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Some foliations on ruled surfaces I1

By Akihiro SAEKI

Abstract. In the previous paper [Sa5] entitled ”Some foliations
on ruled surfaces”, we classified ruled surfaces with foliations on them
leaving a curve invariant and having no singularities on the curve. There
are three types of them. Some examples of such foliations were given.

In this paper, one of these types of such ruled surfaces and foliations
on them are observed. It is proved that the examples given in [Sab] are
essential in the case that the genus of the base space is one.

§0. Introduction

In the previous papers [Sa4| and [Sab], we classified ruled surfaces some
foliations on which leave a curve invariant and have no singularities on it.
(See Theorem 1.0 below.) We also gave examples of each case. In this
paper, we assert that such a foliation on a decomposable ruled surface over
a curve of genus one is non-singular and, if it is not the ruling, one of the
examples in [Sa5]. We also investigate the case of genus ¢ > 1. (Main
Theorem 2.1). We will use the notations in [Sa5]. The author would like to
thank Prof. K. Iwasaki and the referee for their helpful advice.

§1. Classification theorem and some properties of ruled surfaces

THEOREM 1.0. (Classification theorem —— [Sa5] Main Theorem 2.1.)
Let C be a closed Riemann surface of genus g, X = P(§) - C a
ruled surface over C with the invariant e, where £ is a normalized locally
free Oc-module, and Cy a normalized section of X —— C. Assume that
a foliation F C Ox on X leaves an irreducible curve C1 ~pum aCy + bf

1991 Mathematics Subject Classification. 58A30.

291



292 Akihiro SAEKI

with a > 0 on X invariant and has no singularities on Cy. Then one of the
following is the case.

I-i) e=0, & is decomposable and b=0.
I-ii) e=0, & isindecomposable and b=0.

II) e <0, a>2 and b= iea € Z. (In this case, & is indecom-
posable.)

Here "~,.m 7 represents numerical equivalence of divisors on X.
In this paper, we are concerned with the case I-i). The following holds:

ProprosSITION 1.1.
For a ruled surface X —— C, there exists a normalized decomposable
locally free Oc-module € of rank two such that X = P(E) if and only if

X — C has two sections with no intersection.

In what follows, we always assume that X = P(£) — C is a ruled
surface over a closed Riemann surface C' of genus g > 1 with

(1.2) E=0cL satisfying degL = 0.
We put another assumption:
(1.3) LE" 2% Oc for any 0#neZ.

Let L be the line bundle over C' whose dual bundle is the bundle the sheaf
of germs of holomorphic sections of which is isomorphic to £. We denote
by 1¢ the trivial line bundle over C' and define a holomorphic vector bundle
E IZ C of rank two by E = 1¢@L so that £ = O¢(E)*, the dual of O¢(E).
Since ¢(L) = 0, L has a flat representative. Take a flat representative
cocycle (Log) € Z1({U,}, C*) with respect to an open coordinate covering
{(Uq; za)} of C. Then the vector bundle E is locally trivialized with respect
to this covering with fibre coordinates (\a, o) on 7 (Uy) ~ U, x C2, which
satisfy the transition relations

Aa = LagAg and fa = 18,
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and X = P(£) is obtained by patching U, x P!’s together identifying

Uy x P! Uz x P!
: (Ua N Us) x P! (Ua N Us) x P!
(%Ca) = (ZvLaBCﬁ)’

Ao
Under the local trivialization (1.4), local equations (, = 0 and ¢, = oo
on U, x P! define global curves with the properties of a normalized section.

We denote them by Cy and C, respectively. Thus

where (, = is the inhomogeneous coordinate on U, x P!,

Co ~num Coo~ and  Cy® = Cpp- Cog = Cos” = 0.
The following lemma is important.

LEMMA 1.5.

Assume that € = Oc @ L with degL = 0 and that no 0 # n € Z satisfies
LO ~ O¢. Let C1 ~pym aCy be an irreducible curve in X = P(E). Then
C s either Cy or Cw.

PrOOF.

It follows from C7 ~,um aCy that C7 - Cx = 0. Suppose that C7 were
neither Cy nor Cy. A local equation ¢, of C; on U, x P! of the local
trivialization (1.4) would be written as follows:

a
()001 — ij’acaj Wlth pj’a S OC(Ua)
=0

Noting C - Cp = 0, ¢4 could be taken so that pao = 1 € Oc(U,). Con-
sidering the transition relation (o, = Lng(g, these ¢,’s would patch to-
gether and p;,’s would define global holomorphic sections p; € I'(C, L®7)
for j = 1,..,a. Since degL® = 0 and L% % O¢, p; = 0, which is a
contradiction. [

Tensoring an invertible Oc-module to £ if necessary, we may assume
C1 = Ch.
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The differential map of the projection X —— C defines the following
exact sequence of holomorphic vector bundles over X.

(1.6) 0—Tf— TXZErTC — 0

Here T'f is the kernel of T X Dr s C, which consists of vector fields
tangent to fibres of X — C.

Let ©x be the sheaf of germs of holomorphic vector fields over X. Since
g%i = 0, local vector fields % € I'(m~1(Uy,),Ox) define a well-defined
invertible subsheaf of © x, which is mapped isomorphically onto Ox (7*T'C)

by TX 2L TC.

ProrosiTION 1.7.
Let X = P(§) = C be a ruled surface with the invariant e = 0 and £
decomposable. Then the exact sequence (1.6) splits.

In what follows, we identify Ox (7*T'C') with the invertible subsheaf of
O x described above. Thus we have

(1.8) TX =Tfeor'TC
Take a local trivialization of X — C asin (1.4) and set p, = ke = Ca .
Note that 5 5
2 -1
-~ — Sa 75— S I‘ 7-(- Ua 7@ .
50, o ag, <1 (V) Ox)

Holomorphic vector fields Ca% = —paa’% € (7~ Y(Uy),©x) are patched
together into a global holomorphic vector field

(1.9) nel(X,0x(Tf)) cI'(X,0x) satisfying
| o2
77 TI'_l(Ua) - Q8Ca7
which is logarithmic with respect to Cyp = C (and C).

Under the identification (1.8), vector fields belonging to Ox (7*T'C') are
also logarithmic with respect to Cj.
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LEmMA 1.10.
Let X, Cy and n be as above. Then

Derx (log Co) |r-1(v,) = Ox (7" TC) |17,

0
)

@ (OXW |7r*1(Ua) + Oﬂfl(Ua)
where Derx (log Cy) is the sheaf of germs of logarithmic vector fields with
respect to Cy.

Generally, a non-zero global meromorphic vector field on a complex man-
ifold M determines a foliation of dimension one on M. Note that a foliation
F C Oy of dimension one on M defines, by taking local generators of F, a
morphism 7 —— T'M of holomorphic vector bundles over M of a holomor-
phic line bundle 7 into the holomorphic tangent bundle T'M, whose zero
loci {¢ = 0} are of codimension > 2. Conversely, a morphism 7 —— TM
with zero loci of codimension > 2 defines a foliation of dimension one on
M. (cf. [GM2] and [Sal].)

Since every holomorphic line bundle over a ruled surface X is mero-
morphically trivial, 7 —— T'X defines a global meromorphic vector field
on X upto multiplication of global meromorphic functions. Thus we may
consider a foliation on a ruled surface as a global meromorphic vector field
upto multiplication of global meromorphic functions.

§2. Main theorem

There are meromorphic sections € I'(X, Mx(7*T'C)) with no zero,
which we consider as meromorphic vector fields € I'(X, Mx(7*TC)) C
(X, Mx(TX)). Explicitly as follows: Take a local trivialization of X ——
C and a coordinate covering {(Uy;2q)} of C as (1.4). There is a global
holomorphic 1-form 0 # u = (uadzy) € T'(C,Oc(T*C)). It defines a global
1-form € I'(X, Ox (T*X)). Then, since g% =0,

(L2 e p(x, My (7 TCY)

Uy 024,
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is a well-defined global meromorphic vector field on X with no zero, which
we will denote by W*(%) Note that every line bundle over X is meromor-

phically trivial. Thus we have, fixing a 0 # u € I'(C, Oc(T*C)) arbitrarily,
1
(2.0) Mxﬁ*(a)ZMx(ﬂ'*TC)CMx(TX).

If C is of genus one, then 7*T'C' is trivial and we have a global holomorphic
vector field v € I'(X, Ox (7*T'C)) C I'(X, ©x). Namely, in the construction
(1.4), we can take a coordinate covering {(U,;zo)} of C so that dz, =
dzg. Let u € T'(C,0c(T*C)) be the holomorphic 1-form on C defined
by u|y, = dzg. Then I'(C,0c(T*C)) = Cu ~ C. Vector fields % €
I'(7=Y(Uy), Ox (7*TC)) C T(7~1(U,), ©x) patch together to define a well-
defined global holomorphic vector field v = 7*(2) € T'(X, Ox(7*TC)) C
I'(X,0x). Note that Ox(7*T'C) = Oxv and that, for 0 # w = ku €
[(C,0c(T*C)) with 0 # k € C,

71'*(%) _ %v € T(X, Ox (7*TC)) = Cv C T(X, ). (2.0.1)

MAIN THEOREM 2.1.
- The case g = 1.

Let X = P(§) = C be a ruled surface over an elliptic curve C with
E = O¢ @ L satisfying degL = 0 and LZ % O¢ for any 0 # n € Z.
Let v € T'(X,0x) be as above and n € I'(X,Ox) as (1.9). Assume that a
foliation F C ©x leaves an irreducible curve Cy on X invariant and that F
has no singularities on C1. Then F is a non-singular foliation. Moreover,
if F is not the ruling, then F is generated by a global holomorphic vector
field

v+tneI'(X,0x) with teC.

Let Fol be the set of foliations with the properties described above. There is
a one-to-one correspondence from T'(C, Oc(T*C)) U {oc} =~ P onto Fol.
Namely,

P! ~ T(C,0c(T*C))u {0} — Fol
ku = Ox(v+n) (0#k#00)
0 —  Ox(m*TC)
o0 —  the ruling.



Some foliations on ruled surfaces II 297

- The case g > 1.

Let X = P(E) == C be a ruled surface over a closed Riemann surface
C of genus g > 1 with &€ = O¢ @ L satisfying degL = 0 and L™ # O¢
for any 0 #n € Z. Letn € I'(X,0Ox) be as (1.9). Assume that a foliation
F C Ox leaves an irreducible curve C7 on X invariant and that F has no
singularities on Cy. Then F is defined by a global meromorphic vector field

1
0= hw*(a) +nel(X, Mx(TX)),
where h € Mx(X) is a global meromorphic function # 0 on X defined
as follows: Take a holomorphic line bundle ¢ € HY(C, Of), a holomorphic

section

s € T(C,0c(8)) C T(X,0x(7%¢))

satisfying (u) — (s) > 0 on C, a non-negative integer m € Z and m + 1
holomorphic sections

¢ € D(C,0c(¢ ® L¥9))) € T(X, Ox (7 (¢ @ L2DY))

not all of which are zero-sections. h is defined on 7=1(U,) ~ U, x P! of
the local trivialization (1.4),

b Sa(za)
1) = < =
ijo qg,a(za)Ca

Here 34(20) and qjo(2a) € Oc(Uy) C Ox (771 (Uy,)) represnt the sections
s € T(X,0x(1*¢)) and ¢ € T(X, Ox (7" (€@ L29)))) on 771 (U,,), respec-
tively.

PROOF OF MAIN THEOREM 2.1.

At first, we assume simply g > 1. Suppose that F is neither the ruling
nor Ox (7*T'C'). Then we may assume that F leaves Cp invariant and has
no singularities on Cy. It follows from Lemma 1.10 that F is determined
by a global meromorphic vector field n + hr* (L), where 0 # h € Mx(X).
Consider the divisors (h) = (h)4 — (h)— and D = (hn*()) = Dy — D_,
where (h)4 and D are the effective divisors defined by the zero loci of h
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and hr*(1) and (h)_ and D_ are the effective divisors defined by the pole
loci of h and hr*(1), respectively.

LEMMA 2.3.

0) The divisor (h)+ — D4 is effective and there is an effective divisor
0 on C such that

(h)+ — D+ = 7T*(5.

1) (u) — 6 is an effective divisor on C.
2) The divisor Dy — Cy (on X ) is not effective.
3) For some0<me¢€Z,

D+ >num mCO .

Proor oF LEMMA 2.3.

0) and 1). It follows from 0 # u € I'(C, Oc(T*C)) and D = (h) — 7*(u).

2) and 3). Note that F leaves Cy invariant. Thus Dy — Cp # 0. Let
Dy ~pum mCo+ nf. Then Cy- Dy = n. Since F has no singularities on
Co and Dy, is effective, m > 0 and n = 0. OJ

PROOF OF MAIN THEOREM 2.1. (continued)

Let ¢ € HY(C,Oc*) be a holomorphic line bundle over C' such that
Oc(§) ~ L(6). Fix a holomorphic section s € I'(C,O¢(&)) with (s) = 6.
s defines a holomorphic section of £(7*¢) on X defining the divisor 7% =
(h)+ — D4, which we also denote by s: s € I'(X, L(7*6)). Assume that,
with respect to the local trivialization (1.4), £ is represented by a 1-cocycle
(€ap) € ZH({Us}, Oc*) and s = (s4) with s, € Oc(Uy) C Ox (771 (Uy)). h
can be written with respect to the local trivialization (1.4) as follows: Let
Ao and p, be the fibre coordinates of the vector bundle E on wEfl(Ua) ~
U, x C2. Tt follows from Lemma 2.3 that we can take holomorphic func-
tions Pu(Zas Aas fta) and Qa(Zas Aas fla) on Uy x C2, which are homogeneous
polynomials of degree m with respect to A\, and pq, so that s, P, and Q,,
define the zero and pole loci of h\rl(Ua), respectively, and that, substituting

A
Ca:ﬁa

5a(2a)Pa(za, Aas )

(24) h(zaa Ca) = Qa(zou )\ouuoc)
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We can choose P,, which defines on 7~!(U,) the divisor D, such as
(2'5) Pa(zay Aas Na) = 1" + ij,a(za))\aj,uam_j-
j=1

Here
pj,oz(za) € OC(Ua) C OX(ng(Ua))'

Similarly,

Qa(zou Aas Ua) = Z Qj,a(za)/\ajﬂam_j
=0

with
¢ja(2a) € Oc(Uy) C (’)X(ng(Ua)).

Recall the following transition relations:
(2.6) )\a = La5>\5 and Mo = Kp
with La/g e C*.

LEMMA 2.7.
On =Y (U, NUp) ~ (U, NUg) x C?,

Po(2as Aas tta) = Pg(2s, Ag; 113)-

ProOF OF LEMMA 2.7.
Since the zero loci of these holomorphic functions in (U, N Ug) x C2
coincide with each other, there exists a non-vanishing holomorphic function

Yap € OF((Uy N Ug) x C?) such that
Pa = a3 Ps.
Using the transition relations (2.6) and z, = 24(23), we regard P, as a

function of zg, Ag and pug. Both P, and Pg are, with respect to A\g and
13, homogeneous polynomials of degree m. Thus 1,3 depends only on zg.
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Recall (2.5). Since the coefficients of 113™ of both functions are 1, we have
Yap =1 and P, = Pg. [J

PROOF OF MAIN THEOREM 2.1. (continued)
Thus the coefficients p; ,’s define

p; € T(C,Oc(L2D)Y).

Since T'(C, Oc(L®(7))) = 0 for j # 0, we have P, = ™. It follows from
the transition relations (2.6) that ¢;.’s define

g; € I(C,0c (¢ ® L¥I)).

Thus we have the case g > 1.
- The case g = 1.

In this case, the divisor (u) = 0 and the line bundle £ must be trivial.
We have h‘ﬂ-—l(Ua) = %. It follows that Q. = ()3 and that ¢;,’s define

g; € T(C,0c(L®7)))’s. Thus Q, = qop and h = qlo’
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