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Dedicated to Professor Hikosaburo Komatsu on his siztieth birthday

Abstract. The symbol of the fundamental solution for a degen-
erate parabolic pseudo-differential operator of order m (> 0) can be
described in terms of a Hamiltonian path integral. This Hamiltonian
path integral converges in the topology of the symbol class S%\’z s and

in the weak topology of the symbol class Sg\’ 6"

0. Introduction

In this paper, we construct the fundamental solution for a degenerate
parabolic pseudo-differential operator of order m (> 0) in a different way
from that in C.Tsutsumi [10]. In [10], she constructed the fundamental
solution by Levi-Mizohata method. On the other hand, in this paper, we
construct the fundamental solution by a Hamiltonian path integral. If we
use a Hamiltonian path integral, we can actually give an expression of the
symbol of the fundamental solution. Furthermore, this Hamiltonian path
integral converges in the topology of the symbol class S ?\’Z s and in the weak
topology of the symbol class 33,,),5-

In Section 1, we introduce some basic properties of pseudo-differential
operators, which we use in Section 2. For the details, see Chapter 7 § 1 and §
2 in H.Kumano-go [6]. In Section 2, we construct the fundamental solution
for a degenerate parabolic pseudo-differential operator by a Hamiltonian
path integral. Theorem 2.1 is the main theorem in this paper.
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1. Pseudo-Differential Operators

For x = (21,...,7,) € Ry, § = (§1,...,8) € R and multi-indices of
non-negative integers o = (aq,...,a,), 8 = (B1,...,0,), we employ the
usual notation:

o] = a1+ Fan, [Bl=PF1+- -+ B,

al =ayl-apl, Bl= 61! B,
zoE=mbi+ - H Taba, (@)= (L4212, () = 1+
0 .0
1= 5 Du=ig % =005, Dy=Dg- D
S denotes the Schwartz space of rapidly decreasing C'°°-functions on R™.
For u € S, we define semi-norms |u|; s(l =0,1,2,...) by

O¢

luls = kmax sup |<$>k8§‘u(m)\ (1=0,1,2,...).
+

o<l 2

Then, S is a Fréchet space with these semi-norms.
For simplicity, we set dn = (27) "dn and d¢ = (2m) "dE.
Oscillatory integral of a function a(n,y), is defined by the equality

Os— / / e Wa(n,y)dydn = lim / / e~V (en, ey)a(n, y)dydn ,

where x(n,y) € S in R%”y and x(0,0) = 1. For the details, see Chapter 1 §
6 in H.Kumano-go [6].

DEFINITION 1.1 ( A weight function A(§) ).
We say that a real-valued C*°-function A(£) on Rg is a weight function,
if there exist constants Ag, A, > 0 such that

(1.1) 1 < A(§) < Ao(8),
(1.2) BEAE)] < AaA(©) .
Ezxzamples.
17 M) = (§)-

2m)

20 (&) = {14 30 [g;[2ms V! €N, m= :
©={1+ Rl T (my €N m = max fmy) ).
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DEFINITION 1.2 ( Pseudo-differential operators ).

We say that a C°°-function p(z, ) on Ri” is a symbol of class S} )
(meR,0<6<p<1,6é<1),if for any a,ﬂ, there exists a constant C, g
such that

(1.3) [p(3) (2, €)] < CagA (&)1l

where pggi(az,é) = 8§‘Dgp(x,§).
The pseudo-differential operator p(X, D,) with the symbol p(z, £) is defined
by

(14)  p(X, Dy)u() = / / G E (. (e dE (u € S),

where d¢ = (2m)"d¢.

REMARK.
1° For simplicity, we set pﬁgg(x,f) = 8?Dgp(a: £), p(z,€) =

9¢p(x,€) and p(g)(z, ) = DEp(z,€) for any a, 5.
2° The symbol class S A6 18 @ Fréchet space with the semi-norms

(15) 19l = max sup{l) (. O} (1= 0.1.2.).

3° The continuity of p(X,D,) : S — S is clear. Furthermore, we can
extend p(X,D,): S — S to p(X,D,) : & — &' by means of

(1.6) (p(X, Dy)u,v) = (u,p(X, Dy)*v) for wueS ,veS.

THEOREM 1.3 ( Multi-products ).
Let M be a positive constant and let {m;}32, be a sequence of real num-
bers satisfying

(1.7) > myl < M < oo
j=1
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For anyv =1,2,... and p;(x,§) € S;nzé(j =1,2,...,v+ 1), there exists

qui1(z, &) € ST;ng(ml,H mi +ma+ -+ myy1) such that
(1.8) Q@+1(X, Dz) = p1(X, Dy)pa(X, Dy) -+ py41(X, D) -

Furthermore, for any l, there exist a constant A; and an integer ' such that

v+1
(1.9) e | < H sl

where A; and I' depend only on M and 1, but are independent of v.
PROOF. See Theorem 2.4 in Chapter 7 § 2 of H.Kumano-go [6]. O

THEOREM 1.4.
Let pj(x,€) € 8% 4(j = 1,2). Define gy(x,€) (|| <1) b

(L10) w8 =0u [[ (e &+ bmpala + v, dyiy.
Then {qo(x,&)} o<1 s a bounded set of Sm1+m2. Furthermore, for any L,

there exist a constant A; and an integer I’ mdependent of 0 such that

(1.11) Il < Ay lpy S pal )

PROOF. See Lemma 2.4 in Chapter 2 § 2 or Lemma 2.2 in Chapter 7
§2 of H.Kumano-go [6]. O

2. The Main Theorem

THEOREM 2.1 ( The main theorem ).
Let K(t,z,¢) € C°([0,T7; Nps) (m>0,0<6<p<1). Assume that
K(t,x,€) satisfies the following conditions (al), (a2) :

(al) There exist constants ¢ > 0 and m'(0 < m’ < m) such that
(2.1) Re K(t,z,6) < —eX(€)™ on [0,T] x RZ",
(a2) For any o, 3, there exists a constant Cy g such that

2.2) |K¥

) (1, €)/ Re K (t,2,)] < CapM©)"7 on [0,T] x R
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Then we have the following (1) — (5) :

(1)

(2.3)

(2.7)

Let Ay : (T 2)t=tg >t > - >t, > ty,qy1 = s(>0) be an arbi-
trary division of interval [s,t] into subintervals, and let
e(tj_tj“)K(tHl)(X, D,) be an operator defined by

et )K ) (X D Yu(x)
- / / i@ E oty =t ) K (L4 1.2.8) () do A .

Then there exists p(A¢s;x,&) € Sg p6 such that

p(Ats;X, D:c) _ e(t—tl)K(tl)(X7 Dx)e(tl—tQ)K(tQ)(X7 Dx)
IO D).

For any 1, there exist constants Cj, C] and an integer l' such that

p(A)Y <,

and

p(Ars) — p(AL )™
<Gt -9 (1Al +  sw K@) - K@)

[t/ —t"| <[ At,s]
Here, Apg : (T 2)t =tg >t > - >t, >ty = (> 0) is an
arbitrary division of interval [s,t] into subintervals, Ay ¢ is an arbi-
trary refinement of A, |Ass| denotes the size of division defined

by | A | = Or%aziy [tj —tjs1], and the constants Cy, C] and the integer

I' are independent of v, Ay s and Ay .

There exists p*(t,s;z,£) € Sg7p’5 such that p(Ays;x,§) (€ S())\’pﬁ)
converges to p*(t,s;x,£) (€ S'())\’pﬁ) in Sg\f’;ﬁ as | Ay s| tends to 0.
Furthermore, p*(t, s;x,£) has the following expression:

*(t,s;7,6) = lim OS//...//E—iE;_lyj.nj
p ( 5) IAt,s|4’0

12
e <Z(t]‘ — i) Kt 2+ 77,6+ 77‘7+1>>
j=0

x dy'dn' - - - dy’dn"
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wheregjoz() Y=y +y?+--+97, and vt = 0.
(4) Forwu € L?, the pseudo-differential operator U(t,s) = p
satisfies the following relation:

“(t, 8, X, Dy)

(2.8)
U(t, s)u(x)
= lim UE®) (X D )etr—2)KE)(x D,)
‘At’s‘—ﬂ)
. e(tu sK(s)( )u( )

AMO// //‘J’XI’(Zz — a2/t gt

J=

+ (tj - tj+1)K(tj+1a zja £J+1)>
% u(mlj-‘rl)dxll-i-ld-gl/-i-l . delel ,

in L* where 1° = x.
(5) Ul(t,s) =p*(t,s; X, D,) is the fundamental solution for the operator

L=0,— K(t,X,D,) such that

(2.9) { LU(t,s) =0 on (s,T)

U(s,s) =1 (0<s<T).

REMARK.

1° It is sufficient to satisfy the conditions (al) and (a2) for || > M,
with a constant M > 0. In fact, in this case, there exists a suffi-
ciently large R > 0 such that the symbol Kgr(t,z,£) = K(t,x,§)—
satisfies (al) and (a2) for any £. Let Ugr(t,s) be the fundamental
solution of L = d; — Kg(t, X, D,). Then U(t, s) = e~ EUR(t, s)
is the fundamental solution of L.

2° We can replace (t; — tj41)K (tjy1,-,-) with fttjj+1 K(r,-,-)dr. Fur-
thermore, in this case, we can replace (2.6) with

(2.6") p(Ass) — p(AL )IE™ < Ci(t — 5)|Arsl,

and the proof of Theorem 2.1 becomes a little easier.



Hamiltonian Path Integral 63

Ezxzample.
Consider

’

L=08+alt)|z(= &)™+ (= &)™ (0<alt)€C[0,T], m—m <),

If weset p=1,6 = (m—m')/l, m — 2m and m’ — 2m/, then the sym-
bol a(t)|z|#|€[*™ + |€]*™ satisfies the conditions (al) and (a2). Therefore,
we see that these conditions are satisfied not only by the usual parabolic
operators, but also by parabolic operators of a degenerate type.

Before we prove Theorem 2.1, we prepare some lemmas:
To begin with, for T >t > s > 0, we define p(t, s; x, ) by

(2.10) p(t,s;x, &) = exp ((t —s)K(s,z, é)) .

The next lemma is a generalization of asymptotic expansion formulas, and
an essential part in this paper. Especially, it is important that all constants
are independent of Ay ;.. and v.

LEMMA 2.2 (A key lemma ).

Let Ato,tu+1 . (T 2)750 Z t1 Z Z t,, Z tl,+1(2 0), vV = 1,2,...,
and let Ny be a fized positive integer such that (p — 6)No > 2m. Define
(Atot152,6)s @(ADtoty 13, &), and 7(Agg 152, &) respectively by

(211) q(Ato,tl;:Cag) Ep(t()atl;mag)a

1
alla?!. .. vl

(2.12) 1(Ato by 413 7,8) = >

a2 | +]a2] +—+av | <N
X p(a”)(tua ty11;, 5)8?" (p(al,,l)(tufla ty;x, E)

x 08 (b (12, 3, 002" (o (1, 5,€)

x 08" (p(to,tl;x7€))> )) :
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and
) o)
(2-13) T(Ato,twrl;x’g) = Z alla?!. .. av!
ot [+|a2 |+ +|a¥ |=No, [a¥|#£0

1

X / (1 _ e)ay_los_// e—zy-np(ay)(tmtw_l; T + y,g)
0

X 8?V <p(au_1)(tu—1, ty;w, &+ 0n)

x O (b (b2, 2, € + )

X 3?2 (p(al)(t17t2§ z, &+ 0n)

X 8?1 (p(to, t1;x, & + 077))) . -))dydnd@.
Then it follows that

(214) Q(Ato,tV§X7 Dx)p(tmtu—i—l;Xy D:c)
= q(Ato,t i X, Dr) +T(At0atu+l;X’ D:E)

v+1?

Furthermore, there exist constants Cy;,Coy,Cs; such that

(2.15) |q(At0,tl,)|l(O) <Ciy,

(216)  [q(Arer) — plto, tus) ™
< Coy(to — tug1)

x (to—tue)+ swp K@) - K@)™),
tOZt/Zt//Ztu+l
and

(2.17) (At )1 < Coato = 1) (b = tur),

fOT’ any AtO,tu+l : (T Z)to >t 221, > tl/Jrl(Z O) and v = 1727" -



Hamiltonian Path Integral 65

PROOF.
1°For T'>t > s >0, we set

(2.18) n(t,s;x,&) = —(t — s)Re K(s,z,£) (> 0).

Furthermore, for Ay, : (T 2)to > t1 > -+ > t, > t,41(> 0) and
v=1,2,..., we define d(Ay,+,;x,&) by

v—1

(219> d(Ato,tu;x7£) = Hp(tjvt]+17x7§)a
§=0

and we set
v—1

(2:20) (Dt 7,€) =Y n(ty ti1;3,6).
=0

Clearly, we have
(2.21) 4 Aty 3,6) = exp (= 1A 1,2,))

2° Define dq (Ao 52, €) by
(2:22) dEZ;(AtO,tV; 2,€) = da,p(Aeo 1,32, §)d(Aeg 1,52, §) -

Then, by induction, for any a,3 (Ja + 3] > 1) and «/, [, there exists a
constant Cy g/ g such that

(2:23)  |da g (At 1i 3,6)|

< Capar,pn(Aigt,; 7, ) (n(Ato,ty;x, £ +1
« )\(f)élﬁ-&-ﬁ’l—pla-l-a’I’

>|a+,3\*1

for any Ay, (T 2)g >8> - >t, >t,(>0)and v =1,2,....
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1

3° Let a” (a',...,a”) denote a multi-index of R"™.  Define

f&’/ (Ato,twrlv )

(2'24) (Atoatu+1;x7§) (Atoytwru f)
v—1
= P(av)(tu, lu+1; @, 5)85 <p(a,,_1)(t1/—17 by, S)Bg <
2 1
e Pla2)(tes ts; w, §)0¢ (p(al)(thh;x,f)a? (P(toatl;l‘,f))) ))
Then, by induction, for any N =1,2,... and «, 3, there exists a constant

CN,a,p such that

(2.25) [ far (3 (Dig 113 2, 6)|

gCN,a,g(ﬁn(tjk,tjﬁl;%f)) (Atotyi137,€)
k=1
< (B in ) +1) AN,
where
1<ji<jo<---<jr<v, [ £0(k=1,2,...,J),
and

IEDIEE
j=1 k=1

for any Ato vl ( )tO >ty > 2ty lut1

1(Z0)andv=1,2,....
4° For N =1,2,..., define gN(AtO, toi1i @, §) by

(2'26) gN(Ato,tu+1;x>£)
1
= > Ty (Bt 2,6

|t [+]a? |+ +|a¥|=N
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By (2.25), we have
(227) |gNE ;(Ato,tu+17x7§)|

N
1

J=1 1<ii<ge<-<jy<v 7 |adk|=N, |adk|#£0

J
X CN,a,ﬁ( H n(tjkatjk-i-lv z, g)) (At07tu+17 75)
k=1

2(N-1) o o
X (n(Ato,tl,H;x,f)—i-l) A(€) (PN F6IBI=pla|

< (nN)NCN’a7ﬁ77(At07t,,+1 3L, 5)
2N-1)
% (1(Dtoty5,6) +1)

N J
X (Z Z Hﬂ(tjk’tjk+1;$7§)> .

J=11<51<go<--<jyj<v k=1

/\(5)—(0—5)1\”‘&@—1)\@\

Hence, for any N = 1,2,... and a, B, there exists a constant C , 5 such
that

(228) ‘gNgg; (At07t1/+1;$7§)‘

< CNagp (n(Ato,ty.t,.l’ f))

3(N-1) o
X (ﬁ(ﬂto,tu+1;x,§)+1> A(E) (p=O)N+816|=pla]

for any Ato,tu+1 . (T Z)to 2 tl 2 s Z t,/ Z tu+1(2 0) and v = 1,2,. e
5° Set

(2.29) hn (At07tu+1’ r,§) = gN(Atoytqul; T, f)d(Ato,tuH;xv £).
Here we note that

(2.30) supnfe™ < oo (k=0,1,2,...).
n>0
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By (2.21), (2.23) and (2.28), there exist constants Cy, 5, C7, 5. CX , 5: CN o g>
CN'ap Such that

C{;’/B/\(f)ﬂﬂ\—lﬂﬂ

2.31) [d\(Ag;2,6)] <
(23D i (Aot ”)"{ 7 5t — ENE™ I (0B 2 1),

and

(2.32) \hN (Ato,ty+17 z,§)|
ervaﬁ)\(g)—(0—5)N+5\ﬁ|—ﬁ|a|

N (to = )A€ APPle
CRlalto = tuga)2A (€~ I aAslel,

IN

for any Ag gy, (T 2)to 2t > - 2t, >2t,11(>20)and v =1,2,....
6° Now we note that

No—1

(233) Q(Ato,t,,+1 ;L 5) = d(At(),t,,+1 3L, 5) + Z hN(Ato,tu+1 3Ly 5) )

N=1

and

(234) d(Ato, tyt1s 76) _p(tO’tV+1;x7£)

= Z(tj — tj+1) (K(t]‘+1,$, 5) - K(tu+17$7€)>

></0 exp (02 tiv1)K g+175177§))

X exp ((1 — )ty — ty1) K (tysr, m,f))d@
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By (2.31) and (2.32), we get (2.15) and (2.16). Furthermore, we note that
(2.35) (At tyi03x,€)
l/+1| 1

e
o Z avtil
0<|av+1|<Ng

X O // e_iy'nhNo—|a"+1|(aUH)(Ato,tqul jo, &+ 077)

X digrt1) (At g1ty 123 + Y, §)dydndod
I/+1‘ 1

|
+ Z aqul!

|art1|=Ny

X Og— // €_iy'nd(au+1)(ﬂto,ty+1;JC, €+ 977)

X A1y (At 11ty 103 T + Y, §)dydndo .

(1— @)1=
0

(1— @)1=
0

By (2.31), (2.32) and Theorem 1.4 , we get (2.17).
7° By induction, we get (2.14). O

The idea of the next lemma is found in Fujiwara [3].

LEMMA 2.3 ( Fujiwara’s skip ).
Deﬁne T(Ato,tu+1;m7 §) € 3371),6 by
(2'36) p(t(), t1; X, Dx)p(tb to; X’ DJ:) e 'p(tw tyi1; X, Dx)
= q(Ato,tV+1;X7 Dw) —|—T(At07 'X, Dx)

tug1o

Then it follows that

(237) T(At07t,,+1;X7 DI)

/!
= Z T(At07tj1+1;X7 DI)T(Atj1+1,tj2+1;X, DCC)
"‘T(At' ‘XaDr)Q(At- 'XaDw)a

Gr_1+Lti 1o jr+Litu+1s

!/
where Y stands for the summation with respect to the sequences of integers

(J1,J2,- -, jJ) with the property

(238) O<ji<i+l<jo<jot+l<---<jra<jja+1l1<j;j<v,
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and, in the special case of j; = v, we set Q(At”+1,ty+1a
Furthermore, there exists a constant Cy; such that

X,D,) = 1.

(2.39) (Do) < Caalto — tusn)*
forany Ay v, (T 2)to >t 2> -2t >21,41(>0) andv =1,2,....
PROOF. Using (2.14) inductively, we get (2.37). Now let A;,1" be the

same constants in Theorem 1.3, and let C';,C3; be the same constants in
Lemma 2.2. By (2.15), (2.17) and Theorem 1.3, we have

(240)  [T(Argty.)”

!
0 0
< ST A (Dbt )W 1 (A1t )

~w«A%J1H@IHMmeA%ﬁLUHMN

SZ%NH%NW%M% i) ) Cu
k=1

< Ch ( 11 (1 + AiCs(to — tyy1)(t; — tj+1)) - 1)

§=0
< Cuylto —ty1)?. O
Now we prove Theorem 2.1:

PrROOF OF THEOREM 2.1.
1° Define p(Aq; x, &) by

(241) p(At,s;fB,f) = Q(At,s;xaf) +T(At,s;x7€) .

Then (1) is clear.
2° By (2.14) and (2.39), we get (2.5). Next, we note that

(242) (A; tj+1v 75) —p(tj,tj_t,_l;flf,f)
= (q(At tJ+17$ 5) (tj7tj+1;x7€)> +T(A£j,tj+1;$7£)7
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Hence, by (2.16) and (2.39), there exists a constant Cs; such that
/ (2m)

(243) |p(t]7t]+1) _p(Atj,tj+1)‘l

< Csulty — i) (4 — i)+ sup  K() = K@)|™).

Ei > > >0

Here we can write

(244)  p(Ars X, D) = p(4;; X, Do) = > p(Aj, 4,3 X, Da)
=0
o (p(tj,tj+1;X, Dy) = p(A, 1,015 X, Dm))
o p(Atj+1,tU+1 ; X7 -Dx) .
By (2.5), (2.43) and Theorem 1.3, we get (2.6).
3° By (2.6) and (2.5), there exists p*(t, s;z,&) € Sg,pﬁ such that

(2.45) p*(t, )V <,
and

(246)  |p(Ars) — p*(t,s)[™)

SC{(t—s)(\At,ler sup \K(t’)—K(t”)|§f”)).
[t/ —t|<] A

Hence we get (3).

4° By the result of (3), we get (4). See Chapter 3 § 7 in H.Kumano-go
[6].
5° Using the results of (2) and (3), it is easy to check (5). O
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