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Perturbation of the Navier-Stokes flow in an annular

domain with the non-vanishing outflow condition

By Hiroko MORIMOTO and Seiji UKAI

Abstract. The boundary value problem of the Navier-Stokes
equations has been studied so far only under the vanishing outflow
condition due to Leray. We consider this problem in an annular do-
main D = {x € R*; Ry < |z| < Ra}, under the boundary condition
with non-vanishing outflow. In a previous paper of the first author,
an exact solution is obtained for a simple boundary condition of non-

vanishing outflow type: u = %eﬁ—bma on I';, + = 1,2, where pu, by, by
are arbitrary constants. In this paper, we show the existence of solu-
tions satisfying the boundary condition: u = {}% + pi(0)}e, + {b; +
P;(0)}eg on Ty, i = 1,2, where ¢;(6),;(0) are 2r-periodic smooth

function of 0, under some additional condition.

Let D be an annular domain in R? :
D ={x € R*R; < |z| < Ry},
where 0 < R; < Ro , and I'; its boundary:
Iy ={xcR*z|=R;}, i=12
We consider the boundary value problem of the Navier-Stokes equations:

1
—vAu+(u-V)u+-Vp = 0 in D,
p

(1) divu - 0 in D,

u b on 9D,

where w is the fluid velocity, p is the pressure, v(the kinematic viscosity)
and p (the density) are given positive constants, and the vector b is a given
boundary value of the velocity.
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For the general bounded domain D C R™,n > 2, J. Leray [6] showed
the existence of the solution to this problem under the following condition:

(H) /b-nds:O, 1<i<k,
r;

where 0D = Uf:1 I';, T'; is the connected component of 9D and n is the
unit outward normal to the boundary dD. The condition (H) is stronger
than the condition

k
H)y b-nds= /b-nds:O,
( ) oD ; r;

which is to be satisfied by the boundary value b of a solenoidal vector u.

We are concerned with the problem whether does exist a solution to
(1) under the non-vanishing outflow condition (H)g, even if the boundary
value does not satisfy the vanishing outflow condition (H) ([2], [6]). In
the previous paper [7], the first author showed an exact solution to this
equation in an annular domain under the boundary condition with non-
vanishing outflow given by,

b= %er +bjeg only, i=1,2,
(2

where u, b1, by are given constants and e,, ey are the unit vectors in the
polar coordinates representation {r, 6} .

In this paper, we study the case where the boundary value depends on
0 variable, more precisely, the vector b is given as follows:

(2) b={a;+vi(0)}e, +{bi +i(0)}eg on T';, i=1,2.

REMARK 1. Since the condition (H ) has to be satisfied,
(Al) a1R1 = a2R2

should hold. We denote this common value by p. If p # 0, the condition
(H) does not hold.

On the other hand, without loss of generality, we can suppose the fol-
lowing:

(A2)  i(0),vi(0) be 2m-periodic smooth function of 0, satisfying
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27 27
/ 0i(0)do = 0, Gi(0)d0 =0, i=1,2.
0 0

Finally we put

If the absolute value |u| of p is small, we can show the existence of a
solution to (1) (2) by the usual method (c.f. [5], [9]). We show, in the
following, the existence of a solution to (1) (2) even for large |u|.

THEOREM 1. Suppose (A1), (A2) and the inequality

R}R} Ro\ 2
—wo|=—5 (log—] <2
lwy w2|R% R <og R1> v

hold. Then there exists at most discrete countable set M such that for each
w € R\ M the boundary value problem (1) (2) has a solution for sufficiently

small p;(0), ¥;(0) (i = 1,2).

REMARK 2. Let u,w;,ws be constants and ¢;(0) = ¥;(0) =0(i = 1,2).
Then, we have the following exact solution ug to (1) (2) of the form:

ug = %er + b(p,7)eqp.

(i) For p # —2v,

C
b(/"’a T) = 71 + 02T1+%a

where B} B}
241 241
o — wlR%Rz vo— WQR%RI v o — (.UQR% — wlR%
1= B B ) 2= T ol B o k-
24 E 24 E 24 E 24 E
R2 vo— Rl v R2 vo— Rl v

(1) For p = —2v,

1
b(u,r) = ;(cl + cologr),

where

_ wlR% log R2 — ng% log R1 cy = WQR% — wlR%
log Ry — log Ry log Ry —log Ry

1
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The pressure py can be obtained from the equation. This solution is
unique if |u| and |w; — wa| (case(i)) (lwil, |wa| (case(ii))) are sufficiently
small (c.f.[7],[8] ).

Let us prove Theorem 1 in several steps. Let Cg% (D) be all smooth
solenoidal functions with compact support in the domain D, H, the closure
of C§% (D) in L*(D), and V the closure of C§% (D) in the Sobolev space
H'(D).

Let ug, po be the solution as above. Let vy satisfy the condition

(3) divvg =0 in D, and vo = pi(0)e, +;(0)esg on Ty, i=1,2.

The existence of such function is known(c.f. [1]) but for our convenience,
we choose:
,

vy = lRﬂ“_l/RQ a(t)dtwl(e)-i-RzT_l/R a(t)dt ¢2(0)

(4) [ gt o) =t [ Bt w;w)} e
Ry Ry
+ l/oe{lel(t) — Ropo(t)}dt a(r) + Bi(r)yn (0) + 52(7“)1#2(9)1 €y,

where, a(r), (;(6) (i =1,2) are smooth functions such that

Ro
a(R1) = a(Ry) = 0, /R a(t)dt =1,
Ro

Then, we have the following estimate.

LEMMA 1. There exists a positive constant cq such that

2
llvollez2ipy < co > (leille2ry + 1¥illes )
=1

holds, where I is the closed interval [0, 27].
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Suppose © = w + ug + vo satisfy (1) with b given in (2). Then, the
equation for w is as follows:

1
—vAw + (w-V)ug+ (uo- V)w+ (w- V)w+ ;Vq

(5) +w - V)vg+ (vo-V)w+ fo=0 in D,
divw = 0 in D,
w = 0 on 40D,

where f, = —vAvy+ (vo - V)vg + (vo - V)ug + (up - V)vo.

Let P be the orthogonal projection from L?(D) onto H, and A = —PA
be the Stokes operator. Applying the orthogonal projection P to the first
equation in (5), we get:

Aw + %P{(w -Vug + (uo - V)w}

(6) 1
+-P{(w- V)w+ (w- V)vo + (vo - V)w + fo} = 0.

As is well known, A is a self-adjoint positive operator in H, and the
inverse A~! is a compact operator on H, (e.g., [5], [9]). Applying A~! to
the equation (6), we obtain:

(7) w— T(w)w + %A‘lP{(w V)w + (w - V)vo + (v0- V)w + Fo} =0,

where
T(p)w = —%A‘lP{(w -V)ug + (ug - V)w}.

Since A~! is compact operator in H,, and its range is the domain of the
operator A which is compactly imbedded in V', we obtain the following:

LEMMA 2. The operator T'(p) is a compact linear operator on V.

Let

2nwv
= 2u+ L, neZL, i=v-1.
L v ] 1 lz n i

We define b(u,r) for all p € C letting b(p, ) = b(—2v,r) for = . Then,
b(u,r) is continuous and holomorphic in p € C even at the points p = fi,.
Therefore, we have:
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LEMMA 3. (c.f.Kato[4]) The compact operator T'(1) is an entire func-
tion of 1.

LEMMA 4. If w1 —wa| is sufficiently small, then 1 is not the eigenvalue
of the operator T(0).

PROOF. Suppose that 1 is an eigenvalue of T'(0) , i.e., there exists a
nonzero w € V such that 7(0)w = w. Then,

1
—;A‘lP{(w V)i + (g - V)w} = w
holds, that is,
vAw = —P{(w - V)uy + (o - V)w}

holds, where wy = b(0,7)ep (See Remark 2). Without loss of generality, we
may assume w is real since g is real. Taking the inner product with w, we
have

v||[Vw|]? = —((w - V)i, w).

The right hand side is equal to:

261(0)/[) Wty df, where ¢1(0) = ;; iz R2R2-
Let f € H}(D). Then the inequality:
1
Prdrdy < / / Oy

holds. Therefore, we have :

. w1 —ws| RiR3 ( R2) 2
w-V w)|l < | Vwl||©.

If |w; — wyl is sufficiently small, then the inequality

lwi — wo| RIR3 (1 R2)2<V

2 R-B\P®R

holds, and contradiction. [J
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Let K be any compact subset of C, containing {0}. According to Theo-
rem 1.9 in Chapter VII §1 of [4], there exist a finite set {u], 13, ..., .} such
that for any p in K\ {u, 43, ..., i}, (T(p) —1)7! exists and is bounded
on V. Let p e K\ {pj,us, ..., up}t. From (7), we obtain:

(8) w = ~(T() = 1) A7 P{(w - V)w + (w - Vo + (w0 V)w + fol.

14

Let us denote the right hand side of (8) by N(u)w:

9 New = (T - 1A
xP{(w - V)w+ (w - V)vg + (vo- V)w+ fo},
and
2
o=> (leillczry + [1¥illcsn)-
=1

According to Lemma 1, we have:

(10) | (T ()~ 1) A7 P{(aw - D)oo + (w0 Dy}l < < v,

(1) 1T =) A Pl < S+ o)l D12 + fluollv ),

where cg is the constant in Lemma 1, C' = co||(1 — T'(u))"*A~/?|| and |D|
is the measure of D.

LEMMA 5. There exists a positive constant cp such that the estimate
|A™ P(v - V)wlly < epllvllv|lwlly, Yo,weV
holds.
It is known that there exists an absolute constant ¢ such that
|A74P(v - V)wl| < ¢f|AV?0[[|[A2w]], Vo, w € C5%(D)

holds. See, e.g., Fujita-Kato [3]. Using this inequality, we obtain Lemma 5
easily.
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Put

(12) oo =max | . Lyr(n 17, & {4 e)D? 4ol |

14

where ¢y, cp,C are constants given in Lemma 1, in Lemma 5, and in (10),
respectively. Now we have the following estimate for the nonlinear operator

N (p):
(13) IN()wllv < po(l[wl][} + ol |wlly + o).

1
Let 0g = p—{l +2po — /(1 +2pg)? — 1}.
0

REMARK 3. pgog is the smallest positive root of the equation
X2 —2(14+2p0)X +1=0.
The inequality 0 < o¢ < 1 follows easily. If 0 < o < 0, then the equation
po(X2 40X +o0)=X

has two positive roots. Let r, be the smaller one:

1

=~ 11— poo— /(1 — poo)? — 4p20 \ .
To 200{ poo \/( Po0) Poa}

LEMMA 6. If0 < o < 09, then the operator N(u) maps the ball
Brg)={w eV ; [lw|ly <rs}
into itself.
PrOOF. Let w € B(r,). Then,

IN(wwlly < polllwlf + ollwlly +0) < po(rg + ore +0) = 15. O

LEMMA 7. If0 < o < og, the operator N(u) is a contraction operator
on B(rgy).
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PROOF. Let wj, w2 be arbitrary elements in B(r,). Then, we have:

N(p)wy — N(p)ws
_ %(T(u) ) AT P (wy - V)ws — (ws - V)ws
+((w1 — ’lUQ) . V)UQ + (’Uo . V)(w1 — ’wQ)}
Since
(w1 . V)wl — (IUQ . V)’IUQ = ((w1 — ’w2) . V)wl + ('wg . V)(wl — 'wg),

therefore,

[|N(n)w1 — N(p)wslly
CD _
< Tk - 1) "[[Jwy — wa||v (JJwilv + [|wallv)
Co
+7||w1—w2HV

< po(llwilly +[lwzllv + o)[[wr = wallv,

where we used (10) and Lemma 5. Since wi, w2 € B(r,) and 0 < 09, we
have:

pollwillv + [lwally +0) < po(2ry +0) = 1 = /(1 = pyo)? — 4p30 < 1.

Therefore the operator N(u) is a contraction and has a fixed point in
the ball B(r,). Theorem 1 is thus proved. O
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