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Multi-dimensional transition layers

for an exothermic reaction-diffusion system

in long cylindrical domains

By Masayasu Mimura and Kunimochi Sakamoto

Dedicated to Professor Junji Kato on his sixtieth birthday

Abstract. By using singular perturbation techniques, it is shown
that an exothermal reaction-diffusion system with a small parameter in
long cylindrical domains admits a family of transition layer solutions.
The solutions exhibit spatial inhomogeneity in two directions, one in the
axis of the cylinder and the other in the cross-section of the cylindrical
domain. The profile of the solutions in the cross-sectional direction is
determined by a family of solutions of a non-linear elliptic eigenvalue
problem, called the perturbed Gelfand problem. On the other hand, the
profile of the solutions in the axial direction of the cylindrical domain
has a sharp transition layer. The stability analysis is also carried out
for the equilibrium solutions, which reveals that a Hopf-bifurcation oc-
curs as some control parameters are varied, exhibiting spatio-temporal
oscillations.

1. Introduction

Variety of spatio and/or temporal patterns are observed in combsution

processes with or without supply of fuel. In order to theoretically under-

stand such pattern formations, several mathematical models have been pro-

posed so far. Among them, we focus our attention on a thermal and diffusive

equation which describes a single step exothermic reaction. The equation

is given by the following two components system for the ( nondimensional-
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ized ) absolute temperature θ and the concentration of a reactant c :

(1.1)

{
θt = θxx + ∆θ + cf(θ)

ct = dcxx + d∆c− ε2cf(θ)
, t > 0, (x, y) ∈ ΩL = (0, L) × Ω.

The operator ∆ is the Laplacian operator in y, and ΩL is a cylindrical

domain with section Ω in RN and the length L. The nonlinearity f(θ)

takes the form

f(θ) = exp[θ/(1 + θ/α)], α > 0,

which is called the Arrhenius rate in irreversible chemical reaction kinetics

( see for instance, Frank-Kamenetzky [F]). The value of α in experiments

varies from 5 to 100. The parameters d and ε are positive constants. In

particular, ε is assumed to be sufficiently small but non zero ( Sattinger

[St]), which means that the thermal effect on the dynamics is extremely

high.

The initial and boundary conditions are

(1.2) (θ, c)(0, x, y) = (θi, ci)(x, y) ≥ 0, (x, y) ∈ ΩL,

(1.3)

{
(θ, c)(t, x, y) = (θ0, c0)(y), t > 0, (x, y) ∈ Γ0 = {x = 0, y ∈ Ω},

(θ, c)(t, x, y) = (θ1, c1)(y), t > 0, (x, y) ∈ ΓL = {x = L, y ∈ Ω},

(1.4)

{
θ = 0, d∂c/∂ν = ε2h(β − c), t > 0,

(x, y) ∈ Γ = {0 < x < L, y ∈ ∂Ω},

where ν is the outward nomal unit vector on the boundary ∂Ω. The condi-

tion on c in (1.4) indicates that the in- or out-flux of the reactant, with the

flux rate ε2h through the boundary Γ, depends on the difference between

β and the value of c on the boundary. We simply assume h and β are

both positive constants. In particular, if h = 0, then there is no supply of

reactant through the boundary.

The reaction kinetics of (1.1) is simple in the sense that the ordinary

differential equation {
θt = cf(θ)

ct = −ε2cf(θ)
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exhibits monotone dynamics. Namely, the concentration c decreases to zero

and the temperature θ increases to a certain positive value as the time t

progresses to ∞. Therefore the source of spatio-temporal patterns observed

in exothermic reactions, such as combustion processes, has to be sought

somewhere else. The boundary conditions in (1.3)-(1.4) are one of the ways

to make the system open. It is this openness of the system that makes the

process capable of producing complicated spatio-temporal patterns as we

will see in the sequel.

The purpose of this paper is to show the existence of a family of equi-

librium solutions of (1.1)-(1.4) for sufficiently small ε > 0, and to study

the stability of the solutions. We also would like to clarify the effects of

the domain shape of the cross-section Ω on the profile of the equilibrium

solutions. It turns out that the structure of the global solution branch of

a non-linear elliptic eigenvalue problem encodes the effect of the domain

shape of Ω. Refer to the conditions (H1) through (H5) below.

When the domain size is small in the axial direction, one expects that the

effects of the boundary conditions on Γ0 and Γ1 would strongly dominate

the behaviour of the solutions. Our interest, therefore, is the question :

What would happen to the behaviour of the solutions

when the domain size is appropriately large ?

As a first step to answer this question, we consider the situation in which

the cylindrical domain is long in the x-direction in the sense that :

(A1) L = 1/ε.

Rescaling the x-variable by x/L = εx, the equation (1.1) now becomes :

(1.5)

{
θt = ε2θxx + ∆θ + cf(θ)

ct = ε2dcxx + d∆c− ε2cf(θ)
, t > 0, (x, y) ∈ Ω1 = (0, 1) × Ω.

Correspondingly, the initial and boundary conditions (1.2)-(1.4) become :

(1.6) (θ, c)(0, x, y) = (θi, ci)(x, y) ≥ 0, (x, y) ∈ Ω1,

(1.7)

{
(θ, c)(t, x, y) = (θ0, c0)(y), t > 0, (x, y) ∈ Γ0 = {x = 0, y ∈ Ω},

(θ, c)(t, x, y) = (θ1, c1)(y), t > 0, (x, y) ∈ Γ1 = {x = 1, y ∈ Ω},
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(1.8)

{
θ = 0, d∂c/∂ν = ε2h(β − c), t > 0,

(x, y) ∈ Γ = {0 < x < 1, y ∈ ∂Ω}.
Thus, the problem with which we are concerned in this paper is (1.5)-

(1.8) with ε > 0 being sufficiently small.

Before stating our main results, we consider the following boundary value

problem with a parameter λ > 0 :

(1.9) ∆φ + λf(φ) = 0, y ∈ Ω, φ = 0, y ∈ ∂Ω.

This problem, called a perturbed Gelfand problem, has been extensively

investigated by many authors. One fundamental result is

Theorem 1 ( Dancer [D]). Let Ω be a ball in RN . For λ > 0, the

problem (1.9) with α > 0 has at least one and at most finitely many positive

solutions φ(y;λ).

In order to obtain qualitative properties of solutions to our problem, it

is important to know how the number of positive solutions φ(y;λ) of (1.9)

depends on λ. For a finite interval ( N = 1 ) or a disk ( N = 2 ), if α > 0 is

small, the solution branch is monotone increasing in λ > 0, that is, there is

a unique solution φ(y;λ) for any fixed λ > 0, while if α > 0 is rather large,

the branch takes S shape structure ( Figure 1), that is, there are three sub-

branches, a small (−), a middle (0), and a large (+) ones with two turning

points at λ = Λ0 and λ = Λ1. The corresponding solutions φ−, φ0 and φ+

have the following properties :

(H1) The problem (1.9) has exactly three sub-branches of solutions

φ+(y;λ), φ−(y;λ) and φ0(y;λ), whose domains of definition are, respec-

tively,

[Λ0,∞), [0,Λ1], [Λ0,Λ1],

and φ+(y; Λ0) = φ0(y; Λ0), φ−(y; Λ1) = φ0(y; Λ1) for y ∈ Ω.

(H2) For each pair 0 < λ < λ′ < Λ1 ( or Λ0 < λ < λ′ ), the following

inequality

φ−(y;λ) < φ−(y;λ′), y ∈ Ω

( resp. φ+(y;λ) < φ+(y;λ′), y ∈ Ω )
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Figure 1. Global structure of the equilibrium solutions of the perturbed
Gelfand problem in a 2-dimensional disk. α = 5.

holds true.

(H3) For Λ0 < λ < Λ1, one has the strict inequalities :

φ−(y;λ) < φ0(y;λ) < φ+(y;λ), y ∈ Ω.

(H4) The upper-branch φ+(·, λ) and the lower branch φ−(·, λ) are sta-

ble equilibria of the parabolic problem :

φt = ∆φ+ λf(φ), t > 0, y ∈ Ω and φ = 0, t > 0, y ∈ ∂Ω,

while the middle branch φ0(·, λ) is unstable with index 1.

(H5) For an energy functional H : [0,∞) ×H1
0 (Ω) → R defined by

H(λ, v) :=

∫
Ω

[
|∇v|2 − 2λF (v)

]
dy, F (v) :=

∫ v

0
f(s)ds,
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Figure 2. Global structure of the equilibrium solutions of the perturbed
Gelfand problem in a 3-dimensional ball. α = 25.

consider the difference :

J(λ) := H(λ, φ+(·, λ)) −H(λ, φ−(·, λ)).

Then J ′(λ) < 0, and there is a unique λ∗ ∈ (Λ0,Λ1) such that J(λ∗) = 0.

On the other hand, in higher dimensions ( N ≥ 3 ), the situation is

drastically different, depending on the value of α in the nonlinearity f . In

fact, whenN = 3, the global branch of solutions of (1.9) does not necessarily

take S shape structure but exhibits double S shape or more complex ones

for suitable values of α ( Figure 2 ). The reader is refered to [BE].

Hereafter, we simply assume :

(A2) The global solution branch of (1.9) takes the S-shape structure

satisfying (H1)-(H5) in the above.

In order to specify the situation further, we make two more assumptions,

one on the boundary conditions in (1.7)-(1.8), and another on the structure
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of the global solution branch of (1.9).

(i) (1/|Ω|)
∫

Ω
c0(y)dy = λ0 < λ∗,(A3)

(1/|Ω|)
∫

Ω
c1(y)dy = λ1 > λ∗,

(ii) θ0(y) = φ−(y;λ0), θ1(y) = φ+(y;λ1),

(iii)
∂cj(y)

∂ν
= ε2h(β − cj(y)), y ∈ ∂Ω, j = 0, 1,

(iv) cj ∈ C2(Ω̄), ||cj − λj ||C2(Ω̄) = O(ε2), j = 0, 1.

|∂Ω|hΛ0 + Λ0

∫
Ω
f(φ+(y; Λ0))dy(A4)

> |∂Ω|hΛ1 + Λ1

∫
Ω
f(φ−(y; Λ1))dy.

The first two conditions in assumption (A3) are not essential to the

subsequent arguments. It only serves to simplify the presentation of the

main result of our work. The conditions in (A3)(iii) are compatibility

conditions on Γj ∩ Γ. The conditions in (A3) (iv) are imposed to avoid

arguments for boundary layers.

In order to explain the meaning of the condition (A4), let us call φ+(·;λ)

and φ−(·;λ), respectively, the hot state and the cold state corresponding to

the uniform reactant concentration λ. From the conditions in (A1), the cold

state can not exist when the uniform reactant concentration is higher than

Λ1, while the hot state can not exist for the uniform reactant concetration

lower than Λ0. The condition (A4) is equivalent to

|∂Ω|h(β − Λ0) − Λ0

∫
Ω
f(φ+(y; Λ0))dy

< |∂Ω|h(β − Λ1) − Λ1

∫
Ω
f(φ−(y; Λ1))dy.
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In both sides of the last inequality, the first term is the total supply of the

reactant through the boundary and the second term represents the total

amount of reactant consumed by the reaction. Therefore, each side in the

above inequality represents the excess of the reactant inside the domain.

The condition (A4) says that the excess at the upper limit of cold states

exceeds that at the lower limit of the hot states. See [EM] for more detailed

discussions.

The last property is certainly one of the effects of the cross-sectional

domain shape Ω, as well as the rate h of the reactant supply through the

boundary. By taking the rate constant h large enough, we can create a

situation where the condition (A4) is violated. In such a case, the system

will exhibit dynamical behaviors different from what will be explained in

this work.

Throughout the remaining part of this paper, we understand that the

constants h, λ0 and λ1 are fixed so that all the conditions in the above are

satisfied.

We are now ready to state our main results.

Theorem A. Suppose that (A1)-(A4) are satisfied. There exists a

constant l = l(β, d), indicating a transition point, in the interval (0, 1) such

that for sufficiently small ε > 0, there exists an ε-family of equilibrium

solutions (θε(x, y;β, d), cε(x, y;β, d)) of (1.5), (1.7), (1.8) satisfying :

(a) for a function λ(x) defined below,

lim
ε→0

cε(x, y) = λ(x), uniformly in Ω̄1;

(b) for any δ > 0,

lim
ε→0

θε(x, y) =

{
φ−(y;λ(x)), 0 ≤ x ≤ l − δ

φ+(y;λ(x)), l + δ ≤ x ≤ 1,

uniformly in x and y ∈ Ω.

The function λ(x) is the solution of the following problem :

0 = dλxx + h∗(β − λ) −G∗(λ), 0 < x < 1,

λ(0) = λ0, λ(1) = λ1,

λ(l) = λ∗, λx(l − 0) = λx(l + 0),
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Figure 3. Spatial profile of (θε(x, y), cε(x, y)) with one internal layer for

(x, y) ∈ Ω1 = {0 < x < 1, 0 < y < 1 }.

where the function G∗ and the constant h∗ are defined by

G∗(v) =

{
G−(v) = (v/|Ω|)

∫
Ω f(φ−(y; v))dy, 0 ≤ v ≤ λ∗,

G+(v) = (v/|Ω|)
∫
Ω f(φ+(y; v))dy, λ∗ ≤ v <∞,

and h∗ = h|∂Ω|/|Ω|, respectively.

The proof will be given in Section 3. From the profile of θε(x, y) ( Fig-

ure 3 ), we call the solution (cε(x, y), θε(x, y)) an equilibrium solution with

one layer. Theorem A clearly indicates that the profile of the equilibrium so-

lution in Ω is approximately given by the solutions of the perturbed Gelfand
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problem (1.9). Although we restrict our consideration in Theorem A to

equilibrium solutions with one internal layer, we can readily extend it to

equilibrium solutions with multi-layers.

We next consider the stability of the equilibrium solutions obtained in

Theorem A. In order to do so, we let constants β± > 0 be defined by

β± = λ∗ +
1

h∗
G±(λ∗).

Note that β− < β+. The stability properties of the solution (θε, cε) is de-

scribed in the following :

Theorem B. Suppose (A1)-(A4) are satisfied.

(i) For β ∈ (0, β−]∪ [β+,∞), the solution (θε, cε) in Theorem A is stable

for d > 0.

(ii) For β ∈ (β−, β+), there exists a constant dε(β) > 0 such that

(a) the solution (θε, cε) in Theorem A is stable for d > dε ;

(b) when d passes through dε, the solution undergoes a Hopf-bifur-

cation ;

(c) the limit d∗ = limε→0 dε is characterized by

d
−1/2
∗ =

∫ λ∗

λ0

[
2

∫ λ∗

λ
g−(s)ds

]−1/2

dλ +

∫ λ1

λ∗

[
2

∫ λ∗

λ
g+(s)ds

]−1/2

dλ,

where g±(s) = h∗(β − s) −G±(s).

The proof will be given in Section 4. Figure 4 exhibits some results

of our numerical simulation for the case Ω = (0, 1), where the value of

θ(t, x, 1/2) is collor-coded. It shows how the location of an oscillating layer

in the periodic solution θε behaves as time progresses when the parameter d

decreases from the critical value of dε. The numerical simulation indicates

that the Hopf-bifurcation in the theorem is a super-critical one, although

we have not proved this theoretically. The global structure of solutions with

respect to d is numerically shown in [MNS1].

An intuitive explanation of the result in Theorem B (ii) is as follows.

For β ∈ (β−, β+), we have

h∗(β − λ∗) −G−(λ∗) > 0 > h∗(β − λ∗) −G+(λ∗).
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This means that there is an excess amount of the reactant for the cold

state at λ = λ∗ and that the hot state tends to consume more reactant

than can be supplied. Therefore, there occurs an imbalance of the reactant

distribution near the transition layer location x = l. When the diffusion

rate d of the reactant is large, the imbalance is adjusted due to the diffusion

effect. When, on the other hand, the diffusion rate is lower than the critical

value d0, the diffusion effect of the reactant is no more capable of restoring

the imbalance, and therefore, the equilibrium state can no longer be stable.

As a result, the system starts to oscillate, as if, in an effort to settle down

on a comfortable position.

We now briefly outline the organization of this paper.

Section 2 is devoted to the construction of approximate solutions. Basic

ideas therein are straightforward generalization of singular perturbation

expansions for one dimensional reaction-diffusion systems [Sk], although

there are several new technical difficulties involved. Some of the difficulties

are overcome by the beautiful results of Vega [V].

In Section 3, we prove that there is a true solution near the approximate

solutions. To achieve this, a crucial point is to know detailed information

on spectral properties of a linear operator. The method of analysis for the

linear operator follows the footsteps of the methods developed in [Sk]. When

the space dimension is one, there is a well-established way of constructing

internal transition layer, which is employed, for example, in [NM]. The key

point of this method is to show that one can glue together two boundary

layer solutions by using a type of implicit function theorem. However,

for our problem at hand, it is very difficult to carry out this procedure

because the verification of matching condition poses a nonlocal nolinear

elliptic problem. This difficulty is circumvented by constructing a smooth

approximate solution which has internal transition layers. Another key to

aviod the difficulty is to make the approximation too accurate. If one tries

to make the approximation more accurate than ours, then one again faces

the same difficulty as mentioned above. See Remark 2 in Section 2.

Section 4 deals with the stability analysis of the equilibrium solutions.

The analysis reveals that a Hopf-bifurcation occurs when the diffusion coef-

ficient d of the reactant decreases. A similar type of bifurcation analysis was

carried out in [NM] for a singularly perturbed reaction-diffusion system on

one dimensional space. In [NM], the bifurcation parameter is a parameter

controling the reaction rates of two reactants, while, in the present work,
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the bifurcation parameter is the diffusion rate of the concentration c. In

the system treated in [NM], one reactant diffuses much slower and reacts

much faster than the other, while in our problem diffusion rates of the two

components are comparable. The nonlinearity in [NM] has a bistability

properties of some sort. In the present paper, however, the nonlinearity is

rather simple and monotone, exhibiting no apparent bistability. Our sys-

tem, on the other hand, has an implicit bistability encoded in the global

solution branch of the perturbed Gelfand problem (1.9). See (H1)-(H5).

This observation is one of the points we would like to strongly emphasize.

In Section 5, we discuss several ramifications of the present work and its

relation to a free boundary problem derived in [MSE]. It turns out that

the free boundary problem captures the essential dynamics of the original

problem (1.5)-(1.8), in the sense that the stability properties of the equilib-

rium solutions in Theorem A are obtained from studying the free boundary

problem.

2. Approximation

In this section, we construct approximate solutions to the problem (1.5)-

(1.8). It is convenient to rewrite the problem(1.5)-(1.8) in such a way

that the boundary conditions for c in (1.8) become homogeneous. For this

purpose, let g be a function satisfying

g ∈ C2(Ω̄), ∂g/∂ν = 1/d on ∂Ω.

One can easily construct such a function as above when the boundary ∂Ω

is smooth. We now transform the variables (c, θ) to (v, u) by

v = exp[ε2hg(y)](c− β), u = θ,

then the equation (1.5) is recast as

(2.1)

{
ut = ε2uxx + ∆u + {v exp[−ε2hg] + β}f(u)

vt = ε2dvxx + d∆v − ε2E1(u, v, ε
2) + ε4E2(v),

where

E1(u, v, ε
2) = {v + β exp[ε2hg]}f(u) + 2dh∇v · ∇g + dhv∆g,

E2(v) = dh2v|∇g|2.
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It is also more illuminating to decompose the v-variable into two parts :

v(x, y, t) = v̄(x, y, t) + w(x, t),

where

w(x, t) = (1/|Ω|)
∫

Ω
v(x, y, t)dy,

∫
Ω
v̄(x, y, t)dy = 0.

In terms of (u, v̄, w) the equation (2.1) becomes

(2.2)




ut = ε2uxx + ∆u + {(v + w) exp[−ε2hg] + β}f(u)

vt = ε2dvxx + d∆v − ε2R1(u, v, w, ε
2) + ε4R2(v, w)

ε−2wt = dwxx −A1(u, v, w, ε
2) + ε2A2(v, w),

where we dropped the bar from v̄ for the sake of simplicity in notation. The

functions A1, A2 and R1, R2 are given by

A1(u, v, w, ε
2) = (1/|Ω|)

∫
Ω
E1(u, v + w, ε2)dy,

A2(v, w) = (1/|Ω|)
∫

Ω
E2(v + w)dy,

and

R1(u, v, w, ε
2) = E1(u, v + w, ε2) −A1(u, v, w, ε

2),

R2(v, w) = E2(v + w) −A2(v, w).

The equations in (2.2) are supplemented by the boundary conditions :

(2.3)




(u, v)(t, 0, y) = (φ−(y;λ0), c
ε
0(y)), t > 0, y ∈ Ω,

(u, v)(t, 1, y) = (φ+(y;λ1), c
ε
1(y)), t > 0, y ∈ Ω,

w(0, t) = wε
0, w(1, t) = wε

1,

u = 0, d∂v/∂ν = 0, t > 0, (x, y) ∈ Γ,
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where

wε
j = (1/|Ω|)

∫
Ω

exp[ε2hg(y)](cj(y) − β)dy,

cεj(y) = exp[ε2hg(y)](cj(y) − β) − wε
j

for j = 0, 1. It is easy to see that wε
j = λj − β +O(ε2) and cεj = O(ε2).

Remark 1. We note, in passing, that the second equation in (2.2)

with the boundary condition ∂v/∂ν = 0 implies that v(x, y, t) = O(ε2)

uniformly in (x, y, t). Therefore, the essential dynamics of (2.2) is captured

by a system of equations simpler than the original, such as{
ut = ε2uxx + ∆u + {w + β}f(u)

ε−2wt = dwxx − h∗w − w+β
|Ω|

∫
Ω f(u(t, x, y))dy.

This system of equations looks more like a system of one-dimensinal equa-

tions. In fact, we showed in [MSE] that the equation (2.2) ( or the problem

(1.5)-(1.8) ) could be approximated by one-dimensinal systems, at least

qualitatively. A rigorous justification of reducing (2.2) to a one dimensinal

system will be reported in a forthcoming paper. For now, one is advised

to think of the simple version in the above, which contains all the essential

ingredients of the original, in the subsequent analyses.

In order to prove Theorem A, we consider the following equation :

(2.4)




0 = ε2uxx + ∆u + {(v + w) exp[−ε2hg] + β}f(u)

0 = ε2dvxx + d∆v − ε2R1(u, v, w, ε
2) + ε4R2(v, w)

0 = dwxx −A1(u, v, w, ε
2) + ε2A2(v, w)

under the boundary conditions (2.3). The purpose of the following subsec-

tions is to construct a C2-approximate solution which satisfies the equation

(2.4) within an order of ε2.

Remark 2. We emphasize that we do not attempt to make our approx-

imation more accurate than the one given below. If one tries to construct

approximate solutions with accuracy O(εk), k ≥ 3, then, in order to make

the approximation C1 on [0, 1]×Ω, one encounters the difficulty mentioned

to in Introduction.
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2.1. Outer solutions

We will approximate the solutions of (2.4), (2.3) in the regions where

ε2uxx is not significant ( called outer regions ). Let us substitute the formal

expressions

u = U0 + εU1, v = V 0 + εV 1, w = W 0 + εW 1

into the equation (2.4). Equating the coefficient of ε0 to zero, we obtain the

following equations for (U0, V 0,W 0).

(2.5)




0 = ∆U0 + (V 0 +W 0 + β)f(U0)

0 = d∆V 0

0 = dWxx −A1(U
0, V 0,W 0, 0).

The boundary conditions are :

(2.6)




(U0, V 0,W 0) = (φ−(y;λ0), 0, λ0 − β) on Γ0

(U0, V 0,W 0) = (φ+(y;λ1), 0, λ1 − β) on Γ1

(U0, ∂V 0/∂ν) = (0, 0) on Γ.

The second equation in (2.5), the boundary conditions on Γ and the con-

straint ∫
Ω
V 0(x, y)dy = 0,

together imply that V 0 ≡ 0. Therefore the equation (2.5) reduces to

(2.7)

{ 0 = ∆U0 + (W 0 + β)f(U0)

0 = dW 0
xx − h∗W 0 − W 0+β

|Ω|
∫
Ω f(U0)dy.

The first equation in (2.7), under the boundary conditions U0(x, y) =

0, y ∈ ∂Ω, has the three branches of solutions φj(y;W
0(x) + β), (j =

−,+, 0). Due to the first and the second lines of (2.6), we can choose

U0(x, y) =

{
φ−(y;W 0(x) + β), 0 ≤ x ≤ l

φ+(y;W 0(x) + β), l ≤ x ≤ 1
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for some l ∈ (0, 1), which is to be determined. If we now write as λ(x) =

W 0(x) + β, then the second equation in (2.7) becomes :

0 = dλxx + h∗(β − λ) −




λ
|Ω|

∫
Ω f(φ−(y;λ(x)))dy 0 ≤ x ≤ l,

λ
|Ω|

∫
Ω f(φ+(y;λ(x)))dy l ≤ x ≤ 1.

Since the second derivative of the solutions of this equation necessarily has

a jump discontinuity at x = l, we seek C1-matched solutions. Namely, we

pose the following problem :

(2.8)




0 = dλxx + h∗(β − λ) −G∗(λ)

λ(0) = λ0, λ(1) = λ1,

λ(l) = λ∗, λx(l − 0) = λx(l + 0),

where the determination of the switching point x = l is a part of the prob-

lem. The reason why we specify the value λ∗ for λ(x) at x = l will become

clear in the next subsection where we will construct an inner solution to

smooth out the jump discontinuity in U0(x, y) at x = l.

For the problem (2.8), we have :

Lemma 2.1. For β > 0, there exist constants d0(β) < d1(β) such that

for d ∈ (d0, d1), the problem (2.8) has a unique solution (λ(x, β, d), l(β, d)).

The proof of this lemma will be given in Appendix.

The equation for (U1, V 1,W 1) is

0 = ∆U1 + λ(x)f ′(φ±)U1 + {V 1 +W 1}f(φ±)

0 = d∆V 1(2.9)

0 = dW 1
xx − h∗W 1 − λ(x)

|Ω|

∫
Ω
f ′(φ±)U1dy − 1

|Ω|

∫
Ω
f(φ±)dyW 1.

The second equation for V 1 in (2.9) and the boundary condition ∂V 1/∂ν =

0 on ∂Ω, together with the constraint
∫
Ω V (x, y)dy = 0 for each x ∈ [0, 1],
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imply that V 1 ≡ 0. The first equation for U1 then gives two branches of

solutions :

U1,± = −W 1
[
∆ + λ(x)f ′(φ±)

]−1
f(φ±)

= W 1∂φ±
∂λ

,

where the existence of [∆ + λ(x)f ′(φ±)]−1 is insured by (H4) in Section 1,

and the identity

[
∆ + λ(x)f ′(φ±)

]−1
f(φ±) = −∂φ±

∂λ

is easily obtained from

∆
∂φ±
∂λ

+ λf ′(φ±)
∂φ±
∂λ

+ f(φ±) = 0.

Substituting (U1,±, V 1) into the third equation of (2.9), we obtain the fol-

lowing two equations for W 1 :

0 = dW 1,−
xx + g′−(λ(x))W 1,−

and

0 = dW 1,+
xx + g′+(λ(x))W 1,+,

where g±(s) = h∗(β−s)−G±(s). We consider the equation for W 1,− ( resp.

W 1,+ ) on (0, l) ( resp. (l, 1) ) under the boundary conditions

W 1,−(0) = 0, W 1,−(l) = b,

(resp. W 1,+(1) = 0, W 1,+(l) = b ),

where b is a constant to be specified when we consider inner solutions in

the next subsection. The boundary values at x = 0 and x = 1 come from

(2.3). Since the condition (H2) implies that g±′ < 0, the boundary value
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problems for W 1,± are uniquely solvable. If we denote by λ1,+ ( resp. λ1,− )

the solution of

0 = dλ1,+
xx + g′+(λ(x))λ1,+

(resp. 0 = dλ1,−
xx + g′−(λ(x))λ1,− )

with the boundary conditions

λ1,+(1) = 0, λ1,+(l) = 1

(resp. λ1,−(0) = 0, λ1,−(l) = 1 ),

then we find W 1,± = bλ1,±. One should also observe that the boundary

values of U1,− on Γ0 and the boundary values of U1,+ on Γ1 are both

zero due to the facts W 1,−(0) = 0 and W 1,+(1) = 0. Therefore, the outer

approximation we have obtained so far is :

U ε
out =

{
φ−(y;λ(x)) + εU1,−(x, y), 0 ≤ x ≤ l,

φ+(y;λ(x)) + εU1,+(x, y), l ≤ x ≤ 1,

V ε
out = 0, 0 ≤ x ≤ 1,

W ε
out = λ(x) − β +

{
εW 1,−(x), 0 ≤ x ≤ l,

εW 1,+(x), l ≤ x ≤ 1.

Although it is possible to obtain higher order approximation to outer

solutions, we would not do so because the second order approximation in

the above will be sufficient for our purpose.

2.2. Inner solutions

The outer approximation in the previous subsection has a jump discon-

tinuity at x = l(β, d) in the u-component. To smooth this out, we introduce

inner solutions in this subsection. One should also note that the boundary

conditions on Γ0 and Γ1 in (2.3) are not satisfied by the outer approx-

imation. It misses the boundary conditions within an order of ε2. This

discrepancy will be taken care of later on.
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In order to smooth out the jump at x = l, let us introduce a stretched

variable ξ = (x− l)/ε. We also let

Φ(y;λ) = φ+(y;λ) − φ−(y;λ),

and look for inner solutions in the form

u = Φ(y;λ(x) + εW 1(x) + ε2w2(ξ) + ε3w3(ξ))[z0(ξ, y) + εz1(ξ, y)]

+ φ−(y;λ(x) + εW 1(x) + ε2w2(ξ) + ε3w3(ξ)),

v = 0,

w = W 0(x) + εW 1(x) + ε2w2(ξ) + ε3w3(ξ).

Setting x = εξ+ l in the above, we substitute the (u, v, w) into the equation

(2.4). We then equate the coefficient of each power of ε to zero to obtain the

equations for z0, z1, w2, and w3, successively. We could include the terms

such as εv1(ξ), ε2v2(ξ), εw1(ξ) in the above, but εv1(ξ), εw1(ξ) turn out to

be identically zero and v2 will be taken care of when we show that there

exists a genuine solution near the approximation later on ( see Section 3 ).

The equation for z0 is

0 = Φ(y;λ∗)z0
ξξ + ∆{Φ(y;λ∗)z0 + φ−(y;λ∗)}

+ λ∗f(Φ(y;λ∗)z0 + φ−(y;λ∗))

with the boundary conditions

lim
ξ→−∞

z0(ξ, y) = 0, lim
ξ→∞

z0(ξ, y) = 1.

If we set u0(ξ, y) = Φ(y;λ∗)z0 + φ−(y;λ∗), then u0 satisfies

(2.10)




u0
ξξ + ∆u0 + λ∗f(u0) = 0, (ξ, y) ∈ R × Ω

u0(ξ, y) = 0, (ξ, y) ∈ R × ∂Ω

u0(−∞, y) = φ−(y;λ∗), u0(∞, y) = φ+(y;λ∗), y ∈ Ω.
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For the problem (2.10), Vega [V] gives a beautiful result as follows.

Theorem 2. Under the conditions (H1)-(H5) with λ = λ∗, there is

a solution u0 of (2.10), which is unique up to phase shifts in ξ-variable.

Moreover,

u0
ξ(ξ, y) > 0, (ξ, y) ∈ R × Ω,

and u0(ξ, y) − φ±(y;λ∗), u0
ξ(ξ, y) and u0

ξξ(ξ, y) decay exponentially to zero

in C1(Ω̄)-norm as ξ → ±∞.

We denote the unique solution of (2.10) by u0, with an appropriately

fixed phase. When we need to consider a solution of (2.10) obtained from

u0 by a phase shift γ, we use the symbol

u0,γ(ξ, y) := u0(ξ + γ, y).

Correspondingly, we use the symbol z0,γ for z0 associated with u0,γ . The

phase shift γ will be determined by the solvability condition of the following

equation for z1 :

0 = Φ(y;λ∗)z1
ξξ + 2Φλ(y;λ

∗)λx(l)z
0,γ
ξ + Φλ(y;λ

∗)z0,γ
ξξ {λx(l)ξ + b}

+ ∆

[
Φ(y;λ∗)z1 + {Φλ(y;λ

∗)z0,γ + φ−λ(y;λ
∗)}{λx(l)ξ + b}

]

+ {λx(l)ξ + b}f(u0,γ)

+ λ∗f ′(u0,γ)

[
Φ(y;λ∗)z1 + {Φλ(y;λ

∗)z0,γ + φ−λ(y;λ
∗)}{λx(l)ξ + b}

]
,

where Φλ = ∂Φ/∂λ and φ−λ = ∂φ−/∂λ. The boundary conditions are

lim
ξ→±∞

z1(ξ, y) = 0, and z1 = 0, on R × ∂Ω.

If we set u1(ξ, y) = Φ(y;λ∗)z1(ξ, y), then the last equation reduces to

(2.11) 0 = u1
ξξ + ∆u1 + λ∗f ′(u0,γ)u1 + p1(ξ, y),
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where

p1(ξ, y) = 2Φλ(y;λ
∗)z0,γ

ξ λx(l) + Φλ(y;λ
∗)z0,γ

ξξ {λx(l)ξ + b}

+

[
∆{Φλ(y;λ

∗)z0,γ + φ−λ(y;λ
∗)}

]
{λx(l)ξ + b}

+

[
f(u0,γ) + λ∗f ′(u0,γ){Φλ(y;λ

∗)z0,γ

+ φ−λ(y;λ
∗)}

]
{λx(l)ξ + b}.

Using the fact that the following limits are exponentially approached :

lim
ξ→±∞

(z0
ξ , z

0
ξξ) = (0, 0), lim

ξ→∞
z0 = 1, lim

ξ→−∞
z0 = 0,

and the identities

0 = ∆φ±λ(y;λ
∗) + λ∗f ′(φ±(y;λ∗))φ±λ(y;λ

∗) + f(φ±(y;λ∗)),

it is shown that the inhomogeneous term p1(ξ, y) decays exponentially to

zero as ξ → ±∞. As for the solvability of (2.11), we have the following

result by employing the alternative theorem of Fredholm.

Lemma 2.2. The problem (2.11) is solvable if and only if the condition

∫ ∞

−∞

∫
Ω
p1(ξ, y)u

0,γ
ξ (ξ, y)dξdy = 0

is satisfied.

If we change variables by ξ → ξ − γ, the solvability condition in the

above is written as

−γI1 + I0 = 0,
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where I1 and I0 are respectively given by

I1 = λx(l)

∫ ∞

−∞

∫
Ω
f(u0(ξ, y))u0

ξ(ξ, y)dydξ

+ λx(l)

∫ ∞

−∞

∫
Ω

[
∆u∗λ(ξ, y) + λ∗f ′(u0(ξ, y))u∗λ(ξ, y)

]
u0
ξ(ξ, y)dydξ

+ λx(l)

∫ ∞

−∞

∫
Ω

Φλ(y;λ
∗)z0

ξξ(ξ, y)u
0
ξ(ξ, y)dydξ,

where

u∗λ(ξ, y) = Φλ(y;λ
∗)z0(ξ, y) + φ−λ(y;λ

∗).

I1 can be simplified as :

I1 = λx(l)

∫
Ω

[F (φ+(y;λ∗)) − F (φ−(y;λ∗))] dy.

This is obtained by integrating by parts with respect to y and using the

equation

u0
ξξξ + ∆u0

ξ + λ∗f ′(u0)u0
ξ = 0,

and again integrating by parts twice with respect to ξ as follows.

∫ ∞

−∞

∫
Ω

[
∆
[
Φλ(y;λ

∗)z0(ξ, y) + φ−λ(y;λ
∗)
]

+ λ∗f ′(u0(ξ, y))

]
u0
ξ(ξ, y)dydξ

=

∫ ∞

−∞

∫
Ω
[∆u0

ξ(ξ, y) + λ∗f ′(u0(ξ, y))u0
ξ(ξ, y)][Φλz

0 + φ−λ]dydξ

= −
∫ ∞

−∞

∫
Ω
u0
ξξξ[Φλz

0 + φ−λ]dydξ = −
∫ ∞

−∞

∫
Ω

Φλz
0
ξξu

0
ξdydξ.
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By the same computation, I0 is given as follows.

I0 = 2λx(l)

∫ ∞

−∞

∫
Ω
u0
ξ(ξ, y)Φλ(y;λ

∗)z0
ξ (ξ, y)dξdy

+ λx(l)

∫ ∞

−∞

∫
Ω
u0
ξ(ξ, y)ξq1(ξ, y)dydξ

+ b

∫
Ω

[F (φ+(y;λ∗)) − F (φ−(y;λ∗))] dy,

where

q1(ξ, y) = Φλ(y;λ
∗)z0

ξξ(ξ, y) + ∆
[
Φλ(y;λ

∗)z0(ξ, y) + φ−λ(y;λ
∗)
]

+ f(u0(ξ, y)) + λ∗f ′(u0(ξ, y))
[
Φλ(y;λ

∗)z0(ξ, y) + φ−λ(y;λ
∗)
]
.

Therefore, if λx(l) �= 0, we choose the phase shift to be γ = I0/I1. Note

that

γ =
1

λx(l)
b + c0,

where c0 is a constant independent of b and γ. The constant b will be chosen

later on. With this choice of the phase shift γ, we denote u0,γ simply by

u0. Then the problem (2.11) has a family of solutions

au0
ξ(ξ, y) + ū1(ξ, y),

where ū1 is a unique solution of (2.11) satsfying

∫ ∞

−∞

∫
Ω
u0
ξ(ξ, y)ū

1(ξ, y)dξdy = 0.

The free parameter a in the above is determined by a solvability condition

for the next level of approximation. Since higher order approximations are

not necessary for our purpose in this paper, we simply set the free parameter

a = 0.

If, on the other hand, λx(l) = 0, we choose b = 0 so that the solvability

condition is satisfied, in which case we have W 1(x) ≡ 0, and u1 ≡ 0 with

the freedom of the phase shift still remaining.
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The equation for w2 reads

0 = dw2
ξξ + dW 0

xx(l ± 0) + h∗(β − λ∗) − (λ∗/|Ω|)
∫

Ω
f(u0(ξ, y))dy.

It is here we need to solve the problem on each of the half lines (−∞, 0)

and (0,∞). By using the identity

0 = dW 1
xx(l ± 0) + h∗(β − λ∗) − λ∗

|Ω|

∫
Ω
f(φ±(y;λ∗))dy,

the solutions on each of the half lines are given by

dw2,±(ξ) =

∫ ξ

±∞

∫ τ

±∞
(λ∗/|Ω|)

∫
Ω

[
f(u0(s, y)) − f(φ±(y;λ∗))

]
dydsdτ,

which decay to zero exponentially as ξ → ±∞. We now define a C0−
matched solution w2(ξ) by

w2(ξ) =

{
w2,−(ξ) − w2,−(0), ξ ≤ 0,

w2,+(ξ) − w2,+(0), ξ ≥ 0.

When λx(l) �= 0, we choose the constant b so that

(2.12) bλ1,−
x (l − 0) + w2

ξ (−0) = bλ1,+
x (l + 0) + w2

ξ (+0).

In order to show that b can be chosen so that (2.12) is satisfied, we argue

as follows. By using the explict expressions for w2
ξ (±0) above, we have

w2
ξ (+0) − w2

ξ (−0) =
1

d

[∫ γ

∞

λ∗

|Ω|

∫
Ω
[f(u0(s, y)) − f(φ+(y;λ∗))]dyds

−
∫ γ

−∞

λ∗

|Ω|

∫
Ω
[f(u0(s, y)) − f(φ−(y;λ∗))]dyds

]
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with γ = c0 + b/λx(l). Now we have

∂

∂γ

(
w2
ξ (+0) − w2

ξ (−0)
)

= −1

d

λ∗

|Ω|

∫
Ω
[f(φ+(y;λ∗)) − f(φ−(y;λ∗))]dy

=
1

d
(g+(λ∗) − g−(λ∗)),

which gives rise to

w2
ξ (+0) − w2

ξ (−0) =
g+(λ∗) − g−(λ∗)

dλx(l)
b + c1

where c1 is a constant independent of b and γ. Therefore one can uniquely

choose b so as to satisfy (2.12), provided that

λx(l)
(
λ1,−
x (l − 0) − λ1,+

x (l + 0)
)
− g+(λ∗) − g−(λ∗)

d
�= 0

is true. To show this inequality, we use the differential equations λx(x) and

λ1,±(x) satisfy on (0, l) and/or on (l, 1). Multiplying the equation of λ1,+

( resp. λ1,− ) by λx and integrating on (l, 1) ( resp. on (0, l) ) by parts, it

follows that

λx(l)λ
1,+
x (l + 0) = λx(1)λ1,+

x (1) − g+(λ∗)

d

and

λx(l)λ
1,−
x (l − 0) = λx(0)λ1,−

x (0) − g−(λ∗)

d
.

Therefore,

λx(l)
(
λ1,−
x (l − 0) − λ1,+

x (l + 0)
)
− g+(λ∗) − g−(λ∗)

d

= λx(0)λ1,−
x (0) − λx(1)λ1,+

x (1) := W ∗.

Now, from the proof in Appendix, λx(0) > 0, λx(1) > 0. Moreover, the

differential equation for λ1,± together with g′±(λ(x)) < 0 and λ1,±(l) = 1

implies λ1,−
x (0) > 0 and λ1,+

x (1) < 0, which show W ∗ > 0. We can therefore

choose b so that (2.12) is satisfied.
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On the other hand, when λx(l) = 0, we have already chosen the constant

b = 0. In this case, however, we still have the free parameter γ, the phase

shift. We now choose it to satisfy

(2.13) w2
ξ (−0) = w2

ξ (+0).

This is possible since

dw2
ξ (−0) =

∫ γ

−∞
(λ∗/|Ω|)

∫
Ω

[
f(u0(s, y)) − f(φ−(y;λ∗))

]
dyds > 0

is monotone increasing ( note that the integrand is positive ) from zero at

ξ = −∞ to ∞ at ξ = ∞, while

dw2
ξ (+0) =

∫ γ

∞
(λ∗/|Ω|)

∫
Ω

[
f(u0(s, y)) − f(φ+(y;λ∗))

]
dyds > 0

is monotone decreasing ( note that the integrand is negative ) from ∞ at

ξ = −∞ to zero at ξ = ∞. Therefore, there exists a unique value of γ for

which the relation (2.13) is satisfied.

The equation for w3 is

0 = dw3
ξξ + dW 1

xx(l ± 0) + dλxxx(l ± 0)ξ

− λ∗

|Ω|

∫
Ω
f ′(u0)

[
u1 + {Φλz

0 + φ−λ}{λx(l)ξ + b}
]
dy

− h∗{λx(l)ξ + b} − λx(l)ξ + b

|Ω|

∫
Ω
f(u0)dy.

When λx(l) = 0, we have b = 0, W 1 ≡ 0, λxxx(l ± 0) = 0, and u1 ≡ 0.

Therefore w3 is identically equal to zero. In this case, the condition (2.14)

below is trivially satisfied.

When λx(l) �= 0, we have to solve the equation for w3 on each of the

half lines (−∞, 0) and (0,∞). By using the relations

dW 1
xx(l ± 0) = h∗W 1(l) +

λ∗

|Ω|

∫
Ω
f ′(φ±)φ±λW

1(l)dy +
W 1(l)

|Ω|

∫
Ω
f(φ±)dy
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and

dλxxx(l ± 0) = h∗λx(l) +
λ∗

|Ω|

∫
Ω
f ′(φ±)φ±λλx(l)dy +

λx(l)

|Ω|

∫
Ω
f(φ±)dy,

the equations for w3,± become

dw3,±
ξξ =

λ∗

|Ω|

∫
Ω
f ′(u0(ξ, y))u1(ξ, y)dy

+
λ∗

|Ω|

∫
Ω

[
f ′(u0){Φλz

0 + φ−λ} − f ′(φ±)φ±λ
]
dy{λx(l)ξ + b}

+
λx(l)ξ + b

|Ω|

∫
Ω

[
f(u0) − f(φ±)

]
dy,

which have unique solutions decaying exponentially at ±∞ :

dw3,±(ξ) =

∫ ξ

±∞

∫ τ

±∞

λ∗

|Ω|

∫
Ω
f ′(u0(s, y))u1(s, y)dydsdτ

+

∫ ξ

±∞

∫ τ

±∞

λ∗

|Ω|

∫
Ω

[
f ′(u0(s, y)){Φλ(s, y)z

0(s, y) + φ−λ(s, y)}

− f ′(φ±(y;λ∗))φ±λ(y;λ
∗)
]
dy{λx(l)s+ b}dsdτ

+

∫ ξ

±∞

∫ τ

±∞

λx(l)s+ b

|Ω|

∫
Ω

[
f(u0(s, y)) − f(φ±(y;λ∗))

]
dydsdτ.

We now define w3 by

w3(ξ) =




w3,−(ξ) − w3,−(0) − ξw3,−
ξ (0), ξ ≤ 0,

w3,+(ξ) − w3,+(0) − ξw3,+
ξ (0), ξ ≥ 0.

Notice that w3(ξ) is C1-matched at ξ = 0. Also, one can easily verify the

following

(2.14) W 1
xx(l − 0) + w3,−

ξξ (0) = W 1
xx(l + 0) + w3,+

ξξ (0)
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by using the explicit forms of w3,± above and the C2-property of u0 and

u1.

Now let us define a tentative approximation (U ε
T ,W

ε
T ), which is valid on

[0, 1] × Ω, by

W ε
T (x) = W 0(x) + εW 1(x) + ε2w2(

x− l

ε
) + ε3w3(

x− l

ε
),

U ε
T (x, y) = Φ(y;W ε

T (x))

[
z0(

x− l

ε
, y) + εz1(

x− l

ε
, y)

]
+ φ−(y;W ε

T (x)).

These functions, W ε
T and U ε

T , are C2−functions due to the relations (2.12)-

(2.14). Moreover, W ε
T is O(exp[−δ/ε])-near of W ε

out and U ε
T is O(exp[−δ/ε])-

near of U ε
out ( with respect to the supremum norm ) away from the transi-

tion position {l} × Ω ∈ [0, 1] × Ω. This is true because of the exponentially

decaying properties of w2, w3, z0, and z1. Therefore the approximation

(U ε
T , 0,W

ε
T ) satisfies (2.4) within an error bound of O(ε2) in the outer re-

gion. We will now show that our approximation also satisfies (2.4) within

an error bound O(ε2) in the inner region. In fact, if we substitute the

approximation into (2.4), written in terms of the stretched variable ξ and

y, then the coefficients of ε0 and ε1 vanish in the resulting equations, due

to the construction of (U ε
T ,W

ε
T ). Now the coefficient of ε2 in the second

equation of (2.4), the v-equation, is easily seen to be bounded uniformly

in (ξ, y) ∈ R × Ω̄. After some computation, the coefficients of ε2 in the

u-component and the w-component in (2.4) are respectively given by

w̃2
[
L̃∗[Φλ(y;λ

∗)z0(ξ, y) + φ−λ(y;λ
∗)] + f(u0(ξ, y))

]
(2.15)

+
1

2
(w̃1)2

[
L̃∗[Φλλz

0 + φ−λλ] + 2f ′(u0)[Φλz
0 + φ−λ]

+ λ∗f ′′(u0)[Φλz
0 + φ−λ]

2
]

+ w̃1L̃∗[Φλz
1] +

1

2
λ∗f ′′(u0)(u1)2 + λ∗f ′′(u0)u1[Φλz

0 + φ−λ]w̃
1

+ w̃1f ′(u0)u1

+ [Φλz
0 + φ−λ]w̃

2
ξξ + 2[Φλz

0 + φ−λ]ξw̃
2
ξ − hg(y)W 0(l)f(u0)
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+ 2[Φλz
1]ξw̃

1
ξ + 2[Φλλz

0 + φ−λλ]ξw̃
1w̃1

ξ + [Φλλz
0 + φ−λλ](w̃

1
ξ )

2,

and

− ξ2

2

[
W 0

xx(l)

|Ω|

∫
Ω
[f(u0(ξ, y)) − f(φ±(y;λ∗))]dy

+ 2
(W 0

x (l))2

|Ω|

∫
Ω

[
f ′(u0(ξ, y))[Φλz

0 + φ−λ] − f ′(φ±)φ±λ
]
dy

+
λ∗(W 0

x (l))2

|Ω|

∫
Ω

[
f ′′(u0)[Φλz

0 + φ−λ]
2 − f ′′(φ±)(φ±λ)

2
]
dy

+
λ∗(W 0

x (l))2

|Ω|

∫
Ω

[
f ′(u0)[Φλλz

0 + φ−λλ] − f ′(φ±)φ±λλ
]
dy

+
λ∗W 0

xx(l)

|Ω|

∫
Ω

[
f ′(u0)[Φλz

0 + φ−λλ] − f ′(φ±)φ±λ
]
dy

]

(2.16)

− ξ

[
W 1

x (l)

|Ω|

∫
Ω
[f(u0(ξ, y)) − f(φ±(y;λ∗))]dy

+ 2
W 0

x (l)W 1(l)

|Ω|

∫
Ω

[
f ′(u0(ξ, y))[Φλz

0 + φ−λ] − f ′(φ±)φ±λ
]
dy

+
λ∗W 0

x (l)W 1(l)

|Ω|

∫
Ω

[
f ′′(u0)[Φλz

0 + φ−λ]
2 − f ′′(φ±)(φ±λ)

2
]
dy

+
λ∗W 0

x (l)W 1(l)

|Ω|

∫
Ω

[
f ′(u0)[Φλλz

0 + φ−λλ] − f ′(φ±)φ±λλ
]
dy

+
λ∗W 1

x (l)

|Ω|

∫
Ω

[
f ′(u0)[Φλz

0 + φ−λλ] − f ′(φ±)φ±λ
]
dy

]

− λ∗W 1(l)

|Ω|

∫
Ω
f ′(u0)dy − (W 1(l))2

|Ω|

∫
Ω
f ′(u0(ξ, y))[Φλz

0 + φ−λλ]dy

− 1

2

λ∗(W 1(l))2

|Ω|

∫
Ω
f ′′(u0(ξ, y))[Φλz

0 + φ−λ]
2dy
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− hW 0(l)

|Ω|

∫
Ω
g(y)f(u0)dy

− w2(ξ)
[
h∗ +

1

|Ω|

∫
Ω
f(u0)dy +

λ∗

|Ω|

∫
Ω
f ′(u0)[Φλz

0 + φ−λ]dy
]

− λ∗w̃1

|Ω|

∫
Ω
f ′(u0(ξ, y))Φλz

1dy − w̃1

|Ω|

∫
Ω
f ′(u0(ξ, y))u1dy

− 1

2

λ∗

|Ω|

∫
Ω
f ′′(u0(ξ, y))[(u1)2 + 2u1[Φλz

0 + φ−λ]w̃
1]dy,

in which we used the following symbols ;

L̃∗u = uξξ + ∆u + λ∗f ′(u0(ξ, y))u

and

w̃1 = W 0
x (l)ξ +W 1(l), w̃2 =

ξ2

2
W 0

xx(l) + ξW 1
x (l) + w2(ξ).

By using again the exponetially decaying properties of z0, z1, w2 together

with the differntial equations φ±λ and φ±λλ satisfy ;

∆φλ + λ∗f ′(φ)φλ + f(φ) = 0,

∆φλλ + λ∗f ′(φ)φλλ + 2f ′(φ)φλ + λ∗f ′′(φ)(φλ)
2 = 0,

one can readily verify that the quantities in (2.15) and (2.16) are bounded

uniformly in (ξ, y) ∈ R × Ω. Therefore, we conclude that our approximate

solutions satisfy the equation (2.4) within an error bound of O(ε2) measured

by the supremum norm.

3. Proof of Theorem A

In this section, we will prove that there is a solution of (2.4) near

(U ε
T , 0,W

ε
T ). The construction of the approximation in the previous section

shows

||ε2(U ε
T )xx + ∆U ε

T + {W ε
T exp[−ε2hg] + β}f(U ε

T )||L∞ = O(ε2)
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and

||(W ε
T )xx −A1(U

ε
T , 0,W

ε
T , ε

2) + ε2A2(0,W
ε
T )||L∞ = O(ε2).

In this sense, (U ε
T , 0,W

ε
T ) is a good approximation. However, the boundary

conditions on Γ0 and Γ1 are not satisfied. We now modify the approxima-

tion so that the boundary conditions are satisfied. Note, first of all, that

||cεj ||C2(Ω) = O(ε2). So, let us define V ε by

V ε(x, y) = cε0(y) + x{cε1(y) − cε0(y)}.

We also define (U ε,W ε) by

W ε(x) = W ε
T (x) + (1 − x)[wε

0 −W ε
T (0)] + x[wε

1 −W ε
T (1)],

U ε(x, y) = U ε
T (x) + (1 − x)[φ−(y;λ0) − U ε

T (0, y)] + x[φ+(y;λ1) − U ε
T (1, y)].

One can easily verify |wε
0 −W ε

T (0)| = O(ε2), |wε
1 −W ε

T (1)| = O(ε2) as well

as

||φ−(·;λ0)−U ε
T (0, ·)||C2(Ω̄) = O(ε2), ||φ+(·;λ1)−U ε

T (1, ·)||C2(Ω̄) = O(ε2).

We define Rε
j (j = 1, 2, 3), by

Rε
1 := ε2U ε

xx + ∆U ε + P1(U
ε, V ε,W ε, ε2),

Rε
2 := ε2dV ε

xx + ∆dV ε + ε2P2(U
ε, V ε,W ε, ε2),(3.1)

Rε
3 := dW ε

xx + P3(U
ε, V ε,W ε, ε2),

where

P1(u, v, w, ε
2) = {(v + w) exp[−ε2hg] + β}f(u),

P2(u, v, w, ε
2) = −R1(u, v, w, ε

2) + ε2R2(v, w),

P3(u, v, w, ε
2) = −A1(u, v, w, ε

2) + ε2A2(v, w).

Then, we find Rε
j = O(ε2) (j = 1, 2, 3).
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Let us now look for a true solution of the problem (2.3)-(2.4) as the

following type of perturbation from (U ε, V ε,W ε) :

u = U ε + p + U ε
λr, v = V ε + q, w = W ε + r,

where

U ε
λ(x, y) = Φλ(y;W

ε
T (x))[z0(

x− l

ε
, y) + εz1(

x− l

ε
, y)] + φ−λ(y;W

ε
T (x)).

The equation for (p, q, r) is

(3.2)




Lε1p + Lε2q + Lε3r +Rε
1 +N ε

1(p, q, r) = 0

Kε
1q + ε2Kε

2p + ε2Kε
3r +Rε

2 + ε2N ε
2(p, q, r) = 0

M ε
1r +M ε

2p +M ε
3q +Rε

3 +N ε
3(p, q, r) = 0.

The boundary conditions for (p, q, r) are

(3.3)




(a) p = 0, on Γ0, Γ1 and Γ,

(b) q = 0, on Γ0 and Γ1, ∂q/∂ν = 0, on Γ,
∫
Ω qdy = 0,

(c) r(0) = 0 = r(1).

In (3.2), Lεj ,K
ε
j and M ε

j (j = 1, 2, 3), are linear operators given by

Lε1p = ε2pxx + ∆p + {(V ε +W ε) exp[−ε2hg] + β}f ′(U ε)p,

Lε2q = exp[−ε2hg]f(U ε)q,

Lε3r = Lε1[U
ε
λr] + exp[−ε2hg]f(U ε)r,

Kε
1q = ε2qxx + d∆q + ε2

∂P2

∂v
(U ε, V ε,W ε, ε2)q,

Kε
2p =

∂P2

∂u
(U ε, V ε,W ε, ε2)p,

Kε
3r =

[∂P2

∂u
(U ε, V ε,W ε, ε2)U ε

λ +
∂P2

∂w
(U ε, V ε,W ε, ε2)

]
r,
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M ε
1r = drxx +

[∂P3

∂u
(U ε, V ε,W ε, ε2)U ε

λ +
∂P3

∂w
(U ε, V ε,W ε, ε2)

]
r,

M ε
2p =

∂P3

∂u
(U ε, V ε,W ε, ε2)p,

M ε
3q =

∂P3

∂v
(U ε, V ε,W ε, ε2)q.

N ε
j (p, q, r) (j = 1, 2, 3), are nonlinear terms in (p, q, r) of order O(|p|2 +

|q|2 + |r|2). In this section, we will solve the problem (3.2)-(3.3). The idea

of solution method is very simple, although we have to work hard to actually

cary it out.

We will first solve the second and the third equations of (3.2) in (q, r)

as a function of p. Substituting it into the first equation of (3.2), we obtain

a single equation for p. Analyzing the linear part of the resulting single

equation, we will show the solvability of the problem (3.2) by a Liapunov-

Shcmidt type of procedure. This will be done in subsection 3.2, after we

establish preliminary lemmas in the following subsection 3.1.

3.1. Spectral Analysis

Let us define H2
D(0, 1) by H2

D(0, 1) = {r ∈ H2(0, 1); r(0) = 0 = r(1)}
and denote by H2

D,N the set of functions in H2(Ω1) satisfying the boundary

conditions in (3.3 (b)).

Lemma 3.1. (i) The operator M ε
1 : H2

D(0, 1) → L2(0, 1) has an inverse

(M ε
1)

−1 : L2(0, 1) → H2
D(0, 1),

which is bounded by a constant independent of small ε > 0. Consequently,

(M ε
1)

−1 : C0(0, 1) → C0(0, 1)

is bounded by a constant independent of small ε > 0.

(ii) The operator Kε
1 : H2

D,N :→ L2(Ω1) is invertible. The inverse

(Kε
1)

−1 : L2(Ω1) → L2(Ω1)
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is bounded by a constant independent of small ε > 0. Moreover, (Kε
1)

−1

maps C0(Ω1) into itself and is bounded by a constant independent of small

ε > 0.

Proof. (i) The operator M ε
1 is written as

M ε
1r = M∗

1 r + aε(x)r,

where

M∗
1 r = drxx − h∗r −G′

∗(λ(x))r

and ||aε(x)||L∞(0,1) = O(ε). Since M∗
1 is invertible, the conclusion of the

lemma directly follows.

(ii) Since the operator Kε
1 has the form

Kε
1q = ε2dqxx + d∆q + ε2aε(x, y)q,

where aε(x, y)q is a differential operator of first order with bounded coef-

ficients, it suffices to show that the first eigenvalue of ε2dqxx + d∆q with

the boundary conditions in (3.3 (b)) is bounded away from zero by a neg-

ative constant. This is easily seen true because the first eigenvalue of the

Laplacian is negative.

In order to prove the second statement, let us consider the equation

Kε
1q = b,

where b ∈ C0(Ω1) and
∫
Ω b(x, y)dy = 0, x ∈ [0, 1]. By using the Lp-theory

[GT, Theorem 9.15 and Lemma 9.16 ] together with the result in the above,

one can conclude that the equation Kε
1q = b has a unique solution which

belongs to W 2,p(Ω1) for p ≥ 2. We have q ∈ C0(Ω1) by the imbedding

theorm [GT, p 158] for sufficiently large p. Therefore, (Kε
1)

−1 maps C0(Ω1)

into itself. We now show that the bound of (Kε
1)

−1 is bounded for small

ε > 0. ( The following argument is suggested by [T].) If this were not true,

we can find sequences {εj}, {bj} and {qj} such that

εj → 0, ||bj ||C0(Ω1) → 0, as j → ∞, ||qj ||C0(Ω1) = 1, and

K
εj
1 qj = bj .
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The equation is rewritten in terms of a stretched variable ξ = (x − x0)/ε,

x0 ∈ (0, 1) as

dq̃jξξ + d∆q̃j + ε2ãε(ξ, y)q̃j = b̃j .

Choosing an appropriate convergent subsequence of {q̃j} by the usual com-

pactness argument and calling the subsequence {q̃j} again, one can show

that as j → ∞ q̃j approaches a solution of the problem

dq̃ξξ + d∆q̃ = 0, q̃(±∞, y) = 0, y ∈ Ω,
∂q̃

∂ν
(ξ, y) = 0, ξ ∈ R, y ∈ ∂Ω,

which has a unique solution q̃ ≡ 0. Since this is true for each chioce of

x0 ∈ (0, 1), we contradict the fact ||qj ||C0(Ω1) = 1. �

Lemma 3.2. (i) The first eigenvalue µε0 of the operator Lε1 is of order

ε and has the following limiting behavior :

lim
ε→0

µε0
ε

= µ̂∗
0 := −λx(l)

κ2

∫
Ω

[F (φ+(y;λ∗)) − F (φ−(y;λ∗))] dy,

where κ > 0 is given by

κ2 =

∫ ∞

−∞

∫
Ω

[
u0
ξ(ξ, y)

]2
dydξ.

(ii) There is a constant ρ0 > 0 such that µε0 is the only eigenvalue of Lε1
in the half line [−ρ0,∞).

(iii) The L2-normalized first eigenfunction ψε0 of the operator Lε1 has the

limiting behavior :

lim
ε→0

√
εψε0(εξ + l, y) =

1

κ
u0
ξ(ξ, y)

C2-uniformly on compact subsets of R × Ω̄.

(iv) If we denote by L̄ε1 the restriction of Lε1 to the orthogonal complement

[ψε0]
⊥ of the span of ψε0, then L̄ε1 maps [ψε0]

⊥ ∩ C0(Ω1) into itself and is

bounded by a constant independent of small ε > 0.

Proof. Let us consider a scaled version of Lε1. Define L̃ε1 by

L̃ε1p̃ := p̃ξξ + ∆p̃ + {(Ṽ ε + W̃ ε) exp[−ε2hg] + β}f ′(Ũ ε)p̃,
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where the functions with tilde such as p̃ are considered as a function of the

stretched variable ξ = (x− l)/ε and y. While the eigenvalues of L̃ε1 are the

same as those of Lε1, the eigenfunctions ψ̃εj of L̃ε1 and the eigenfunctions ψεj
of Lε1 are related as follows :

ψ̃εj(ξ, y) =
√
εψεj(εξ + l, y).

Now one should observe that the operator L̃ε1 approaches L̃∗
1 defined by

L̃∗
1p̃ := p̃ξξ + ∆p̃ + λ∗f ′(u0(ξ, y))p̃,

C2-uniformly on compact sets of R × Ω as ε → 0. The limiting operator

L̃∗
1 has the following propeties : (a) zero is a simple eigenvalue with a

corresponding eigenfunction being u0
ξ(ξ, y), and (b) there exists a positive

constant, say ρ0, such that zero is the only point of the spectra of L̃∗
1 in the

half interval [−ρ0,∞). These facts are easily reduced from a Vega’s result

[V], saying that u0
ξ(ξ, y) > 0, and the fact that the essential spectrum of

the self-adjoint operator L̃∗
1 is bounded away from zero.

By using a standard compactness argument, one can show that the eigen-

pairs of L̃ε1 converge to those of L̃∗
1 as ε → 0. Of course, some of the eigen-

values of L̃ε1 approach the continuous spectrum of L̃∗
1. Therefore, parts (ii)

and (iii) of the lemma have been established, as well as the fact that µε0 → 0.

In order to prove the full statement of part (i), let us introduce a test

function ψε defined by

ψε(x, y) =
u0
ξ((x− l)/ε, y)

||u0
ξ((· − l)/ε, ·)||L2(Ω1)

=
1√
εκ
u0
ξ(
x− l

ε
, y) + Exp,

where Exp stands for a quantity of order exp[−δ/ε] for some constant δ > 0.

Multiplying the relation

Lε1ψ
ε
0 = µε0ψ

ε
0

by ψε and integrating by parts over Ω1, we obtain

µε0

∫ 1

0

∫
Ω
ψεψε0dydξ
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=
1√
εκ

∫ 1

0

∫
Ω
[(V ε +W ε)f ′(U ε) − λ∗f ′(u0(

x− l

ε
, y))]

× u0
ξ(
x− l

ε
, y)ψε0(x, y)dydx + Exp

=
1

κ

∫ (1−l)/ε

−l/ε

∫
Ω
[W ε(εξ + l)f ′(Ũ ε) − λ∗f ′(u0(ξ, y))]

× u0
ξ(ξ, y)ψ̃

ε
0(ξ, y)dydξ +O(ε2).

Note that

ψ̃ε0(ξ, y) =
√
εψε0(εξ + l, y)

is employed in the last equality above. By using the expansion

W ε(εξ + l)f ′(Ũ ε) − λ∗f ′(u0(ξ, y))

= ε
[
u1(ξ, y) + {Φλz

0(ξ, y) + φ−λ}{λx(l)ξ + b}
]

+O(ε2)

and the fact

lim
ε→0

ψ̃ε0(ξ, y) = lim
ε→0

√
εψε0(εξ + l, y) =

1

κ
u0
ξ(ξ, y),

we obtain the limit

lim
ε→0

µε0
ε

=
1

κ2

∫ ∞

−∞

∫
Ω
λ∗f ′′(u0

ξ)
[
u1(ξ, y) + {Φλz

0(ξ, y) + φ−λ}{λx(l)ξ + b}
]

× (u0
ξ(ξ, y))

2dydξ

+
1

κ2

∫ ∞

−∞

∫
Ω
{λx(l)ξ + b}f ′(u0

ξ)(u
0
ξ(ξ, y))

2dydξ.

For the sake of simplicity, let us use the symbols A = λx(l)ξ + b and

B = u1(ξ, y) + {Φλz
0(ξ, y) + φ−λ}{λx(l)ξ + b}.
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Note that Aξ = λx(l) and Aξξ = 0. Let us now compute the integral by

using integration by parts :∫ ∞

−∞

∫
Ω
Af ′(u0)(u0

ξ)
2dydξ +

∫ ∞

−∞

∫
Ω
λ∗f ′′(u0)B(u0

ξ)
2dydξ(3.4)

= −
∫ ∞

−∞

∫
Ω
f(u0)[λx(l)u

0
ξ +Au0

ξξ]dydξ

−
∫ ∞

−∞

∫
Ω
λ∗f ′(u0)[Bξu

0
ξ +Bu0

ξξ]dydξ

= − λx(l)

∫
Ω

[
F (φ+(y;λ∗)) − F (φ−(y;λ∗))

]
dy

−
∫ ∞

−∞

∫
Ω
f(u0)Au0

ξξdydξ

+

∫ ∞

−∞

∫
Ω
λ∗f(u0)Bξξdydξ −

∫ ∞

−∞

∫
Ω
λ∗f ′(u0)Bu0

ξξdydξ.

By using λ∗f(u0) = −u0
ξξ −∆u0 and integrating twice by parts in ξ and in

y, the third term in (3.4) is rewritten as∫ ∞

−∞

∫
Ω
λ∗f(u0)Bξξdydξ = −

∫ ∞

−∞

∫
Ω
Bξξu

0
ξξdydξ −

∫ ∞

−∞

∫
Ω
(∆B)u0

ξξdydξ.

Therefore, the equation (3.4) continues as

(3.4) = − λx(l)

∫
Ω

[F (φ+(y;λ∗)) − F (φ−(y;λ∗))]

−
∫ ∞

−∞

∫
Ω

[
Bξξ + ∆B + λ∗f ′(u0)B +Af(u0)

]
u0
ξξ

= − λx(l)

∫
Ω

[
F (φ+(y;λ∗)) − F (φ−(y;λ∗))

]
.

In the last equality, we used the fact

Bξξ + ∆B + λ∗f ′(u0)B +Af(u0) = 0,
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which is equivalent to the equation (2.11) for u1(ξ, y) appeared in Sec-

tion2.2. This completes the proof of part (i) of Lemma3.2.

(iv) The proof is similar to that for Kε
1 in Lemma 3.1 (ii). By the Lp-

theory as in the proof of Lemma 3.1 (ii), Lε1p = b has a unique solution in

C0(Ω1) for each b ∈ C0(Ω1). Therefore (L̄ε1)
−1 maps [ψε0]

⊥ ∩ C0(Ω1) into

itself. To show that the norm of (L̄ε1)
−1 is bounded for small ε > 0, we argue

by contradiction. Thus assume that the norm of (L̄ε1)
−1 is unbounded as

ε → 0. Then we can find sequences {εj}, {pj} and {bj} such that εj → 0,

||bj ||C0(Ω1) → 0, ||pj ||C0(Ω1) = 1, as j → ∞, and L
εj
1 pj = bj , where pj ⊥ ψ

εj
0

and bj ⊥ ψ
εj
0 . Rewriting the last equation in terms of a stretched variable

ξ = (x− x0)/ε, we obtain the equation

p̃jξξ + ∆p̃j + {(Ṽ ε + W̃ ε) exp[−ε2hg] + β}f ′(U ε)p̃j = b̃j .

If x0 = l, then, as j → ∞, p̃j approaches a solution of

p̃ξξ + ∆p̃ + λ∗f ′(u0(ξ, y))p̃ = 0

with the boundary conditions

p̃(±∞, y) = 0, y ∈ Ω and p̃(ξ, y) = 0, ξ ∈ R, y ∈ ∂Ω.

Since the latter problem has a unique family of solutions αu0
ξ(ξ, y), α ∈ R,

we have p̃j → αu0
ξ(ξ, y) as j → ∞. On the other hand, the fact pj ∈ [ψε0]

⊥

implies

0 =

∫ (1−l)/ε

−l/ε

∫
Ω
p̃jψ̃

ε
0(ξ, y)dydξ → ακ

as j → ∞, where we used Lemma 3.2 (iii). Therefore α = 0 and we conclude

p̃j → 0.

On the other hand, if x0 �= l, then the equation for p̃j approaches

p̃ξξ + ∆p̃ + λ(x0)f
′(φ±(y;λ(x0))p̃ = 0

with the boundary conditions in the above. If we denote by (µ0,Ψ(y)) the

first eigenpair of the following eigenvalue problem

∆Ψ + λ(x0)f
′(φ±(y;λ(x0))Ψ = µΨ, y ∈ Ω and Ψ = 0, y ∈ ∂Ω,



Multi-dimensional transition layers 149

then the condition (H4) in Section 1 implies that µ0 < 0, and that Ψ is of

constant sign, say positive. Now for each positive ( resp. negative ) α, αΨ

is an upper ( resp. a lower ) solution of

p̃ξξ + ∆p̃ + λ(x0)f
′(φ±(y;λ(x0))p̃ = 0.

Therefore, for each α ≥ 0, we have |p̃(ξ, y)| ≤ αΨ(ξ, y) and hence p̃ ≡ 0. In

this way, we contradict the condition ||pj ||C0(Ω1) = 1. This completes the

proof of Lemma 3.2. �

Lemma 3.3. (i) For each r ∈ H2
D(0, 1), the estimate

||Lε3r||L2(Ω1) = O(
√
ε)||r||H2(0,1)

is valid.

(ii) For p ∈ L2(Ω1), the following estimate is true :

||Lε3
[
(M ε

1)
−1M ε

2p
]
||L2(Ω1) = O(

√
ε)||p||L2(Ω1).

(iii) Let Qε be the orthogonal projection onto [ψε0]
⊥. Then for p ∈ C0(Ω1)

we have

||QεLε3

[
(M ε

1)
−1M ε

2p
]
||C0(Ω1) = o(1)||p||C0(Ω1),

where o(1) is a quantity which goes to zero as ε → 0.

Proof. (i) Notice that

Lε3r = Lε1(U
ε
λr) + exp[−ε2hg]f(U ε)r

= {Lε1(U ε
λ) + exp[−ε2hg]f(U ε)}r

+ ε2{2(U ε
λ)xrx + U ε

λrxx}.

Using the fact

∆φ±λ(·;λ) + λf ′(φ±)φ±λ(·;λ) + f(φ±) = 0,

one can easily show the estimate

||Lε1(U ε
λ) + exp[−ε2hg]f(U ε)||L2(Ω1) = O(

√
ε).
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Therefore the statement (i) follows.

(ii) Apply the argument in the above to (M ε
1)

−1M ε
2p and use the fact

||
[
(M ε

1)
−1M ε

2p
]
xx

||L2(0,1) = O(||p||L2(Ω1)),

||
[
(M ε

1)
−1M ε

2p
]
x
||L2(0,1) = O(||p||L2(Ω1)).

(iii) When p ∈ C0(Ω1) one can prove, by using the second statement in

Lemma 3.1 (i), that

||
[
(M ε

1)
−1M ε

2p
]
xx

||C0(0,1) = O(||p||C0(Ω1)),

||
[
(M ε

1)
−1M ε

2p
]
x
||C0(0,1) = O(||p||C0(Ω1)).

One can therefore estimate Lε3r, where r = (M ε
1)

−1M ε
2p, as

QεLε3r = Qε
[
{Lε1(U ε

λ) + exp[−ε2hg]f(U ε)}r
]

+ ε2Qε
[
{2(U ε

λ)xrx + U ε
λrxx}

]

= Qε
[
{Lε1(U ε

λ) + exp[−ε2hg]f(U ε)}r
]

+O(ε2)||p||C0(Ω1).

In order to estimate the first term in the last equation, let us compute

Iε(x, y) := Lε1(U
ε
λ) + exp[−ε2hg]f(U ε)

explicitly. By an elementary computation, we obtain

Iε(x, y) = Φλz
0
ξξ + ∆

[
Φλz

0 + φ−λ
]
+ λ(x)f ′(Φz0 + φ−)

[
Φλz

0 + φ−λ
]

+ f(Φz0 + φ−) +O(ε),

where Φ, Φλ, φ− are evaluated at (y;λ(x)) and z0, z0
ξξ are evaluated at

((x− l)/ε, y), and O(ε) is of this order with respect to the supremum norm.
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For |x− l| > √
ε, the following estimates are valid :

|z0
ξξ(

x− l

ε
, y)| = O(e−δ/

√
ε), |x− l| ≥

√
ε,

|z0(
x− l

ε
, y) − 1| = O(e−δ/

√
ε), x > l +

√
ε,

|z0(
x− l

ε
, y)| = O(e−δ/

√
ε), x < l −

√
ε.

By using

∆φ±λ(·;λ) + λf ′(φ±)φ±λ(·;λ) + f(φ±) = 0,

we have Iε(x, y) = O(ε), for |x− l| ≥ √
ε.

On the other hand, for |x − l| ≤ √
ε, we express Iε in terms of the

stretched variable ξ = (x− l)/ε. It has the form

Iε(ξ, y) = Φλ(y;λ
∗)z0

ξξ(ξ, y) + ∆
[
Φλ(y;λ

∗)z0 + φ−λ(y;λ
∗)
]

+ λ∗f ′(u0(ξ, y))
[
Φλ(y;λ

∗)z0(ξ, y) + φ−λ(y;λ)
]

+ f(u0(ξ, y)) +O(
√
ε),

where, again, O(
√
ε) is of this order when measured by the supremum norm.

We now use the following claim :

Claim: There exists a constant k such that

ku0
ξ(ξ, y) = Φλ(y;λ

∗)z0
ξξ(ξ, y) + ∆

[
Φλ(y;λ

∗)z0 + φ−λ(y;λ)
]

+ λ∗f ′(u0(ξ, y))
[
Φλ(y;λ

∗)z0(ξ, y) + φ−λ(y;λ)
]
+ f(u0(ξ, y)).

Accepting the claim for the moment, we have

Iε(x, y) = O(
√
ε) + ku0

ξ(
x− l

ε
, y)
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for (x, y) ∈ Ω1, which leads us to the estimate

|Qε[Iε(x, y)r(x)]|

= O(
√
ε)||p||C0

+ |kr(l)| · |
[
u0
ξ(
x− l

ε
, y) −

∫
Ω

∫ 1

0
u0
ξ(
x− l

ε
, y)ψε0(x, y)dxdy · ψε0(x, y)

]
|.

By using Lemma 3.2 (iii), the limit of the quantity inside the square brackets

is computed as follows.

lim
ε→0

[
u0
ξ(
x− l

ε
, y) −

∫
Ω

∫ 1

0
u0
ξ(
x− l

ε
, y)ψε0(x, y)dxdy · ψε0(x, y)

]

= lim
ε→0

[
u0
ξ(ξ, y) −

∫
Ω

∫ (1−l)/ε

−l/ε
u0
ξ(s, y)

√
εψε0(εs+ l, y)dsdy ·

√
εψε0(εξ + l, y)

]

= u0
ξ(ξ, y) −

1

κ2

∫
Ω

∫ ∞

−∞
[u0
ξ(s, y)]

2dsdy · u0
ξ(ξ, y) = 0.

This completes the proof. �

Proof of Claim. This is a consequence of the results by Vega [V].

Under the conditions (H1)-(H5), he proved that the nonlinear eigenvalue

problem

uξξ + cuξ + ∆u + λf(u) = 0, (ξ, y) ∈ R × Ω,

u(ξ, y) = 0, (ξ, y) ∈ R × ∂Ω, u(±∞, y) = φ±(y;λ), y ∈ Ω,

has a solution (c, u) = (c(λ), u(ξ, y;λ)) which is unique up to phase shifts

in ξ-variable for each λ ∈ [Λ0,Λ1]. Moreover, the solution (c(λ), u(ξ, y;λ))

is differentiable in λ ∈ (Λ0,Λ1). Differentiating the equation with respect

to λ at λ∗ and using the fact c(λ∗) = 0, we obtain

(uλ)ξξ + +∆uλ + λ∗f ′(u)uλ + f(u) = −c′(λ∗)uξ.

By uniqueness of the solution, we have Φλz
0 + φ−λ = uλ for λ = λ∗. This

completes the proof of the claim. �
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Lemma 3.4. (i) For each θ(x) ∈ H1(0, 1), we have the equality

lim
ε→0

〈θ, f(U ε)ψε0/
√
ε〉Ω1

=
1

κ

∫
Ω

[F (φ+(y;λ∗)) − F (φ−(y;λ∗))] dy · θ(l),

where the symbol 〈·, ·〉Ω1 means L2-inner product between functions on Ω1.

(ii) As ε → 0 the function (M ε
1)

−1M ε
2ψ

ε
0/
√
ε converges to a function z∗

in H1(0, 1) which satisfies

d{z∗x(1)θ(1) − z∗x(0)θ(0)} − d〈z∗x, θx〉(0,1) + 〈g′∗z∗, θ〉(0,1)

=
−θ(l)
|Ω|κ

∫
Ω
λ∗ [f(φ+(y;λ∗)) − f(φ−(y;λ∗))] dy,

for each θ(x) ∈ H1(0, 1). The symbol 〈·, ·〉(0,1) stands for the L2-inner prod-

uct between functions on the interval (0, 1).

(iii) As ε → 0, we have the following estimates :

||(M ε
1)

−1M ε
2ψ

ε
0||H1(0,1) = O(

√
ε),

||M ε
2(M

ε
1)

−1U ε
λψ

ε
0||H1(0,1) = O(

√
ε),

||(M ε
1)

−1M ε
2f(U ε)ψε0||H1(0,1) = O(

√
ε),

||M ε
2(M

ε
1)

−1f(U ε)ψε0||H1(0,1) = O(
√
ε).

Proof. (i) We prove the statement for θ(x) ∈ C1(0, 1). Then the den-

sity of C1(0, 1) in H1(0, 1) completes the proof. Noting the properties

lim
ε→0

θ̃(ξ) = θ(l), lim
ε→0

Ũ ε(ξ, y) = u0(ξ, y)

and

lim
ε→0

ψ̃ε0(ξ, y) =
1

κ
u0
ξ(ξ, y),
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one can compute the integral

〈θ, f(U ε)ψε0/
√
ε〉Ω1

=

∫ (1−l)/ε

−l/ε

∫
Ω
θ̃(ξ)f(Ũ ε)

√
εψε0(εξ + l, y)dydξ,

which converges, as ε → 0, to

1

κ

∫
Ω

∫ ∞

−∞
θ(l)f(u0(ξ, y))u0

ξ(ξ, y)dξdy

=
θ(l)

κ

∫
Ω

[F (φ+(y;λ∗) − F (φ−(y;λ∗))] dy.

(ii) If we denote by zε the function (M ε
1)

−1M ε
2ψ

ε
0/
√
ε, then it satisfies

M ε
1z

ε = M ε
2ψ

ε
0/
√
ε.

We write this equation in weak form and apply Lax-Milgram Theorem to

the left side of the resulting equation. Then M ε
1, as a mapping from H1(0, 1)

to [H1(0, 1)]′ ( the dual space of H1(0, 1) ), has a bounded inverse. On the

other hand, from the proof of part (i), it follows that the right hand side

of the resulting equation converges to Dirac’s delta-function at x = l in

[H1(0, 1)]′. It is then easy to show that zε is a Cauchy sequence in H1(0, 1)

as ε → 0. Therefore zε converges to z∗ in H1(0, 1). The equation which is

satisfied by z∗ is obtained by taking limits (ε → 0 ) in the weak form of the

differential equation.

(iii) This follows immediately from the proof of part (i). �

3.2. Existence of solutions

By using Lemma 3.1, the second and the third equations in (3.2) are

solvable in (q, r) :

q = −ε2(Kε
1)

−1p +O(ε2) +O(ε2)p +O(|p|2),

r = −(M ε
1)

−1M ε
2p +O(ε2) +O(ε2)p +O(|p|2).



Multi-dimensional transition layers 155

Substituting these into the first equation of (3.2), we obtain

(3.5) Lε1p− Lε3[(M
ε
1)

−1M ε
2p] +O(ε2)p +O(ε2) +O(|p|2) = 0,

where O(ε2) means a quantity of order ε2 measured in L∞-norm. This

notation will be used in this sense below, unless stated otherwise.

Let us decompose p as a sum : p = a
√
εψε0 + p1, where

〈ψε0, p1〉Ω1 = 0, a ∈ R.

Let L̄ε1 be the restriction of Lε1 to the orthogonal completement of the span of

ψε0, [ψ
ε
0]
⊥. We denote by Qε the orthogonal projection onto [ψε0]

⊥. According

to the decomposition of p in the above, the equation (3.5) splits into two

equations

µε0a−
1√
ε
〈Lε3

[
(M ε

1)
−1M ε

2(aψ
ε
0 + p1)

]
, ψε0〉Ω1 +

1√
ε
Bε(a, p1) = 0,(3.6)

L̄ε1p1 −QεLε3
[
(M ε

1)
−1M ε

2p1

]
(3.7)

=
√
εaQεLε3

[
(M ε

1)
−1M ε

2ψ
ε
0

]
+O(ε2)(1 +O(|p|)) +O(|p|2),

where

Bε(a, p1) = O(ε5/2) +O(ε2|p|2) + 〈N ε
1(a

√
εψε0 + p1, q, r), ψ

ε
0 〉Ω1

with q = O(ε2(1+ |p|)2) and r = O(|p|2). The reason why we have O(ε5/2)-

term in the expression of Bε(a, p1) is:

〈 Rε
1, ψ

ε
0 〉Ω1 =

√
ε〈 Rε

1, ψ
ε
0/
√
ε 〉Ω1 =

√
εO(ε2).

By using Lemma 3.2 (iv) and Lemma 3.3 (iii), the equation (3.7) is soluble

in p1 :

pε1(a) =
√
ε(L̄ε1)

−1Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0

]
a+O(ε2) +O(|a|2),

and hence we have

pε1(a) = O(ε)a+O(ε2) +O(|a|2).
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Substituting this into (3.6), one obtains a scalar equation in (a, ε) :

(3.8) B0(ε) +B1(ε)a+B2(ε, a) = 0,

where B0(ε) = O(ε2),

B1(ε) = µε0 − 〈Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0

]
, ψε0〉Ω1(1 +O(

√
ε))(3.9)

− 〈Lε3{(M ε
1)

−1M ε
2(L̄

ε
1)

−1Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0

]
}, ψε0〉Ω1

× (1 +O(
√
ε))

and B2(ε, a) is such that

lim
ε→0

∂2B2(ε, a)

∂a2

∣∣∣∣
a=0

= 0.

The fact that the last limit is zero follows from the same line of argument

as in [Sk, p. 37]. In fact one can argue as follows.

∂2B2(ε, a)

∂a2

∣∣∣
a=0

=
1√
ε

∫ 1

0

∫
Ω

[
(V ε +W ε) exp[−ε2hg] + β

]

× f ′′(U ε)(
√
εψε0)

2 · ψε0dydx

=
λ∗√
ε

∫
Ω

∫ (1−l)/ε

−l/ε
f ′′(u∗(ξ, y))(

√
εψε0)

3 √
εdξ dy +O(ε)

= λ∗
∫

Ω

∫ (1−l)/ε

−l/ε
f ′′(u∗(ξ, y))(

√
εψε0)

3 dξ dy +O(ε)

→ λ∗

κ3

∫
Ω

∫ ∞

−∞
f ′′(u∗(ξ, y))(u∗ξ(ξ, y))

3 dξ dy ( as ε → 0 ).

The last integral is zero. To show this, we use integration by parts, together

with the decay property of u∗ξ as ξ → ±∞ as follows.

λ∗
∫

Ω

∫ ∞

−∞
f ′′(u∗(ξ, y))(u∗ξ(ξ, y))

3 dξ dy
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= − 2λ∗
∫

Ω

∫ ∞

−∞
f ′(u∗(ξ, y))u∗ξu

∗
ξξ dξ dy = 2λ∗

∫
Ω

∫ ∞

−∞
f(u∗)u∗ξξξ dξ dy

= − 2

∫
Ω

∫ ∞

−∞
[u∗ξξ + ∆u∗]u∗ξξξ dξ dy (u∗ξξ + ∆u∗ + λ∗f(u∗) = 0 is used)

= −
∫

Ω

∫ ∞

−∞

[
(u∗ξξ)

2
]
ξ
dξ dy + 2

∫ ∞

−∞

∫
Ω
∇u∗ · ∇u∗ξξξ dy dξ

= − 2

∫
Ω

∫ ∞

−∞
∇u∗ξ · ∇u∗ξξ dξ dy = −

∫
Ω

∫ ∞

−∞

(
|∇u∗ξ |2

)
ξ
dξ dy = 0

The solvability of (3.8) is equivalent to the existence of solutions for the

problem (3.2)-(3.3).

Lemma 3.5. The following limit exists and is nonzero.

lim
ε→0

B1(ε)

ε
= ρ̂∗

=
d{z∗x(1)λx(1) − z∗x(0)λx(0)}

G+(λ∗) −G−(λ∗)

1

κ2

∫
Ω

[F (φ+(y;λ)) − F (φ−(y;λ))] dy < 0.

We will prove this lemma after we show the solvability of (3.8). Rescaling

a in (3.8) as a = εâ, it reduces to

(3.10)
1

ε2
B0(ε) +

1

ε
B1(ε)â+

1

ε2
B2(ε, εâ) = 0.

By using Lemma 3.5 and the implicit function theorem, it is easy to see

that (3.10) is uniquely solvable near (â, ε) = (−b0/ρ̂∗, 0) ( with b0 =

limε→0 B0(ε)/ε
2 ) as â = â(ε). Therefore, we have proven the existence

of an ε-family of equilibrium solutions of (2.2)-(2.3).

Proof of Lemma 3.5. We will show the following two statements :

lim
ε→0

1

ε
〈Lε3

[
(M ε

1)
−1M ε

2ψ
ε
0

]
, ψε0〉Ω1(3.11)

= lim
ε→0

〈Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0/
√
ε
]
, ψε0/

√
ε 〉Ω1
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= µ̂∗
0 −

d{z∗x(1)λx(1) − z∗x(0)λx(0)}
G+(λ∗) −G−(λ∗)

1

κ2

×
∫

Ω

[
F (φ+(y;λ)) − F (φ−(y;λ))

]
dy,

and

(3.12) 〈Lε3{(M ε
1)

−1M ε
2(L̄

ε
1)

−1Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0

]
}, ψε0〉Ω1 = O(ε3/2).

To show (3.11), we note that

〈Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0/
√
ε
]
, ψε0/

√
ε 〉Ω1

= 〈U ε
λ

[
(M ε

1)
−1M ε

2ψ
ε
0/
√
ε
]
, Lε1ψ

ε
0/
√
ε 〉Ω1

+ 〈
[
(M ε

1)
−1M ε

2ψ
ε
0/
√
ε
]
, exp[−ε2hg]f(U ε)ψε0/

√
ε 〉Ω1

= µε0〈U ε
λ

[
(M ε

1)
−1M ε

2ψ
ε
0/
√
ε
]
, ψε0/

√
ε 〉Ω1

+ 〈
[
(M ε

1)
−1M ε

2ψ
ε
0/
√
ε
]
, exp[−ε2hg]f(U ε)ψε0/

√
ε 〉Ω1 .

Therefore the limit on the left side of (3.11) is evaluated as

lim
ε→0

〈zε, f(U ε)ψε0/
√
ε〉Ω1 =

z∗(l)

κ

∫
Ω

[
F (φ+(y;λ∗)) − F (φ−(y;λ∗))

]
dy

from Lemma 3.4 (i). We will now compute the value of z∗(l) by using

Lemma 3.4 (ii). Take the test function θ(x) = λx(x) in Lemma 3.4 (ii) to

obtain

d{z∗x(1)λx(1) − z∗x(0)λx(0)} − d〈z∗x, λxx〉(0,1) + 〈g′∗z∗, λx〉(0,1)(3.13)

=
−λx(l)λ∗

|Ω|κ

∫
Ω

[f(φ+(y;λ∗)) − f(φ−(y;λ∗))] dy.

Since d(λx)xx + g′∗λx = 0 for x �= l and the boundary conditions z∗(0) =

0 = z∗(1) are satisfied, integration by parts leads us to

〈g′∗z∗, λx〉(0,1) = 〈z∗, g′∗λx〉(0,1) = −d〈z∗, λxxx〉(0,1)

= − dz∗(l)[λxx(l − 0) − λxx(l + 0)] + d〈z∗x, λxx〉(0,1).
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Substituting this into (3.13), we obtain

dz∗(l)[λxx(l − 0) − λxx(l + 0)]

= d{z∗x(1)λx(1) − z∗x(0)λx(0)}

+
λx(l)λ

∗

|Ω|κ

∫
Ω

[f(φ+(y;λ∗)) − f(φ−(y;λ∗))] dy.

By using the identity

dλxx(l ± 0) + h∗(β − λ∗) − λ∗

|Ω|

∫
Ω
f(φ±(y;λ∗))dy = 0,

we obtain

d{λxx(l − 0) − λxx(l + 0)}

= − λ∗

|Ω|

∫
Ω

[f(φ+(y;λ∗)) − f(φ−(y;λ∗))] dy

= − [G+(λ∗) −G−(λ∗)],

and

z∗(l) = −λx(l)

κ
− d{z∗x(1)λx(1) − z∗x(0)λx(0)}

G+(λ∗) −G−(λ∗)
.

Therefore, recalling the value of µ̂∗
0 from Lemma 3.2 (i), this completes the

proof of (3.11).

We now prove (3.12). Recalling the definition of Lε3, we have

〈Lε3{(M ε
1)

−1M ε
2(L̄

ε
1)

−1Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0

]
}, ψε0〉Ω1(3.14)

= 〈U ε
λ{(M ε

1)
−1M ε

2(L̄
ε
1)

−1Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0

]
}, Lε1ψε0〉Ω1

+ 〈{(M ε
1)

−1M ε
2(L̄

ε
1)

−1Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0

]
}, f(U ε)ψε0〉Ω1 +O(ε2)

( by using Lε1ψ
ε
0 = µε0ψ

ε
0 = O(ε)ψε0, )

= O(ε)〈(L̄ε1)−1Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0

]
, M ε

2(M
ε
1)

−1U ε
λψ

ε
0〉Ω1
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+ 〈(L̄ε1)−1Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0

]
, M ε

2(M
ε
1)

−1f(U ε)ψε0〉Ω1 +O(ε2).

By using the same argument as in the proof of Lemma 3.3, and noting the

fact

||
[
(M ε

1)
−1M ε

2ψ
ε
0

]
xx

||L2(0,1) = O(1)

together with the estimates in Lemma 3.4 (iii), we obtain

||Lε3
[
(M ε

1)
−1M ε

2ψ
ε
0

]
||L2(Ω1) = O(ε).

This and the estimates in Lemma 3.4 (iii) applied in (3.14) establish the

estimate (3.12).

Recalling the asymptotic behavior of µε0 from Lemma 3.2 (i), (3.11) and

(3.12) prove Lemma 3.5, except that the limit is non zero. To show that the

limit is nonzero, it suffices to show z∗x(0) > 0 and z∗x(1) < 0, since λx(0) > 0

and λx(1) > 0 hold from the construction of λ(x). See Appendix. Let us,

first of all, observe that z∗ satisfies

dz∗xx + g′∗(λ(x))z∗ = 0

on (0, l) and (l, 1), together with the boundary conditions z∗(0) = 0 = z∗(1)

and z∗(l − 0) = z∗(l + 0). Moreover, the proof of Lemma 3.4 implies that

M ε
2ψ

ε
0/
√
ε approaches a nonzero constant times Dirac’s delta function at

x = l. Therefore the proof of Lemma 3.4 (ii) shows that z∗ can not be

identically equal to zero on (0, 1). This fact is not trivial, although we

have already computed the value z∗(l) in the proof of the statement (3.11).

Since g′∗(λ(x)) < 0 on [0, 1], the derivative z∗x is monotone increasing ( resp.

decreasing ) on (0, l) and on (l, 1) with a jump discontinuity at x = l, if

z∗x(0) > 0, z∗x(1) < 0 ( resp. z∗x(0) < 0, z∗x(1) > 0 ). Therefore we will show

that

z∗x(l − 0) − z∗x(l + 0) > 0,

which implies zx(0) > 0 and zx(1) < 0. For this purpose, we take the test

function θ(x) = z∗(x) in Lemma 3.4 (b). By using the differential equation

for z∗ on (0, l) and (l, 1), and integrating by parts as before, we obtain

d{z∗x(l − 0) − z∗x(l + 0)} =
λ∗

|Ω|κ

∫
Ω

[f(φ+(y;λ∗)) − f(φ−(y;λ∗))] dy > 0.
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Therefore the limit value ρ̂∗ in Lemma 3.5 is negative. This completes the

proof of Lemma 3.5. �

So far, we have proven the existence of an ε-family of equilibrium solu-

tions of (2.2)-(2.3), near the approximate solution constructed in Section2.

We denote the solution by (uε, vε, wε) which is expressed as

uε = U ε + pε + U ε
λr

ε, vε = qε, wε = W ε + rε,

where (pε, qε, rε) is the solution of (3.2). We will now show that the L∞-

norm of (pε, qε, rε) goes to zero as ε → 0. Recall that

pε = ε3/2â(ε)ψε0 + pε1(εâ(ε)).

We know from Lemma 3.2 (iii) that
√
εψε0 is bounded as ε → 0, and hence

that ||ε3/2â(ε)ψε0||L∞ = O(ε). Therefore we conclude that ||pε||L∞ = O(ε).

Since qε and rε are expressed in terms of pε as in the second and the third

lines in the beginning of subsection 3.2, we also have proved ||qε||L∞ = O(ε2)

and ||rε||L∞ = O(ε).

Therefore, recalling the construction of the approximate solution (U ε,

W ε), we complete the proof of Theorem A.

4. Proof of Theorem B

We study the stability property of the solution (uε, vε, wε). For this

purpose, we linearize the equation (2.2) around the solution (uε, vε, wε) and

study the eigenvalue problem associated with it. It turns out convenient

to use another time scale τ which is related to the original time scale t by

τ = ε2t. According to the existence proof, it is also convenient to look for

the eigenfunctions in the following form :

u = p + U ε
λr, v = q, w = r.

Then the equation for (p, q, r) is

(4.1)




Lε1p + Lε2q + Lε3r = ε2ρp− ε2ρU ε
λr

Kε
1q + ε2Kε

2p + ε2Kε
3r = ε2ρq

M ε
1r +M ε

2p +M ε
3q = ρr,
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where the operators Lεj ,K
ε
j ,M

ε
j (j = 1, 2, 3), are given by the same formu-

lae as those appeared in the previous section, except that we now replace

the approximate solution (U ε, V ε,W ε) by the true solution (uε, vε, wε) in

the formulae. This abuse of notation should not cause any problem in

the subsequent argument. Moreover, one should observe that Lemma 3.1

through Lemma 3.5 remain valid for the linear operators in this section.

We therefore equote these lemmas frequently in this section.

We now start to solve (4.1). Notice that there is a positive constant

ρ0 such that the eigenvalues of L̄ε1, K
ε
1,M

ε
1 are contained in the inter-

val (−∞,−ρ0]. In order to study the stability property of the solution

(uε, vε, wε), we only need to examine the eigenvalues of (4.1) in the region

�ρ > −ρ0.

In the sequel, we always assume that ρ satisfies this condition.

By using Lemma 3.1, we can solve the second and the third equations

in (4.1) as

q = ε2
[
I − ε2(Kε

1 − ε2ρ)−1Kε
3(M

ε
1 − ρ)−1M ε

3

]−1

× (Kε
1 − ε2ρ)−1

[
−Kε

2p +Kε
3(M

ε
1 − ρ)−1M ε

2p
]

and

r =
[
I − ε2(M ε

1 − ρ)−1M ε
3(K

ε
1 − ε2ρ)−1Kε

3

]−1

× (M ε
1 − ρ)−1

[
−M ε

2p + ε2M ε
3(K

ε
1 − ε2ρ)−1Kε

2p
]
.

For short, we write these as

q = ε2Kε
ρp, r = M ε

ρp.

We now substitute these into the first equation of (4.1). The resulting

equation is

(Lε1 − ε2ρ)p + (Lε3 − ε2ρU ε
λ)M

ε
ρp + ε2Lε2K

ε
ρp = 0.
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We decompose p as p = aψε0 + p1, where as before a ∈ R and 〈ψε0, p1〉 = 0.

Under this deocomposition, the last equation now splits into two parts :

0 = a(µε0 − ε2ρ) + 〈U ε
λM

ε
ρψ

ε
0 , (µε0 − ε2ρ)ψε0〉(4.2)

+ a〈
[
M ε

ρ + ε2Kε
ρ

]
ψε0 , exp[−ε2hg]f(uε)ψε0 〉

+ 〈U ε
λM

ε
ρp1 , (µε0 − ε2ρ)ψε0〉

+ 〈
[
M ε

ρ + ε2Kε
ρ

]
p1 , exp[−ε2hg]f(uε)ψε0 〉

and

(L̄ε1 − ε2ρ)p1 +Qε(Lε3 − ε2ρU ε
λ)M

ε
ρp1 + ε2QεLε2K

ε
ρp1(4.3)

= − aQε
[
Lε3M

ε
ρψ

ε
0 − ε2ρU ε

λM
ε
ρψ

ε
0 + ε2Lε2K

ε
ρψ

ε
0

]
.

By Lemma 3.3 (i), we have

||Lε3M ε
ρp1||L2(Ω1) = O(

√
ε)||M ε

ρp1||H2(0,1) = O(
√
ε)||p1||L2(Ω1),

which enables us to solve (4.3) in p1 as

p1 = aLερψ
ε
0.

By using the same argument as in the proof of Lemma 3.3 (i), the principal

part of the right hand side of (4.3) is estimated as follows :

||Lε3M ε
ρψ

ε
0||L2(Ω1) ≤ ||{Lε1(U ε

λ) + exp[−ε2hg]f(uε)}M ε
ρψ

ε
0||L2(Ω1)

+ ε2||2(U ε
λ)x(M

ε
ρψ

ε
0)x + U ε

λ(M
ε
ρψ

ε
0)xx||L2(Ω1)

≤ O(
√
ε)||M ε

ρψ
ε
0||H1(0,1) +O(ε)||M ε

ρψ
ε
0||H2(0,1).

Moreover, by the same line of arguments as in the proof of Lemma 3.4 (ii),

one can prove that ||M ε
ρψ

ε
0||H1(0,1) = O(

√
ε), which implies ||Lε3M ε

ρψ
ε
0||L2(Ω1)

= O(ε). We therefore have ||Lερψε0||L2(Ω1) = O(ε), and hence ||pε1||L2(Ω1) =

aO(ε).
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Substituting p1 = aLερψ
ε
0 into (4.2), one obtains the following equation

for ρ to satisfy as an eigenvalue of (4.1) :

0 = (µε0 − ε2ρ)Cε(ρ) + 〈M ε
ρψ

ε
0 , exp[−ε2hg]f(uε)ψε0〉(4.4)

+ 〈
[
M ε

ρL
ε
ρ + ε2Kε

ρL
ε
ρ + ε2Kε

ρ

]
ψε0 , exp[−ε2hg]f(uε)ψε0〉,

where Cε(ρ) is given by

Cε(ρ) = 1 + 〈
[
M ε

ρ +M ε
ρL

ε
ρ

]
ψε0 , U

ε
λψ

ε
0 〉.

Note that Cε(ρ) = 1+O(ε) follows from the same argument as in the proof

of Lemma 3.4. Dividing by ε the both side of equation (4.4), one obtains

(4.5) µ̂ε0 − ερ = Dε(ρ),

where µ̂ε0 = µε0/ε, and Dε(ρ) is given by

−Cε(ρ)Dε(ρ) = 〈M ε
ρψ

ε
0/
√
ε , exp[−ε2hg]f(uε)ψε0/

√
ε 〉

+ 〈
[
M ε

ρL
ε
ρ + ε2Kε

ρL
ε
ρ + ε2Kε

ρ

]
ψε0/

√
ε ,

exp[−ε2hg]f(uε)ψε0/
√
ε 〉.

The principal part Dε
1(ρ) of Dε(ρ) is

Dε
1(ρ) = 〈(M ε

1 − ρ)−1M ε
2ψ

ε
0/
√
ε , exp[−ε2hg]f(uε)ψε0/

√
ε 〉.

Note that Dε
1(ρ), as well as Dε(ρ), is an analytic function of ρ which assumes

real values for real ρ, and that Dε(ρ) ( resp. Dε
1(ρ) ) can be written as

Dε(ρ) = Aε(ρR, ρ
2
I) −

√
−1ρIB

ε(ρR, ρ
2
I)

( resp. Dε
1(ρ) = Aε

1(ρR, ρ
2
I) −

√
−1ρIB

ε
1(ρR, ρ

2
I) ),

where ρ = ρR +
√
−1ρI with ρR, ρI ∈ R and Aε, Bε ( resp. Aε

1, B
ε
1 ) are

real valued functions.
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Lemma 4.1. For ρ with �ρ > −ρ0, A
ε and Bε have the following prop-

erties :

(a) Aε(ρR, ρ
2
I) > 0, and Bε(ρR, ρ

2
I) > 0;

(b) limρR→∞Aε(ρR, ρ
2
I) = 0, and lim|ρI |→∞Bε(ρR, ρ

2
I) = 0;

(c) ∂Aε(ρR, ρ
2
I)/∂ρR < 0, and limρR→∞ ∂Aε(ρR, ρ

2
I)/∂ρR = 0;

(d) limε→0 A
ε(0, 0) = µ̂∗

0 − ρ̂∗ > 0, where µ∗
0 and ρ̂∗, respectively, are

those appreaed in Lemma 3.2 (i) and Lemma 3.5 ;

(e) There exists c0 > 0 such that Bε(0, 0) ≥ c0 for ε > 0 small ;

(f) ∂Bε(ρR, ρ
2
I)/∂(ρ2

I) < 0, and lim|ρI |→∞ ∂Bε(ρR, ρ
2
I)/∂(ρ2

I) = 0.

Proof. Since the essential feature of the proof for Aε and Bε is the

same as that for Aε
1 and Bε

1, we will show the statements of the lemma for

Aε
1 and Bε

1.

Let {νεn;ϕεn} be the eigen-pairs of M ε
1. Lemma 3.1 implies that

−ρ0 > νε0 > νε1 > · · ·.

By using the Fourier expansion, Dε
1 is written as

Dε
1(ρ) =

∑
n≥0

〈M ε
2ψ

ε
0/
√
ε , ϕεn 〉 〈exp[−ε2hg]f(uε)ψε0/

√
ε , ϕεn 〉

νεn − ρ
.

Therefore we have

Aε
1(ρR, ρ

2
I)

=
∑
n≥0

〈−M ε
2ψ

ε
0/
√
ε , ϕεn 〉 〈exp[−ε2hg]f(uε)ψε0/

√
ε , ϕεn 〉(ρR − νεn)

(ρR − νεn)
2 + ρ2

I

,

Bε
1(ρR, ρ

2
I) =

∑
n≥0

〈−M ε
2ψ

ε
0/
√
ε , ϕεn 〉 〈exp[−ε2hg]f(uε)ψε0/

√
ε , ϕεn 〉

(ρR − νεn)
2 + ρ2

I

.

Recalling now that

−M ε
2p =

1

|Ω|

∫
Ω

[
vε + wε + β exp[ε2hg]

]
f ′(uε)pdy,
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Lemma 3.2 (iii) implies

lim
ε→0

〈−M ε
2ψ

ε
0/
√
ε , ϕεn 〉 =

λ∗

κ

∫
Ω

[f(φ+(y;λ∗)) − f(φ−(y;λ∗))] dy · ϕ∗
n(l)

and

lim
ε→0

〈exp[−ε2hg]f(uε)ψε0/
√
ε , ϕεn 〉

=
1

κ

∫
Ω

[F (φ+(y;λ∗)) − F (φ−(y;λ∗))] dy · ϕ∗
n(l),

where ϕ∗
n = limε→0 ϕ

ε
n. Therefore for each n ≥ 0,

〈−M ε
2ψ

ε
0/
√
ε , ϕεn 〉 〈exp[−ε2hg]f(uε)ψε0/

√
ε , ϕεn 〉

is positive. Now all the statements, except for (c), in the lemma follow

immediately from the expressions of Aε
1 and Bε

1. To show the statement

(c), note that

Aε
1(0, 0) = 〈 (M ε

1)
−1M ε

2ψ
ε
0/
√
ε , exp[−ε2hg]f(uε)ψε0/

√
ε 〉

whose limit as ε → 0 has been computed in the proof of Lemma 3.5. This

completes the proof of Lemma 4.1. �

By using Lemma 4.1, we can now analyse the equation (4.5), which is

written as

(4.6)

{
(a) µ̂ε0 − ερR = Aε(ρR, ρ

2
I),

(b) ρI ε = ρIB
ε(ρR, ρ

2
I).

Proof of Theorem B (i). Recall, from Lemma 3.2 (i), that

sign(µ̂∗
0) = −sign(λx(l)).

From the result in Appendix, we know that λx(l) ≥ 0 for β ∈ [0, β−] ∪
[β+,∞), and therefore µ̂ε0 is non-negative for small ε > 0. If (4.5) has a

solution with non-negative real parts, ρR ≥ 0, then the right hand side
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of (4.6-a) is positive ( Lemma 4.1 ), while left hand side is negative for

ε > 0 small. Therefore (4.1) cannot have eigenvalues with non-negative real

part. �

Proof of Theorem B (ii). Let us first show that the equation (4.5)

has a pair of pure imaginary solutions with non-zero imaginary part for

some d > 0. If ρI �= 0 then (4.6-b) with ρR = 0 is written as : ε = Bε(0, ρ2
I).

Because of Lemma 4.1 (b), (e) and (f), there exists a unique ρI(ε) > 0 such

that ε = Bε(0, ρI(ε)
2). Note that ρI(ε) → ∞ as ε → 0. Substituting this

into (4.6-a) ( with ρR = 0 ), we now have to find d such that

µ̂ε0 = Aε(0, ρI(ε)
2)

is satisfied. We know that

lim
ε→0

µ̂ε0 = µ̂∗
0 = −kλx(l)

with some k > 0. Moreover, the result in Appendix shows that

d

d(d)
λx(l(β, d);β, d) < 0,

when λx(l) is near zero. Therefore there exists d = dε(β) for which

µ̂ε0 = Aε(0, ρI(ε)
2)

holds true. We will now show that the solution (ρR, ρI) = (0, ρI(ε)) can be

extended to a family of solutions (ρdR(ε), ρdI(ε)) for d near dε(β), and that

d

d(d)
ρdR(ε)|d=dε(β) < 0.

Now consider the equation

(4.7)

{
µ̂ε0 = ερR +Aε(ρR, ρ

2
I),

ε = Bε(ρR, ρ
2
I).
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The Jacobian, say Jac, of the right hand side of (4.7) with respect to (ρR, ρ
2
I)

at d = dε(β) is given by

Jac =
[
ε +

∂Aε

∂ρR
(0, ρI(ε)

2)
] ∂Bε

∂(ρ2
I)

(0, ρI(ε)
2)

− ∂Aε

∂(ρ2
I)

(0, ρI(ε)
2)
∂Bε

∂ρR
(0, ρI(ε)

2).

By using the Cauchy-Riemann equations

∂Aε

∂ρR
=

∂(−ρIBε)

∂ρI
,

∂Aε

∂ρI
= −∂(−ρIBε)

∂ρR
,

and the identities

∂

∂ρI
= 2ρI

∂

∂(ρ2
I)
, ε = Bε(0, ρI(ε)

2),

we obtain

(4.8)

∂Aε

∂ρR
(0, ρI(ε)

2) = −ε− 2ρI(ε)
2 ∂Bε

∂(ρ2
I)

(0, ρI(ε)
2),

∂Aε

∂(ρ2
I)

(0, ρI(ε)
2) =

1

2

∂Bε

∂ρR
(0, ρI(ε)

2).

The relations in (4.8) immediately imply

Jac = −2ρI(ε)
2
[ ∂Bε

∂(ρ2
I)

(0, ρI(ε)
2)
]2

− 1

2

[∂Bε

∂ρR
(0, ρI(ε)

2)
]2

< 0.

Applying the implicit function theorem to (4.7) around (ρR, ρI , d) = (0,

ρI(ε)
2, dε(β)), we obtain a family of eigenvalues for (4.1) as

ρd(ε) = ρdR(ε) +
√
−1ρdI(ε).

In order to compute dρdR(ε)/d(d), differentiate the relations in (4.7) with

respect to d. The resulting equations are

d

d(d)

(
µ̂ε0

)
= ε

dρdR
d(d)

+
∂Aε

∂ρR
· dρ

d
R

d(d)
+

∂Aε

∂(ρ2
I)

· d(ρ
d
I)

2

d(d)
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and

0 =
∂Bε

∂ρR
· dρ

d
R

d(d)
+

∂Bε

∂(ρ2
I)

· d(ρ
d
I)

2

d(d)
.

Substituting the last equation into the first equation and using (4.8), we

arrive at the following expression :

d

d(d)

(
µ̂ε0

)
= −

[
2ρI(ε)

2
[ ∂Bε

∂(ρ2
I)

]2
+
[∂Bε

∂ρR

]2
][ ∂Bε

∂(ρ2
I)

]−1 dρdR
d(d)

.

Since
d

d(d)

(
µ̂ε0

)
< 0,

∂Bε

∂(ρ2
I)

< 0

for small ε > 0, we finally conclude that for small ε > 0

d

d(d)

(
µ̂ε0

)∣∣∣∣
d=dε(β)

< 0.

Therefore a Hopf-bifurcation takes place when d passes dε(β).

To show Theorem B (ii-c), note that

µ̂ε0(dε(β)) = Aε(0, ρI(ε)
2) and ρI(ε) → ∞ as ε → 0.

Therefore, as ε → 0,

µ̂∗
0(d∗) = lim

ε→0
Aε(0, ρI(ε)

2) = 0.

Since µ̂∗
0(d) = −kλx(l(β, d)) for some k > 0, d∗ is the value of d for which

λx(l(β, d)) = 0 is satisfied. The result in Appendix completes the proof of

Theorem B (ii-c). �

5. Concluding remarks

We have discussed in this paper the existence and stability of equilibrium

solutions with one internal layer. However, we should note that it is possible

for equilibrium solutions with multi layers to exist depending upon the

values of β and d. This result will be reported in [MNS2].
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For a simple case, if we take the symmetric boundary conditions

c0(y) = c1(y), θ0(y) = θ1(y) = φ+(y;λ1) ( or φ−(y;λ0) ), y ∈ Ω,

one expect that any equilibrium solution is symmetric at x = 1/2, which

possesses two internal layers because of the symmetric property of the sys-

tem (1.5). Under this situation, it is numerically shown that when d de-

creases, the symmetric solution becomes unstable through Hopf-bifurcation.

Now the following question arises : Is the bifurcating periodic solution sym-

metric or anti-symmetric with respect to x = 1/2 ? Intuitively, one could

speculate that any periodic solution is symmetric with respect to x = 1/2.

However, this is not necessarily true. The dependency of solutions on β

and d is rather complicated, as is seen from Figure 5, exhibiting a variety of

spatio-temporal patterns. A detailed study of this situation will be reported

in [MNS2].

As the analyses in the previous sections show, it is technically compli-

cated to treat the problem (1.5)-(1.8) directly. Therefore, from the practical

view point of studying dynamical behaviour of (1.1), it is desirable to have

a simple model which captures essential dynamics of (1.1). By using the

fast-slow dynamics method, we derived in [MSE] a free boundary problem

associated with the problem (1.5)-(1.8). Although the derivation of the free

boundary problem in [MSE] is based on reasonable arguments, it has not

been fully justified in a rigorous manner. In this section, we will show that

the essential ingredients in Theorems A and B in the above are encoded in

the free boundary problem.

In order to write down the free boundary problem, we need to use the

following lemma.

Lemma 5.1 ( Vega [V] ). Consider the following nonlinear eigenvalue

problem for a fixed λ ∈ (Λ0,Λ1) in the cylindrical domain Ω∞ = {(z, y) ∈
R × Ω} :

−µuz = uzz + ∆u + λf(u), (z, y) ∈ Ω∞

with the boundary conditions

u(−∞, y) = φ−(y;λ), u(∞, y) = φ+(y;λ), y ∈ Ω, u = 0, z ∈ R, y ∈ ∂Ω.

Then there is a unique µ(λ) such that the problem above has a solution

u(z, y;λ) which is monotone in z.
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The free boundary problem is given by :

ε−2∂λ/∂t = dλxx + h∗(β − λ) −F(x, s, λ)(5.1)

ε−1ds/dt = µ(λ(t, s)), t > 0,(5.2)

where F(x, s, λ) is defined by using the Heaviside function H as follows.

F(x, s, λ) = G−(λ)H(s− x) +G+(λ)H(x− s).

The variable λ(t, x) represents the average of the solutions c(t, x, y) of (1.5)

in y-direction over the domain Ω :

λ(t, x) =
1

|Ω|

∫
Ω
c(t, x, y)dy,

and the variable s signifies the location of the layer position in the θ-

component of the solution of (1.5). Initial and boundary conditions for

(λ, s) are :

λ(0, x) = λi(x), 0 < x < 1, s(0) = si, 0 < si < 1,(5.3)

λ(t, 0) = |Ω|−1

∫
Ω
c0(y)dy, λ(t, 1) = |Ω|−1

∫
Ω
c1(y)dy, t > 0.(5.4)

As for the continuity condition on λ, it is required to have λ ∈ C1([0, 1]).

Therefore the equation (5.1) should be written in a weak form. The well-

posedness for such a type of problem as (5.1)-(5.4) has been estabilshed

in [HNM]. Following [HNM], we understand (5.1) to mean the following

identity holds for some T > 0 :

ε−2

∫ T

0
〈λt, a〉dt =

∫ T

0

∫ 1

0
{−dλx ax + h∗(β − λ) a }dxdt

−
∫ T

0

∫ 1

0
F(x, s, λ) a dxdt,

where a ∈ L2(0, T ;H1
0 (0, 1)) and 〈 ·, · 〉 denotes the duality pairing between

[H1
0 (0, 1)]′ ( the dual space of H1

0 (0, 1) ) and H1
0 (0, 1).
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In order to study how the problem (5.1)-(5.4) is related to Theorems A

and B, we need another lemma.

Lemma 5.2. (i) The value of travelling wave-speed µ is zero at λ = λ∗ :

µ(λ∗) = 0.

(ii) The derivative of µ(λ∗) at λ = λ∗ is given by

µ′(λ∗) = − 1

κ2

∫
Ω

[
F (φ+(y;λ∗)) − F (φ−(y;λ∗))

]
dy,

where

κ2 =

∫ ∞

−∞

∫
Ω

[
uz(z, y;λ

∗)
]2
dydz,

and

F (u) =

∫ u

0
f(τ)dτ.

Proof. Part (i) follows immediately from Lemma 5.1 and (H-5) in

Section 1. Part (ii) is obtained by integrating the equation in Lemma 5.1

over R × Ω. �

Because of Lemma 5.2 (i), one easily finds that the problem (5.1)-(5.4)

has a unique equilibrium solution

(λ, s) = (λ̄, l),

where λ̄ is the equilibrium solution appeared in Theorem A. In order to dis-

tinguish it from the dynamical variable λ in (5.1)and (5.2), we use this sym-

bol in the following part of this section. We now linearize (5.1)-(5.4) around

the equilibrium solution and consider the associated eigenvalue problem :

(5.5) ερs = µ′(λ∗)λ̄x(l)s+ µ′(λ∗)λ(l),

ρ

∫ 1

0
λadx = − d

∫ 1

0
λxaxdx−

∫ 1

0

[
h∗λ +

∂F
∂λ

(x, l, λ̄)λ
]
adx(5.6)

+
λ∗

|Ω|

∫
Ω

[
f(φ+(y;λ∗)) − f(φ−(y;λ∗))

]
dy · a(l)s.
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When we linearize (5.1)-(5.4) in the above, we rescaled the time by t → t/ε2.

The equation (5.6) is written as :

〈(M − ρ)λ, a〉 = −f∗〈δl, a〉 · s, a ∈ H1
0 (0, 1),

where δl is the Dirac’s delta function at x = l,

f∗ =
λ∗

|Ω|

∫
Ω

[
f(φ+(y;λ∗)) − f(φ−(y;λ∗))

]
dy,

and M : H1
0 (0, 1) → [H1

0 (0, 1)]′ is defined by

Mλ = dλxx − h∗λ− ∂F
∂λ

(x, l, λ̄)λ.

There is a constant ρ0 > 0 such that for ρ with �ρ > −ρ0, the operator

M − ρ has a bounded inverse

(M − ρ)−1 : [H1
0 (0, 1)]′ → H1

0 (0, 1).

Therefore (5.6) is uniquely solved as λ(x) = −sf∗
[
(M − ρ)−1δl

]
(x). Sub-

stituting this into (5.5), we obtain the equation for ρ to be an eigenvalue of

(5.5)-(5.6) :

(5.7) µ′(λ∗)λ̄x(l) − ερ = f∗
[
(M − ρ)−1δl

]
(l).

Recalling the values of µ′(λ∗) and µ̂∗
0, respectively, from Lemma 5.2 (ii) and

Lemma 3.2 (i), we obtain µ′(λ∗)λ̄x(l) = µ̂∗
0. Moreover, one can show that

the right hand side of (5.7) is the limit of Dε ( from (4.5) in the previous

section ) as ε → 0. Therefore (5.7) is equivalent to

(5.8)
µ′(λ∗)λ̄x(l) − ερR = A∗(ρR, ρ

2
I)

ερI = ρIB
∗(ρR, ρ

2
I),

which is precisely the limiting ( as ε → 0 ) equation of (4.6). The analysis

of (5.8) is the same as ( even simpler than ) that of (4.6).
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6. Appendix

A proof of Lemma 2.1, along with several properties of the solution

λ(x;β, d) of the problem (2.8), will be given in this appendix.

Let us rewrite the problem (2.8) as follows.




0 = dλxx + h∗β −H(λ)

λ(0) = λ0, λ(1) = λ1,

λ(l) = λ∗, λx(l − 0) = λx(l + 0)

where H(v) = h∗v + G∗(v). We will also use H±(v) = h∗v + G±(v), and

H∗
± = H±(λ∗), H0

+ = H+(Λ0) and H1
− = H−(Λ1).

Due to the condition (A4), we have the following inequalities.

H∗
− < H1

− < H0
+ < H∗

+.

There are two cases to deal with :

Case I. β ≤ H∗
−/h

∗ = β− or β ≥ H∗
+/h

∗ = β+,

Case II. H∗
−/h

∗ < β < H∗
+/h

∗.
To solve the problem (2.8), we use the phase plane method. Consider

the phase planes of the following problems :

(L) 0 = v−ξξ + h∗β −H−(v−)

(R) 0 = v+
ξξ + h∗β −H+(v+),

where ξ = x/
√
d. Let A be the point (λ∗, p) on the v-vξ phase plane. We

denote by B ( resp. C ) the point on the line v = λ0 ( resp. v = λ1 )

which also lies on the negative ( resp. positive ) orbit of A under the flow

generated by (L) ( resp. (R) ). We denote by l0(p, β) ( or l1(p, β) ) the time

spent between A and B ( resp. C ). In order to solve (2.8), we need to find

p = p(β, d) such that

l2(p, β) := l0(p, β) + l1(p, β) =
1√
d
.
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Once we find p = p(β, d) which satisfies this equation, then our solution

λ(x;β, d) of (2.8) is given by

λ(x) =

{
v−(x/

√
d; p), 0 ≤ x ≤ l(β, d),

v+(x/
√
d; p), l(β, d) ≤ x ≤ 1,

where l(β, d) =
√
dl0(p(β, d), β) and v−(ξ; p) ( or v+(ξ; p) ) is a unique

solution of (L) ( resp. (R) ) with an initial value (v, vξ) = (λ∗, p).
We first deal with Case I. In this case, we always have p > pβ, where

pβ =

√
−2

∫ λ∗

λ−(β)
g−(s)ds, β ≤ β−,

pβ =

√
−2

∫ λ∗

λ+(β)
g+(s)ds, β ≥ β+,

where λ±(β) is a unique solution of h∗β = H±(λ). l0 and l1 are respectively

given by

l0(p, β) =

∫ λ∗

λ0

dv√
p2 + 2

∫ λ∗
v g−(s)ds

,

l1(p, β) =

∫ λ1

λ∗

dv√
p2 + 2

∫ λ∗
v g+(s)ds

.

Since one can easily find that ∂l0/∂p < 0 and ∂l1/∂p < 0, l2 is mono-

tone decreasing in p for each fixed β. Moreover, limp→pβ l2(p, β) = ∞,

limp→∞ l2(p, β) = 0. Therefore for each d > 0, l2(p, β) = 1/
√
d has a unique

solution p = p(β, d). This completes the proof of Lemma 2.1 for Case I.

We now deal with Case II. There are three sub-cases to be considered :

(II-a)
H∗

−
h∗

< β ≤ H1
−

h∗
,

(II-b)
H1

−
h∗

< β <
H0

+

h∗
,
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(II-c)
H0

+

h∗
≤ β <

H∗
+

h∗
.

We present a treatment only for sub-case (II-a). The other cases can be

analysed in the same way as we do for (II-a). We note that the value p

of the point A = (λ∗, p) in the phase plane may become negative in the

present case.

For p ≥ 0, the function l2 is given by the same formula as in Case I, and

therefore it is monotone decreasing in p and l2(p, β) = 1/
√
d has a unique

solution. Moreover, when p = 0, the corresponding value for d is given by

d
−1/2
0 = l0(0, β) + l1(0, β),

which is the limiting value appeared in Theorem B (ii-c).

On the other hand, when p < 0, the functions l0 and l1 are given by

l0(p, β) =

∫ λ∗

λ0

dv√
p2 + 2

∫ λ∗
v g−(s)ds

+ 2

∫ r0(p,β)

λ∗

dv√
p2 + 2

∫ λ∗
v g−(s)ds

,

where r0(p, β) is a unique solution of

p2 + 2

∫ λ∗

r0

g−(s)ds = 0

and

l1(p, β) =

∫ λ1

λ∗

dv√
p2 + 2

∫ λ∗
v g+(s)ds

+ 2

∫ λ∗

r1(p,β)

dv√
p2 + 2

∫ λ∗
v g+(s)ds

,

where r1(p, β) is a unique solution of

p2 + 2

∫ λ∗

r1

g+(s)ds = 0.

By an elementary computation after suitable change of variables and using

g±′ < 0, one can show that ∂l2/∂p < 0. Therefore the equation l2(p, β) =

1/
√
d has a unique solution and the proof of Lemma 2.1 has been completed.
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Differentiating l2(p(β, d), β) = 1/
√
d with respect to d, we obtain

∂

∂d
p(β, d) = −1

2

(∂l2
∂p

)−1
d−3/2 > 0.

Since

λx(l(β, d);β, d) = −1

2
d−3/2v±ξ (l0(p(β, d)), β) = −1

2
d−3/2p(β, d)

is available, we can compute the derivative

d

d(d)
λx(l(β, d);β, d) =

3

4
d−5/2p(β, d) − 1

2
d−3/2 ∂

∂d
p(β, d)

=
3

4
d−5/2p(β, d) +

1

4
d−3

(∂l2
∂p

)−1
< 0

when p(β, d) is near zero. This fact is used in the proof of Theorem B (ii).
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