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On a Remarkable Polyhedron Geometrizing

the Figure Eight Knot Cone Manifolds

By Hugh Hilden, Maŕıa Teresa Lozano∗

and José Maŕıa Montesinos-Amilibia∗

Abstract. We define a one parameter family of polyhedra P (t)
that live in three dimensional spaces of constant curvature C(t). Iden-
tifying faces in pairs in P (t) via isometries gives rise to a cone manifold
M(t) (A cone manifold is much like an orbifold.). Topologically M(t)
is S3 and it has a singular set that is the figure eight knot. As t varies,
curvature takes on every real value. At t = −1 a phenomenon which
we call spontaneous surgery occurs and the topological type of M(t)
changes. We discuss the implications of this.

0. Introduction

We consider in this paper a one parameter family of three dimensional

cone manifolds whose underlying space is S3 and whose singular curve is

the rational knot 5
3 , more popularly known as the figure eight. We denote

a member of the family by
(

5
3 , α

)
where α is the cone angle at the singular

set (i.e. the knot). The problem that we study and solve here, is that

of giving a “concrete” geometric structure to these cone manifolds. The

end result is a family of cone manifolds
(

5
3 , α

)
defined for α ∈ [0, π]. The

geometric structure is hyperbolic for α belonging to the interval
[
0, 2π

3

)
,

Euclidean when α equals 2π
3 and spherical for α in

(
2π
3 , π

]
. We don’t know

what happens when α is greater than π but we conjecture that there is

some kind of natural continuation of the family in which the members are

spherical cone-manifolds.
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There appears in the course of the construction, spontaneously as we say,

the manifold obtained by zero surgery in the figure eight. The “spontaneous

surgery” produces a manifold that is a fibre bundle over S1 with fibre a

torus and Anosov monodromy given by the 2 by 2 matrix

(
2 1

1 1

)
. This

manifold has a “Sol” type geometric structure, as was shown by Thurston

([T]). We consider the core of the surgery as a singular curve, we think of

this manifold as a cone manifold and we show that for cone angle in the

interval [0, 2π) the geometry is hyperbolic.

Thurston has shown, ([T]), in his celebrated “notes”, that the mani-

fold resulting from Dehn surgery on the figure eight knot has hyperbolic

structure in many cases. In the course of his proof he considers a pair

of ideal hyperbolic tetrahedra glued along their faces by isometries. The

underlying topological space is the complement of the figure eight knot in

S3. Geometrically the structure is hyperbolic, but not complete. When he

completes the hyperbolic structure he sometimes obtains, (He spells out ex-

actly when), a compact hyperbolic manifold that is topologically the result

of Dehn surgery on the figure eight knot. This gives a context in which to

view our paper. Our point of view, though, is different from Thurston’s.

We shall now describe how we obtain geometric structures. The idea is

to construct polyhedra which we think of as lying in the Klein model for

hyperbolic three space of curvature −1/R2. In contradistinction to other

authors, for example ([HKM]) in which an infinite family of manifolds in

hyperbolic three space called Fibonacci manifolds, is constructed, we con-

struct a continuous family of polyhedra in Klein models. At each moment

the faces are identified in pairs by isometries and so define the cone mani-

folds. It happens that as the polyhedra vary continuously, the cone angle

also varies continuously.

As a starting point we consider a certain crystallographic group, which

we call G8, acting on E3. The orbit space is topologically S3 and the

image of the axes of rotation (they are all 3–fold) is the figure eight knot.

This, which is well–known, is how the Euclidean orbifold structure, or cone

manifold structure, is induced on the pair (S3, figure eight knot). The cone

angle is 2π
3 .

Our “remarkable polyhedron” is a certain Dirichlet domain for the group

G8. It has twelve faces, four pentagonal and eight triangular.

We consider the polyhedron as lying in the Klein model for hyperbolic
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space of constant curvature −1/R2 when R equals infinity. We find that by

changing the shape of the polyhedron slightly we are able to continuously

decrease R, while maintaining most of the geometric structure, i.e. the

combinatorial structure of the polyhedron remains the same, the symmetry

group of the polyhedron remains the same, identifications of pairs of faces

are still via isometries, (But hyperbolic isometries in the Klein model.), the

underlying topological space is still S3, and the singular set is still the figure

eight knot. However the cone angle decreases as R decreases. This works

fine all the way down to R = 1 at which point the cone angle becomes zero,

the pentagons become quadrilaterals, and the vertices of the quadrilaterals

resulting from the collapsed edges of the pentagon now lie in the sphere at

infinity. The case R = 1 corresponds to the by now “standard” complete

hyperbolic structure on the complement of the figure eight knot; except that

we obtain this structure by identifying the faces of a certain dodecahedron

rather than two tetrahedra of Thurston.

To our surprise, as R decreases below one, the polyhedron, which by now

has a life of its own, but has metamorphosed to a dodecahedron with eight

quadrilateral and four triangular faces is still inside the sphere at infinity.

The construction makes sense all the way down to R = 0 but spontaneous

zero surgery occurs when R = 1 and the underlying topological space is

the aforementioned S1 bundle. The singular set is still a knot and as R

decreases from one to zero the cone angle in the new singular set increases

from zero to 2π. At R = 0 everything disappears.

Returning to the original Dirichlet domain, the case α = 2π
3 , we now

consider it to lie in a kind of Klein model for a space of constant positive

curvature 1/R2 when R equals infinity. By now we have defined the poly-

hedron parametrically and it is just a matter of seeing what happens as

the parameters change. The construction makes sense as R decreases from

infinity to zero, the combinatorial structure of the polyhedron remains the

same, the underlying topological space remains S3 and the singular set re-

mains the figure eight knot. As R decreases monotonically from infinity to

zero the cone angle increases monotonically from 2π
3 to π.

Most people who work in hyperbolic or spherical three space of constant

curvature almost instinctively normalize the curvature to plus or minus one.

There are good reasons for doing this. One can speak of “the” volume of a

hyperbolic manifold or identify hyperbolic isometries with PSL(2, C). But
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if one does this one cannot envision continuous families of cone manifolds in

which curvature changes from positive to negative and the Euclidean case

is a point in a continuum.

On the other hand, in our example when cone angle α lies in the interval[
0, 2π

3

)
and curvature is negative, or in the interval

(
2π
3 , π

]
and curvature is

positive we can simply change scale in order to obtain a continuous family

of cone manifolds in a fixed hyperbolic or spherical space of curvature minus

or plus one. The map −→v into (1/R)−→v on R
3 sends the Klein model for

the space of curvature ±R to the Klein model for the space of curvature

±1. This map preserves angles, in particular cone angles, but not lengths.

When we speak of length or volume for a particular cone manifold we mean

its length or volume in the corresponding normalized space with curvature

±1.

We are able to compute cone angle and length of the singular set. This

information, together with Schläffli’s formula for the variation of the volume

of a polyhedron in a space of constant curvature enables us to give an

integral formula for the volumes of the cone manifolds in our one parameter

family. (The normalizing map −→v −→ (1/R)−→v crushes the polyhedron to

a point with volume zero in the Euclidean case. Thus with volume a known

differentiable function of cone angle α for α ∈
[
0, 2π

3

]
or α ∈

[
2π
3 , π

]
, its

derivative being given by Schläffli’s formula and volume at α = 2π
3 being

zero an integral formula naturally arises.)

We give a table of volumes for certain cone angles in the interval
(
0, 2π

3

)
and display a graph.

We also do this in the case of spontaneous surgery and in the spherical

case.

Finally, we’d like to make the following observation. Consider the nor-

malized hyperbolic polyhedron that gives rise to the figure eight knot orb-

ifold or cone manifold with cone angle 2π
n , n � 4. Paste n copies of this

polyhedron together cyclicaly around one of the two edges that gives rise

to the singularity. The result is a fundamental domain for the (hyperbolic)

n–fold cyclic covering of the figure eight. These manifolds are the Fibonacci

manifolds studied by Helling, Kim, and Mennicke. (See [HLM3]). But the

fundamental domains we obtain are very different from theirs. Our meth-

ods give a very effective procedure for computing volumes when hyperbolic

manifolds can be represented as members of a one parameter family of cone



Polyhedron for the figure eight knot 505

manifolds. In another paper (See [HLM3]) we studied the arithmeticity

of the figure eight knot orbifolds. We can now calculate the volumes of

these orbifolds in two different ways; using our formulas or using arithmetic

methods. (See [V] p. 108; compare [M3]).

Analogous methods work for the manifold obtained by zero surgery on

the figure eight (spontaneous surgery). This manifold is topologically, as we

stated previously, a fibre bundle over S1 with torus as fibre. Geometrically it

is a cone manifold, sometimes orbifold, with singular set of two components.

When the singularity has form 2π
n this orbifold admits coverings which are

hyperbolic manifold that fiber over S1.(Compare [J].)

1. The figure eight knot as a Euclidean orbifold

The purpose of this section is to obtain a representation of the figure

eight knot as a Euclidean orbifold by identifying pairs of faces in a certain

polyhedron. (The knot itself will be a subset of the set of edges.)

The polyhedron will be very symmetric and will be a Dirichlet domain for

a certain crystallographic group. Our first problem, then will be to define

this group. Actually, we need to define several crystallographic groups.

Consider then, the tesselation of E3 by unit cubes whose vertices have

integer coordinates. The cube with the origin for a vertex that lies in the

positive octant will be called the main cube. Let Tx, Ty, Tz, be the unit

translations in the positive x, y, and z directions and let T2x, T2y, T2z be

the corresponding squares of Tx, Ty, Tz, that is the translations by two. All

the groups we wish to define will be subgroups of the orientation preserving

symmetry group G0 of the tesselation, and all will contain the subgroup TE

(E is for even) generated by T2x, T2y, and T2z.

The group G0 is the semi-direct product of the normal subgroup gener-

ated by the translations and the orientation preserving symmetry group of

the main cube. This last group has twenty-four elements so that the volume

of a fundamental domain for G0 equals 1/24, and the volume of any finite

index subgroup of G0 will equal the index divided by twenty-four.

Next, we bisect the faces of the main cube by defining six edges as in

figure 1.

Translating the main cube around by all possible elements of the trans-

lation subgroup we obtain three sets of parallel lines, the lines in each set
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b

a

c

z

x

y

Figure 1

coming from the bisecting edges and being parallel to the x, y, and z axes

respectively.

Let GB (the B stands for Borromean rings) be the subgroup generated by

all 180◦ rotations with these lines as axes. Any such 180◦ rotation preserves

the tesselation so GB � G0. Two successive 180◦ rotations about parallel

lines a distance of one apart is a translation by two, so that TE � GB. In

fact GB is generated by the normal subgroup TE and the 180◦ rotations in

the axes a, b, c of figure 1 so that GB/TE
∼= Z/2Z ⊕ Z/2Z ⊕ Z/2Z. (Verify,

for example, that 180◦ rotation in a followed by T−1
2x is 180◦ rotation about

the axis parallel to a on the back side of the main cube, etc.) Thus we

see that TE has index eight in GB, and since a 2 × 2 × 2 set of cubes is a

fundamental domain for TE , the main cube itself is a fundamental domain

for GB.

The orbit space E3/GB is topologically S3 and the image of the axes

of rotation is the Borromean rings. The purpose of figure 2, in which we

identify pairs of faces on the main cube, two pairs at a time, is to help you

to see this. Thus we have demonstrated the known result (See [T], [D]) that

the Borromean rings are a Euclidean orbifold with each component having

singularity of type n = 2. (In a Euclidean (hyperbolic, spherical) orbifold

points off the singular set have neighborhoods isometric to neighborhoods

in Euclidean (hyperbolic, spherical) space. Points on the singular set have

neighborhoods that are like the orbit spaces of finite groups of Euclidean

(hyperbolic, spherical) isometries acting on Euclidean (hyperbolic, spheri-

cal) space. For us, in this paper, the space dimension will always be three,

the isometries will always be rotations and the finite groups will always be
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Figure 2

cyclic. Points on the singular set will be of type n if the cyclic group has

order n.)

Next let A be the 3-fold rotation about an axis through the points (0, 0, 1)

and (1, 1, 0) so that A is a symmetry of the main cube and so that A

appears to be a clockwise rotation of the main cube to an observer at

(1, 1, 0) looking toward (0, 0, 1). (This strange choice of axis for A is made

so that certain drawings which appear later are more clear in perspective.)

Then A normalizes the group GB because it leaves invariant the set of axes

of 180◦ rotation for GB. Let GL, (L is for link), be the group generated

by A and GB. Then the index of GB in GL is three and the volume of
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identify
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3

2

3
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3
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3 2 3

3 2

Figure 3

a fundamental domain for GL is 1/3. The orbit space E3/GL is the orbit

space S3 = E3/GB under the action of the 3-fold rotation, topologically just

S3 again. The image of the axes of rotation is the image of the Borromean

rings plus the image of the 3-fold axis of rotation in the 3 to 1 branched

covering S3 −→ S3, where the map is the orbit space map under the 3-fold

rotation that permutes the components of the Borromean rings. This link,

the link 62
2 in ([Ro]), is depicted in figure 3.

Thus we have shown the also well known fact that the link 62
2 is also
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a Euclidean orbifold, in which one component has singularity type 2, the

other type 3.

The two fold branched covering of the link 62
2, as Euclidean orbifold,

with branch set the component with singularity of type 2 is also a Euclidean

orbifold. As a topological space it is S3 because it is the double branched

covering of the trivial knot. The singularity in the pre-image of the branch

set disappears. The pre-image of the component with singularity type 3 is

the figure eight knot. To see this refer to figures 3 and 4.

2

3

3 2

3

1

in the covering space

3

Figure 4

This shows that the figure eight knot is the singular set in a Euclidean

orbifold with singularity of type 3; something that is well known. (See [T],

[D]). This construction of the figure eight knot as pre-image of one compo-

nent of the link 62
2 in a double branched covering over the other was used

by Debby Goldsmith who developed a general technique for constructing

fibred knots and links (See [Ro]). Its importance for us lies in the following

construction.

Consider again the groups GL, GB, and TE . The group GB has a fixed

point free subgroup of index two which we shall call H. To construct H

observe that GB/TE
∼= Z/2Z ⊕ Z/2Z ⊕ Z/2Z. Let ϕ be the composition of
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the homomorphism GB −→ GB/TE with the homomorphism (a, b, c) −→
a+ b+ c of Z/2Z⊕Z/2Z⊕Z/2Z to Z/2. Then H is defined to be the kernel

of ϕ. The group H, which is just the group of even products of rotations,

contains no rotations because all rotations are sent to 1 by the map ϕ.

Since the 3-fold rotation A sends a 2-fold axis for GB to another 2-fold

axis, it normalizes the group H. Let G8 (for figure eight) be the group

generated by A and H.

Counting indices we have [GL : GB] = 3, [GB : H] = 2, [G8 : H] = 3 and

[GL : G8] = 2. Since the main cube is a fundamental domain for GB and

the volume of the main cube is 1, it follows that the volumes of fundamental

domains for GL, H, and G8 are 1/3, 2, and 2/3 respectively.

Consider the 2 to 1 map E3/G8 −→ E3/GL. This is the double branched

covering of E3/GL = S3 branched over one of the two components of the

link 62
2. It follows that as a topological space E3/G8 = S3 and that the pre-

image of the other component of the link 62
2 is the figure eight knot. Lifting

the Euclidean orbifold structure on E3/GL to E3/G8 we have shown that

the figure eight knot as Euclidean orbifold is obtained as the orbit space

of the crystallographic group G8. The knot itself is the image of the 3-fold

axes of rotation.

At this point we need to study the groups G8, H, and GL some more.

Consider the element XAX−1A−1 of GL where X is 180◦ rotation about an

axis of GB intersecting the main cube of figure 1. This element belongs to

H because AX−1A−1 is a 180◦ rotation in GB and the product of any two

such 180◦ rotations is in H. The element XAX−1 belongs to G8 because

A belongs to G8 and XAX−1A−1 belongs to H � G8. But the element

XAX−1 is a 120◦ rotation in an axis that is the image of the axis of rotation

of A under 180◦ rotation about an axis bisecting one of the faces of the main

cube of figure 1.

In this way we see that the cubes adjacent to the main cube, and thus,

iterating, all cubes in the tesselation, contain 3-fold axes of rotation for

elements of G8.

We would like to know the length of the figure eight knot singular set in

the Euclidean orbifold E3/G8. To find this we must first define a certain

fundamental domain for H. Since the main cube is a fundamental domain

for GB, and [GB : H] = 2, and 180◦ rotations do not belong to H, we see

that the main cube together with an adjacent cube constitute a fundamental
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domain for H. We take the adjacent cube and divide it into six congruent

pyramids, each with square base. We then glue each of these six pyramids

onto the six faces of the main cube using a different product of two 180◦

rotations in each of the six cases. In this way we obtain a fundamental

domain for H that is a dodecahedron with rhombic faces. This fundamental

domain is invariant under the rotation A, and is depicted in figure 5. Now

we can obtain a fundamental domain for G8 by intersecting the domain of

figure 5 with any 120◦ wedge with axis equal to the axis of the rotation A.

axis of the rotation A

Figure 5

Unfortunately, (We learned this the hard way.), this domain does not

have enough symmetry to allow us to push through certain calculations we

need to make, and the face identifications are too complicated. However,

we can obtain one useful fact from this domain.

The intersection of the domain of figure 5 with the axes of rotation of the

elements of G8 consists of one line segment, the diagonal of the main cube,

of length
√

3, and six line segments each of length 1
2

√
3 marked in figure 5.

The intersection of the axes of rotation of elements of G8, an appropriately

chosen 120◦ wedge, and the domain of figure 5 consists of one line segment

of length
√

3 and two line segments of length 1
2

√
3. Hence the following

proposition.

Proposition 1. The orbit space of the action of the group G8 on E3

is a Euclidean orbifold of volume 2/3. The orbifold is topologically S3 with
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singular set the figure eight knot. The singularity type is 3 and the length

of the singular set is 2
√

3.

The fundamental domain for G8 that we wish to construct will be a

Dirichlet domain. Dirichlet domains for a discrete group G are constructed

as follows. Pick a point P0 not fixed by any element of G except the identity.

For each non-identity element g of G let Hg be that closed half space that

is bounded by the perpendicular bisector of the line segment [P0, g(P0)]

and that contains P0. The Dirichlet domain D(P0) determined by P0 is

the intersection of all these closed half spaces. There are various sufficient

conditions, satisfied in our case, that imply that such a domain is a finite

polyhedron, but we will not explore them as we will see this explicitly

anyway. That a Dirichlet domain really is a fundamental domain is not

difficult to prove and the reader may wish to prove it himself.

We shall now go about choosing the point P0 which defines the Dirichlet

domain. At this point it will help the reader to refer to figure 6. Recall

that the axis for the rotation A is the line [(0, 0, 1), (1, 1, 0)], and that the

line (0, 1, 1/2) + t(1, 0, 0) is a 2-fold axis for an element, call it X, of GB.

The element B = XAX−1 belongs to G8 and is a 3-fold rotation with

axis the line [(1, 1, 1), (0, 2, 0)]. The point P0 is defined to be the midpoint

of the unique line segment with endpoints on the axes of A and B and

perpendicular to both these axes.

Since the half turn X of GB interchanges the axes of A and B it leaves

their unique mutual perpendicular invariant and the point P0 must lie on

the axis of X; that is, on the line (0, 1, 1/2) + t(1, 0, 0).

Then P0 turns out to be

(1) P0 = (3/4, 1, 1/2)

We shall also need to know the intersections of the common perpendic-

ular with the axes of A and B which turn out to be (3/4, 3/4, 1/4) and

(3/4, 5/4, 3/4) respectively.

It is convenient, at this point, to change coordinates so that P0 becomes

the origin, and so that various other coordinates become integers. Hence

we translate P0 to the origin and change scale by a factor of four. The new

coordinates of points on the axes of A and B and points on their common

perpendicular are indicated in brackets in figure 6.
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mutual
perpendicular
of axis A
and axis B

line q

(1,1,0)=[(1,0,-2)]

axis of A

axis of B

(0,0,1)=[(-3,-4,2)]
(1,1,1)=[(1,0,2)]

(0,2,0)=[(-3,4,-2)]

(3/4,3/4,1/4)=[(0,-1,-1)]

(3/4,5/4,3/4)=[(0,1,1)]

line p

Po

Figure 6

The new volume for a fundamental domain of G8 is 2/3 ·43 = 128/3 and

the new length of the figure eight knot in a fundamental domain is 8
√

3.

The first four half spaces of the Dirichlet domain to compute will be

those associated with the elements A, A−1, B, and B−1. The two bound-

ing planes associated with A, A−1 contain the line [(−3,−4, 2), (1, 0,−2)]

because in the case of a rotation the perpendicular bisector of the line

segment consisting of a point and its image always contains the axis of

rotation. The two half spaces associated with A and A−1 intersect in an

infinite wedge whose dihedral angle is 120◦. The projection of this wedge

on a plane perpendicular to the axis of rotation is depicted in figure 7.

We shall need the equations of the two planes bounding the wedge de-

termined by A and A−1. The perpendicular from P0, now the origin, to the

axis of rotation of A intersects that axis in the vector (0,−1,−1) (Again see

figure 6). A vector parallel to the axis of rotation of A is the vector (1, 1,−1)

and a vector perpendicular to both of these is (2,−1, 1). It happens that

the vector (2,−1, 1) has length
√

3 times the length of (0,−1,−1) and so

the geometry of equilateral triangles, or 60◦ angles, forces it to lie in one of

the bounding planes. (See figure 7, (−2, 1,−1) lies in the other.) Now that

we know three points in a plane, ((−2, 1,−1), (0,−1,−1), and (1, 0,−2)) we

use calculus to determine its equation which is x+y +2z +3 = 0. Similarly

the other plane bounding the wedge has equation −x + 2y + z + 3 = 0 and
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A(P )0

A  (P )
0

-1

axis of rotation

wedge

P0

Figure 7

also similarly we compute the equations of the wedge determined by B and

B−1.

Wedge A & A−1 ≡ x + y + 2z + 3 � 0

− x + 2y + z + 3 � 0

Wedge B & B−1 ≡− x − 2y − z + 3 � 0

x − y − 2z + 3 � 0(2)

The two wedges intersect in a tetrahedron, which is depicted in figure 8.

The vertices, which we label j,l,m and n, are found by solving wedge plane

equations three at a time. We call this tetrahedron the main tetrahedron.

The vertices of the main tetrahedron are:

(3) {m = (3, 2,−4), n = (−3, 4,−2), l = (−3,−4, 2), j = (3,−2, 4)}

The axis of A is ml, the axis of B is jn.

The main tetrahedron is not a fundamental domain because length jn+

length lm = 12
√

3 which is greater than 8
√

3. (Which is what we would

obtain if it were a fundamental domain.) So we must seek other elements

of G8 which define new half spaces that intersect the main tetrahedron.

Remenber that X is a half turn of GB about the x-axis (See figure

6). If Y is any half turn in GB then Y X belongs to H � G8 so that

Y X(P0) = Y (P0) can be used to define a half plane which may intersect the
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main tetrahedron and thus bring us closer to finding the Dirichlet domain

determined by P0.

Also X normalizes G8 because XgX−1 = g(g−1Xg)X−1 and

(g−1Xg)X−1 belongs to H. Moreover X(g(P0)) = XgX−1(P0) so that

X leaves the set {g(P0) | g ε G8} invariant and so X is a symmetry of the

Dirichlet domain determined by P0.

Let Z be the half turn in the line t(0, 1, 1) (new coordinates) which is

the mutual perpendicular of the axes of A and B. The isometry Z is not

even a symmetry of the tesselation but ZAZ−1 = A−1 and ZBZ−1 = B−1.

Since Z sends lines parallel to the x, y, and z axes to lines parallel to the

x, z, and y axes respectively it follows that Z normalizes TE . But G8 is

generated by TE , A, and B, (Start with a 2 × 2 × 2 fundamental domain

for TE and cut it down to size using A, B, and some translations by two)

so that Z normalizes G8.

Now Z also restricts to a symmetry of the Dirichlet domain because

ZgZ−1(P0) = Z(g(P0)).

The images of points under X and Z in the new coordinates are easy to

compute; X(x, y, z) = (x,−y,−z) and Z(x, y, z) = (−x, z, y). At this point

we refer the reader to figure 8.

Now consider the half turn about the line (1, 2, 0) + t(0, 0, 1), which is a

2-fold axis in GB (line p of figure 6). The origin, P0, is sent to (2, 4, 0) and

the equation of the perpendicular bisecting plane is x + 2y − 5 = 0. Thus

the vertex n = (−3, 4,−2) of the main tetrahedron lies on this plane.

Using calculus we compute the intersections of this plane with the edges

of the main tetrahedron and display the results in figure 8.

The line jm is intersected in the point (3, 1,−2) and the line lm is in-

tersected in the point (7/3, 4/3,−10/3). Intersecting the corresponding half

space with the main tetrahedron eliminates the line segment

[(7/3, 4/3,−10/3), m] which has length 2/3
√

3.

Eliminating also the three images of this line segment under X, Z, and

XZ has the effect of reducing the intersection of the proposed Dirichlet

domain with the axes of rotation of A and B by 8/3
√

3, from 12
√

3 to

91
3

√
3, still greater than the desired 8

√
3, so we do not yet have the Dirichlet

domain.

Next, consider the half turn about the line q = (−1, 0,−2) + t(0, 1, 0),

(See figure 6), followed by half turn about the line p = (1, 2, 0) + t(0, 0, 1).

This is an element of H. The origin is sent to (4, 4,−4) under this com-
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(-3,-4,2)

axis of A

axis of B

n (-3,4,2)

l

m

Figure 8

position. It follows that the equation of the planar perpendicular bisector

of [(0, 0, 0), (4, 4,−4)] is x + y − z − 6 = 0. The expression x + y − z − 6

is negative at j, l and n, zero at (3, 1,−2) which lies on the line jm and

in the plane x + 2y − 5 = 0, and positive at m. Using calculus we com-

pute the intersection with lm, which is (2, 1,−3) and the intersection with

[(7/3, 4/3,−10/3), n] which is (1, 2,−3).

The line segment from (2, 1,−3) to (3, 2,−4), which has length
√

3 has

been eliminated. Eliminating also the images of this line segment under the

action of X, Z and XZ reduces the total length of the intersection with the

axes of A and B from 12
√

3 to 8
√

3 which is the correct length.

Thus the polyhedron obtained by intersecting the main tetrahedron with

the images under, I, X, Z, and XZ of the half spaces x + 2y − 5 � 0 and

x + y − z − 6 � 0 has a good chance of being the Dirichlet domain we seek.

It is important to understand this polyhedron, (In fact it does turn out

to be the Dirichlet domain.) and we refer the reader at this point to figure

9 which is drawn from the perspective of an observer on the positive x-
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axis far from the origin. That is, points (x, y, z) are plotted as (y, z) with

horizontal y-axis and vertical z-axis.

The main polyhedron intersects the bisecting planes x + 2y − 5 = 0

and x + y − z − 6 = 0 and their images under it, X, Z, and XZ, only in

points with positive y and negative z coordinate or negative y and positive z

coordinate, that is, only in points in the lower right or upper left of figure 9.

In the lower right we have drawn all relevant points lines and intersections.

In the upper left we have drawn only that part of the polyhedron remaining

after intersection with the half spaces. To go from a point in the lower right

to the corresponding point in the upper left just change the signs of the y

and z coordinates.

The next step is to compute the volume of the polyhedron pictured in

figure 9. This can be done using only a formula for the volume of a tetra-

hedron, given its vertices. Let V (x, y, z, w) be the volume of a tetrahedron

with vertices x, y, z, w, and refer to figure 9 for the labels of vertices in this

computation.

Then the volume of the remaining polyhedron equals V (l, j, m, n) −
2([V (a, b, m, n)+V (c, d, m, n)−V (e, f, m, n)]+V (a, e, g, b)+V (c, h, f, d)) =

V (l, j, m, n)− 4V (a, b, m, n) + 2V (e, f, m, n)− 4V (a, e, g, b) = 128/3. (This

can actually be checked by hand in a reasonable amount of time. The

volume of a tetrahedron is | (u × v) · w | /6 where u, v, and w are three

vectors with a common tail at one of the vertices of the tetrahedron and

heads at the other three vertices. And (u×v) ·w is obtained by writing the

coordinates of the vectors in the rows of a 3× 3 matrix and computing the

determinant.)

Since the volume of the polyhedron of figure 9 equals the volume of a

fundamental domain it must be a fundamental domain. Any other bisecting

plane containing an interior point of this polyhedron would give rise to a

polyhedron of volume less than 128/3 after intersection with the half space.

2. The Dirichlet domain in the Klein model

Our aim in this section is to take the Dirichlet domain polyhedron and

to continuously change its dihedral angles, so as to obtain a one parameter

family of “cone manifolds” in Klein models for hyperbolic spaces of constant

curvature.

According to Thurston’s, now well known, geometrization conjecture, all
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Figure 9

compact oriented 3-manifolds are expected to break down into “geometric”

pieces with each piece belonging to one of exactly eight geometries. Three

of these eight geometries are the spherical, Euclidean, and hyperbolic ge-

ometries each with constant curvature. Most of the researchers that we

know working in this field immediately normalize the spherical and hyper-

bolic cases so that constant curvature means, in effect, curvature equal to

plus or minus one. An advantage of this is, for example, that one can speak

of “the” Poincare model.

But we believe this point of view can lead one astray since if the only

curvatures are 0, +1, and −1, there is no possibility for smooth transitions

between “manifolds” with these curvatures. In this section we shall con-
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struct a one parameter family of “cone manifolds”, where the parameter is

curvature and it changes smoothly from negative to positive through zero.

“Cone manifold” is a slight generalization of “orbifold”. A cone manifold

is a PL manifold together with a, possibly empty, codimension two locally

flat, submanifold called the singular set. (In this paper we only care about

dimensions two and three so the singular set will consist of isolated points in

dimension two and curves, but not graphs, in dimension three.) There is a

geometric model which is some spherical, Euclidean, or hyperbolic space of

constant curvature, where the constant is any real number. Points off the

singular set have neighborhoods homeomorphic to neighborhoods in the

model. Points on the singular set have neighborhoods homeomorphic to

neighborhoods constructed as follows: take an angle α wedge in the model.

(A wedge is the intersection of two half spaces, the angle α is the dihedral

angle.) Then identify the two boundaries of the wedge, using the natural

rotation by α, to form a topological space. Points on the singular set have

neighborhoods homeomorphic to neighborhoods in this topological space.

The homeomorphism carries the singular set to the axis of rotation in the

topological space. Transition functions are isometries.

The difference between our definition of a cone manifold and the common

definitions of orbifold in dimension two and three are:

1. The curvature off the singular set in a cone manifold is constant, as

in an orbifold, but the constant isn’t necessarily 0 or ±1.

2. In dimension three the singular set in a cone manifold is a curve,

not, as is sometimes the case in an orbifold, a graph.

3. The “cone angle” is any angle α, 0 < α � 2π. In an orbifold this

angle is always 2π/n.

One way to construct a 3-dimensional cone manifold (the method we

shall use) is to start with a polyhedron in a space of constant curvature

such that the faces are partitioned into pairs and there is an identifying

isometry for each pair. Form the topological space using the isometries for

identifications. This will be a cone manifold provided that:

1. No edge is identified with its inverse in the equivalence relation in-

duced by the identifications, and the identifications of wedges along

faces are cyclic for each equivalence class of edges.

2. The cone angle at each edge, (the sum of the dihedral angles about

that edge), adds to � 2π.
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3. Each vertex has a neighborhood that is a “cone on a sphere”. (A

vertex might have a neighborhood that is a cone on a torus for

example, in which case the topological space is not a manifold at

all.)

4. There are either two edges, or no edges, emanating from each vertex

with cone angles not equal to 2π. If two edges, the cone angles must

be equal, say to α, and the edges must be “lined up”. (The vertex

has a neighborhood that looks like an α wedge with the half planes

identified.)

1
2 3

4

5 axis of B

axis of A

Z

Y

axis of A

axis of B

(-2,3,-1)(-3,2,-1)

(3,1,-2)

(1,-2,3) (2,-1,3)

(3,-1,2)

(-3,-2,1)

(-1,-3,2)

(-2,-3,1)ĥ
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(-1,3,-2)f
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(1,2,-3)e
(2,1,-3)g

a

ê

â

ĝ

ĉ
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Figure 10

Before we can make further progress we must find the face identifications

in the Dirichlet domain that determine the Euclidean orbifold structure for

the figure eight knot. At this point we refer the reader to figure 10 for
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a picture of the polyhedron from the point of view of an observer on the

positive x-axis with its vertices labelled with the labelling we shall use in

the rest of the paper. Certain half turn axes are labelled 1, 2, 3, 4, 5 in figure

10 also to help identify half turns.

To find the face identifications we look for elements of G8 that do not

move points in the polyhedron too far. Successive half turns about “per-

pendicular” axes separated by a distance of two seems a good place to

start. Let Hj be a half turn about the axis j of figure 10. Then H1

is just a half turn in the x-axis and H1(x, y, z) = (x,−y,−z). H3 is a

half turn in the axis (1, 2, 0) + t(0, 0, 1) and H3(x, y, z) = (2 − x, 4 − y, z)

so that for example H3H1(ê) = H3H1(1,−2, 3) = (1, 2,−3) = e, so that

H3H1(x, y, z) = (2 − x, 4 + y,−z), and H3H1 sends triangle ê â f̂ to trian-

gle efa. In a similar fashion we find the rest of the triangular identifications

in the list which follows shortly.

The pentagon ĝhfaâ with base ĝh has right angles at its base ĝh and

is symmetric with respect to a reflection in the perpendicular bisector of

ĝh. The rotations A and B are the elements of G8 that identify the four

pentagonal faces in pairs.

List of Identifications.

(4)

H3H1 : ∆ê âf̂ −→ ∆efa

H5H1 : ∆ĉ êf̂ −→ ∆ecf

H3H5 : ∆hcf −→ ∆gea

H2H4 : ∆f̂ ĉĥ −→ ∆â ê ĝ

A : Pentagon ĥgaâf̂ −→ Pentagon ĥgecĉ

B : Pentagon ĝhcĉ ê −→ Pentagon ĝhfaâ

The face identifications induce an equivalence relation on the set of edges,

and the set of vertices. These are as follows:
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Edges.

(5)

ê â = ef = ĉf̂

êf̂ = ea = cf

ĉĥ = f̂ ĥ = â ĝ = ê ĝ

ag = eg = ch = fh

âa = ce = ê ĉ

af = f̂ â = ĉc

ĝh

gĥ

Vertices.

(6)

ĝ =ĥ

g =h

â =f = f̂ = a = e = c = ê = ĉ

Thus the resulting complex has 6 faces, 8 edges, 3 vertices, and 1 3-cell

giving an Euler characteristic of zero, which is comforting as it is supposed

to be homeomorphic to S3.

The next step is to define a polyhedron very much like the polyhedron of

figure 10. It will end up having exactly the same configuration of vertices

edges and faces, as well as the same symmetry group as the Euclidean

polyhedron of figure 10. However this polyhedron will live inside a sphere,

the sphere at infinity for the Klein model of a hyperbolic space of constant

curvature.

Also, it will be convenient to have the axes of symmetry for this poly-

hedron be the x, y, and z axes.

We begin by choosing a, b, c and R positive numbers. (We also use a, b,

and c to refer to vertices, for example in the list of identifications, but this

should cause no problems because a vertex is not a number. It’s best to

think of R, which will be the radius of the sphere at infinity in the Klein

model, and will not concern us for a while, as being much larger than a, b,

and c. Refer to figure 11.)
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Define the main tetrahedron to be the tetrahedron with vertices

{(−a, b, c), (a,−b, c), (a, b,−c), (−a,−b,−c)} which lies inside the “box”

{(±a,±b,±c)}. The bases of the pentagons will lie along the lines

[(−a, b, c), (a,−b, c)] and [(a, b,−c), (−a,−b,−c)]. The pentagons we shall

define, in analogy with the pentagons of figure 11, will lie in the faces of

the main tetrahedron, will be symmetric with respect to reflection in the

perpendicular bisector of the base edge, and will have one of the two apex

edges lying along an edge of the main tetrahedron.

These conditions completely define three of the five vertices of each pen-

tagon, but not the two base vertices. The perpendicular bisector of the

base of the front pentagon and of the line segment [(−a, b, c), (a,−b, c)] has
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equation ax − by = 0.

The equation of the plane containing the front face of the main tetra-

hedron is bcx + acy + abz = abc. The apex of the front pentagon lies in

both these planes and has x coordinate equal to a. Hence the apex of

the front pentagon, denoted by a in analogy with figure 10 is the point

(a, a2/b,−ca2/b2). One of the other vertices is the point â, obtained by

rotating point a 180 degrees about the x-axis. Thus â = (a,−a2/b, ca2/b2).

The front pentagon vertex f is obtained by reflecting â in the perpendicu-

lar bisecting plane ax − by = 0. Thus f = ((ab2 − 3a3)/(a2 + b2), (3a2b2 −
a4)/b(a2 + b2), ca2/b2).

With R, and thus the sphere at infinity chosen, we can measure angles

in the Klein model. The base vertices of the pentagon ĝ and h are defined

by the condition that â and f belong to the planes perpendicular to axis ĝh

through the points ĝ and h respectively. The other three pentagons are the

images of âafhĝ under half turns in the x, y and z axes. Since every vertex

of the polyhedron belongs to a pentagon, the polyhedron itself has been

defined, and its vertices are labelled exactly as in figure 10 but we hold off

for a moment before making identifications. So far, the construction only

depends on the choice of a,b,c and R.

If we are successful in satisfying the conditions for one set of a,b,c and R

then a constant multiple of everything will give another example. Therefore

we can normalize one coordinate so we set b = 1. (Surprisingly, normalizing

a or c instead leads to substantially more complicated computations.)

Next, we observe that in the Euclidean case all vertices have the same

distance,
√

14, from the origin. Imposing this condition in the hyperbolic

case is too strong, (We tried.), but we do impose the conditions that all

vertices to be identified, a, e, f, c,â,̂e,f̂ ,̂c have the same distance from the

origin. This implies that if x, y, z, w are selected from this set of vertices

then [x, y] is Euclidean congruent to [z, w] if and only if it is hyperbolic

congruent to [z, w]. In the list of identifications, we find that ae is identified

with f̂ ê and that f̂ ê is congruent to ef by a symmetry of the polyhedron

(half turn in the z-axis). Hence we must have ef hyperbolic congruent,

and therefore Euclidean congruent to ea. We have already computed the

coordinates of a and f , a = (a, a2,−ca2) and f = ((a − 3a3)/(a2 + 1),

(3a2 − a4)/(a2 + 1), ca2) and e is obtained from f by half turn in the y-axis

so that e = (−(a − 3a3)/(a2 + 1), (3a2 − a4)/(a2 + 1),−ca2). The vector
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ef = (2/(a2 + 1))(a − 3a3, 0, ca2(a2 + 1)) and the vector ea = (2/(a2 +

1))(a − a3, a4 − a2, 0). Setting length ea = length ef we find:

(7) c =
√

5 − 10a2 + a4/(a2 + 1)

We are only interested in the case where c is real and positive. This

occurs for 0 < a2 < 5 − 2
√

5 and a2 > 5 + 2
√

5. But if a2 > 5 + 2
√

5 the

pentagon vertex a is outside the box because its y coordinate is a2 which is

greater than one. Hence from now on we shall assume that 0 < a2 < 5−2
√

5

and that c is determined by a from equation 7.

The identifications given in the list of identifications (4) can be done

using hyperbolic isometries. The pentagons can be identified via reflections

in planes through the origin. Identified triangles not containing vertices

g,h,ĝ,ĥ are Euclidean congruent, and therefore hyperbolic congruent. The

four triangles with vertices g,h,ĝ,ĥ are Euclidean and hyperbolic isosceles

(Use a reflection in a plane through the origin.) and are cyclically permuted

by the half turns in the axes, which are hyperbolic isometries.

So far 0 < a2 < 5−2
√

5, and any R with the sphere of radius R contain-

ing the polyhedron we have constructed will turn out to be a cone manifold

with singular set the figure eight knot. The only additional conditions that

need to be checked are that the sum of the dihedral angles around an equiv-

alence class of edges is what it should be.

The cone angle at the edges ĝh and gĥ is sure to be some angle less

than π and the figure eight knot will thus be contained in the singular

set. By construction, the four dihedral angles at ag = eg = ch = fh and

ĉĥ = f̂ ĥ = âĝ = ê ĝ are right angles so the cone angle at these edges equals

2π and they don’t belong to the singular set. If the following conditions

on dihedral angles are satisfied, (they come from (5)) the orbifold will be

a hyperbolic orbifold with singular set the figure eight knot. (We use the

same notation for an edge as its dihedral angle.)

(8)

ê â + ef + ĉf̂ = 2π

êf̂ + ea + cf = 2π

âa + ce + êĉ = 2π

af + f̂ â + ĉc = 2π
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At this point we make use of the symmetries of the polyhedron (Refer

to figure 10). They imply that

(9)

ef = êf̂

âf̂ = ê ĉ = af = ec

ê â = f̂ ĉ = ae = fc

aâ = cĉ

Using equations (9) in equations (8) we see that the first two equations

of (8) are equivalent and the last two equations of (8) are equivalent and

that the systems (8) and (9) are equivalent to:

(10)
ea + ef/2 = π

af + aâ/2 = π

To satisfy these equations, given 0 < a2 < 5 − 2
√

5 we shall have to

choose R correctly.

At this point, in order to facilitate computations in the Klein model

(See Appendix A), we switch to homogeneous coordinates ((x, y, z, t) =

(λx, λy, λz, λt) for any λ �= 0 and R
3 embeds in RP 3 by (x, y, z) −→

(x, y, z, R)). Points in the Klein model determined by the sphere of ra-

dius R are those points (x, y, z) or (x, y, z, R) with x2 + y2 + z2 < R2. The

plane given by the equation ax + by + cz = d and t = R, has the pole

(Ra, Rb, Rc, d) (in homogeneous coordinates). For two vectors in R
4 we

define 〈−→v ,−→w 〉, −→v = (v1, v2, v3, v4),
−→w = (w1, w2, w3, w4) by

(11) 〈−→v ,−→w 〉 = v1w1 + v2w2 + v3w3 − v4w4

Of course 〈−→v ,−→w 〉 is not well defined for homogeneous vectors but it is

useful for determining the dihedral angle between planes. The following

formula, proved in Appendix A, gives the cosine of the dihedral angle �
between two intersecting planes in the Klein model with poles −→v and −→w .

(12) cos� =
−〈−→v ,−→w 〉√

〈−→v ,−→v 〉
√
〈−→w ,−→w 〉
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At this point let the homogeneous vectors −→u ,−→v ,−→w be the poles of

the planes aâ-origin, aâf , and efa. We had previously computed a =

(a, a2,−ca2), â = (a,−a2, ca2), f = ((a − 3a3)/(a2 + 1), (3a2 − a4)/(a2 +

1), ca2) and e = (−(a − 3a3)/(a2 + 1), (3a2 − a4)/(a2 + 1),−ca2).

It is easy, if tedious, to find the equation of a plane given three points

in it. We find the equations for the planes in question

(13)

Plane aâ -origin : cy + z = 0

Plane aâf : cx + acy + az = ac

Plane efa : ca(1 + a2)x + c(1 + a2)y + (3a2 − 1)z

= 3ca2 − ca4

So that taking the outward normals

(14)

u = (0,−c,−1, 0)

v = (Rc, Rac, Ra, ac)

w = (Rca(1 + a2), Rc(1 + a2), R(3a2 − 1), ca2(3 − a2)

Now consider again the second condition af + 1
2aâ = π. Since 1

2aâ is pre-

cisely the dihedral angle formed by the planes aâ origin and aâf , necessarily

an acute angle, and since af is the dihedral angle between aâf and efa,

the second condition of (10) is precisely equivalent to the conditions, cosine

af is � 0 and cos2 af = cos2(1
2aâ). But this last equality is equivalent to

(15)
〈u, v〉2

〈u, u〉〈v, v〉 =
〈v, w〉2

〈v, v〉〈w, w〉

We compute

(16)

〈u, u〉 = (1 + c2)

〈u, v〉 = −Ra(1 + c2)

〈w, w〉 = R2c2(1 + a2)3 + R2(3a2 − 1)2 − c2a4(a2 − 3)2

〈v, w〉 = 2R2ac2(1 + a2) + R2a(3a2 − 1) + c2a3(a2 − 3)

Equation (15) reduces to 〈w, w〉〈u, v〉2−〈u, u〉〈v, w〉2 = 0. After some al-

gebraic manipulation (Recall a,c,R > 0, and a < 1.) we obtain:
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〈w, w〉〈u, v〉2 − 〈u, u〉〈v, w〉2 = a2c2(a2 − 3)(1 + c2)(−a2 + R2) · (a2c2(a2 −
3) + R2[−2 + 3a2 + a4 + c2(1 + a2)2])

Only the expression in the last parentheses is important. Thus we set:

(17) R2 =
c2(3a2 − a4)

c2(1 + a2)2 − 2 + 3a2 + a4
.

And using (7) we can express R2 as a function of a alone

(18) R2 =
a2(a4 − 10a2 + 5)

(a2 + 1)2(1 − 2a2)
.

We recall for the reader that we assume that a satisfies 0 < a2 < 5−2
√

5

and we note that a4 − 10a2 + 5 has zeroes at 5± 2
√

5, and that R2 � 0 for

1/2 � a2 � 5 − 2
√

5. The values 1/2 < a2 < 5 − 2
√

5 will turn out to be

interesting, but for the moment we assume 0 < a2 < 1/2.

Next, we turn to the signs of the cosines of the two dihedral angles

in question. These are determined by 〈u, v〉 and 〈v, w〉. The first equals

−Ra(1 + c2) which is obviously negative and the second is obtained by

using (17), (18), and (7) in (16). After factoring we obtain: 〈v, w〉 =
2a3(a4−10a2+5)(3−a2)(a2−1)2

(a2+1)3(1−2a2)
. This expression is positive for 0 < a2 < 1/2, so

that the second of the two equations (10) is satisfied.

At this point we turn to the first of the equations; ea + ef/2 = π.

The dihedral angle ef/2 is formed by the planes through e, f , and the

origin and the plane efa. From the coordinates for e and f we compute

that this first plane has equation ca(a2 + 1)x + (3a2 − 1)z = 0 and we have

already computed the equation of plane efa which is ca(1 + a2)x + c(1 +

a2)y + (3a2 − 1)z = ca2(3 − a2).

The dihedral angle ea is formed by the plane efa and the plane con-

taining a and perpendicular in the Klein model to the line gĥ, which is one

of the edges of the main tetrahedron, contains the points (−a,−1,−c) and

(a, 1,−c), and has parametric equation (0, 0,−c) + t(a, 1, 0) = (ta, t,−c).

Suppose the plane perpendicular to gĥ has equation αx+βy+γz = δ and

therefore pole (α, β, γ, δ/R) in homogeneous coordinates and (R2/δ)(α, β, γ)

in Euclidean coordinates. The condition that the plane be perpendicular

to the line in the Klein model is that the line contains the pole of the

plane. Hence we have α = (δ/R2)ta, β = (δ/R2)t, and γ = (−δ/R2)c.
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The condition that a = (a, a2,−ca2) belongs to the plane implies that

t = R2−c2a2

2a2 = c2a2

1−2a2 (by (7) and (18), so that the pole of the plane, in

homogeneous coordinates equals (a(R2 − c2a2), (R2 − c2a2),−2ca2, 2a2R).

The equation of the plane is

(19) ax + y − 1 − 2a2

a2c
z = 1

We also recall here that g = (ta, t,−c) with

(20) t =
(R2 − a2)2a2

(a2 + 1)(R2 − c2a2)
=

3a2 − 1

a2(a2 + 1)

We define, once again, homogeneous vectors −→u , −→v , −→w for the poles of

these three planes.

Pole ef -origin

≡ −→u = (−ca(a2 + 1), 0,−(3a2 − 1), 0).

Pole efa

≡ −→v = (Rca(1 + a2), Rc(1 + a2), R(3a2 − 1), ca2(3 − a2)).

Pole of the perpendicular plane

≡ −→w = ((R2 − c2a2)a, R2 − c2a2,−2ca2, 2a2R).

The conditions we must check are that 〈w, w〉〈u, v〉2 − 〈u, u〉〈v, w〉2 = 0

for the choices of c and R that we have made in (7) and (17), and that

〈v, w〉 � 0.

Again we compute

〈u, u〉 = c2a2(a2 + 1)2 + (3a2 − 1)2;

〈u, v〉 = −Rc2a2(a2 + 1)2 − R(3a2 − 1)2;

〈w, w〉 = (R2 − c2a2)2a2 + (R2 − c2a2)2 + 4c2a4 − 4R2a4;

〈v, w〉 = R(R2 − c2a2)ca2(1 + a2) + R(R2 − c2a2)c(1 + a2)

+ R(3a2 − 1)(−2ca2) − 2a2Rca2(3 − a2).

And we see that 〈w, w〉〈u, v〉2 − 〈u, u〉〈v, w〉2 = 0 is in fact satisfied by a

tedious calculation.
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Also we compute that 〈v, w〉 = 2Rca2(1−a2)3/(1−2a2) which is positive

for a2 < 1/2.

3. The hyperbolic and Euclidean cases; the interval

1/3 � a2 � 1/2

In the previous section we gave a construction of a certain polytope,

and, hopefully, cone manifold, which depended on parameters a, c, and R.

The construction only made sense for 0 < a2 < 5 − 2
√

5 = .5278 · · · . For

values of a satisfying this condition we found that

(7) c =
√

a4 − 10a2 + 5/(1 + a2)

(18) R2 = a2(a4 − 10a2 + 5)/((1 + a2)2(1 − 2a2))

Since R2 < 0 when a2 > 1/2, we wish to restrict our interest to the case

0 < a2 � 1/2 for the moment.

The value of R was determined by the first condition on dihedral angles;

ea + ef/2 = π (10). Then it turned out that the second condition on

dihedral angles af + aâ/2 = π was also satisfied. However (See figure 10)

we are implicitly assuming that, for this value of R, the half-space that

contains the origin and whose planar boundary contains the point â and

is perpendicular to the line ĝh intersects the half-space that contains the

origin and whose planar boundary contains the point f and is perpendicular

to the line ĝh in a wedge that has nontrivial intersection with the line ĝh.

We also are implicitly assuming that the sphere of radius R contains the

polytope we have defined. We now investigate these assumptions.

The line ĝh, which is the line [(a,−1, c), (−a, 1, c)] has the parameteri-

zation (0, 0, c) + t(−a, 1, 0) = (−at, t, c). Points on this line with t < 0 lie

on the same side of its intersection with the z-axis as does (a,−1, c).

Comparing with (20) we see that ĝ is the point on the line ĝh = (−at, t, c)

corresponding to a value of t equal to:

(21) t =
−2a2(R2 − c2)

(1 + a2)(R2 − c2a2)
=

(1 − 3a2)

a2(1 + a2)
.

We see that t is negative if and only if a2 > 1/3.
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Since the implicit assumption about the half-spaces and the line ĝh is

precisely equivalent to the condition t < 0 we shall make the assumption

that 1/3 � a2 for the rest of this section.

Next we verify that for 1/3 < a2 < 1/2, the sphere of radius R contains

the polytope. For this, it suffices to show that it contains the vertices of the

polytope. The vertices a, e, c, f , â, ĉ, f̂ , ê all have the same square distance

from the origin which equals a2(1 + a2 + a2c2) (from the coordinates of â).

The points g, ĝ, h, ĥ also all have the same square distance from the

origin. The coordinates of ĝ equal (−at, t, c) for the value of t equal (1 −
3a2)/a2(1 + a2). Hence the square of the distance of ĝ from the origin is

(a8 − a6 + 8a4 − 5a2 + 1)/a4(1 + a2)2. Doing some algebraic computation

we compute that distance square of ĝ from the origin less distance square

of â from the origin equals:

(22)
(
1 − 2a2

) (
1 − a2

)4
/a4

(
1 + a2

)
.

This quantity is positive for a2 < 1/2. Hence we need only compare R2

with the square distance of ĝ from the origin.

Again, computing R2 minus the square of the distance of ĝ from the

origin we find that this equals

(23)

(
3a2 − 1

) (
a2 − 1

)4

(1 + a2)2 a4 (1 − 2a2)
.

Since this last quantity is positive for a2 in the interval (1/3, 1/2) the

last obstacle has been surmounted and we have succeeded in defining a one

parameter family of cone manifolds; the parameter is a, with 1/3 < a2 <

1/2.

It is of interest to compute the cone angle. This equals twice the angle,

call it �, between the planes ĝh origin and ĝha. The formulas for these

planes are respectively x + ay = 0 and cx + acy + az = ac.

Let u = (1, a, 0, 0) and v = (Rc, Rac, Ra, ac) be the poles of these planes.

The angle �, necessarily acute, is determined by the formula cos2� =

〈u, v〉/〈u, u〉〈v, v〉. Computing this last expression and using the values we

have obtained for R2 and c2 and the formula for the cosine of a double

angle, we obtain:

(24) Cone angle = arc cos
3 − 6a2 − a4

2(a2 − 1)2
.
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In the interval 1/3 � a2 � 1/2, we see that R is a monotone increasing

function, (Consider R as a function of a and compute the sign of the first

derivative.) that R = 1 at a2 = 1
3 and that R = ∞ at a2 = 1

2 .

Also we see that the cone angle increases monotonely from zero at a2 =

1/3 to 2π/3 at a2 = 1/2.

Since R is a monotone increasing function of a so that a is also a mono-

tone increasing function of R, 1 � R � ∞, we could as well use R as the

parameter. In the Klein model the curvature turns out to be simply the

negative reciprocal of R2 so that we have defined a 1-parameter family of

cone manifolds whose curvature increases from −1 (at a2 = 1/3) to 0 at

a2 = 1/2.

The case a2 = 1/2 is the Euclidean case and the polytope corresponding

to a2 = 1/2 is isometric to the polytope defined in section one, except for

a change of scale.

The case a2 = 1/3 corresponds to the hyperbolic case with knot “at

infinity”. We shall study this case in more detail. The parameters are

a = 1/
√

3 and, solving (7) and (18) for c and R, c = 1 and R = 1. The

pentagon aâf̂ ĥg has collapsed to a quadrilateral aâfg, (ĥ = g), with

the vertex g at infinity. The coordinates are a =
(
1/
√

3, 1/3,−1/3
)
, â =(

1/
√

3,−1/3, 1/3
)
, f = (0, 2/3, 1/3), h = ĝ = (0, 0, 1). The rest of the

vertices of the polyhedron are obtained by rotating these coordinates about

the x, y, and z axes by 180 degrees. The polyhedron is pictured in figure

12. There are four quadrilateral faces and eight triangular faces.

In Thurston’s original construction (See [T]) the complement of the fig-

ure eight knot was constructed using two solid tetrahedra with pairs of

faces identified. These tetrahedra were Euclidean equilateral tetrahedra

with vertices in the unit sphere.

Their dihedral angles were 60◦ when considered as hyperbolic tetrahedra

in the Klein model with the unit Euclidean sphere being the sphere at infin-

ity. We see no apparent connection between our polytope and Thurston’s

two tetrahedra, but we feel that there must be some way of chopping the

polyhedron of figure 12 up and reglueing to get two tetrahedra with vertices

at infinity. For the convenience of the reader who wishes to attempt this we

have labelled the edges of the polyhedron in figure 12b with the cosines of

the dihedral angles (in hyperbolic space), and with the Euclidean lengths

in figure 12a.
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Figure 12

We sumarize the above in the final proposition of this section

Proposition 3.1. For 1/3 � a2 � 1/2 the topological cone-manifold

determined by a2 is S3. The singular set is the figure eight knot. The

angle increases from 0 (a2 = 1/3) to 2π/3 (a2 = 1/2), while the curvature

(constant) increases from −1 to 0. Therefore, the geometry for a2 = 1/2 is

Euclidean. For a2 = 1/3 we have the complete hyperbolic structure of finite

volumen in the complement of the figure eight knot.

4. Spontaneous surgery, the case 0 < a2 < 1
3

We saw in section four that when a2 decreased to 1
3 the points ĝ and
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h coalesced to a single point, that R decreased to one so that this point

was on the sphere at infinity and that the pentagonal faces of the polytope

became quadrilaterals (See figure 12). In this section we shall investigate

what happens when a2 decreases beyond 1
3 .

Recall that when a2 > 1
3 , the line ĝh has parametric equation (−at, t, c);

−∞ < t < ∞. This line is the intersection of two planes, the planes that

contain the pentagons when a2 > 1
3 . (See figures 10 and 11). These are

the planes ĝha and ĝhĉ and they have equations cx + acy + az = ac and

−cx − acy + az = ac respectively. (They contain the points (a,−1, c),

(−a, 1, c) and (a, 1,−c) [(−a,−1,−c) resp.]). We shall refer to these planes

in this section as the “pentagonal planes” even though they don’t contain

any pentagons when a2 < 1
3 .

Another plane that was important in defining the polytope was the plane

that contained the point â = (a,−a2, ca2) and was perpendicular to the line

ĝh in the Klein model. (Again see figures 10 and 11). Comparing with (19),

it turns out that the equation of this plane is:

(25) −ax + y +
1 − 2a2

a2c
z = 1

In this section we shall refer to this plane and its image under 180◦

rotation in the z–axis as the “perpendicular planes” although they aren’t

perpendicular to each other. The other perpendicular plane has equation

ax − y + [(1 − 2a2)/a2c]z = 1.

The two perpendicular planes intersect in a line which we call the “sin-

gular line”. The singular line has parametric equation

(26)

(
t, at,

a2c

1 − 2a2

)
;−∞ < t < ∞

When 1
3 � a2 � 1

2 each face of the polytope determines a plane and each

plane determines a half space, the one containing the origin. The polytope

itself is simply the intersection of these half spaces.

We shall use the same planes, and the same half spaces to define the

polytope when 0 < a2 < 1
3 although it is not obvious that the polytope lies

inside the sphere at infinity. We now investigate this.

When 1
3 < a2 < 1

2 the line ĝh = (−at, t, c) lies below the singular line(
t, at, a2c

1−2a2

)
so that the singular line lies outside the polytope and has no
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interest for us. However when 0 < a2 < 1
3 the singular line lies below the

line ĝh and contains an edge of the polytope. The line ĝh now lies outside

the polytope and the points ĝ, h, g and ĥ are no longer vertices of the

polytope.

Four new vertices are created by the intersection of the singular line

with the two pentagonal planes and image of these two vertices under 180◦

rotation about the x axis. We call these new vertices p, q, p̂ and q̂. We

compute the coordinates of p from the equations of the singular line and

one of the pentagonal planes.

p =

(
t0, at0,

a2c

1 − 2a2

)

t0 =
a
(
1 − 3a2

)
(1 + a2) (1 − 2a2)

(27)

The “new” polytope, 0 < a2 < 1
3 , is invariant under 180◦ rotations

about the x, y, and z axes as was the “old” polytope, 1
3 � a2 � 1

2 . In figure

13 we have drawn the intersection of the half spaces defined by the two

pentagonal planes and the two perpendicular planes for a2 equal to 1
3 −ε, 1

3 ,

and 1
3 + ε, from the point of view of an observer on the positive z–axis. The

“new” polytope (figure 16) has triangular faces afe, âf̂ ê, cfe, and ĉf̂ ê that

correspond exactly to the same triangular of the “old” polytope. The “old”

triangular faces aeg, cfh, â ê ĝ, and ĉf̂ ĥ correspond to new quadrilateral

faces aep̂ q̂, cfpq, â êpq, ĉf̂ p̂ q̂ respectively and the old pentagonal faces

aâf ĝh, êĉcĝh, aâf̂gĥ, eĉcgĥ correspond to the new quadrilateral faces aâfp,

êĉcq, aâf̂ p̂, cĉeq̂ respectively.

a  =1/32a  =1/3+2 ε a  =1/3-2 ε

h

q

p
g=h^

ĝ

Figure 13

Soon we will verify that the “new” polytope lies inside the sphere at

infinity when 0 < a2 < 1
3 . Assume for the moment we have already done

this.
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We identify faces in the “new” polytope exactly as we did in the old

one.(See figure 16.) The identifications are still isometries because the new

polytope retains the same symmetry as the old one.

We assert that we thus obtain a one parameter family of cone manifolds

for 0 < a2 < 1
3 . The vertices a, e, c, f , â, ê, ĉ, f̂ are identified, exactly as in

the old polytope so the “neighborhood is a cone on a sphere” condition is

satisfied for them. Also, except for ĝh and gĥ, which have disappeared, all

the old edges correspond exactly to new edges and the “sum of the dihedral

angles 360◦” condition is satisfied for these new edges exactly as it was

satisfied for the corresponding old edges.

a  =1/3+2 ε

ĝ

g

ĥ

h

P Q

A

B

P Q

A

B

B B

P

P
AA

Q

Q
a  =1/3-2 ε

q

p̂p

q̂

Figure 14

To understand what happens for the new vertices p,q,p̂,q̂ and new edges

pq and p̂ q̂ refer to figure 14 which shows neighborhoods of ĝh and gĥ for

a2 = 1
3 +ε and the corresponding neighborhoods of pq and p̂ q̂ for a2 = 1

3−ε.

Faces of the new and old polytopes that are identified are labelled by the

same letter A, B, P , or Q.

Gluing the P ’s together first we see that pq has a neighborhood that
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looks like S1× two dimensional wedge and similarly p̂ q̂ has such a neigh-

borhood. Now gluing the two S1× two dimensional wedges together along

A and B shows that pq equals q̂ p̂ and that pq has a topological solid torus

neighborhood. Also we see that the sum of the dihedral angles about pq

equals twice the dihedral angle between A and B which is less than 360◦.
Hence pq gives rise to the new singular set and the new cone angle is twice

the dihedral angle between the “perpendicular” planes defined earlier.

To see that the polytope lies inside the sphere at infinity we simply

compute the square of the Euclidean distance of each vertex from the origin

and compare it with R2. The vertices a, e, c, f , â, ê, ĉ, f̂ all have the same

distance from the origin as a = (a, a2,−ca2) which has square distance

a2(1 + a2 + c2a2). The new vertices p, q, p̂, q̂ all have the same distance

from the origin as p whose coordinates are given by (27). Using formulas

(7), (18), and (27) we can compute all relevant square distances from the

origin which we list below

R2 =
a2

(
a4 − 10a2 + 5

)
(a2 + 1)2 (1 − 2a2)

square distance of a =
a2

(
1 + 8a2 − 7a4 + 2a6

)
(1 + a2)2

square distance of p =
a2

(
1 − 7a4 + 10a6

)
(1 + a2)2 (1 − 2a2)2

(28)

It is now a routine, if tedious computation to verify that a and p and

therefore all the vertices of the polyhedron lie inside the sphere of radius R.

Next we turn to the problem of determining the topological type of the

cone manifold when 0 < a2 < 1
3 .

Stare awhile at figure 10. Consider the union of the two top pentagons

ĝhfaâ and gĥf̂ âa. It is a “topological” octogon with boundary hfagĥf̂ âĝ.

When identifications are made
(
for 1

3 < a2 < 1
2

)
to obtain the cone manifold,

(See(5)), that is topologically S3, the following identifications are made in

the octogon; af = f̂ â, ag = fh, â ĝ = f̂ ĥ.

The octogon becomes an orientable surface (actually a torus with a hole)

with boundary the figure eight knot, gĥ∪ĝh. This surface is a Seifert surface

for the figure eight knot and (This is the point of the construction.) we can
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obtain a longitude for the figure eight knot by displacing the line segments

ĝh and gĥ within the top pentagons, ĝhfaâ and gĥf̂ âa.

Now consider figure 15 which shows neighborhoods of the singular set

in the topological cone manifolds M(a2 = 1
3 + ε) and M(a2 = 1

3 − ε).

The neighborhood N in both manifolds is the union of two prisms, where a

prism is topologically a triangle cross [0,1], but the prisms are glued together

differently in the two cases. Removing N from both manifolds we obtain

S3 minus a solid torus neighborhood of the figure eight knot in both cases.

And in both cases N is a solid torus.

It follows that M(a2 = 1
3 − ε) was obtained from M(a2 = 1

3 + ε) by a

Dehn surgery. (Removing a solid torus and sewing it in differently.)

We have shown, a couple of paragraphs ago, that the circle xy ∪ zw

bounds an orientable surface in S3− solid torus neighborhood of the figure

eight knot. In the manifold M(a2 = 1
3 −ε) this circle bounds the topological

disc that is the union of the two triangles xqy and zp̂w. (xq is identified

with zp̂, yq with wp̂ ). The next proposition now follows immediately.



Polyhedron for the figure eight knot 539

a

c

f

e

p

q

â
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ê

f̂

q̂

ĉ
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Proposition 4.1. For 0 < a2 < 1
3 the topological cone manifold de-

termined by a2 is obtained by doing (0, 1) surgery on the figure eight knot.

In the above proposition (0, 1) surgery means gluing a disc in the solid

torus to a longitude of the knot.

The figure eight knot is a fibered knot with fibre a torus with a hole (See

[BZ]). When (0, 1) surgery is done on the figure eight, discs are glued to the

holes in the tori and the fibration extends to the surgered manifold. The

surgered manifold thus becomes a fibre bundle over S1 with fibre a torus.

The cone angle at the singular curve pq = p̂ q̂ is the sum of the dihedral

angles at pq and p̂q̂ or, what is the same thing, twice the dihedral angle

θ at pq. The dihedral angle θ, the angle between the two “perpendicular”

planes, can be computed from equation (25) and Proposition A.1. The

poles of the two “perpendicular” planes are
(
−a, 1,

(
1 − 2a2

)
/(a2c), 1/R

)
and

(
a,−1,

(
1 − 2a2

)
/(a2c), 1/R

)
. Hence

(29) cos θ =
(1 + a2) − (1 − 2a2)2/(a4c2) − 1/R2

(1 + a2) + (1 − 2a2)2/(a4c2) + 1/R2
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Using (7) and (18) this simplifies to

(30) cos θ =
−1 + 4a2 + 4a4 − 16a6 + a8

(a2 − 1)4

As a2 decreases from 1
3 to 0 the angle θ increases from 0 to 180◦ and the

cone angle increases from 0 to 360◦. We summarize the above in the final

proposition of this section.

Proposition 4.2. For 0 < a2 < 1
3 the topological cone manifold de-

termined by a2 is a torus bundle over S1. As a2 decreases from 1
3 to zero

the cone angle at the singular curve increases from 0 to 360◦.

We shall study the case a2 = 0 in more detail. When a → 0 the radius

R → 0 and therefore we have to change coordinates to see the limiting cone-

manifold. If we put u = x
R2 , v = y

R2 and w = z
R2 , the sphere x2+y2+z2 = R2

goes to u2 + v2 + w2 = 1
R2 so that when a → 0, the sphere radius tends to

infinity, and in the limit, the sphere is just the plane at infinity. However the

limiting polyhedron degenerates into a segment, which can be interpreted

as the developping map of the circle S1, i.e. the base of the torus bundle.

Therefore we have to proceed with more care. Putting

u =
x

R
, v =

y

R2
, w =

z

R2

the sphere x2 + y2 + z2 = R2 goes to u2 + R2(v2 + w2) = 1 which is an

ellipsoid cutting u = 0 in the circle v2 + w2 = 1
R2 . In this way, when

R → 0, the ellipsoid degenerates into the pair of planes u2 = 1 and the

limiting polyhedron is shown in Figure 17 together with the identifications

and coordinates. The intersection of this polyhedron with u = constant is

an hexagon with opposite parallel sides identified, i.e. a torus. It is easy to

obtain the monodromy of the torus bundle which is

(
2 1

1 1

)
. This manifold

has a Sol geometry (see [Sc]), but this geometry is not the limiting geometry

of our polyhedron. In fact it can be checked that the two homographies

fixing u2 = 1 and identifying êâf̂ with efa, and ĉêf̂ with ecf , resp. do not

commute.



Polyhedron for the figure eight knot 541

12

2

1

f

p

q a

e

c
â
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5. The spherical case; 1
2 � a2 � 5 − 2

√
5 = .527...

First of all, we observe that the polytope, as defined in Section 2, is

defined for a2 in this range. The main tetrahedron is defined by its corner

(a, b, c), where a ≈ 1√
2

varies very little, b is a constant equal to one, and c,

given by (7), decreases from 1
3 to 0 as a2 increases from 1

2 to 5 − 2
√

5. To

get an idea of what the polytope looks like for a2 in this range the reader

should look at figures 9, 10, and 11 and think of the scale on the z–axis as

increasing without bound.

The problem is that R2, as given by (18) is negative for a2 in this range.

In fact R2 increases from −∞ to 0 as a2 increases from 1
2 to 5 − 2

√
5.

The key idea is to consider the polytope as lying in the Klein model for

a sphere of radius R. We redefine the bilinear form b ((−→v1 , t1) , (
−→v2 , t2)) =

−→v1 · −→v2 − t1t2 by defining

(31)
b̂ ((−→v1 , t1) , (

−→v2 , t2)) = −→v1 · −→v2 + t1t2

q̂ ((−→v , t)) = b̂ ((−→v , t) , (−→v , t)) .

Of course, b̂ and q̂ are just the usual scalar product and square norm on

R4.
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Since H3
R =

{
(−→v , t) | q (−→v , t) = −R2

}
, define S3

R ={
(−→v , t) | q̂ (−→v , t) = R2

}
and S3

R is just the sphere of radius R.

The “Klein model” K for the sphere of radius R is the hyperplane

K = {(−→v , t) | t = R}. Unlike in the hyperbolic case, we don’t need to

be concerned with whether the polytope lies inside the sphere of radius R

in K as projection from the origin (which is not conformal) defines a 1− 1

correspondence between K and the upper hemisphere of S3
R. The metric on

K is obtained by pulling back the metric on S3
R. As in the hyperbolic case

reflections in planes through the origin and rotation about axes through the

origin are both Euclidean and spherical isometries.

Now we shall review the steps in the definition of the polytope and see

how the spherical case differs from the hyperbolic. The reader should refer

to figures 9, 10, and 11 and to Section 2.

The definition of the “box” with vertices {(±a,±1,±c)} is exactly the

same. The definition of the points a, c, e, f , â, ĉ, ê, f̂ is exactly the same

and the condition that they all lie the same Euclidean distance from the

origin is exactly the same. This means that c is determined once again by

(7) and so the box is well defined for a2 in the range 1
2 � a2 � 5 − 2

√
5 .

Now suppose R > 0. The points g, h, ĝ, ĥ are defined, as before, by

dropping four perpendicular planes to the lines [(a,−1, c), (−a, 1, c)] and

[(−a,−1,−c), (a, 1,−c)] through the points a, c, â, ĉ respectively. (Hope-

fully, the fact that we use a and c for both points and coordinates causes

no confusion). However, the notion of perpendicular is different in the

hyperbolic and spherical models.

The equations of planes aâ-origin, aâf and efa are exactly the same

(equations 13 and 14). If a plane in K has equation αx + βy + γz = δ, and

t = R then in homogeneous coordinates the equation is αx + βy + γz −
(δ/R)t = 0.

A line is perpendicular to this plane, in the spherical case, if and only if

the line goes through the pole, where the pole has homogeneous coordinates

(α, β, γ,−δ/R). In the hyperbolic case the pole would have had coordinates

(α, β, γ, δ/R).

The poles of the planes aâ origin, aâf , and efa are the same as in (14)
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except that the sign of the last coordinate is changed.

(32)

û = (0,−c,−1, 0)

v̂ = (Rc, Rac, Ra,−ac)

ŵ =
(
Rca

(
1 + a2

)
, Rc

(
1 + a2

)
, R

(
3a2 − 1

)
,−ca2

(
3 − a2

))
If a pair of planes with poles (−→p1 , t1) and (−→p2 , t2) in the spherical case

intersect with dihedral angle θ then θ is given by

(33) ± cos θ =
b̂ ((−→p1 , t1) , (−→p2 , t2))√

q (−→p1 , t1) q (−→p2 , t2)
.

The formulas that are the analogue of (16) are as follows:

(34)

b̂ (û, û) =
(
1 + c2

)
b̂ (û, v̂) = −Ra

(
1 + c2

)
b̂ (ŵ, ŵ) = R2c2

(
1 + a2

)3
+ R2

(
3a2 − 1

)2
+ c2a4

(
a2 − 3

)2

b̂ (v̂, ŵ) = 2R2ac2
(
1 + a2

)
+ R2a

(
3a2 − 1

)
− c2a3

(
a2 − 3

)
.

The analoge of (15) reduces to:

(35) b̂ (ŵ, ŵ)
[
b̂ (û, v̂)

]2
− b̂ (û, û)

[
b̂ (v̂, ŵ)

]2
= 0.

After plugging (34) into (35), using (7), and doing a lot of algebraic

manipulation the left hand side of (35) factors nicely and (35) becomes

(36)
a2c2

(
a2 − 3

) (
1 + c2

) (
a2 + R2

)
×
[
a2c2

(
3 − a2

)
+ R2

(
2a2 − 1

) (
a2 − 3

)]
= 0.

Again, only the last factor matters and we obtain

(37) R2 =
a2c2

2a2 − 1
=

a2
(
a4 − 10a2 + 5

)
(a2 + 1)2 (2a2 − 1)

.

We see that this is exactly the same as the R2 obtained in the hyperbolic

case except for a crucial change of sign when a2 > 1
2 .
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The face and edge identifications are made exactly as in (4) and (5) and

the identifications are made via isometries as in the hyperbolic case. We

obtain a cone manifold with singular set the figure eight knot.

We compute the cone angle in analogy with the hyperbolic case. The

cone angle equals twice the angle, call it θ, between the planes ĝh origin

and ĝhc. These planes have equations x + ay = 0 and cx + acy + az = ac

and poles û = (1, a, 0, 0) and v̂ = (Rc, Rac, Ra,−ac).

Then cos θ is given by b̂ (û, v̂) / [q̂ (û) q̂ (v̂)]
1
2 . We use this expression for

cos θ, (7), (37) and the formula for the cosine of a double angle to obtain

(38) Cone angle = arc cos
3 − 6a2 − a4

2(a2 − 1)2
.

This is exactly the same as (24), the formula for the cone angle in the

hyperbolic case.

The derivative of the function f(a) =
(
3 − 6a2 − a4

)
/2(a2 − 1)2 is neg-

ative for 0 < a < 1 so that the function is decreasing.

Summarizing:

Proposition 5.1. For 1
2 � a2 � 5−2

√
5 the topological cone-manifold

determined by a2 is S3. The singular set is the figure eight knot. The angle

increases from 2π/3 to π, while the curvature (constant) increases from 0

to 1.

The case a2 = 5 − 2
√

5 corresponds to the angle π, and we shall study

this case in more detail.

When a2 → 5−2
√

5 the polyhedron (which lives in t = R) collapses into

the plane z = 0. Therefore to visualize this limiting polyhedron we project

the polyhedron for the different values of a2 into the sphere S3
1 of radius

one:

x2 + y2 + z2 + t2 = 1

Then, when a2 → 5−2
√

5, the vertices of the polyhedron all tend to points

located in the great circle C = {z = 0 , t = 0} of S3
1 . The polyhedron

degenerates into a lens bounded by two half-spheres at distance π
5 with

common boundary C. The lines gĥ, ĝh are great half-circles of these half-

spheres and the points g, h (resp. ĝ, ĥ) are at distance 2π
5 in C (see Figure

18). The π-rotations around gĥ and ĝh generate a dihedral action of D10 in
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S3
1 . The quotient of S3

1 under the action of the cyclic group C5 ≤ D10 is the

familiar lens space L(5, 3). The quotient of S3 under the action of D10 is

the orbifold 5/3 with angle π. This orbifold is the result of self-identifying

the boundary of the lens by reflexion in the edges gĥ and ĝh (compare [BS]

p.39).

X

Y

a

g

e f
h

ĉ

2   i/5=e π

â

ĝ
ê f̂

ĥ

c

π   i/5=e

3   i/10π=e

Figure 18

6. The volume of cone-manifolds

The key to computing the volume of the cone manifolds we have con-

structed is the Formula of Schläffli, (See A.2). In a one parameter family of

polytopes in a space of constant curvature K, KdV = (1/2)
∑

;idαi, where

V is volume, the sum is taken over all the edges, ;i is the length of the

ith edge and αi is its dihedral angle. The volume of a cone manifold is the

volume of the polyhedron from which it is constructed before identifications

are made.

If several edges of a polytope are identified and the resulting identi-

fied edge is not part of the singular set then the sum of the correspond-

ing dihedral angles is 2π and, since the differential of the constant 2π

equals zero, these edges make no contribution to dV . Hence, in our case,

KdV = (1/2)
∑

;idαi where the sum is taken over the edges that become

the singular set, only one or two edges. (This is a Theorem of Hogdson, see

[H]).

The formula of Schläffli applies to a one parameter family in a space

of constant curvature. We can arrange for constant curvature by simply
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changing scale. Consider the map −→v −→ λ−→v ; λ > 0, from the Klein

model of either hyperbolic or spherical space with sphere at infinity of

radius R to hyperbolic or spherical space with sphere of radius λR. This

map induces the identity map on real projective 3–space and so preserves

projective equations of planes, poles of planes and dihedral angles between

planes. It is thus a conformal map.

It is not, however, an isometry since it sends H3
R onto H3

λR (S3
R onto

S3
λR, resp.). Thus distances are multiplied by the factor λ, curvature by the

factor λ2 and volume by the factor λ3.

We have already derived expressions for the cone angles αi in all cases,

(24),(30),(38), and now we must derive expressions for the edge length of

the singular set to carry out the program.

For 1
3 < a2 < 1

2 , the length of the singular set is twice the length

of line segment ĝh of figure 10 or 11. Observe that line ĝh is perpen-

dicular to the planes â ê ĝ and cfh. In fact, for example, ĝ was defined

by the condition that it lie on the line [(a, 1,−c), (−a,−1,−c)] and be

contained in a plane containing â and perpendicular to this line. It fol-

lows that length ĝh is equal to the distance between planes â ê ĝ and cfh.

The poles for these planes, p1 and p2, were found in Section 2 (by for-

mula (19)). They turn out to be
(
a
(
R2 − c2a2

)
, R2 − c2a2,−2ca2, 2a2R

)
,(

−a
(
R2 − c2a2

)
,−

(
R2 − c2a2

)
,−2ca2, 2a2R

)
.

We can compute length ĝh from Proposition A.1. After applying (7)

and (18) to simplify the expression for δ (−→p1 ,−→p2 ) and applying Proposition

A.2 we find that

(39) cosh

(
length ĝh

R

)
=

−1 + 4a2 + 4a4 − 16a6 + a8

(a2 − 1)4
.

When 0 < a2 < 1
3 the singular set is determined by the intersection of

the two pairs of “perpendicular” planes. One pair intersects in the singular

line
(
t, at, a2c/

(
1 − 2a2

))
, −∞ < t < ∞ in the Klein model. The singular

line goes through the poles of the planes ĝha and ĝhc which are respectively
−→p1 = (c, ac, a, ac/R) and −→p2 = (−c,−ac, a, ac/R) when t = ±R2/(2a). (See

second paragraph of Section 4.)

It follows that the singular line is perpendicular to the planes ĝha and

ĝhc and that the singular line segment pq defined by the intersections with

the planes has length equal to the distance between the planes. There is
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another singular line p̂ q̂ but it gets identified with pq (See figures 14, 15

and the surrounding text.) so we don’t need to compute its length. After

the usual simplification using (7) and (18) we see from Proposition A.1 that

(40) cosh

(
length pq

R

)
=

3 − 6a2 − a4

2 (a2 − 1)2
.

When 1
2 < a2 < 5 − 2

√
5, we once again have that line segment ĝh is

perpendicular to planes â ê ĝ and cfh. The poles of these planes (computed

in Section 2), are

−→p1 =
(
a
(
R2 − c2a2

)
, R2 − c2a2,−2ca2,−2a2R

)
, and

−→p2 =
(
−a

(
R2 − c2a2

)
,−

(
R2 − c2a2

)
,−2ca2,−2a2R

)
.

(But note the change of sign of the fourth coordinate in the spherical case.)

It follows, once again that the length of ĝh equals the distance between the

planes, equals the spherical distance between their poles.

The poles of the planes, considered as lines in R
4 given by homogeneous

coordinates intersect the sphere of radius R in points and the spherical dis-

tance between the points can be found with ordinary trigonometry. Hence

if θ is the angle between the vectors −→p1 and −→p2 we have

(41) cos θ =
−
(
a2 + 1

) (
R2 + c2a2

)2
+ 4c2a4 + 4a4R2

(a2 + 1) (R2 + c2a2)2 + 4c2a4 + 4a4R2
.

Using (7), the spherical case R2 given by (37), and trigonometry we

obtain

(42) length ĝh = R arc cos
−1 + 4a2 + 4a4 − 16a6 + a8

(a2 − 1)4
.

We are about to summarize these results but first it is convenient to

define a pair of functions and state a proposition concerning them. Thus

define;

(43)

f(x) =
3 − 6x − x2

2(x − 1)2

g(x) =
−1 + 4x + 4x2 − 16x3 + x4

(x − 1)4
.
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Proposition 6.1. The function f(x) is strictly decreasing on the in-

terval [0, 5−2
√

5 ≈ .527]. It takes the following values: f(0) = 3
2 , f

(
1
3

)
= 1,

f
(

1
2

)
= −1

2 , f
(
5 − 2

√
5
)

= −1.

Also:

d

dx
(arc cos (f(x))) =

8x

(1 − x)
√

(x2 − 10x + 5) (3x − 1)(x + 1)
.

The function g(x) is strictly increasing on the interval[
0,
(
2
√

10 − 5
)

/3 ≈ .44
]

and strictly decreasing on the interval[(
2
√

10 − 5
)

/3, 5 − 2
√

5
]
. It takes the following values: g(0) = −1, g

(
1
3

)
=

1, g
(

1
2

)
= 1, g

(
5 − 2

√
5
)

= −1.

Also:

d

dx
(arc cos (g(x))) =

2
(
3x2 + 10x − 5

)
(1 − x)

√
(3x − 1)(2x − 1)(x + 1) (x2 − 10x + 5)

. �

For 0 < a2 < 5 − 2
√

5 we have defined a cone manifold. This cone

manifold was Euclidean for a2 = 1
2 , hyperbolic with curvature − 1

R2 for

0 < a2 < 1
2 and spherical with curvature 1

R2 for 1
2 < a2 < 5− 2

√
5 where R

is given by (18) or (37); in the Euclidean case R = ∞.

For any a2 in the interval let M
(
a2
)

be the image of the cone manifold we

have defined under the map −→v −→ 1
R
−→v on R

4. That is, we change scale so

that M
(
a2
)

has curvature −1 for 0 < a2 < 1
2 and +1 for 1

2 < a2 < 5−2
√

5.

Now let x = a2 and define V (x) to be the volume of the cone manifold

M(x), let ;(x) be the length of the singular set in M(x) and let α(x) be

the cone angle in M(x).

We summarize the computations we have made earlier in this section

in the following proposition. By arc cosh we mean the inverse hyperbolic

cosine function. Recall that cosh(t) = 1
2

(
et + e−t

)
so that arc cosh has

domain [1,∞] and range [0,∞].

Proposition 6.2.

For 0 < x <
1

3
; ;(x) = arc cosh (f(x))

α(x) = 2 arc cos (g(x))

dV (x) = − arc cosh (f(x)) d(arc cos (g(x)))
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For
1

3
< x <

1

2
;(x) = 2 arc cosh (g(x))

α(x) = arc cos (f(x))

dV (x) = − arc cosh (g(x)) d(arc cos (f(x)))

For
1

2
< x < 5 − 2

√
5 ;(x) = 2 arc cos (g(x))

α(x) = arc cos (f(x))

dV (x) = arc cos (g(x)) d(arc cos (f(x)))

The proof of Proposition 6.2 follows directly from the formula of Schläffli

and the computations we have made. �
Since the volume of M

(
a2 = 1

2

)
, the Euclidean case, is zero after nor-

malization (the map −→v −→ 1
R
−→v is the zero map and the polytope is sent

to a point.), the last two proposition give a formula for the volume.

Theorem 6.3. The volume V (x) of the normalized cone-manifold

M(x) is as follows:

1.
1

3
� x � 1

2

V (x) =

1
2∫

x

arc cosh

(
1 +

2(1 − 3x)(2x − 1)(x + 1)

(1 − x)4

)

8x dx

(1 − x)
√

(x2 − 10x + 5) (3x − 1)(x + 1)

2.
1

2
� x � 5 − 2

√
5

V (x) = +

x∫
1
2

arc cos

(
1 +

2(1 − 3x)(2x − 1)(x + 1)

(1 − x)4

)

8x dx

(1 − x)
√

(x2 − 10x + 5) (3x − 1)(x + 1)
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3. 0 < x � 1

3

V (x) = V

(
1

3

)
+

1
3∫

x

arc cosh

(
1 +

(1 − 3x)(1 + x)

2(1 − x)2

)

2
(
3x2 + 10x − 5

)
dx

(1 − x)
√

(3x − 1)(2x − 1)(x + 1) (x2 − 10x + 5)
�

In the normalized hyperbolic case, 1
3 � a2 < 1

2 , the cone angle increases

continuously from 0 to 2π
3 . For cone angles θ = 2π

n , the normalized to curva-

ture −1 cone manifolds that we constructed are orbifolds in the usual sense.

These orbifolds are arithmetic exactly for n = 4, 5, 6, 8, 12,∞. (See [HKM]

and [HLM3]; see also [V], [HLM1], [HLM2], [R] and [MR] for definitions and

results on arithmeticity.)

In this range the cone angle α(x) is determined by the formula

cos(α(x)) = f(x) =
(
3 − 6x − x2

)
/(2(x − 1)2). (Recall x = a2.) We can

easily solve for x in terms of cos α(x).

(44) x =

(
2
√

3 − 2 cos α(x) + 2 cos α(x) − 3
)

1 + 2 cos α(x)

We have computed the volumes for the values n = 4, 6, 8, 12,∞ (See

table II in Appendix B.)

We observe that V (∞) = 2.02988... is precisely double 1.01494... which

is the volume of the ideal tetrahedron with dihedral angles all sixty degrees

given in [M]. This squares with the observation made long ago by Thurston

in his “notes” ([T]) that the complement of the figure eight knot, with a

complete hyperbolic structure, could be obtained by gluing together two of

these ideal tetrahedra in a certain way.

Corollary 6.4.

(i) The volume of the ideal tetrahedron with dihedral angles of 60◦ is
1
2V (1

3).

(ii) V (tan2 π
5 ) = π2

5
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Proof. We only need to see (ii). For a2 = 5−2
√

2 = tan2 π
5 we obtain

the cone manifold with singular set the figure eight knot and with angle π.

The 2-fold branched covering of this orbifold is the lens space L(5, 2) whose

universal cover (of 5 sheets) is S3. The volume of S3 is 2π2. �

Remarks. 1. If we take our polyhedron for the angle 2π/n, n � 3

we can fit n of them cyclically around one of the long edges (hĝ or gĥ in

figure 10). This non convex polyhedron is a fundamental domain for the

n-fold cyclic covering of S3 branched over the figure eight knot, i.e. the

Fibonacci manifolds of [HKM]. (See [HLM3] and figure 17.) We remark

that our construction is totally different of the one made in [HKM]. The

volumes of these manifolds have been computated by [MV] for n � 50.

They coincide with our computations in Appendix B.

2. The manifold M obtained by expontaneous surgery in the figure

eight knot is a torus bundle over S1. Call Σ the singular curve (core of the

surgery). Then (M, 2π/n), n � 2 is a hyperbolic orbifold. The fundamental

domain appears in figure 16. The angle around pq (and around p̂q̂) is π/n.

The orbifold (M, 2π/n) admits manifold coverings by [Se]. This coverings

are examples of surface bundles over S1 which are hyperbolic manifolds

(Compare [J]). Since (M, 2π/n) is arithmetic precisely for n = 2, 3 (see

[HLM4]) this gives examples of arithmetic and non arithmetic hyperbolic

surface bundles. (Compare [BMR].)

Appendix A

Computations in the Klein model

The aim of this appendix is to recall formulae for distance and angles in

the Klein model of hyperbolic space. All this is well–known (See [T] and

[Vi]) but there are a couple of subtle points that we want to fix up here.

Typically one sees hyperbolic 3–space as the set of interior points of a

quadric of ellipsoid type in real projective 3–space RP 3. One defines the

group of motions as the group of collineations of RP 3 fixing the ellipsoid as

a set. Then a distance is defined in terms of cross–ratios. While all this is

very beautiful it is not practical for computational purposes.

We intend here to retain this model as a tool to visualize another more

practical model; the vector model of [Vi] or hyperboloid model of [T] which



552 Hugh Hilden, Maŕıa Teresa Lozano and José Maŕıa Montesinos-Amilibia

is very suitable for calculations and definitions.

The scalar product b (−→v ,−→v ′) = b ((x, y, z, t) , (x′, y′, z′, t′)) = xx′+yy′+
zz′ − tt′ turns R

4 into a pseudo-Riemannian manifold denoted by R
3,1.

The smooth submanifold H3
R =

{−→v ∈ R
4 |b (−→v ,−→v ) = −R2, t > 0

}
is then

a Riemannian submanifold of R
3,1. One now finds the group of isometries

of H3
R. It is induced by the group of automorphisms of R

4 fixing b. Then

one computes the curvature of H3
R which turns out to be constant of value

−1/R2. The Riemannian submanifold H3
R is sometimes called the hyper-

boloid model of hyperbolic 3–space of curvature −1/R2 and it is sometimes

called the sphere of imaginary radius iR to emphasize the analogy with

S3
R, the sphere with radius R and curvature 1/R2 which is obtained by

redefining b in the obvious way.

Before introducing the Klein model we establish some notation. For
−→v ∈ R

4, we denote by 〈−→v 〉 the set {λ−→v |λ ∈ R}. Then we denote the point

〈−→v 〉∩H3
R by v if b (−→v ,−→v ) < 0; we denote

{
w ∈ H3

R |b (−→v ,−→w ) = 0
}

by H−→v
and we denote

{
w ∈ H3

R|b (−→v ,−→w ) � 0
}

by H+−→v if b (−→v ,−→v ) > 0. Thus v is

the point of H3
R defined by a vector inside the light-cone L =

{−→v ∈ R3,1

|b (−→v ,−→v ) = 0}; H−→v is a plane of H3
R; and H+−→v is a half–space of H3

R.

The set of lines 〈−→v 〉 form RP 3, real projective space, and we can identify

H3
R with the set of points of RP 3 lying in the light cone L. This is sometimes

called the projective model of H3
R.

At this point we introduce the Klein model of H3
R. The points of the

Klein model, K3
R lie inside the sphere of radius R in R

3. The points outside

the sphere of radius R have meaning also. They are called ultrainfinite

points. R
3 is embedded in RP 3 by the map (x, y, z) −→ (x, y, z, R) −→ (x :

y : z : R) (the last are projective coordinates.). Thus points of K3
R are sent

to points inside the light-cone, and there is a natural 1− 1 correspondence

between the points of K3
R and the points of H3

R via the points 〈−→v 〉 of RP 3.

The Riemannian structure of H3
R is then pulled back to K3

R giving it the

structure of a Riemannian manifold of curvature −1/R2 (See figure A1).

To give the formulas for distances and angles in K3
R we first want to

understand the sets H−→v , H+−→v in K3
R. The set H−→v in K3

R is the polar plane

of a point −→v of R
3 at ultrainfinity, i.e. a point such that b (−→v ,−→v ) > 0

(See figure A2). Thus H+−→v is one of the half–spaces determined by H−→v
in K3

R, but there is no projective way to dictate which one. To overcome

this problem we can normalize the homogeneous coordinates of the image
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t

x,y,z

t=R

K3
R

H
3
R

Figure A.1

of −→v = (x : y : z : t) by requiring t � 0 and we denote the normalized

homogeneous coordinates of −→v by −→v = [x, y, z, t], then, if −→v is normalized

in this way, one can check that H+−→v is the half–space of K3
R which is away

from 〈−→v 〉. This rule does not work for −→v = [a, b, c, 0] because 〈−→v 〉 is at

infinity in R
3. In this case H−→v is the plane ax + by + cz = 0 in R

3 which

is Euclidean orthogonal to (a, b, c) and passes through (0, 0, 0). Then one

can check just using calculus that H+−→v is the half–space of R
3 which is away

from (a, b, c) (See figure A3).

<  >v

vH

vH+

Figure A.2

Given 〈−→v 〉, 〈−→w 〉 at ultrainfinity; i.e. b (−→v ,−→v ) > 0, b (−→w ,−→w ) > 0, we

can consider H+−→v ∩ H+−→w . If the line (〈−→v 〉, 〈−→w 〉) does not cut K3
R then its
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H[0,1,0,0]

y

x

z

H[0,1,0,0]
+

H[0,-1,0,0]
+ vH

<  >v

+

QR
2

Figure A.3. (a, b, c) = (0, 1, 0); v = [0, 1, 0, 0],−v = [0,−1, 0, 0].

polar line is H−→v ∩ H−→w , and we say that H+−→v ∩ H+−→w is a dihedron with base

H−→v ∩H−→w . To measure the angle
(
H+−→v ∩ H+−→w

)
of this dihedron, take a point

〈−→u 〉 ∈ H−→v ∩ H−→w at ultrainfinity. Then H−→u cut H−→v ∩ H−→w orthogonally

and H+−→v ∩H+−→w ∩H−→u is an ordinary angle in the hyperbolic plane H−→u . This

angle does not depend on the choice of −→u and is called the dihedral angle.

Similarly given 〈−→v 〉, 〈−→w 〉 at ultrainfinity, if the line (〈−→v 〉, 〈−→w 〉) cut K3
R

then its polar line H−→v ∩ H−→w is outside K3
R, and the distance d (H−→v , H−→w )

is measured along (〈−→v 〉, 〈−→w 〉) which is orthogonal to both H−→v and H−→w .

We can also define d (v, H−→w ) in this way.

To compute these distances and angles define the function

δ (−→v ,−→w ) =
b (−→v ,−→w )√

b (−→v ,−→v )
√

b (−→w ,−→w )

where
√

r = i
√
−r if r is negative, and

√
r is positive if r is positive. Then

we have ([T]):

Proposition A1. Let 〈−→v 〉, 〈−→w 〉 be points of RP 3 with normalized ho-

mogeneous coordinates. Let dR denote distance in K3
R. Then

i. If b (−→v ,−→v ) < 0, b (−→w ,−→w ) < 0, then

(A1) δ (−→v ,−→w ) = + cosh
dR (v, w)

R

ii. If b (−→v ,−→v ) < 0, b (−→w ,−→w ) > 0, then

(A2) δ (−→v ,−→w ) = εi sinh
dR (v, H−→w )

R
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and the sign ε is positive if and only if v ∈ H+−→w
iii. If b (−→v ,−→v ) > 0, b (−→w ,−→w ) > 0 and |δ (−→v ,−→w )| � 1, then

(A3) δ (−→v ,−→w ) = ε cosh
dR (H−→v , H−→w )

R

and ε is positive if and only if either H+−→v ⊂ H+−→w or H+−→w ⊂ H+−→v .

iv. If b (−→v ,−→v ) > 0, b (−→w ,−→w ) > 0 and |δ (−→v ,−→w ) | � 1, then

(A4) δ (−→v ,−→w ) = − cos
(
H+−→v ∩ H+−→w

)
.

Remarks.

(1) If δ (−→v ,−→w ) = ±1, H−→v ∩ H−→w is a point in Q2
R and we say that H−→v

and H−→w are parallel (angle and distance equal zero).

(2) If precisely one of 〈−→v 〉, 〈−→w 〉 is not normalized, the signs in the above

proposition change.

We now state the so–called formula of Schläffli (See [Vi], [C],[M2]).

Proposition A2. (the formula of Schläffli)

Let P be a one parameter family of convex polyhedra depending smoothly

on one or more parameters, in a space of constant curvature K. Let ;i,

i = 1, . . . , n be the length of the ith edge and let αi be the dihedral angle at

the ith edge. Let V (P ) be the volume of P .

Then the following equation between differential forms in the parameter

space holds:

KdV (P ) =
1

2

n∑
i=1

;idαi �

Appendix B

Volumes (tables and plots)

Let V (5/3, α) represent the volume of the cone-manifold (5/3, α) for

angles 0 ≤ α ≤ π. Let W (M, β) represent the volume of (M, β) , i.e. the

cone-manifold obtained by 0−surgery in the knot 5/3. It is a torus bundle
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over S1 with monodromy

(
2 1

1 1

)
. The singular set is a section of M

and β is the angle 0 ≤ β ≤ 2π. For α = β = 0, we have the complete

hyperbolic structure of finite volume in S3 − 5/3. For α = π we have the

spherical structure of 5/3 with angle π. For β = 2π the hyperbolic structure

degenerates. For α = 2π/3 the hyperbolic geometry of 5/3 degenerates to

euclidean and then turns to spherical.

Plot I plots the volume V (5/3, α) against the parameter α ranging be-

tween 0 and π. For the value α = 2π
3 the geometry is euclidean.

Plot II plots the volume W (M, β) against the parameter β ranging be-

tween 0 and 2π

I = volume of ideal tetrahedron = 1.01494...

0 x

1

V(5/3,   )

2π/3

2I π  /52

π
hyperbolic spheric

α

Plot I

The following tables of volumes and plots I and II were obtained using

the program MATHEMATICA ([W]).
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0 1
y

1

2I

W(M,   )

2π
hyperbolic

β

Plot II

Volumes of spherical cone-manifolds (5/3, α)

n V (5/3, (n−1)π
n ) n V (5/3, (n−1)π

n )
4 0.21487656 24 1.58185558
5 0.448216429 25 1.59680134
6 0.638624655 26 1.610652
7 0.790807083 27 1.6235234
8 0.913575334 28 1.63551563
9 1.01410666 29 1.6467156
10 1.09768274 30 1.65719918
11 1.16813441 31 1.66703286
12 1.22826229 32 1.67627515
13 1.28014365 33 1.68497777
14 1.32534416 34 1.69318658
15 1.3650626 35 1.70094241
16 1.40023052 36 1.70828169
17 1.43158178 37 1.71523706
18 1.45970176 38 1.72183785
19 1.48506278 39 1.72811048
20 1.50804994 40 1.73407879
21 1.5289802 41 1.73976439
22 1.54811678 42 1.74518688
23 1.56567998 43 1.75036411
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Volumes of hyperbolic cone-manifolds (5/3, α)

n V (5/3, 2π
n ) n V (5/3, 2π

n )
4 0.507470803 42 2.0105734
5 0.937206855 43 2.01145795
6 1.22128746 44 2.01228315
7 1.41175465 45 2.01305419
8 1.54386328 46 2.0137757
9 1.63860068 47 2.01445182
10 1.70857095 48 2.01508629
11 1.76158141 49 2.01568246
12 1.80263322 50 2.01624334
13 1.83503266 51 2.01677166
14 1.86102868 52 2.01726989
15 1.88219043 53 2.01774027
16 1.89963778 54 2.01818485
17 1.91418624 55 2.01860546
18 1.92644053 56 2.01900381
19 1.93685631 57 2.01938143
20 1.94578205 58 2.01973974
21 1.95348776 59 2.02008003
22 1.96018518 60 2.02040349
23 1.96604221 61 2.02071121
24 1.97119331 62 2.0210042
25 1.97574718 63 2.02128337
26 1.97979243 64 2.02154959
27 1.98340188 65 2.02180364
28 1.98663579 66 2.02204625
29 1.98954437 67 2.02227811
30 1.99216976 68 2.02249983
31 1.99454748 69 2.022712
32 1.99670767 70 2.02291515
33 1.99867603 71 2.0231098
34 2.00047458 72 2.02329641
35 2.00212226 73 2.02347541
36 2.00363548 74 2.02364722
37 2.00502844 75 2.02381221
38 2.00631355 76 2.02397074
39 2.00750163 77 2.02412315
40 2.00860222 78 2.02426974
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Volumes of hyperbolic cone-manifolds (M,β)

n W (M, 2π
n ) n W (M, 2π

n )

2 1.39340228 42 2.02826857

3 1.7302584 43 2.02834278

4 1.85746199 44 2.02841198

5 1.91829403 45 2.02847663

6 1.95190401 46 2.0285371

7 1.97237158 47 2.02859376

8 1.98573948 48 2.02864691

9 1.99494326 49 2.02869685

10 2.00154627 50 2.02874382

11 2.00644238 51 2.02878805

12 2.01017237 52 2.02882976

13 2.01307884 53 2.02886913

14 2.01538733 54 2.02890634

15 2.01725118 55 2.02894153

16 2.01877759 56 2.02897485

17 2.02004332 57 2.02900644

18 2.02110449 58 2.02903641

19 2.02200289 59 2.02906487

20 2.02277017 60 2.02909191

21 2.02343066 61 2.02911764

22 2.02400327 62 2.02914214

23 2.02450294 63 2.02916547

24 2.02494154 64 2.02918772

25 2.02532863 65 2.02920895

26 2.02567197 66 2.02922923

27 2.0259779 67 2.0292486

28 2.02625168 68 2.02926713

29 2.02649765 69 2.02928486

30 2.02671946 70 2.02930183

31 2.02692017 71 2.02931809

32 2.02710237 72 2.02933367

33 2.02726827 73 2.02934863

34 2.02741975 74 2.02936297

35 2.02755845 75 2.02937675

36 2.02768576 76 2.02938999

37 2.02780288 77 2.02940272

38 2.02791089 78 2.02941496

39 2.02801071 79 2.02942674

40 2.02810313 80 2.02943808

41 2.02818888 81 2.029449
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