expanding periodic point P whose
homoclinic class is wild, then one can find a robust cycle associated with P and
some periodic point with index 2.

Finally, put R.x = Rs N R2 N R3. We show that every f € R.. satisfies
the conclusion of Theorem 1. Suppose there is a hyperbolic periodic point P
of f such that H(P) is a wild homoclinic class containing a volume-expanding
hyperbolic periodic point @ with ind(Q) = 1. If ind(P) = 2, then we have
the conclusion. So let us assume ind(P) = 1. Since f € R3, P and Q are
homoclinically related. For H(P) is wild, so is H(Q). Then, by the definition of
R, f has a heterodimensional cycle associated to two transitive hyperbolic set
such that one of them contains ) and the other contains a hyperbolic periodic
point R of index 2. By Lemma 3.2, @ and R belong to the same chain recurrence
class. Since f € Rg, we have R € H(Q) = H(P). O

Now, we give the proof of genericity of R3. For the proof, we need a generic
property and a Cl-perturbation lemma.

Lemma 3.3 (Lemma 2.1 in [ABCDW]). There is a residual subset Ry C
Dift} (M) such that, for every diffeomorphism f € Ry and every pair of sad-
dles P(f) and Q(f) of f, there is a neighborhood Uy of f in R4 such that either
H(P,g) = H(Q,9) for all g €Uy, or H(P,g) N H(Q,g) =0 for all g € Uy.

Lemma 3.4 (Lemma 2.8 in [ABCDW]). Let P be a hyperbolic periodic point
of a C*-diffeomorphism f. Consider a homoclinic class H(P, f) and any saddle



Q € H(P, f). Then there is g arbitrarily C1-close to f such that W*(P,g) and
W2(Q, g) have an intersection.

Proof of the genericity of Rs. For every f € Rq N R4, we take an open neigh-
borhood U}y (f) € R1 N Ry of f such that for every g € Up(f) we have the
following conditions: For each P; € Per) (f), one can define the continuation
P;(g) and these continuations exhaust periodic points whose periods are less
than N of g. From now on, for each Uy (f), we are going to create an open
and dense set On(f) C Uy (f) as follows. First, for each g € UN(f) and
i # j, let us define an open set V; ; n[g] C Un(f) as follows: if P;(g) and
Pj(g) are not homoclinically related, then V; j) n[g] is the empty set. Oth-
erwise V(; j),nl9] C Up(f) is a non-empty open set satisfying the following:
If h € Vi j),~nlg] then P;(h) and P;(h) are homoclinically related. Then, put

Vi), 8 (F) = Ygeur, (nViig),n19], and Wy N (f) = U () \ Via gy, (F). We
put O ), N (f) == Vio,j),n (f) U Wi 5),n(f)- By the construction, O; ;) v (f) is
open and dense in Uy (f).

Let us see that for h € Oy; j) v, the following holds: If P; € H(P;, h), then P;
and P; are homoclinically related. If h € V(; ;) n(f), this is clear. We show that
for h € Wi 5),n, Pi € H(Pj,h). Indeed, if P; € H(P;,h), by applying Lemma,
3.3, we can take a neighborhood C(h) C U (f) of h such that for all A’ € C(h),
H(P;,h') = H(Pj,h'). Then, Lemma 3.4 tells us there exists hy arbitrarily
C'-close to h such that W*(P;, h1) and W#(P;, h1) has non-empty intersection.
By giving arbitrarily small perturbation to h;, we can find a diffeomorphism ho
such that W*(P;, he) and W*(P;, hy) has non-empty transversal intersection.
Since having non-empty transversal intersection between invariant manifolds is
a C'-open property, we can find hs € C(h) arbitrarily C'-close to hy such that
W*(P;, he) and W#(P;, hp) has non-empty transversal intersection (note that
h1, ho can fail to belong to C(h)). By a similar argument, we can find hy € C(h)
arbitrarily C*-close to hs such that P;(hs) and Pj(h4) are homoclinically related.
This is a contradiction, since we take h € W(; j) n(f) = Un(f) \ V(s 5~ (f) and
h4 can be found arbitrarily C*-close to h.

We put On(f) = Nixj O j),n(f). Since #Perd (f) is finite, On(f) is an
open and dense subset of Uy (f). Now we define U}, := User, On(f). Thisis an
open and dense subset of Diff*(M). Finally, we put R := N ~NUp. Then, by
construction, every diffeomorphism in R... satisfies the desired condition and
by Baire’s category theorem this set is residual in Diff*(M). O

In the rest of this section, we discuss the proofs of Proposition 3.1 and 3.2.
In Section 4 we give the proof of Proposition 3.1. It is done by three techniques.
The first one is the linear algebraic arguments developed in [BDP]. We conbine
this technique with the second one, the Franks’ lemma that preserves the in-
variant manifolds developed in [Goul]. The third one is the striking result given
by Gourmelon [Gou2] for the creation of a homoclinic tangency in a homoclinic
class not admitting the dominated splittings.

In Section 5, we give the proof of Proposition 3.2. The proof is divided into
two steps. The first one is the reduction to affine dynamics. The second one is



the investigation of the reduced dynamics and this involves some calculation.

4 Creation of a homothetic tangency

In this section, we prove Proposition 3.1.

4.1 Strategy for the proof of Proposition 3.1
An important step to Proposition 3.1 is the following proposition.

Proposition 4.1. Let f € Diff*(M) with dim M = 3, and let P be a volume-
expanding hyperbolic periodic point of f such that ind(P) =1 and H(P) is wild.
Then one can find a C- dzﬁeomorphzsm g arbitrarily C1-close to f such that
the following holds

1. There exists a volume-expanding hyperbolic periodic point @ of index 1.
The differential dgP®*(?)(Q) has only positive and real eigenvalues.

Two periodic points P(g) and @ are homoclinically related.

R

The differential dgP*" (@) (Q) restricted to the stable direction of Q is a
homothety.

By this proposition together with the following result by Gourmelon, we can
prove Proposition 3.1.

Lemma 4.1 (Theorem 1.1 in section 6 of [Gou2]). If the homoclinic class
H(P,f) of a saddle point P for f is not trivial and does not admit a dom-
inated splitting of the same index as P. Then, there is an arbitrarily small
perturbation g of f, that perserves the dynamics on a nezghborhood of P, and
such that there is a homoclinic tangency associated to P.

Let us give the proof of Proposition 3.1 assuming above two results.

Proof of Proposition 8.1. Under the hypothesis of Proposition 3.1, Proposition
4.1 tells us that we get f; arbitrarily C'-close to f such that f; has a hyperbolic
periodic points Q(f1) satisfying all the conclusions of Proposition 4.1. By taking
f1 sufficiently close to f, we can assume H(P, f1) = H(Q, f1) does not admit
dominated splittings. Then, by applying Lemma 4.1 to Q(f1) we get f5 arbtirar-
ily close to f1 such that Q(f1) = Q(f2) exhibits a homoclinic tangency. Since
the perturbation preserves the local dynamics of Q(f1), d fper(Q(f D(Q(fa)) =

P QU (Q(£,)) and Q(f2) is volume-expanding. Thus we have created a
homothetic tangency. Furthermore, since P(f1) and Q(f1) are homoclinically
related, if we take f; sufficiently close to f1, we know P(f3) and Q(f2) are ho-
moclinically related, too. Note that we can take f5 arbitrarily close to f because
f1 can be found arbitrarily close to f. Now the proof is completed. O
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Thus let us concentrate on the proof of Proposition 4.1. We divide the proof
into two lemmas.

Lemma 4.2. Let f € Diff'(M) with dimM = 3, and let P be a volume-
expansive hyperbolic periodic point of f and ind(P) = 1. If H(P) is wild, then
C*-arbitrarily close to f one can find a Ct-diffeomorphism g such that following -
holds: There exists a volume-expansive hyperbolic periodic point Q(g) whose
indez is 1 such that P(g) and Q{g) are homoclinically related, and the restriction
of dgper(Q(g))(Q(g)) to the stable direction has two complex eigenvalues.

Lemma 4.3. Let f € Diff'(M) with dim M = 3, and let P be an indez-one
volume-ezpansive hyperbolic periodic point of f and the restriction of dfPer(P)
have two contracting complex eigenvalues. If H(P) is non-trivial, then C*-
arbitrarily close to f one can find a Cl-diffeomorphism g such that following
holds: There exists a volume-expansive hyperbolic periodic point Q(g) whose
index is 1 such that P(g) and Q(g) are homoclinically related, dgPe"(@9)(Q(g))
has only positive and real eigenvalues, and the restriction of dgPe (@@ (Q(g))
to the stable direction is a homothety.

Let us prove Proposition 4.1 assuming Lemma 4.2 and 4.3.

Proof of Proposition 4.1. Suppose f, P are given as is in the hypothesis of
Proposition 4.1. First, by Lemma 4.2 arbitrarily close to f we can find f; such
that there exists a volume expansive hyperbolic periodic point Q(f1) whose in-
dex is 1 such that P(f1) and Q(f1) are homoclinically related, and the restriction
of df} er(@(f2) (Q(f1)) has two complex eigenvalues. Second, by applying Lemma
4.3 to f1 and Q(f1), we can find f5 in any neighborhood of f; such that there ex-
ists a volume expansive hyperbolic periodic point R(fz) whose index is 1, Q(f2) -
and R(f») are homoclinically related and the restriction of dff"®2)(R(f£,))
to the stable direction is a homothety. Note that if we take fo sufficiently close
to fi, then P(f2) and Q(f2) remain homoclinically related and thus P(f2) and
R(f2) are homoclinically related, too. Since f; can be constructed arbitrarily
close to f and fs can be constructed arbitrarily close to f1, fo can be constructed
arbitrarily close to f. This ends the proof of our proposition. O

In subsection 4.2, we prepare some techniques for the proof of Lemma 4.2
and give the proof of Lemma 4.2. In subsection 4.3, we prove Lemma 4.3 and in
subsection 4.4 we give the proof of Lemma 4.7 that is needed to prove Lemma
4.2.

4.2 Proof of Lemma 4.2

In this subsection, we prove Lemma 4.2 assuming some results.
First, we collect some results for the the proof of Lemma 4.2. We start from
the Franks’ lemma (see appendix A of [BDV]).

Lemma 4.4 (Franks’ lemma). Let f be a C-diffeomorphism defined on a closed
manifold M and consider any 6 > 0. Then there is € > 0 such that, given
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any finite set ¥ C M, any neighborhood U of 3, and any linear maps Ay :
ToM — Ty M (xz € X), such that Ay is e-close to df (), there exists a C'-
diffeomorphism g that is §-close to f in the Cl-topology, coinciding with f on
M\U and on X, and dg(z) = A, for allx € Z.

We introduce the Franks’ lemma, that preserves invariant manifolds [Goul].
To state it clearly, we prepare some notations. For a hyperbolic periodic point
X of a diffeomorphism f, we consider the space of linear cocycles over O(X)
(remember that O(X) is the orbit of X). Let us denote this space by C(X),
ie., C(X) is the set of maps o: TM|ox) — TM|ox) such that for all ¢ € Z,
o(fYX)) = o(f(X), -) is a linear isomorphism from T:(x)M to Tyi+1(x)M.
We denote the cocycle given by the restriction of df to T'M|o(x) by the same
symbol df.

We define a'metric on this space as follows. For ¢1,09 € C(X), the distance
betweeen o1 and o2 (denoted as dist(o1,02)) is defined to be the following:

max{ max ||o1(z) — o2(z)||, max ||(o1(z))”! — (Uz(w))_lu}'

z€0(X) z€O(X)

For ¢ € C(X) we denote by ¢ the first return map of o, i.e., the linear endo-
morphism of Tx M given by o(fPX)=1(X))o-. 00 (f(X)) 0 o(X). We define
the eigenvalues of ¢ as the eigenvalues of 6. We say that ¢ is hyperbolic if none
of the eigenvalues of & has its absolute value equal to one. Note that the set
of the hyperbolic cocycles forms an open set in C'(X). We sometimes deal with
a continuous path y(t) in C(X), where v(t) is a continuous map from [0,1] to
C(X). For a path «(t), we define its diameter (denoted diam(y(¢)) ) to be the
number max o<s ¢<1 dist(y(s), y(t)).

Let U be a neighborhood of O(X). For z € W*(X) N (M \ U), we define
a(z) by the least number such that f*(*)(z) € U holds. We define the stable
manifold of X outside U (denoted VVIZC\U(X )) by the set of points that never
leave U once they enter U, more precisely,

Wit (X) i={z € W*(X) N (M \U)|Vn > a(z), f"(z) € U}.

Let g be a diffeomorphism so close to f that we can define the continuation
X(g) of X for g. We say that g preserves the stable manifold of f outside U
if VV]f)c\U(X ,g) D VVI‘;C\U(X , f). Similarly, we can define the unstable manifold
outside U. ,

Now let us state the precise statement of the lemma.

Lemma 4.5 (Gourmelon’s Franks’ lemma). Let f be a C*-diffeomorphism of M
and X be a hyperbolic periodic point of f. Suppose that there exists a continuous
path {v(t) | 0 <t <1} in C(X) satisfying the following:

1. For alli € Z, v(0)(f{(X)) = df (f}(X)).
2. The diameter diam(v(t)) is less than € > 0.
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8. For all 0 <t <1, y(t) is hyperbolic (hence the dimensions of stable and
unstable spaces are constant).

Then, given neighborhood U of O(X) there exists a C'-diffeomorphism g that
is e-Cl-close to f satisfying the following properties:

1. For alli, f'(X) = g*(X). Especially, X is a periodic point for g.

2. As a linear cocycle in C(X), dg = v(1). FEspecially, X is a hyperbolic
periodic point of g and ind(X, f) = ind(X, g).

3. The support of g is contained in U, i.e., {x € M | f(z) # g(z)} C U.
4. g preserves locally the stable and unstable manifolds of X outside U.

Proof. Apply Theorem 2.1 in [Goul] putting I = {dim M — ind(X)} and J =
{ind(X)}. : O

As a consequence of Lemma 4.5, we get the following lemma.

Lemma 4.6. In addition to the hypotheses of Lemma 4.5, suppose that the
following property holds:

4. There is a hyperbolic periodic point Y that is homoclinically related to X .

Then, there is a (small) neighborhood V of O(X) and a C*-diffeomorphism h
e-Cl-close to f satisfying all the conclusions of Lemma 4.5 and the following
property:

5. X(h) is homoclinically related to Y (h).
Let us prove Lemma 4.6 by Lemma 4.5.

Proof. We fix an open neighborhood W of O(Y") that has no intersection with
O(X). Take a point a € W*(X)h W*(Y). Since a € W*(X), by replacing a
with f™(a) for some n > 0 if necessary, we can assume a ¢ W. Furthermore,
by shrinking W if necessary and using the fact a € W*(Y), we can assume
the following condition holds: Let lyg > 0 be the least number that satisfies
f7l(z) € W. Then there exists a small neighborhood D% (a) of a in W*(Y)
such that f={(D%(a)) C W for all I > Iy and f~4(D%(a)) N W = 0 for all
0<l<lp.

Similarly, we take a point b € W*(Y) \ W*(X) such that b ¢ W and the
following holds: Let I; > 0 be the least number that satisfies f'1(b) € W. There
exists a small neighborhood D3, (b) of b in W*(Y') such that f!(D$(b)) C W for
all [ > 17 and fY(D$ (b)) NW =0 for all 0 <1 < 5.

Similar argument gives us an open neighborhood V' of O(X) satisfying the

~following conditions:

1. For alln >0, f~"(D%(a)) NV =0, especially a ¢ V.
2. For alln >0, f*(D3 (b)) NV =0, especially b ¢ V.
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3. Let ko > 0 be the least number that satisfies f*°(a) € V. Then there exists
a small neighborhood D% (a) of a in W*#(X) such that f*(D%(a)) C V for
all k£ > kg and fk(Df,(b)) NV =0forall 0 <k < k.

4. Let k1 > 0 be the least number that satisfies f~%1(b) € V. Then there
exists a small neighborhood D% (b) of b in W*(X) such that f~*(D% (a)) C
V forall k > ki and f~%(D%(a)) NV =0 for all <k < k;.

By applying Lemma 4.5 to X, f, and V, we can construct an e-C'-close per-
turbation h of f whose support is contained in V such that satisfies all the
conclusions of Lemma 4.5. We show X (h) is homoclinically related to Y (h).
To see this, first we check a € W*(X,h) h W¥(Y,h). Since for all n > 0,
f"(D¥(a)) NV = 0 and the support of h is contained in V, D¥%(a) is con-
tained in W*(Y, h). Second, by the condition of D% (a), it is contained in the
stable manifold outside V. Thus it is contained in W*(X, h) and now we know
a € We(X,h) f WY, h). Similarly, we get b € W*(Y,h) h W*(X,h) and
finished the proof. O

We collect some results about linear algebra on linear cocycles from [BDP].

The first one says, in dimension two, the absence of the domination implies
the creation of complex eigenvalues. The origin of this kind of arguments goes
back to [M].

Lemma 4.7. For any K > 0 and € > 0, the following holds: Let (%, f, E, A) be a
two-dimensional diagonalizable periodic linear cocycle with positive eigenvalues.
If (%, f,E, A) is bounded by K and does not admit dominated splittings, then
there exists a hyperbolic periodic point X and a path {v(t) | 0 <t <1} in C(X)
such that the following holds:

1. 7(0) = Alo(x)-
2. diam(y(t)) < e.

3. dety(t) is independent of t.

4. Let A (t) < Xp(t) be the absolute value of the eigenvalues of v(t). Then
 for s <t we have An(s) < Am(t) and Ap(s) > p(t).

5. v(1) has two complex eigenvalues.

We give the proof of this lemma in the next subsection.
The next lemma is used to create complex eigenvalues from a linear map
which has eigenvalues with multiplicity two.

Lemma 4.8. Let A be a linear endmorphism on a two-dimensional normed
linear space such that the eigenvalues of A is positive real number A with multi-
plicity 2. Then there exists B arbitrarily close to A such that B has two complex
eigenvalues.
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Proof. By taking the Jordan cannonical form of A, we can assume that A has
the following matrix form:

At

0 A7

cosa —sina\ (A ¢t

siha cosa 0 A/
has two complex eigenvalues for sufficiently small & > 0 and o can be taken
arbitrarily small. If ¢ # 0, the matrix

A t
—aft A}
has complex eigenvalue for all o > 0. Since a can be taken arbitrarily small, we
finished the proof. 0O

When t = 0, the matrix

The following lemmas enables us to“lift up” the perturbation on some sub-
cocycle or quotient cocycle to the perturbation on the original cocycle.

Lemma 4.9. Given e > 0, a linear cocycle (X, f, E, A) and its invariant subco-
cycle (X, f, F, Alr), where A|p denotes the restriction of A to F, the following
hold:

1. Let (%, f,F,B) be a cocycle with dist(A|r, B) < e. Then there exists a
linear cocycle (X, f, E, B) such’that dist(4,B) < ¢ and A/F = B/F,
where A/F denotes the bundle map derives from A on E/F.

2. If (X, f,E/F,B) is a cocycle with dist(A/F, B) < e. Then there exists a
linear cocycle (%, f, E, B) such that dist(A4, B) < ¢, B leaves F invariant
and A|F = B|F.

Proof. See Lemma 4.1 in [BDP]. |

Lemma 4.10. Let E1 & Ey & E3 be an invariant splz'tting of a linear cocycle.
If E;1 is not dominated by Es @ E3, then one of the following holds:

1. E1 is not dominated by Es.
2. E1/E, is not dominated by E3/Es.
Proof. See Lemma 4.4 in [BDP]. O

We prepare some lemmas which enables us to reduce our problem to specific
sets. For a homoclinic class H(P), we denote by per, g(H(P)) the set of the
volume-expansive hyperbolic periodic points that have the differentials with
distinct positive real eigenvalues and are homolcinically related to P.

15



Lemma 4.11. For given f € Diﬂd(Z\l ) and a volume-ezpanding hyperbolic
periodic point P, if H(P) is non-trivial, one can find g € Diff*(M) arbitrarily
C1-close to f such that per, g(H(P,g)) is dense in H(P,g).

Proof. See Proposition 2.3 in [ABCDW] and Remark 4.17 in [BDP]. O

Lemma 4.12. Let f € Diff'(M) and P be a hyperbolic periodic point of f.
Suppose H(P) does not admit dominated splittings. Then any dense f-invariant
subset ¥ C H(P) does not admit dominated splittings.

Proof. See Lemma 1.4 in [BDP]. O
Let us start from the proof of Lemma 4.2.

Proof of Lemma 4.2. By the quotations we prepared above, large part of our
proof is already finished. Let us see how to combine them to give the proof.

Suppose that f and P are given as in the hypothethis of Lemma 4.2. Lemma
4.11 implies there exists f; arbitrarily C'-close to f such that per +rH(P, f1))
is dense in H(P, f1). Let us consider the periodic linear cocycle derives from
df1 on per, g(H(P, f1)). Since each periodic point has only real and positive
distinct eigenvalues, we can define a splitting E1 @ E>® F3 on this cocycle so that
corresponidng eigenvalues are in the increasing order. Note that since H (P, f1)
do not admit dominated splitting, by Lemma 4.12, E; is not dominated by
(E2 @ E3). Then Lemma 4.10 says that either E; is not dominated by E, or
E,/E, is not dominated by F3/F>. We show that we can create the periodic
point @ in both cases.

Let us consider the first case, where F; is not dominated by Es. We fix
€ > 0. Since M is compact, the linear cocycle df; restricted to F; @ E5 is
bounded. By applying Lemma 4.7 to this cocycle, we get a periodic point
Q'€ pery g(H(P, f1)) and a path (t) satisfying the conclusions in Lemma 4.7.
We can assume @@ # P by letting e sufficiently small. Since A, (t) < Ap(t) <
Ap(0) < 1, there is no index bifurcaion during the perturbation.

Then Lemma 4.9 tells us there exists a path I'(¢t) C C(Q) such that X = Q,
Y = P and I'(¢) satisfies all the hypotheses of Lemma 4.6. Hence by applying
Lemma 4.6 we get a C!-diffeomorphism f, that is e-Cl-close to fi such that
P(f2) and Q(f2) satisfy all the conditions we need. Since f; can be arbitrarily
close to f and € can be taken arbitrarily small the proof is completed in this
case. :

Let us see the case where E1/FE3 is not dominated by E3/FE;. Take € > 0.
Since df is bounded, the cocycle induced on the quotient bundle E;/E;® E3/E>
is also bounded. By using Lemma 4.7 to this cocycle, we get a periodic point
Q € pery g(H(P, f1)), a path v(t) with diam((t)) < € such that they satifsy all
conclusions of the Lemma 4.7. We claim that there is to € (0, 1) such that A\, (¢o)

(not bigger eigenvalue of fy/(;f-o/)) is equal to the eigenvalue of df*™ @ |z, (Q). Let

us put the eigenvalues of df} *(@(Q) for the Ej-direction as y; (i = 1,2,3).
Since @ is volume-expanding, puops > 1 and @ has index 1, pus < 1. Then, we
have pips > pipzus > 1. Note that A (0) = p1 < pz. When ¢t = 1, by Lemma
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4.7, we have A\, (1) = Ap(1). Since det~y(t) is independent of t and pyu3 > 1, we
get 1 < pipz = Am(1)As(1) = (Am(1))®. Here Am/(1) is positive and therefore
Am(1) > 1. Finally, by Ap(0) = p1 < g2 < 1 < Ap(1) and the continuity of
v(t), there is ty € (0,1) such that A\, (to) = 2.

Then, we redefine y(t) as follows: ~(t) is equal to the original v(t) when
t € [0,to], otherwise (¢) = v(to). Note that for this modified (t), Ap(t) >
Ab(to) = paps/Am(to) = papa/pe > paps > 1 for all t.

By Lemma 4.9 we can create a path I'(t) C C(X) such that X =Q,Y = P
and I'(t) satisfy all the hypotheses of Lemma 4.6. Applying Lemma 4.6, we
take a Cl-diffeomorphism f, that is e-Cl-close to f; such that P(f2) and @

homoclinically related to P(f2) with differential df} er(@) (Q) restricted to the
stable direction of TgM has the eigenvalue ps with multiplicity 2. Now Lemma
4.8 gives f3 which is arbitrarily C1-close to fa such that P(f3) and Q(f3) satisfy
all the conditions we need. O

Remark 4.1. We point out two mistakable arguments in the proof of second
case.

1. The argument of Lemma 4.8 is necessary. In general, dfy er(@) (Q) restricted
to the stable direction of T M is not diagonalizable. We only know there
are two eigenvectors one in Ej and the other in Fy/E;. These facts do not
guarantee that we have two linearly independent eigenvectors in E; @ E».

2. One may wonder why we can get homoclinic relation between P(f3) and
Q(f3) just by assuring the closeness of fy and f3. It is because we fix
the periodic points and never change till the end. On the contrary, for
example, in the proof of Lemma 4.7, we need to change the periodic point
we choose to decrease the size of the perturbation.

4.3 rProof of Lemma 4.3

Here we give the proof of Lemma 4.3. Before going into the detail, we give
the idea of our proof. We start from a non-trivial homoclinic class H(P) such
that ind(P) = 1 and df**"(”) (P) has two complex eigenvalues. First, we create a
hyperbolic periodic point @ which is homoclinically related to P and df?*(P)(P)
has positive and distinct eigenvalues by small perturbations (this step is carried
out inside the proof of Lemma 4.13). Then we pick up a periodic point R,
whose differential restricted to the stable direction is “mixed up” under the
influence of dfP*(")(P). Now we perturb the diffeomorphism along the orbit of
R,, with the Franks’ lemma so that the restriction of dfP**(F»)(R,,) to the stable
direction is the homothety. We pick up R, sufficiently close to @ so that the
resulted periodic point has the homoclinic relation with Q.

To demonstrate this naive idea rigorously and clearly, we need the techniques
developed in [BDP] about linear cocycles admitting transitions. We do not give
the detailed review of [BDP] here. Instead, we give some explanation about
how the techniques are used in our argument so that the reader who is not well
acquainted with this techniques can understand what we do.

17



In the statement of Lemma 4.13, we refer to section 1 of [BDP] for the
definition and fundamental properties of linear cocycle with transition. Roughly
speaking, the transition matrix from a hyperbolic periodic point Q to itself is
a matrix of the differential of the “return map” from a neighborhood of Q to
itself. See Remark 4.2.

Lemma 4.13 (Lemma 5.4 in [BDP]). Let (%, f, E, A) be a continuous three-
dimensional periodic linear cocycle with transition and €9 be some positive real
“number. Assume that there ezists X € ¥ such that ind(X) = 1 and AP*X)(X)
has two contracting complex eigenvalues. Then for every 0 < e; < € there is
Q € X and an e;1-transition [t] from Q to itself with the following properties:

1. There is an e1-perturbation AP*(@)(Q) of APr(Q)(Q) such that the cor-
responding matriz has only real positive eigenvalues with multiplicity one.
We put the eigenspaces of the matriz as E1, E5 and E3 so that the corre-
sponding eigenvalues are in the increasing order. ‘

2. There is an (o + €1)-perturbation [t] of the transition [t] from Q to itself
~ such that the corresponding matriz T' satisfies the following:

L4 T(Eg) = E3.
e T(Ey) = E; and T(E>) = E;.

Furthermore, if there exists Y € ¥ such that det(Aper(Y) (Y)) is bigger than one,
then we can choose the point Q. and the perturbation A in the lemma such that
det(APer(@)(Q)) > 1.

Remark 4.2. The existence of the transition from Q to itself tells us that,
given any matrix that is obtained as the product of some fiper(Q)(Q) and some
T, we can find a periodic orbit whose differential is close to the matrix. In the
proof, we use the existence of transition to find the periodic point R, whose
differential is close to a matrix which we want to create.

Let us begin the proof of Lemma, 4.3.

Proof of Lemma 4.3. Given f and P as is in the hypothesis of the Lemma 4.3,
we fix € > 0 and a point P’ € W*(P) h W*(P) \ O(P) (we can take such
P’ because H(P) is non-trivial) and fix a neighborhood V of O(P) U O(P’)
satisfying the following: For every g e-Cl-close to f, if Z is a periodic point
such that O(Z, g) is contained in V, then ind(Z) = ind(P) and P and Z are
homoclinically related. We can take such V because the set O(P) U O(P) is
uniformly hyperbolic. ‘

Let us take a uniformly hyperbolic set 37 contained in V' and contains P and
P’ such that ¥; admits transition (in practice, we take a generalized horseshoe
containing P and P’ as ¥1). We fix a basis of tangent space of each point
in ¥; and we identify the differential maps between tangent spaces with some
matrices (see section 1 of [BDP]).

We denote the set of hyperbolic periodic points in ¥; by 2. Let us apply
Lemma 4.13 to the periodic linear cocycle (£, f, TM|s,, df) with €g = ¢/2 and
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€1 = /4. Then we get a periodic point Q € ¥ such that the following properties
holds for df € C(Q) (remember that C(Q) denotes the set of cocycles on Q):
df is e1-close to a cocycle o € C(Q) whose first return map & has only real,
positive and distinct eigenvalues. Note that we can choose Q so that det& > 1
since P is volume-expanding. We denote the eigenspaces of & by E;, E, and E5
so that the corresponding eigenvalues are in the increasing order. We also know
the transition with matrix T from @ to itself has the property as is described
in Lemma 4.13, more precisely, there exists a matrix 7" that is (g0 +€1)-close to
T such that the following holds:

° T(Eg) = Fjs.

o T(B) =Eyand T(Ey) = E

Let us consider a matrix D,given as follows:
Dp:=5"0T05"0Tog" 0T 05 oT.

Since @ admits the transition with matrix T, there exists a periodic point R,
such that the cocycle df € C(R,) is e-close to the cocycle 7 such that 7 is given
by D,.

Now, by applying the Franks’ lemma (see Lemma 4.4), we get a diffeomor-
phism g that is C'-close to f such that R, is a hyperbohc periodic point of g
and the differential dgP*"(%~)(R,,) is equal to D,,.

We show that, for each n, the linear map dgpe'(R”)(Rn) leaves E1 @ Es
invariant and acts as a homothetic transformation to itself with positive mul-
tiplier, and leaves E3 invariant and the eigenvalues to the Ej3-direction is pos-
itive. Let us denote the eigenvalue of 7 for the E;-direction as A\; (1 = 1,2,3),
where )\; is some positive real number and put T(el) ies, T(ez) = pge; and
T(eg) uaes, where p1, po and pg are some non-zero real numbers. Then direct
calculations show that dgP**(Fn)(R,,)(e;) = (u1u2)?(AM1A2)3"e; for i = 1,2 and
dgPEn) (R, ) (e3) = pudr§es. If n is sufficiently large, then det(dgPer () (R,,))
is greater than one and since det o is greater than one.

Hence we finished the proof. O

Remark 4.3. The form of the matrix D,, may look bizarre. Let us see why we
need to pick up this matrix. We want to choose the matrix whose restriction is
a homothety to the stable direction. For instance, the matrix " o T 0 5% o T
satisfies this condition. However, this matrix is a power of the matrix & o T'.
Hence, in general, this matrix is not approximated by a first return map of the
differential of the some periodic point (see the definition of the transition). We
choose D,, so that it does not be a power of some matrix.

4.4 Proof of Lemma 4.7

Finally, we give the proof of Lemma 4.7. The idea of this proof already appears
in the proof of Proposition 3.1 in [BDP]. In addition to the original proof, we
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need to check two things. The first one is that during the perturbation there is
no index bifurcation. The second one is the perturbation is uniformly small.

The proof of Lemma 4.7 is divided into two steps. The first step (Lemma
4.14) tells us if there is a point whose eigenspaces forms a small angle, then
one can create complex eigenvalues by a small perturbation. In the second
step (Lemma 4.15), we prove that if a periodic linear system does not admit

* dominated splittings, then one can construct a periodic point with a small angle

by arbitrarily small perturbations.

We prepare some notations. Given two one-dimensional subspaces Vi, V5 in
a two-dimensional Euclidean space, the angle between V1, V5 is the unique real
number 0 < o < 7/2 that satisfies cosa = |(v1,v2)|/(Jv1]|va]), where v; is any
non-zero vector in V; (i =1,2), (-, -) is the inner product and | - | is the norm
defined by the inner product. ' ‘

Let us state the first and second steps.

Lemma 4.14. For any K > 0 and € > 0, there exists a = «(K,e) with
0 < o < w/4 such that the following holds: Let (X, f, E, A) a two-dimensional
diagonalizable periodic linear cocycle with.real, positive distinct eigenvalues,
bounded by K and has a point X at which the angles between two eigenspaces
are less than a. Then, there exists a path {y(t) |0 <t <1} in C(X ) such that
the following holds:

1. 4(0) = Alox)-
2. diam(y(¢t)) <e

3. detq?;) is independent of t.

4. Let A, (t) < Ap(t) be the absolute value of the eigenvalues of ')7(7) Then,
for s <t, we have Ay (s) < A (t) and Ap(s) > Ap(). '

5. det’;ﬁ/) has two complex eigenvalues.
Furthermore, when € — 0 with K fized, o — 0.

Lemma 4.15. For any K > 0, € > 0 and 0 < a < 7/4, the following holds:
Let (%, f, E, A) be a two-dimensional diagonalizable periodic linear cocycle with
real positive distinct eigenvalues, bounded by K and does not admit dominated
splittings. Then, there exists a hyperbolic periodic point X € X and a path
{7(#) |0 <t <1} in C(X) such that the following holds:

1. 7(0) = Alo(x)-
2. diam(y(¢t)) < e

3. det;(\t’) is independent of t.

4. Let A (t) < Ap(t) be the absolute value of the eigenvalues of f;(\tj Then,
for s < t, we have Ay (s) < Ap(t) and Ap(s) > Xp(2).
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5. v(1) has two eigenspaces with angle less than a.

We need an auxiliary lemma about the effect of a perturbation on the con-
stant of the boundedness of a cocycle.

Lemma 4.16. Let o be a cocycle in C(X) where X is a periodic point and let
() be a path with diam(y(t)) < e. Then, (1) is bounded by ¢ + ||o||.

Proof. For every unit vector v in some Tyi(x)yM, we have

Iy FEON )
<IOFX)) @) = YO X)) @) + GO FX)) )| <&+ o]
We can prove a similar inequality for the inverse of v(1). O

We give the proof of Lemma 4.7 using these lemmas.

Proof of Lemma 4.7. Let (%, f, E, A) be a two-dimensional diagonalizable peri-
odic linear cocycle with positive distinct eigenvalues, bounded by K and suppose
that it does not admit dominated splitting.

First, let us assume the angle between two eigenspaces are not bounded
below, more precisely, there exists a sequence of periodic points (X,,) such that
the sequence of the angles (), where a,, is the angle of the eigenspaces of
APer(Xn) (X)), converges to zero. Fix ¢ > 0 and the constant ap = a(K, €) in
Lemma 4.14. Since o, — 0 as n — 00, we can take ng such that an,, < ag.
Then Lemma 4.14 enable us to find a path v(¢) in C(X) we claimed.

Hence, let us assume that the angles between two eigenspaces are uniformly
bounded below. By taking appropriate bases at every periodic point, we can
assume that, the corresponding eigenspaces are orthogonal. Fix € > 0 and
the constant a1 = (K + ¢/2,¢/2) in Lemma 4.14. Applying Lemma 4.15 to
(%, f, E, A) with constants K, /2, and a;, we get a periodic point X € ¥ and
a path v1(t) in C(X) satisfying all the properties in the conclusion of Lemma
4.15 for v1(t), /2 and ;. Then, Lemma 4.16 implies that the cocycle v1(1) is

bounded by K + /2. Since the angle between eigenspaces of v1(1) is less than
a1, we can apply Lemma 4.14 to K, o and € as K +¢/2, a; and /2 respectively
in order to get a path v2(t). :

Now we construct a continuous path (t) as follows: If 0 < ¢ < 1/2 then
y(t) = y1(2t). If 1/2 < ¢t < 1 then y(t) = 72(2t — 1). We have diam(y(t)) is
less than € because diam(v1(t)), diam(v2(t)) are less than /2. Thus we got the
path we needed and the proof is completed. O

Let us give the proof of Lemma 4.14. For the proof, we need an elementary
lemma.

Lemma 4.17. Let R(x) denote the rotation map of angle x on a two-dimentional
Euclidean space. Then there exists a positive constant C' such that following in-
equality holds:

IR(s) — R(t)|| < Cls —t| for all —7/4 < s,t <7/4.
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Proof. We introduce a norm || - |2 on the space of linear maps as follows. Fix
an orthonormal basis of the Euclidean space and for a linear map A, define

3

where the matrix denotes the matrix representation of A with respect to the
basis. We take a constant N such that for every A the inequality ||A| < N||A]|2
holds. Then,

I1R(s) = R(t)II?
< N%||R(s) — R(t)||% = 2N?((cos(s) — cos(t))? + (sin(s) — sin(t))?).
Since —mw/4 < s,t < /4, we get

[All2 = = Va2 + b2 +c2 + d2,

2

| cos(s) — cos(t)| < |s —t|/V/2, |sin(s) — sin(t)| < |s — t|.
So we have
2N?((cos(s) — cos(t))? + (sin(s) — sin(t))?) < 3N?|s —t[%
Hence for C = /3N we get the inequality. O

Proof of Lemma 4.14. Let X be a point at which the ahgle of corresponding
eigenspaces is less than «. By fixing an appropriate orthonormal basis, we can
take a matrix representation of AP**(X)(X) as follows:

er(X _ A1 15
AP ( )(X)—<0 )\2>a
where A\; < Ag is positive real numbers and p is some non-zero real number. By
a direct calculation, we get (A2 — A1)/|u| < tana (LHS is the tangent of the
angle between two eigenspaces at X).
Given € > 0, we put a = ¢/(CK), where C is the constant given in Lemma,
4.17. Let us define a path ~y(¢) as follows:

A(f(X)), if f{(X)# fPrO71(X),

[’Y(t)](fz(X)) = {R(—sign(u)at)A(fi(X)L if f’(X) — fper(X)—l(X)’

where sign(u) is the signature of .

Let us see this path enjoys all the conditions we claimed in Lemma 4.14.
In the following, we treat the case when p > 0. Since the proof for the case
1 < 0 can be done in a similar way, it is left to the reader. We first examine
the diameter of this path. To see this, we only need to check the distance of
[Y(®))(fP*)=1), which can be estimated using Lemma 4.17 as follows:

V()P X)) = @) (PO X))
= [R(=as)A(fP 71 (X)) = R(=at) A(fP (X))
< | R(~as) — R(=at)[[|A(fP 07 (X)|
<aCKl|s—t|<eg|ls—t| <e.
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We can get similar estimates for the inverse.

The value det y(t) is independent of ¢, since v(t) is obtained by multiplying
an orthogonal matrix to y(0). Let us investigate the behavior of the eigenvalues.
We denote by A, (t) < Xp(t) the eigenvalues of ¥(¢). The characteristic equation
of ¥(t) is given by 22 — 6z +d = 0, where d := A\ Ap and 8 = (t) := (A +
A2) cos(—at) + psin(—at). So two eigenvalues are given as (0 + /62 — 4d)/2.
To complete the proof, it is enough to check the following properties hold:

e 0 is monotone decreasing when ¢ increases.
e #?2 —4d <0 when t = 1.

Indeed, Ay(t) is equal to (6 + /62 —4d)/2. Therefore, if 6 is monotone de-
creasing, so is Ap. Moreover, it implies that \,,(t) is monotone increasing, since
Am(t)Ap(t) is a positive constant.

Let us chek the items above. First, observe that

0t) = v/ (M1 + A2)? + p?sin(B — at),

where 0 < 8 < 7/2 is a real number satisfying tan 8 = (A1 + A2)/u. This shows
B > a. Thus 6(t) is monotone decreasing.
Let us show that 62 — 4d < 0 when t = 1. We have

9(1) — .U‘(Al +)\2) — /,L()\g - )‘1) _ 2>\1 < 9 /)\% <2 />\1)\2 - 2\/(‘1'
: V(A2 = A1)+ p? A=z )
14 (Rzka)
So, we finished the proof. O

Finally, let us give the proof of Lemma 4.15.

Proof of Lemma 4.15. The proof of Lemma 4.15 is just the repetition of Lemma
3.4 in [BDP]. We can easily check the behavior of the eigenvalues during the
perturbation. So the proof is left to the reader. O

5 Bifurcation of a homothetic tangency

5.1 Strategy of the proof of Proposition 2

In this section, we prove. Proposition 2. The proof is divided into two steps.
The first step is to reduce the problem to affine dynamics. The second step is
to investigate the bifurcation of the dynamics.

To state our proof clearly, let us give the following definition.

Definition. Let f € Diff' (M) with dim M = 3, and X be'an index-1 hyperbolic
fixed point with a homoclinic tangency. A one-parameter family of the C1-
diffeomorphism (f;)¢j<s C Diff! (M) is said to be an affine unfolding of the
degenerate tangency of f with respect to X if the following properties hold (see
Figure 1): .
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Figure 1: A degenerate tangency.
fo=1F.

There exists a coordinate chart ¢ : U — R3 of X such that V := ¢(U) =
(—=1,1)3 and ¢(X) is the origin of R3.

Let F = ¢ ° ft O~¢_1' For (wayaz) € (—'1’1) x (“1’1) X (_M_lau—l)a
Fy(z,y,2) = (A\x,\y,uz), where 0 < A < A < 1 < p. Thus, the z-axis
in V is contained in ¢(W*(X)) and the zy-plane in V is contained in
¢(W*(X)).

There exist two points P,Q € U with P’ = ¢(P) = (0,0,p) and Q' =
#(Q) = (0,4,0), where 0 < p,q < 1, such that the following holds: For
some positive integer N > 2, fN(Q) = P and f}(P) ¢ U for 0 < i < N.
This implies that P,Q € ¢(W*(X) N W¥(X)).

By the abuse of notation, we denote ¢ o f o ¢~ by F}¥. Then, there
exists a small neighborhood Wp of P with ¢(Wp) = [—¢,&] X [—¢,¢] x

p—e,p+e] and f¥(Wp) C U such that for every (z,y, z +p) € ¢(Wp),

FtN(x, Y,z +p) = (cz,by + g,az +t), where a,b and c are some non-zero
real numbers. We call the map F}N|w, as the return map of f;, and put
WQ = FéV(WP)

Our first step is stated as follows:

Proposition 5.1. If X has a homothetic tangency, then one can find a diffeo-
morphism g Cl-arbitrarily close to f such that there exists an one-parameter
family of C-diffeomorphisms (9¢)|t|<s that is the affine unfolding of the degen-
erate tangency of g with respect to X (g).
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The second step is the following:

Proposition 5.2. Let X be a volume-ezpanding hyperbolic periodic point with
an affine unfolding of the degenerate tangency ( ft)t|<s with respect to X. Then,
for arbitrarily small € > 0, there exists 0 < 7 < € such that f. has an indez-two
periodic point Y and there exists a heterodimensional cycle associated to X (f,)
and Y.

It is clear that these two propositions imply Propotision 2. In the subsequent
two subsections, we give the proofs of these propositions.

5.2 Proof of Proposition 5.1

We give the proof of Proposition 5.1. Before the proof, we prepare two lemmas.
The first one is a version of Franks’ lemma. We omit the proof, since it is
easily obtaiend from the proof of the Franks’ lemma.

Lemma 5.1. Let f € Diff'(M) with dimM = m. Consider x € M and
the coordinate neighborhoods ¢ : U — R™ and ¢ : V. — R™ of x and f(x)
respectively, satisfying x = f(x) = 0. Then, for any € > 0 and any neighborhood
U' C U of z, there exist small neighborhoods U of = contained in U’ and fe
Dift'(M) e-C1-close to f, coinciding with f on M\U’, and o fop~! coincides
with a linear map d( o f o ¢~1)(0) on U.

The following lemma is a version of Gourmelon’s Franks’ lemma.

Lemma 5.2 (Lemma 4.1 in [Goul)). Let f € Diff'(M) with dimM = m.
Consider a fized point x of f and a coordinate neighborhood ¢ : U — R™ of x
with ¢(z) = 0. Then, for any € > 0 and any neighborhood V.C U of x, one can
find a C-diffeomorphism f £-C-close to f and a small neighborhood V C V
such that f(z) = f(z) for anyx € M\'V, ¢ o fo¢™? coincides with the linear
map d(¢ o fod~1)(0) on ¢(V), and f preserves the invariant manifolds of X
outside V. :

Let us begin the proof of Proposition 5.1.

Proof of Proposition 5.1. We assume that X is a fixed point, since the general
case can be reduced to this case by considering some power of f.

First, by using Lemma 5.2 to = and an appropriate coordinate neighborhood
of 7, we can find f; € Diff'(M) arbitrarily close to f that has the following
properties:

e There exists a coordinate chart ¢ : U — R3? around X such that V :=

#(U) = (—1,1)3 and ¢(X) is the origin of R3.
e Let Fy := ¢o fio¢~1. Then, for (z,y,2) € (—1,1) x (=1,1) x (—u~ L, u~1),
Fi(z,y,2) = Az, \y, uz), where 0 < A < 1 < p.

o There exist two points P,Q € U with P’ := ¢(P) = (0,0,p) and Q' :=
#(Q) = (0,¢,0), where 0 < p,q < 1 such that for some positive integer
N>2 f¥(Q)=Pand fi(P) ¢ U for 0 <i < N.
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e W*(X) and W*(X) are tangent at @, in particular, ToW*(X) is con-
tained in ToW?*(X).

We give a perturbation to f1 so that the point of tangency is on the strong
stable manifold of X. For this purpose, we take an interval J := [j1, jo] that
is contained in (u=2p, u~1p) satisfying J N {A\"q | n > 0} = 0. Let p(t) be a
C*°-function on R which satisfies the following properties: p(t) = 1 for |t| < j1,
and p(t) = 0 for [t| > jo. We modify Fy to Fy as follows:

Fy(z,y,2) = (1 — R(X))Fi(X) + R(X)(\z, Ay, puz),

where R(z,y,z) := p(z)p(y)p(z) and X is a real number satisfying 0 < A <
A < 1. Let us define the map fo as follows: fa(z) = (¢! o Fy 0 ¢)(x) for
€ ¢ ((~1,1)x (=1,1) x (—u~1, u™1)). Otherwise fa(z) = fi(x). Then, for A
sufficiently close to A, fa2 is a diffeomorphism of M. Note that P and Q are the
points of tangency of the stable and unstable manifolds of X, @ is on the strong
stable manifold of X, and f, converges to f; when A — X in the C'-topology.
We fix'a small A and make more perturbations.

Throughout the proof, we often change the coordinate in the following way.
Given a real number r > 1, we define rId : R® — R® by rld(z,y,2) =
(ra,ry,rz). Then, rId o ¢ gives another coordinate neighborhood of X. We
replace ¢ with rId o ¢ and call this chart as the renormalization of ¢ with the
expansion factor 7. When we take a renormalization, we change U, P and Q so
that (DT2), (DT3), (DT4) in the definition of the degenerate tangency hold.
More precisely, we replace U with r=1U, P with f~"7 (P) where np is the small-
est non-negative integer that satisfies f "7 (P) € r~!U, Q with f~"2(Q) where
ng is the non-negative integer that satisfies f"2(Q) € r=1U.

Let us see the effect of the renormalization on the differential of the return
map. Given a diffeomorphism f and a coordinate chart ¢, we have the differen-
tial of the return map dF~ (P’). If we take the renormalization, the differential
of the return map is given by L"edFY (P')L"?, where

A Q 0
L:=10 X 0
0 0 pu

Direct calculations show that a component of the matrix dF'™ (P’) is equal to
zero if and only if the corresponding component of the the differential of the
return map of the renormalized diffeomorphism is equal to zero.

Let us resume the proof. By taking an appropriate renormalization, we can
assume (DT2), (DT3) and (DT4) hold for f,. Let us consider the differential
of the return map Fj'. Since W*(X) and W¥(X) are tangent at Q, we can put

a d g
dFN(P)=[b e h
c f 0

By applying Lemma 4.4 at P, we take a diffeomorphism f3 arbitrarily close
to f2 such that (1,3), (3,1) and (3,2)-component of dFi"(P’) are not equal
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to zero and (3, 3)-component remains to be zero. Note that, by making the
support of the perturbation sufficiently small, we can assume that the use of
the Franks’ lemma does not disturb the condition that P,Q are contained in
We(X) N W*(X). Let us take a positive integer | and consider the differential
dF} o dF{' (P"), which is written as

X0 0\ fa d g Na Nd Mg
0 X 0]|b e h]l=(XNb Xe Xn].
0 0 wu)\ec f O we wtf 0

By using Lemma 4.4 at f=1(Q), we perturb f3 to f4 to make the differential

dFy(6(f'~1(Q))) into
‘ 1 0 z\ /A 0
Xy 1 Ui 0 )
0 0 1/ \o m
where

21 =~ (AN (h/g), i = ~(/)!(ah/eg) (3w (b/c) and 2 == —(\/ )} (a/o).

Then, by a direct calculation, we have (1,1), (2,1), (2,3), and (3, 3)-component
of dF)"*'(P") is equal to zero. We can make the distance between f; and f4
being arbitrarily small by letting [ large, since z;,4;,2; — 0 when | — co. We
fix sufficiently large [, take f4 and continue making perturbations.

By taking appropriate renormalization, we can put

0 b e
dEN(P'):= 10 ¢ 0],

>

O > O
]

a d 0

where a,b, ¢, etc. are not necessarily equal to the corresponding numbers ap-
peared in dFy" (P’). Since f4 is a diffeomorphism, a,c,e # 0.

Let us take a positive integer [ and consider the differential dF}¥ odFi(¢(f; ' (P))).
This differential is given as

0 b e\ /A 0 0 0 b ept
0 cO0)Jfo X o]=]0 e\ o0].
a d 0/ \0o o u aX a0

By using Lemma 4.4 at f~!(P), we perturb fs3 to f4 to make the differential

dFy(¢(f~*(P))) into
A0 0\ /1 = O
0 A 0) (0 1 0),
0 0 u/ \0 y 1

where z; := —(A/A)!(d/a) and y; := —(\/p)!(b/e), then a direct calculation
shows that the non-zero components of dfi¥ *(¢(f5 ' (P))) are (1,3), (2,2), and
(3,1).

[<W
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By taking appropriate renormalization, we can put

00
dEN(P):= |0 b
a O

SO0

Now, by using Lemma 5.1 at P, we can construct Fg such that F{¥ is locally
an affine map around P with dF}¥ (P') = dEJ (P') .
Let us review the properties of fg.

e There exists a coordinate chart ¢ : U — R3 of X such that V := ¢(U) =
(—1,1)% and ¢(X) is the origin of R3.

o Let Fs := ¢o fgo¢t. For (z,y,2) € (—1,1) x (=1,1) x (—p~1,u7Y),
Fs(z,y,2) = (Az, Ay, pz), where 0 < A < A <1 < .

e There exist two points P,Q € U with P’ = ¢(P) = (0,0,p) and Q' =
#(Q) = (0,¢,0), where 0 < p,q < 1 such that for some positive integer
N >2 f¥(Q) =P and fi(P) ¢ U for 0 < i < N.

e There exists a small neighborhood Wp of P with ¢(Wp) = [—¢,¢] X
[—e,e] x [p—e,p+¢] and FY (Wp) C V such that for every (z,y, 2 +p) €
Wp, EN(x,y, 2+ p) = (cz,by + q,ax), where a,b and ¢ are some non-zero
real numbers.

Let pa(s) be a C*-function on R satisfying the following properties: pa(s) =
d for |s| < /3, and pa2(s) = 0 for |s| > 2¢/3, where § is a positive real number,
and define R: V — R by R(z,y, 2) == p2(z)p2(y)p2(2 — p).

We define a one-parameter family of maps U; : V — R® by Uy(z,y,2) =
(x + tR(z,vy, 2),y, 2), for (z,y, 2) € V. Note that U, is a diffeomorphism of
V for ¢t with a sufficiently small absolute value. Then, we construct a one-
parameter family of diffeomorphisms 1 : M — M as follows: For z € V,
Yi(z) = (971 0 Uy 0 ¢)(z), otherwise ¥;(z) = x. Finally, we define a one-
parameter family of diffeomorphisms (f7+) by f7: = f6 © ¢r. By making Wp
sufficiently small if necessary, we see that (f7,¢)y<s, P, Q, ¢, Wp satisfy (DT'1)-
(DT'5) for sufficiently small 6.

So, we have finished the proof. O

Remark 5.1. The geometric idea behid the perturbatioins from f; to f5 is
simple. Let us see that.

Let us consider the differential dFJ' T™(P’). Take the two-dimentional plane
passing P’ and parallel to the zy-plane, and let us consider its image by dFy' ™ (P").
If m is sufficiently large, under some generic assumption (fz to f3), this image
is almost parallel to the yz-plane. Thus, by a small perturbation, we can as-
sume this image is parallel to the yz-plane (f5 to fs). In a similar argument
(on the inverse of f4), we perturb f4 so that dFZ" (P') preserves the y-direction,
exchanges z- and z-direction (f4 to fs5).
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5.3 Proof of Proposition 5.2

Finally, let us prove Proposition 5.2.

Proof of Proposition 5.2. Put I, := [—¢, €] x [g—¢, q+e] x [(p—¢)/u™, (p+¢€)/u"]
and t, := p/u". For n sufficiently large, we show that f; has a hyperbolic
periodic point R, € I,, with period n+ N such that f;, has a heterodimensional
cycle associated to X and R,.

Let us take a point A € I, and put A = (z,y,2). Then, by definition,
F(A) = (A\"z, A"y, u"z). Note that F{*(A) belongs to Wp if n is sufficiently
large, and in the following we assume this property. By the definition of the
return map, we can see that F**N(4) = (c(u™z —p), bA"y +q,a "z +t). When
t =t,, if A is a periodic point of period n + N. the following equalities hold:

c(u"z —p) = x, bA\"y +q =y, and a\"z + p/u" = .
By a direct calculation, we have
z=0,y=¢q/(1- bj\"), and z = p/u".
We put y, := ¢/(1 — b\") and z, := p/u™. This reéult says that the point
R, := (0,Yn, zn) is a periodic point of period n+ N of f;_.

Second, let us check that R, is a hyperbolic periodic point of index 2. The
derivative of F} at R, is given by the matrix

Am 0 0
0 A\ 0
0 0 u

The derivative of dF}Y at F}* (R,) is given by the matrix

4

Hence the differential dF;*"V(R,,) is equal to

O O
[==2NS i an)
OO0

A" 0 0 0 0 ¢ 0 0 A'c
0 A 0 0 b 0= 0 A" O
0 0 up a 0 0 ap™ 0 0

Now, a direct calculation shows that the eigenvalues of this matrix is given
by A™b and £+/acA”u”. The absolute value of A”b is less than one when n
is sufficiently large, and the absolute value of £+4/acA™u™ are greater than one
when n is sufficiently large, since we have |A] < 1 and |uA| > 1 (the second
inequality is the consequence of the volume-expansiveness of X).

Let us check that f;, has a heterodimensional cylce associated to X and
R, (see Figure 2). First, we show that W*(X) and W*(R,,) have non‘empty
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Figure 2: Creation of a heterodimensional cycle.

intersection. It is easy to see that W*(X) contains the z-axis in V. Hence, we
only need to check that W*(R,,) has non-empty intersection with the z-axis. To
see this, we focus on the segment

by = {(O,S\”yn +5,u"z) | 8] < 25\"yn}.

The segment £, passes F{* (Ry,) and the z-axis.

Since F}? (R,) — @ and the length of ¢, converges to zero when n — oo,
£, is contained in Wg for n sufficiently large. In the following, we show that
£n C W*(Ry,). The image of this segment by F is given as

Ft],\{(en) = {(ann + 572n) | Is| < 2|b|5‘nyn}~
So the image of £,, by F[:L‘FN is given as follows:
FN (8n) = {(0,M"yn + 5, 4™ 20) | [s| < (2[6]A™) Ay}

Thus, the restriction of F "+N to £, is well defined and it is uniformly contracts
£,, with the factor |b|\". This shows that £, is contained in the stable manifold
of R,,.

Second, let us check that W*(X) and W*(R,) have non-empty intersection.
As is in the previous case, we only need to check that W*(R,) has non-empty
intersection with the xy-plane in V. For this purpose, we focus on the segment

T = {(0,Yn, 2n + 5) | |8] < 22, }.

This segment passes R, and have non-empty intersection with W*(X). We
show that, for sufficiently large n, 7, is contained in W*(R,). To see this, let
us calculate the inverse image of m, by F~2(n+N),
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The image of m,, by Ft;N is given as

Fy N (mn) = {(8, N'Yny 1™2) | 5] < 22/ |c]}-

Since 225, /(|c|) = 2p/(|c|u™), this set is contained in Wp if n is sufficiently large.
The image of F; ™ (m,) by F; ™ is given as

Frm N () = {(8,Yn, 2n) | [s] < 220/ (Ic]A™)}.

Since 2z, /(|c|]A™) = 2p/(|c|u™A™) and pX > 1, this segment is also contained
Wgq when n is sufficiently large.
The image of F,_"""(m,) by F;V is given as follows:

F 72N (mn) = (0, X"y, 1™z + 8) | |s| < 220/ (lac]A™)}.

By the same reason, if n is sufficiently large, this segment is contained in Wp.
Finally, the image of Ft;""zN (mn) by F;. ™ is given as follows.

F72 2N ()= {(0, Yny 2n + 8) | |5] < 22,/ (laclu™A™)}.

These calculations show that th”'ZN uniformly contracts m, by the factor

(Jac|p™A™)~1, whose absolute value is less than one if n is sufficiently large.
Hence, we conclude that 7, is contained in W*(R,,), and our proof is completed.
O

Appendix

In this appendix, we give the proof of Theorem 3.

A A necessary condition for Theorem 3

In this section, we give an abstract condition that assures the conclusion of
Theorem 3 and prove it assuming the existence of the diffeomorphism that
satisfies such a condition. '

We denote by TM the tangent bundle of M and by A¥(TM) the exterior
product of T'M of degree k. We furnish this bundle with the metric canonically
induced from the Riemannian metric on M. For f € Diff'(M), we denote by
AF(df) the bundle map of A*¥(T'M) canonically induced from df.

For f : V — W, where V and W are finite dimensional Euclidean spaces and
f is a linear map, we define the value m(f) to be the minimum of the length of
f(v), where v ranges all the unit vectors in V.

The following proposition provides the sufficient condition for Theorem 3.

Proposition A.1. Let M be a four-dimensional smooth Riemannian manifold
and f € Diff'(M). Suppose that f satisfies all the conditions below:

(W1) There are two compact sets A and B in M such that B C A, f(A) C int(4)
and f(B) C int(B) (for U C M, we denote its topological interior by
int(U)).
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(W2) There exist two hyperbolic fized points P and Q of f in C := A\ B.
(W38) f has a heterodimensional cycle associated to P and Q.

(W4) ind(P) = 3, and let o(P), p1(P), p2(P) and us(P) be the eigenvalues of
df (P) in the non-decreasing order of their absolue values. Then ui(P)
and po(P) are in C\ R.

(W5) ind(Q) = 2, and every eigenvalue of df (Q) is in C \ R.

(W6) There exists a constant K > 1 such that m (A*(df)) > K on C. In other
words, df expands every three-dimensional subspace of ToM for all x € C
in volume with the expanding rate greater than K.

Then, there exist a mon-empty open neighborhood U C Diff*(M) of f and a
residual subset R of U satisfying the following: For every g € R, the homoclinic
class H(P, g) does not admit dominated splittings and ind(H(P, g)) = {2, 3}.

For the proof, we prepare a lemma.

Lemma A.1 (Theorem 2 in [BDK]). Consider a diffeomorphism f of a four-
dimensional manifold exhibiting a heterodimensional cycle associated to two hy-
perbolic fized points P and @ with ind(P)—ind(Q) = 1 and ind(Q) = 2. Suppose
that df (Q) has a complex eigenvalue with absolute value less than one. Then,
there is a diffeomorphism g arbitrarily C1-close to f exhibiting a robust heterodi-
mensional cycle associated to transitive hyperbolic sets I'(g) and 3(g) containing
P(g) and Q(g) respectively.

Let us give the proof of Proposition A.1.

Proof of Proposition A.1. Let f be a diffeomorphism of a four-dimensional man-
ifold such that f satisfies (W1)—(W6). By applying Lemma A.1 to P and Q, we
can take a diffeomorphism ¢, an open neighborhood U of g and two hyperbolic
transitive invariant sets I'; £ such that for every h € U, the continuation I'(h)
contains P(h), ¥(h) contains Q(h) and f has a heterodimensional cycle assici-
ated to I'(h) and X(h). Note that by taking U sufficiently close to f, we can
assume that for every h € U all the properties (W1)—-(W6) hold except (W3).
Let us put R = U NRg3, where R3 is the residual set in section 3. We prove
that the conclusion of Proposition A.1 holds for every h € R. First, we show
that H(P,h) does not admit dominated splittings. Since h € U, there exists
a heterodimensional cycle associated to I'(h) and X(h) with P(h) € T'(h) and
Q(h) € £(h). It implies that P(h) and Q(h) belong to the same chain recurrence
class. Since h € Rg, this chain recurrence class coincides with H(P,h) and
simultaneously H(Q, k), in particular H(P,h) = H(Q,h). By (W4), we can
see that H(P, h) does not admit dominated splitting of the form E & F with
dim E = 2. We can also see that H(P,h) does not admit dominated splitting
E o F with dimE = 1 or 3, for H(P, h) contains Q(h) and h satisfies the
condition (W5). Thus, H(P, h) does not admit any kind of dominated splittings.
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Let us show that ind(H(P,h)) = {2,3}. Since H(P, h) contains P(h) and
Q(h), ind(H(P, h)) contains 2 and 3. We need to prove that ind(H (P, h)) does
not contain 1. To check this, it is enough to prove that H(P,h) C C. Indeed,
(W6) says that every iteration of dh expands every three-dimensional subspace
of the tangent space at every point in H (P, h) in volume. So the index of every
periodic point in H (P, h) cannot be 1.

To see H(P,h) C C, we first show W*(P,h) NW*(P,h) C C. Let us take
z € W*(P,h) W W*(P,h). Since z-€ W¥(P,h), there exists n > 0 such that
h~™(z) € A. So we have z € h™(A). Since A satisfies h(A) C int(A4), we
have h™(A) C A for n > 0 and this implies z € A. We show = € B. Since
h(B) C int(B), we get h™(B) C B. If z € B, then for all n > 0 we have
h™(x) € B. By definition, z € W*(P, h) and therefore f™(z) converges to P(h)
as n — oo. This contradicts the fact P(h) ¢ B. Thus we have proved that
We(P,h)ZWW*(P,h) C C.

In the following we show H(P,h) C C. Take y € H(P,h). By definition
there exists a sequence (z,,) C W*(P,h)\W¥(P, h) converging to y as n — oo.
Since W*(P,h) h W*(P,h) C A and A is compact, we have H(P,h) C A, in
particular y € A. To prove y ¢ B, let us assume that y € B. Then h(y)
belongs to int(B) and hence there exists a neighborhood U of h(y) contained
in int(B). Since h is continuous, the sequence (h(xy,)) converges to h(y). This
implies there exists IV such that h(zn) belongs to U, in particular to B. Since
zn € W*(P,h) N W*(P,h), we have h(zny) € W*(P,h) h W*(P,h). This is
a contradiction, because we have already proved that W#(P,h) h W*(P, h) is
disjoint from B. Therefore, we have proved H(P,h) C C and finished the proof
of Proposition A.1. O

The following proposition will be proved in section B.
Proposition A.2. There exists f € Diff(R*) satisfying the following properties:

(w1) The .support of f is compact, where the support of f is defined to be the
closure of the set {x € M | f(z) # z}.

(w2) There are two compact sets A, B C R* with B C A, f(A) C int(A4) and
f(B) C int(B).

(w3) There exist two hyperbolic fixed points P and Q of f in C := A \ B.
(@4 ) f has a heterodimensional cycle associated to P and Q.

(w5) ind(P) = 3, and let o(P), u1(P), ua(P) and uz(P) be the eigenvalues of
df (P) in non-decreasing order of their absolue values. Then pu1(P) and
ua(P) are in C\ R.

(w6) ind(Q) = 2, and every eigenvalue of df (Q) is in C\ R.

(w7) There ezists a constant K > 1 such that m (A3(df)) > K on C (we furnish
R* with the standard Riemannian structure). In other words, df expands
every three-dimensional subspace of T,R* in the volume for all x € C with
the expanding rate greater than K.
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Figure 3: Dynamics of ®.

Let us prove our 3 by using Proposition A.1 and A.2.

Proof of Theorem 3. Let us take a diffeomorphism f of R* which satisfies (w1)-
(w7) by using Proposition A.2. Given a four-dimensional compact manifold M,
we take a point € M and a coordinate chart ¢ : U — R* around z. By
changing the coordinate if necessary, we can assume ¢(U) contains the support
of f. Then, we define a diffeomorphism F € Diff'(M) as follows: F(z) =
(71 o fog@)(z) for z € U, otherwise F(z) = z. Let us denote the standard
Riemannian metric on R* by g. By the partition of unity, we construct a
Riemannian metric § on M that coincides with the pullback of g by ¢ at every
point in ¢~*(A). Now, by applying Proposition A.1 to the triplet (M, F, §), we
can find a diffeomorphism and its open neighborhood in Diff* (M) that satisfy
the conclusion of Theorem 3. O

Now, for the proof of Theorem 3, we only need to prové Proposition A.2,
whose proof will be given in the next section.
B Construction of the diffeomorphism

In this section, we give the proof of Proposition A.2.

B.1 Notations and a sketch of the proof

In this subsection, we prepare some notations and provide the idea of our proof
of Proposition A.2.

We identify every point X € R* with the vector that starts from the origin
and ends at X. Under this identification, we define the addition between any
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two points of R* and multiplication by real numbers. We denote the standard
Euclidean distance of R* by d(-, -). We also use the £*®-distance of R* and
denote it by di(-,-). More presicely, given X = (x1,72,73,74) and ¥ =
(y1,Y2,¥3,94) in R?, we define

4 1/2
dX,Y) = ( > (@i — yi)2> ;o du(X,Y) = max |z — gl

=1
Let us define some points in R* as follows:
P:=(0,0,0,0), Q :=(0,10,0,0), Cy :=(0,10,5,0),
Cy :=(10,10,5,0), Cs3 := (10,0,5,0), Cy4 = (10,0,0,0).
We also define three subsets in R?* as follows:

£y :={(10+,0,0,0) | |z| < 0.2}, Ly :={(0,5+1y,0,0) | |y| <1},
43 :={(0,10, z,w) | |2|, |lw| < 0.2}.

For X € R* and | > 0, we denote by B(X, [) the four-dimensional cube with
edges of length 2! centered at X. More presicely, we put .

B(X,l):={Z R |di(X,2Z) <1}
With this notation, we define

By(P) := B(P,1/100), Bi(Q) == B(Q,1/100),
B,(P) := B(P,1/300), B.(Q) := B(Q,1/300).

Given X,Y € R*and [ < 2d(X,Y), we denote by C(X, Y, ) the four-dimensional
box defined as the collection of points whose £*°-distance from the segment
joining X and Y is less than [. More presicely, we put

CX,Y,0) = |J BEX+(1-t)Y,).
0<t<1

With this notation, we define
D= C(Cl, Cs, 1) U C(Cg, C5,0.7)U C(Cg, Cy, 0.4).

Throughout this section, A denotes a real number greater than 20. We define
as follows:

A= =22 N |
C o= [=N% N x (=1/2,1/2)%, C o= =X NP x (=7,7)%,
B:=A\C, B :=A\C".

Note that these sets depend on the value of A\, while the points and sets defined
above are independent of A.
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Figure 4: The role of Y.

Let us give the idea of the proof of Proposition A.2. For the proof, we
construct two diffeomorphisms ® and Y of R%. The composition T o & gives
a diffeomorphism that satisfies (wl)—(w7) of Proposition A.2 except (w4). Let
us explain the role of each diffeomorphism. ® has two hyperbolic fixed points
P and @ whose eigenvalues satisfies (w5) and (w6), and there is a non-empty
intersection between W*(P) and W*(Q) (see Figure 3). Furthermore, ® is
constructed so that once a point escapes, then it never returns close to P and"
Q (this corresponds to (w2)).

To obtain the property (w4), we need to connect W*(Q) and W*(P). The
diffeomorphism 7T is utilized for this purpose. T pushes W*(Q, ®) so that it
has an intersection with W#(P). We need to guaranatee that this perturbation
has little effect on the connection between W*(P) and W*(Q) and on the whole
structure of the dynamics. So the push makes a detour (see Figure 4).

The diffeomorphism 7T is constructed independent of the value of \. After
the construction of T, we choose A sufficiently large so that the effect of dY is
ignorable when we check (w7) for Y o @.

Finally, we prepare a lemma that we frequently use throughout this section.
We omit its proof.

Lemma B.1. Given two closed intervals [a,b] C [¢,d] (a,b,c,d may be £00),
there exists a C*®-function pla,b,c,d](t) : R — R that satisfies the following
properties:

o Forallt € R,0 < pla,b,c,d)(t) < 1.
e Fort € [a,b], pla,b,c,d|(t) =1.
e Fort ¢ e, d], pla,b,c,d](t) =0.



B.2 Construction of ®

In this section, we construct the diffeomorphism ®.

Proposition B.1. There ezists a diffeomorphism ® : R* — R* that has the
following properties:

(®1) The support of ® is contained in [—A\3 — 1, A% + 1],
($2) &(4) C int(4) and (B) C int(B').
(®3) P and Q are hyperbolic fized points of ®.

(®4) ind(P) = 3, and let o(P), u1(P), u2(P) and uz(P) be the eigenvalues of
df (P) in the non-decreasing order of their absolue values. Then, ui(P)
and po(P) are in C\ R.

(@5) £y C W5(P,®) and Up>18™(¢,) N D = 0.

(®6) Ly C WY(P,®) and Up>o®~"(¢2) N D = 0.

(®7) ind(Q) = 2, and every eigenvalue of d®(Q) is in‘(C\]R.
(®8) £y C W(Q,3) and Upso®™(£2) N D = 0.

(®9) £5 C W*(Q,®) and Ups1®~"(¢s) N D = 0.

(®10) There ezists a constant cy > 0 (independent of \) such that the inequality
m (A3(d®)(X)) > coX holds for every X € C.

To prove Proposition B.1, we create auxiliary diffeomorphims F, G and H
of R and © of R*. After that, we give the proof of Proposition B.1.

Lemma B.2. There ezists a C*-diffeomorphism F of R that satisfies the fol-
lowing properties:

(F1) The support of F is contained in [—\3, \3].
(F2) For any z € [—A2,2?] \ {0}, the inequality 0 < F(z)/z < 1/9 holds.

(F8) There is a constant ¢c; > 0 (independent of \) such that the inequality
minge(—xz z2) F/(z) > c1 holds.

Proof. Let us consider the vector field on R given by #(t) = f(z), where f(zx)
is a C°°-function on R that has the following properties:

o If [z < A% — 2, f(z) = —(log 10)z.
o If 2| > A3 — 1, f(z) = 0.



We can construct such f as follows:
f(z) = —(log 10)zp[— (A — 2), A3 — 2, - (X3 — 1), A® — 1] ().

Let us take the time-1 map of this vector field and denote it by F(z) (we
can consider the time-1 map for all z € R since f has compact support and
Lipschitz continuous). Then, it is not difficult to check that F(z) satisfies all
the properties (F1)—(F3) and the detail is left to the reader. |

Remark B.1. The conditions (F'1)-(F3) imply that F satisfies the followoing
conditions:

(F4 ) 0 is an attracting fized point of F.
(F5) F([-X,X%]) C (=A%, 3).

Lemma B.3. There ezists a C™-diffeomorphism G of R satisfies the following
properties:

(G1) The support of G is contained in [-A3, A3].
(G2) G([=A%2%]) € (=A%, A%).
(an’) For any y € [-1/100,1/100] \ {0}, the inequality 9 < G(y)/y < 10 holds.

(G4) For anyy € [—1/100,1/100]\ {0}, the inequality 0 < (G(y+10)—10)/y <
1/10 holds.

(G5) For any y € (0,10), lim, 00 G~™(y) = 0 and lim,_,,, G"(y) = 10.

(G6) There is a constant ca > 0 (independent of \) such that the inequality
minge[-x2,x2) G'(y) > c2 holds.

“Proof. Let us consider the vector field ¢(t) = g(y), where g(y) is a C*-function
on R satisfying the following properties:

o If Jy| < A* —2,9(y) = —{(log 10)/100}(y* — 100y).
o If [y| > X —1,9(y) = 0.

We can construct such g as follows:

9(y) = —{(log 10)/100} (y® — 100y)p[—(X* — 2),A> = 2, —(A* — 1),A* — 1](y).

Let us take the time-1 map of this vector field and denote it by G(y) (we can
_consider the time-1 map for all y € R by the same reason for F(x)). Then, it
is not difficult to check G(y) satisfies all the property (G1)-(G6). The detail is
left to the reader. O

Remark B.2. The conditions (G1)-(G6) imply that G satisfies the followoing
conditions: ‘
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(G7) 0 is a repelling fized point of G.
(G8) 10 is an attracting fized point of G.

Lemma B.4. There exists a C*®-diffeomorphism H of R satisfying the following
properties:

(H1) For every z, H(—z) = —H(2).

(H2) The support of H(z) is contained in [—\3, \3].

(H3) H([-X2,2%]) C (=2, )\?).

(H4) H([1/2,X%]) C (7,2%).

(H5) For0< z<1, H(z) = Az. In particular, 0 is a repelling fized point of H.

Proof. First, we construct a C*°-function h(t) on R>¢ satisfying the following
properties:

(hl) For all t > 0,h(t) >0

(h2) For 0 <t <1, h(t) = A
(h3) f1 t)dt = 1.

(h4) For 2 <t < A2, h(t) = \72.
(h5) [NV Rty dt = 23 1

(h6) For t > A3 —1,h(t) =

Let us discuss how to construct such h(t). We put

p1(t) := (A= A7) p[—00,1,—00, 14+ A?|(¢),
( @) =04/?[7/5 8/5,6/5,9/5](t),
p3(t) == (1— A7) pIA® — 1,400, A% — 2, +00] (%),

palt; B) = BplA® — 8/5,X% —7/5,7% — 9/5, X% — 6/5](2),

and take a function n(¢; a, B) := p1(t) + p2(t; @) + p3(t) + pa(t; B) + A~2. Note
that, for all @, 8 > 0, the function 7(t; @, 8) satisfies the conditions (h1)—(h6)
except (h3) and (h5). We show there exist positive real numbers o and Sy for
which n(t; o, Bo) satisfies (h3) and (h5).
Flrst let us see how to take ag for which 7(¢; o, 5) satisfies (h3). Let us put
fl (t; , B)dt. Then, E(c) is independent of 3, continuous, monotone
mcreasmg and ( ) — +00 as a — 400. Moreover, 2(0) < A-A724+1-A72< 1
(remember that we assume A > 20). Hence, by the intermediate value theorem,
we get ap for which n(¢; ag, §) satisfies (h3). In a similar way, we can find 5y so
that (h5) holds for n(t; ao, Bo)-
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Then, by putting H(z) := [; h(t)dt for z > 0, and H(z) = —H(~2) for z <
0, we construct a map H(z). It is easy to see that H(z) is a C*°-diffeomorphism
and enjoys (H1), (H2) and (H5). Let us check (H3) and (H4). We have
H(1/2) = X/2 > 7 and H(\?) can be estimated as follows:

HON)=H2)+ M =22 2=2+14+1-2/2<X+2< )2
Hence we have proved (H3) and (H4) for H(z). |

Lemma B.5. There exists a C®°-diffeomorphism © of R* that has the following
properties:

(©1) The support of © is contained in By(P)U B;(Q).

(©2) For X = (z,y,z,w) € Bs(P),0(z,y,2,w) = (z,—2,y,w), in particular,
P is a fixed point of ©.

(©3) © fizes every point in the x-azis, more presicely, for X = (z,0,0,0),0(X) =
X. :

(©4) For any X € Bi(P), © preserves the d-distance between P and X, more
precisely, d(P,0(X)) = d(P, X).

(©5) In B)(P), © preserves the yz-plane, more presicely, for X = (0,y, z,0) €
By(P), the z-coordinate and the w-coordinate of ©(X) are 0.

(©6) For (z,y + 10, z,w) € Bs(Q),0(z,y + 10, z,w) = (~y,z + 10, —w, 2), in
particular, Q is a fixed point of ©.

(©7) For any X € B;(Q), © preserves the d-distance between Q and X.

(©8) In Bi(Q), © preserves the xy-plane. More presicely, for X = (z,y,0,0) €
Byi(Q), the z-coordinate and w-coordinate of ©(X) are 0.

(©9) In B;(Q), © preserves the plane that passes Q and parallel to the zw-plane,
more presicely, for X = (0,10, z,w) € Bi(Q), the z-coordinate of ©(X) is
0 and the y-coordinate of ©(X) is 10.

Proof. First, we define three functions pi(t), w1 (X),w2(X) as follows:

p1(t) := p[—1/300,1/300, —1,/200,1/200](t),
wi(z,y, z,w) := (7/2)p1(z)p1(y)p1(2)pr(w),
wa(z,y, z,w) := (7/2)p1(z)p1(y — 10)p1(2) p1(w).

We also define a map R[a] : R2 — R? to be the rotation of angle a, more
precisely, for (z,y) € R?, we put

Rla](z,y) := ((cos @)z — (sin @)y, (sina)z + (cos a)y).

Then, we define © as follows:
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e For X = (z,y,2,w) € Bi(P), O(X) := (z, Rlw1(X)](y, 2), w).
e For X = (z,y+10,z,w) € B)(Q),
O(X) = (Rlw2(X)](z,y), Rlw2(X)](2, w)) + Q-

e Otherwise, ©O(X) := X.

Now, it is not difficult to see that © is a C°°-diffeomorphism satisfying all the
properties (©1)-(©9). O

Lemma B.6. There is a C*®-diffeomorphism ¥ of R* satisfying the following
properties:

(Y1) The support of ¥ is contained in [—A> —1,\% + 1]*.

(¥2) For (z,y,z,w) € [-A3, X34, U(z,y,z,w) = (F(z),G(y), H(2), H(w)).

Proof. We define the functions p; on R and R; (i = 1,...,4) on R* as follows:
pr(t) = p[=X%, X%, =A% — 1,0% + 1](¢),

Ry(X) = p1(z2)p1(z3)p1(74), Ry(X) = p1(z1)p1(z3)p1(z4),
R3(X) := p1(z1)p1(z2)p1(za), R4(X) = p1(z1)p1(z2)p1(z3),

where X = (z1, 22,73, 74). Then, we define a map ¥ : R* — R* by
\I’Q(X) = Rz(X)Fz(llz) + (1 — Ri(X))xi, for 1 =1,2,3,4,

where ¥;(X) denotes the i-th coordinate of ¥(X) and we put Fy := F, Fp := G
and F3 = Fy := H as the matter of convenience.
It is easy to see that ¥ is a C°-map and satisfies (¥1) and (¥2). The

perplexing part is to confirm that ¥ is a diffeomorphism. To see this, we put
Ip == [-23X%), I ;=R\ Iy, S := {(04)_; | 0i = 0,1} and for every (0;) € S

we put I[(0;)] := HLI I,,. Then, divide R* into sixteen subsets as follows:
R*= [T Il
(oi)€S

We claim that, for every (o;) € S, the restriction of ¥ to I[(0;)] is a diffeomor-
phism. Let us fix (0;) € S and put j := > 0;. We define

P(0)] := {(03z:) € R* | z; € I},
and for Y = (o;y;) € P[(03)],
S([(0),Y) :=={Y + (1 —04)2i) | 2 € Lo}

Then, we have the following decomposition:

Hol= I S, Y).

YeP[(oi)]
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Intuitively speaking, we divided I[(c;)] into (4 — j)-dimensional cubes that are
parametrized by j-dimensional parameters.

First, we prove that Wg|r((s,))(X) = zx for k with o), = 1. One important
observation to see this is that each F} is the identity map on I; by (F1), (G1)
and (H2). So, for k with o = 1, we have Wi|71(0,))(X) = Re(X)zk + (1 —
Ry (X))xk = i independent of the value of Ry (X).

Second, we investigate the behavior of the restriction of ¥ to S(](0;)],Y). We
show that Wi |s(((0:)),v)(X) = Fy(zy) for k with oy, = 0, where F(z;) is some
diffeomorphism of Iy. The key point is that the change of X in S([(0)],Y)
never varies Ri(X). Indeed, for [ with o; = 1, the [-th coordinate of X is
fixed, and for ! that satisfies oy = 0, [-th coordinate of X is in I;. Hence
the change of X in S([(0;)],Y) give no effect on Ri(X). Now the formula
\Ifk|S([(a,;)],Y) (X) = Rp(X)Fr(xr) + (1 — Rg(X))xy, tells us that the RHS gives
a diffeomorphism of Iy, since it is a convex combination of diffeomorphisms of
Iy. Therefore, ¥|s(((s,)],v) is a diffeomorphism of S([(c4)],Y).

We have proved that ¥|,) is a diffeomorphism when it is restricted to
S([(¢4)],Y) and behaves as the identity map in the P[(c;)] direction. These two
facts say that U7,y is a diffeomorphism of I[(;)]. [

Now, let us give the proof of Proposition B.1.

Proof of Proposition B.1. We put @ := © o ¥. From the properties of F', G, H,
© and ¥, we can see that @ satisfies ($1)—(®10). Indeed,

o (®1) follows from (¥1) and (O1).

o (92) follows from (F5), (G2), (H3), (H4) and (©1).
®3) follows from (F4), (G7), (G8), (H5), (©2) and (96).
follows from (F2), (G3), (H5) and (©2).
(£2) )
(F2), (G3)
); (G8)
)

( (
(®3) (
(®4) (
o (®5) follows from (F2), (1) and (©3).
(®6) (
(®7) (
( (

o4

o (®6) follows from (F2), (G3), (G5), (1), (©4) and (65).
o (®7) follows from (F4), (G8), (H5) and (©6).

o (8) follows from (F2), (G4), (G5), (1), (©7) and (08).
o (®9) follows from (H5), (©1), (©7), and (©9).

Let us check ($10). We investigate the action of A3(d¥)(X) (we put X =
(z,y,z,w)) to the orthonormal basis (e; AeaAes, e1AeaNey, e1AesNes, eaNesNeys),
where (e;) denotes the standard orthonormal basis of TxR*.

A3(dT)(X)(e1 Aeay Aes) = F'(z)G'(y)H'(z)e1 Nez Neg

(d®)(X)( '
A3(dT)(X)(ex Nex Aes) = F'(x)G'(y)H (w)es Aezx Aes
A3(dT)(X)(e1 AesAes) = F'(x)H'(2)H'(w)er Nes Aes
A3(dU)(X)(ex Nes Neq) = G'(y)H'(2)H' (w)ez Aes Aey
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This calculation tells us that m (A3(d¥)(X)) is the minimum of the lengths of
these four vectors. Let us fix a real number ¢ > 0 such that

{IF'(@)G W), |F' ()], |G W)} > c.

min
(z,9)€[-A%,22]2

We can take such ¢ by (£3) and (G6). Note that ¢ can be choosen independent
of . Since H'(z) = H'(w) = A for any (z,y,z,w) € C, we have proved the
lengths of these four vectors are bounded below by cA and m (A3(d¥)(X)) > cA
for all X € C.

We put ce := mingcre m(A3(dO)(z)). Since O is a diffeomorphism and have
compact support, ceg is a positive number. Now, for any X € C, the inequality

m(A3(d®) (X)) > irelg}l m(A3(dO)(z)) - m (A3(d¥)(X)) = coch

holds and this implies (®10) for ¢ = coc.
. Therefore, the proof is completed. O

B.3 Construction of Y.

Proposition B.2. There exists a C™®-diffeomorphism Y of R* satisfying the
following properties:

(Y1) The support of Y is contained in D.
(Y2) For X € B(C1,0.2),T(X) =X + (10,-10,-5,0).
To construct Y, we need the following auxiliary diffeomorphim x(X).

Lemma B.7. Given two points Y,Z € R* and two real numbers a > b > 0
with d(Y, Z) > 2a, there exists a diffeomorphism x[Y, Z,a,b)(X) = x(X) of R*
satisfying the following properties:

(x1) The support of x(X) is contained in C(Y, Z,a).
(x2) For X e BY,b),Y(X)=X+Z-Y.

Before the proof of Lemma B.7, let us see how one can construct T from x.
We put [, := 1.15 — 0.15n and

Xi(X) := x(Cs, Ciy1, l2i—1,12:),

for i = 1,2,3. Then, we put Y := x3 o X2 © x1. It is clear that Y satisfies (Y1)
and (Y2).
Let us give the proof of Lemma B.7.

Proof of Lemma B.7. By changing the coordinate, we can assume that Y is the
origin of R* and Z = (¢{,0,0,0) where ¢ = d(Y, Z). We put ¢ := (a + b)/2.

First, we construct a diffeomorphism x(z) of R satisfying the following con-
ditions:
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(k1) The support of  is contained in [—a,( + a).
(k2) For z € [-b,b], k(z) =z + C.

We will explain how to construct such a diffeomorphism later. Then, put
p1(t) = p[—=b,b,—c,((t) and R(z,y,z,w) = p1(y)p1(z)p1(w). Finally, for
X = (z,y, z,w) € R, we define

X[Y, Z,0,b)(X) := (R(X)k(z) + (1 = R(X))z,y, 2,0).

It is not difficult to see that x satisfies the required conditions.
Let us see how to construct x(x). We prepare a C*°-function 7(t) on R that
satisfies the following properties:

(n1) n(t) > 0 for all t € R.
(m2) nt)=1lfort < —c,—~b<t<bort>(+ec.

@3) [~ n(t)dt = ¢ +c—b.
(n4) [ten(t) dt = c—b.

Then, x(z) := ¢ + [; n(t)dt is a C-diffeomorphism satisfying (k1) and (k2).
So, let us construct the function n(t). We fix a positive real number e < (c—b)/2
and define

p2(t) = p[—c+ €, —b— €, —¢, _b](t)7 p3(t) = p[b + eaC +c— e,b,C + C](t),

and
n(t; @, B) = exp(aps(t) + Bps(t)),
where «, 8 are some real numbers.

We show there exists a1, 1 such that n(t; a1, 1) satisfies (n1)—(n4). The
function n(t; «, B) satisfies the properties (n1) and (n2) for all @ and 3. Let us
consider (n3) and (n4). For t € [—c, —b], n(t; a, B) is equal to exp(apz(t)). We
put J(a) := f__cb n(t; o, B) dt. Then, one can check that J(a) — 0 as o — —o0,
J(a) = 400 as @ — 400 and J(«) is continuous and monotone increasing. So,
the intermediate value theorem says there exists oy satisfying J(ay) = ¢ +c—b.
In a similar way, one can find B; such that beJrcn(t; o1,01)dt = ¢ —b. Hence,
n(t; a1, f1) satisfies (n1)—(n4).

a

‘B.4 Proof of Proposition A.2

Finally, let us give the proof of Proposition A.2.

Proof of Proposition A.2. Let us put cy := mingegs m(A3(dT)(z)). Since T is
a diffeomorphism and has compact support, cy > 0. We fix Ay > 0 so that
K :=cgcyAg > 1 holds. Then, we put Q := T o ® and show that Q, A, B, P,
Q and K satisfy the properties (wl)—(w7) when A = Ag. Indeed,
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e (wl) follows from (®1) and (Y1).
o (w2) follows from (®2) and (Y1).
o (w3) follows from (®3), and (Y1).

o (w5) follows from (®4) and (Y1).

(
(
(
o (w4) follows from (®5), (86), (®8), (®9), (Y1) and (T2).
(
o (w6) follows from (®7) and (T1).

(

o (w7) follows from (®10) and the definition of \o.

So, the proof is completed. O
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