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The W k,p-continuity of wave operators for Schrödinger

operators III, even dimensional cases m ≥ 4

By Kenji Yajima

Abstract. Let H = −∆ + V (x) be the Schrödinger operator on
Rm, m ≥ 3. We show that the wave operators W± = limt→±∞ eitH ·
e−itH0 , H0 = −∆, are bounded in Sobolev spaces W k,p(Rm), 1 ≤ p ≤
∞, k = 0, 1, . . . , �, if V satisfies ‖DαV (y)‖Lp0 (|x−y|≤1) ≤ C(1 + |x|)−δ

for δ > (3m/2) + 1, p0 > m/2 and |α| ≤ � + �0, where �0 = 0 if m = 3
and �0 = [(m− 1)/2] if m ≥ 4, [σ] is the integral part of σ. This result
generalizes the author’s previous result which appears in J. Math. Soc.
Japan 47, where the theorem is proved for the odd dimensional cases
m ≥ 3 and several applications such as Lp-decay of solutions of the
Cauchy problems for time-dependent Schrödinger equations and wave
equations with potentials, and the Lp-boundedness of Fourier multiplier
in generalized eigenfunction expansions are given.

1. Introduction

Let H0 = D2
1 + · · · + D2

m, Dj = −i∂/∂xj , be the free Schrödinger op-

erator on L2(Rm) and H = H0 + V its perturbation by the multiplication

operator V with a real valued function V (x). It is well known in the scat-

tering theory (cf. [1], [3], [9]) that, if V is of short range in the sense that∫∞
1 ‖FRV (H0 + 1)−1‖dR < ∞, where FR is the multiplication with the

characteristic function of {x ∈ Rm : |x| ≥ R}, then the wave operators W±
defined by

W±u = lim
t→±∞

eitHe−itH0u , u ∈ L2(Rm)

exist and they are isometries on L2(Rm) with the final set L2
c(H), the con-

tinuous spectral subspace for H. The wave operators satisfy the intertwining

property: f(H)W± = W±f(H0) for Borel functions f and they play impor-

tant roles in the perturbation theory of continuous spectra as well as in the

scattering theory ([14]).
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In [21] and [22], we showed that W± are in fact bounded in Sobolev

spaces W �,p(Rm):

W �,p(Rm) = {f ∈ Lp(Rm) :
∑
|α|≤�

‖Dαf‖pLp ≡ ‖f‖p
W �,p < ∞},

if either (1) the spatial dimension m ≥ 3 is odd, or (2) m ≥ 4 is even and

V is small or V (x) ≥ 0, where for α = (α1, . . . , αm), Dα = Dα1
1 · · ·Dαm

m and

|α| = α1 + · · ·+αm. More precisely, we proved the following theorem, where

� ≥ 0 is an integer and m∗ = (m− 1)/(m− 2). F is the Fourier transform,

〈x〉 = (1 + |x|2)1/2 and Hs(Rm) = W s,2(Rm).

Theorem 1.1 ([21], [22]). Let m ≥ 3. Let V be a real valued function

such that, for some σ > 2/m∗, F(〈x〉σDαV ) ∈ Lm∗(Rm) for |α| ≤ �, and

satisfy one of the following conditions:

1. ‖F(〈x〉σV )‖Lm∗ (Rm) is sufficiently small;

2. m = 2m′ − 1 is odd and, with δ > max(m+ 2, 3m/2− 2), |DαV (x)| ≤
Cα〈x〉−δ for |α| ≤ max{�, �+m′ − 4};

3. m is even, V (x) ≥ 0 and, with δ > 3m/2 + 1, |DαV (x)| ≤ Cα〈x〉−δ
for |α| ≤ m+ �.

Suppose in addition that zero is neither eigenvalue nor resonance of H.

Then, the wave operators W± are bounded in W k,p(Rm) for any k = 0, . . . , �

and 1 ≤ p ≤ ∞,

Remark 1. Zero is said to be resonance of H if the equation −�u(x)+

V (x)u(x) = 0 has a solution u �∈ L2(Rm) such that (1+|x|)−1−εu ∈ L2(Rm)

for any ε > 0. If zero is resonance or eigenvalue of H, W± can not be

bounded in Lp for all 1 ≤ p ≤ ∞ (cf. [21]). It is known that H does not

admit zero resonance if m ≥ 5 or V (x) ≥ 0.

Theorem 1.1, however, does not cover the case that the spatial dimension

m is even and V (x) can be large negative. The main purpose of this paper is

to fill this gap and prove the following theorem, where � ≥ 0 is an arbitrarily

fixed integer; p0 > m/2 and �0 = [(m − 1)/2] if m ≥ 4; and p0 = 2 and

�0 = 0 if m = 3. [σ] is the integral part of σ.
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Theorem 1.2. Let m ≥ 3. Suppose that V (x) is real valued and, with

δ > (3m/2) + 1,

sup
x∈Rm

〈x〉δ
(∫

|x−y|≤1
|DαV (y)|p0dy

)1/p0

< ∞(1.1)

for |α| ≤ �+�0. Suppose further that zero is neither eigenvalue nor resonance

of H. Then, W± are bounded in W k,p(Rm) for any k = 0, . . . , � and 1 ≤
p ≤ ∞.

Remark 2. Theorem 1.2 is a generalization of Theorem 1.1 when m

is even and V is large, however, none of them is stronger than the other

otherwise. We remark that under the condition of Theorem 1.2 it is possible

to find σ > 2/m∗ such that F(〈x〉σDαV ) ∈ Lm∗(Rm) for |α| ≤ �.

We refer to [21] for various applications of Theorems and the related

reference, and shall be devoted to the proof of Theorem 1.2 in this paper.

We shall only prove the Lp boundedness of W+ assuming � = 0 and m is even

≥ 4. The odd dimensional cases may be proved by slightly modifying the

following argument or by the method of [21]; the proof for W− is similar;

and the extension to general � may be done by estimating the multiple

commutators [Dj1 , [Dj2 , · · · [Dj� ,W+] · · ·]] as in section 5 of [21].

We outline the proof here, displaying the plan of this paper and introduc-

ing some notations. B(X,Y ) is the Banach space of bounded operators from

Banach space X to Y and B(X) = B(X,X). R(z) = (H − z)−1, R0(z) =

(H0 − z)−1 are resolvents and R±(λ) = R(λ± i0), R±
0 (λ) = R0(λ± i0) are

their boundary values on the upper and lower banks of C\ [0,∞). By using

the stationary representation formula ([9], [14]):

W+u = u− 1

2πi

∫ ∞

0
R−(λ)V {R+

0 (λ) −R−
0 (λ)}udλ

and the identity R−(λ) = R−
0 (λ) − R−

0 (λ)V R−(λ), we write W+u = u +

W1u+W2u, where

W1u = − 1

2πi

∫ ∞

0
R−

0 (λ)V {R+
0 (λ) −R−

0 (λ)}udλ,(1.2)

W2u =
1

2πi

∫ ∞

0
R−

0 (λ)V R−(λ)V {R+
0 (λ) −R−

0 (λ)}udλ.(1.3)
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In the first half of section 2, we study the mapping property of R±
0 (λ)

and the decay and smoothness properties of the integral kernels of R(0) and

φ(H) for φ ∈ C∞
0 (R). As we think them of independent interest, these

properties will be stated and proved under much weaker assumptions on V

than necessary in what follows. We then recall from [21] the argument that

proves W1 is bounded in Lp: Express W1 explicitly in the form

W1u(x) =

∫
Σ
dω

∫ ∞

2xω
K̂V (t, ω)u(tω + xω)dt ,(1.4)

where Σ is the unit sphere, xω = x− 2(xω)ω is the reflection of x along the

ω-axis and

K̂V (t, ω) =
i

2(2π)m/2

∫ ∞

0
V̂ (rω)rm−2eitr/2dr ;

it follows by Minkowski inequality and the fact that x → xω is measure

preserving that for any σ > 1/2,

‖W1u‖Lp ≤ 2‖K̂V ‖L1([0,∞)×Σ)‖u‖Lp(1.5)

≤ C‖〈x〉σV ‖H(m−3)/2‖u‖Lp ≤ C ′‖u‖Lp .

We wish to show that W2 is bounded in Lp by proving the well known

criterion:

max

{
sup
x∈Rm

∫
Rm

|W2(x, y)|dy, sup
y∈Rm

∫
Rm

|W2(x, y)|dx
}
< ∞(1.6)

for its integral kernel W2(x, y). It can be written as

W2(x, y) =
1

2πi

∫ ∞

0
〈R−(k2)V (G+,y,k −G−,y,k), V G+,x,k〉dk2,(1.7)

where 〈 · , · 〉 is a coupling between suitable function spaces and G±,y,k(x) =

G±(x−y, k) are the kernels of R±
0 (k2) or the incoming-outgoing fundamental

solutions of −�− k2. They satisfy G±(x, k) ∼ Ce±ik|x||x|−(m−1)/2k(m−3)/2

as |x| → ∞ and crude estimations would only yield

|the integrand of (1.7)| ≤ Ckm−3〈x〉−(m−1)/2〈y〉−(m−1)/2.(1.8)

Thus we are faced with the two difficulties:

(1) High energy difficulty: The integral (1.7) does not converge abso-

lutely at k = ∞;
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(2) Low energy difficulty: If we restrict the integral (1.7) to finite in-

tervals, (1.8) produces only |W2(x, y)| ≤ C〈x〉−(m−1)/2〈y〉−(m−1)/2 which is

insufficient for (1.6). For obtaining improved decay property, we exploit the

oscillation property of G±(x, k) and apply integration by parts with respect

to the variable k. However, the singularity at k = 0 of G±(x, k) prevents us

from doing this as many times as necessary if m is even.

To separate two difficulties, we decompose W2 into the low and the

high energy parts and consider W2,low = φ1(H)W2φ1(H0) and W2,high =

φ2(H)W2φ2(H0), where cut off functions φ1 ∈ C∞
0 (R1) and φ2 ∈ C∞(R1)

are such that φ1(λ)2 + φ2(λ)2 = 1, and φ1(λ) = 1 for |λ| ≤ 1 and φ1(λ) = 0

for |λ| ≥ 2. Note that W± =
∑2

j=1 φj(H)W±φj(H0) thanks to the inter-

twining property of W± and φj(H0) and φj(H), j = 1, 2, are bounded in

Lp as proved in section 2. We show W2,low and W2,high are bounded in Lp

separately.

In section 3, we treat the low energy part W2,low. We split R−(λ) =

R−(0) + R̃−(λ) to single out the contribution of R−(0) and decompose as

W2,low = W
(1)
2,low + W

(2)
2,low accordingly. In virtue of the orthogonality of

Hardy functions in the upper and the lower half planes, we have

W
(1)
2,lowu = φ1(H)

{
1

2πi

∫ ∞

−∞
R−

0 (λ)V R−(0)V R+
0 (λ)dλ

}
φ1(H0)u;(1.9)

using the identity (R+
0 (λ) − R−

0 (λ))φ1(H0) = (R+
0 (λ) − R−

0 (λ))φ1(λ), we

write

W
(2)
2,lowu =

1

2πi

∫ ∞

0
φ1(H)R−

0 (λ)V R̃−(λ)V (R+
0 (λ) −R−

0 (λ))(1.10)

×φ̃1(λ)φ1(H0)udλ,

where φ̃1 ∈ C∞
0 (R) is such that φ̃1(λ)φ1(λ) = φ1(λ). For dealing with

W
(1)
2,low it is important to observe the following: If we write the integral

kernel of R−(0) by K(x, y) and set My(x) = V (x)K(x, x−y)V (x−y), then

W
(1)
2,low can be expressed as a superposition

W
(1)
2,lowu = −

∫
Rm

φ1(H)W1(My)φ1(H0)uydy,(1.11)

where uy(x) = u(x − y) and W1(My) is defined by (1.2) with My in place

of V . We show in section 2 that∫
Rm

‖〈x〉σMy‖H(m−3)/2(Rm)dy < ∞(1.12)
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for some σ > 1/2. Since (1.5) and (1.11) imply that ‖W (1)
2,lowu‖Lp is bounded

by a constant times∫
Rm

‖W1(My)‖B(Lp)‖uy‖Lpdy ≤ C

∫
Rm

‖〈x〉σMy‖H(m−3)/2(Rm)dy · ‖u‖Lp ,

W
(1)
2,low is bounded in Lp.

We treat W
(2)
2,low as follows. Set G±,x,k(y) = e±ik|x|G̃±,x,k(y) to make os-

cillation property explicit and write its integral kernel in the form

W
(2)
2,low(x, y) = W

(2),+
2,low (x, y) −W

(2),−
2,low (x, y):

W
(2),±
2,low (x, y) =

1

2πi

∫ ∞

0
e−ik(|x|∓|y|)〈R̃−(k2)V G̃±,y,k, V G̃+,x,k〉(1.13)

×φ̃1(k
2)dk2,

where we ignored the harmless factors φ1(H0) and φ1(H). We then apply

integration by parts with respect to k variable � = (m + 2)/2 times (when

m is even):

=
1

2πi

∫ ∞

0

D�
ke

−ik(|x|∓|y|)

(|y| ∓ |x|)� 〈R̃−(k2)V G̃±,y,k, V G̃+,x,k〉φ̃1(k
2)dk2

=
1

πi

∫ ∞

0

e−ik(|x|∓|y|)

(|x| ∓ |y|)�D
�
k{k〈R̃−(k2)V G̃±,y,k, V G̃+,x,k〉φ̃1(k

2)}dk,
(1.14)

and gain the addition decay factor (|x|∓|y|)−�. Here the boundary terms do

not appear and the integral converges absolutely because R̃−(k2) vanishes

at k = 0. (Actually we apply the integration by parts in a little more

elaborate way. See the text for the details.) In this way we arrive at the

estimate

|W (2),±
2,low (x, y)| ≤ C(1 + ||x| ∓ |y||)−(m+2)/2〈x〉−(m−1)/2〈y〉−(m−1)/2(1.15)

and W
(2)
2,low(x, y) indeed satisfies the criterion (1.6). Though the splitting of

R−(λ) as above is unnecessary when m is odd because of simpler structure

of G±(x, k), it makes the proof of the theorem simpler even in that case.

In section 4, we prove that the high energy part W2,high =

φ2(H)W2φ2(H0) is also bounded in Lp, overcoming the high energy dif-

ficulty by the method similar to one that was employed in section 4 of [21]:
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We decompose W2 into 2N + 1 summands: W2 =
∑2N+2

n=2 (−1)nW (n) by

expanding R−(k2) as

R−(k2) =
2N−1∑
n=0

(−1)nR−
0 (k2)(V R−

0 (k2))n(1.16)

+(R−(k2)V )NR−(k2)(V R−
0 (k2))N

and inserting (1.16) into (1.3). A repeated application of the argument

leading to (1.4) shows that W (2), . . . ,W (2N+1) have expressions similar to

(1.4), and the estimate similar to the one used for proving (1.5) implies that

they are all bounded in Lp.

To prove W (2N+2) is bounded in Lp, we let FN (k2) =

(R−(k2)V )NR−(k2)(V R−
0 (k2))N and define the integral operator W

(2N+2)
high

with the integral kernel W
(2N+2)
high (x, y) = W

(2N+2),+
high (x, y)−W (2N+2),−

high (x, y):

W
(2N+2),±
high (x, y) =

1

2πi

∫ ∞

0
e−ik(|x|±|y|)(1.17)

×〈FN (k2)V G̃±,y,k, V G̃+,x,k〉φ̃2(k
2)dk2,

where φ̃2 ∈ C∞(R) is such that φ̃2(λ) = 0 near λ = 0 and φ̃2(λ)φ2(λ) =

φ2(λ). Then we have φ2(H)W (2N+2)φ2(H0) = φ2(H)W
(2N+2)
high φ2(H0). If N

is sufficiently large FN (k2), as an operator valued function between suitable

function spaces, decays rapidly as k → ∞ and the integrals (1.17) converge

absolutely. Moreover, integration parts with respect to k variable as in the

proof of (1.15) yields

|W (2N+2),±
high (x, y)| ≤ C(1 + ||x| ∓ |y||)−(m+2)/2〈x〉−(m−1)/2〈y〉−(m−1)/2,

which shows that W
(2N+2)
high (x, y) satisfies the criterion (1.6). In this way the

argument is very much similar to that of the previous section and of section

4 of [21], and therefore, we shall be very sketchy in section 4.

Acknowledgement. We thank Professors Kazuhiro Kurata, Minoru Mu-

rata and Shu Nakamura for many helpful discussions.

2. Preliminaries

In this section we first study the mapping property of R±
0 (λ), λ ≥ 0, and

the decay and smoothness properties of the integral kernels of R±(0) and
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φ(H), φ ∈ C∞
0 (R), under the conditions which are more general than in

1.2. We then recall from [21] the argument for proving the Lp boundedness

of W1. For 1 ≤ p, q ≤ ∞ and δ, � ∈ R, Lpδ(R
m) is the weighted Lp-space:

Lpδ(R
m) = {f ∈ Lploc(R

m) : ‖f‖Lp
δ
≡ ‖〈x〉δf‖Lp < ∞} ;

H�
δ(R

m) is the weighted Sobolev space:

H�
δ(R

m) = {f ∈ S ′(Rm) : ‖(1 + |x|2)δ/2(1 −�)�/2f‖L2 ≡ ‖f‖H�
δ
< ∞} ;

and �pδ(L
q) is the amalgam space:

�pδ(L
q) = {f ∈ Lqloc(R

m) : ‖f‖�p
δ
(Lq) ≡

( ∑
n∈Zm

‖f‖pLq(Qn)〈n〉
δp

)1/p

< ∞},

where for n = (n1, . . . , nm), Qn = [n1, n1 + 1) × · · · [nm, nm + 1) is a unit

cube.

2.1 Resolvent estimate for H0

If s > 1 and t ∈ R, the resolvent R0(z) = (H0 − z)−1, which is origi-

nally defined as a B(L2)-valued analytic function of z ∈ C \ [0,∞), can be

extended continuously to the closure C \ [0,∞) (in the Riemann surface of

log z) when considered as a B(Ht
s, H

t+2
−s )-valued function ([9]). We denote

the boundary values on the upper and lower edges by limε→+0 R0(λ± iε) ≡
R±

0 (λ), λ ∈ [0,∞). The following mapping property of R±
0 (λ) is well known

(cf. Murata [12] and Jensen [4]). In what follows, Dk will denote −i∂/∂k
and should not be confused with −i∂/∂xk. [σ] is the largest integer not

greater than σ ∈ R.

Lemma 2.1. Let � = 0, 1, 2, · · · , t ∈ R and s > � + 1/2. Then, as a

B(Ht
s, H

t+2
−s )-valued function of k, R±

0 (k2) is C� in k ∈ (0,∞). Moreover:

1. For j = 0, 1, · · · , � and 0 ≤ i ≤ 2+[(j+1)/2], ‖Dj
kR

±
0 (k2)‖B(Ht

s,H
t+i
−s ) ≤

Ck−1+i , k ≥ 1.

2. If � ≥ 2, then R±
0 (k2) has the following expansion in B(Ht

s, H
t+2
−s ) valid

for k → 0:
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R±
0 (k2) =



2∑
j=0

Gjk
j +K2(k), when m = 3;

1∑
j=0

Gjk
2j + F1k

2 log k2 +K2(k), when m = 4;

1∑
j=0

Gjk
2j +K2(k), when m ≥ 5.

(2.1)

Here F1, Gj ∈ B(Ht
s, H

t+2
−s ), and K2(k) stands for a B(Ht

s, H
t+2
−s )-valued

C�-function of k such that, for 0 ≤ j ≤ �, ‖Dj
kK2‖ = o(k2−j) as k → 0.

Relation (2.1) remains valid if the boundary values R±
0 (k2) are replaced by

R0(k
2), Im k > 0.

In section 4, we shall also use the following mapping property of

Dj
kR

±
0 (k2) between Lp type spaces. For 0 ≤ � < (m − 1)/2, Pm

� is the

pentagon in the (x, y)-plane surrounded by five lines x = 1, x = 1/2 + (2�+

1)/2m, y = 0, y = 1/2−(2�+1)/2m and y = x−2(�+1)/(m+1), where the

segments {(x, 0) : 1/2 + (2� + 1)/2m < x ≤ 1} and {(1, y) : 0 ≤ y < 1/2 −
(2�+1)/2m} are included. Note that (1/2+(�+1)/m, 1/2−(�+1)/m) ∈ Pm

�

as long as �+ 1 < m/2.

Lemma 2.2. Let j = 0, 1, . . . and let 1 ≤ p ≤ q ≤ ∞ and 1 ≤ r ≤ ρ ≤
∞ be such that 1/r ≥ 1/q − (j + 2)/m, where the equality is inclusive only

when 1/q− (j+2)/m > 0. Then, Dj
kR

±
0 (k2) satisfies the following mapping

property:

(a) The case m is odd ≥ 3:

1. If 0 ≤ j < (m − 1)/2, Dj
kR

±
0 (k2) ∈ B(�p(Lq), �ρ(Lr)) for (1/p, 1/ρ) ∈

Pm
j and

‖Dj
kR

±
0 (k2)‖B(�p(Lq),�ρ(Lr)) ≤ Cjk

m(1/p−1/ρ)−2−j , k ≥ 1.

2. If (m − 1)/2 ≤ j < m − 2, Dj
kR

±
0 (k2) ∈ B(�1j−(m−1)/2(L

q),

�∞−j+(m−1)/2(L
r)) and

‖Dj
kR

±
0 (k2)‖B(�1

j−(m−1)/2
(Lq),�∞−j+(m−1)/2

(Lr)) ≤ Cjk
(m−3)/2, k ≥ 1.
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3. If j ≥ m− 2, Dj
kR

±
0 (k2) ∈ B(L1

j−(m−1)/2, L
∞
−j+(m−1)/2) and

‖Dj
kR

±
0 (k2)‖B(L1

j−(m−1)/2
,L∞

−j+(m−1)/2
) ≤ Cjk

(m−3)/2, k ≥ 1.

(b) The case m is even ≥ 4:

1. If 0 ≤ j ≤ (m − 2)/2, Dj
kR

±
0 (k2) ∈ B(�p(Lq), �ρ(Lr)) for (1/p, 1/ρ) ∈

Pm
j and

‖Dj
kR

±
0 (k2)‖B(�p(Lq),�ρ(Lr)) ≤ Cjk

m(1/p−1/ρ)−2−j , k ≥ 1.

2. If m/2 ≤ j ≤ m− 3, Dj
kR

±
0 (k2) ∈ B(�1j−(m−1)/2(L

q), �∞−j+(m−1)/2(L
r))

and

‖Dj
kR

±
0 (k2)‖B(�1

j−(m−1)/2
(Lq),�∞−j+(m−1)/2

(Lr)) ≤ Cjk
(m−3)/2, k ≥ 1.

3. If j = m − 2, Dj
kR

±
0 (k2) ∈ B(�1j−(m−1)/2(L

q), L∞
−j+(m−1)/2) for any

1 < q ≤ ∞.

‖Dj
kR

±
0 (k2)‖B(�1

j−(m−1)/2
(Lq),L∞

−j+(m−1)/2
) ≤ Cjk

(m−3)/2, k ≥ 1.

4. If j ≥ m− 1, Dj
kR

±
0 (k2) ∈ B(L1

j−(m−1)/2, L
∞
−j+(m−1)/2) and

‖Dj
kR

±
0 (k2)‖B(L1

j−(m−1)/2
,L∞

−j+(m−1)/2
) ≤ Cjk

(m−3)/2, k ≥ 1.

For proving Lemma 2.2, we use the following lemma. We write uk(x) =

u(x/k).

Lemma 2.3. (1) If 1 ≤ p ≤ q ≤ ∞, δ ≥ 0 and k ≥ 1, then ‖uk‖�p
δ
(Lq) ≤

Ckm/p+δ‖u‖�p
δ
(Lq)

(2) If 1 ≤ r ≤ ρ ≤ ∞, δ ≥ 0 and k ≥ 1, then ‖u1/k‖�ρ−δ
(Lr) ≤

Ck−m/ρ+δ‖u‖�ρ−δ
(Lr).

Proof. We only prove the first statement for integral k ≥ 1. General

case may be proved by a slight modification of the following argument. The
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second statement follows from the first by the duality. If k ≥ 1 is integral,

we have by Hölder’s inequality:

‖fk‖p�p
δ
(Lq)

=
∑
n∈Zm

〈n〉pδ
(∫

Qn

|f(x/k)|qdx
)p/q

=
∑
n∈Zm

kmp/q〈n〉pδ
(∫

Qn/k
|f(x)|qdx

)p/q

= kmp/q
∑
j∈Zm

 ∑
Qn/k⊂Qj

(∫
Qn/k

|f(x)|qdx
)p/q

〈n〉pδ


≤ kmp/q
∑
j∈Zm

(km)1−p/q

 ∑
Qn/k⊂Qj

∫
Qn/k

|f(x)|qdx

p/q

(Ck〈j〉)pδ

= Cpδkm+pδ
∑
j∈Zm

(∫
Qj

|f(x)|qdx
)p/q

〈j〉pδ = Cpδkm+pδ‖f‖p
�p
δ
(Lq)

,

where the constant C depends only on the spatial dimension m. ✷

Proof of Lemma 2.2. We prove the lemma when m ≥ 3 is even. The

proof for the other case is similar. It is well known that R±
0 (k2), k ≥ 0, are

convolution operators with the outgoing (+) or incoming (−) fundamental

solutions G±(x, k) of −�− k2 ([15]):

G±(x, k) =
±i

4(2π)ν |x|m−2
(k|x|)νH(±)

ν (k|x|), ν =
m− 2

2
(2.2)

where H
(±)
ν (z) is the Hankel function and by Hankel’s formula ([20])

zνH(±)
ν (z) =

√
2e∓i(2ν+1)π/4e±iz√
πΓ(ν + 1/2)

∫ ∞

0
e−ttν−1/2

(
z ± it

2

)ν−1/2

dt.(2.3)

Here and hereafter we use the superscript ± in stead of the traditional 1, 2

for Hankel functions and ν = (m− 2)/2. A simple computation shows that

Dj
kR

±
0 (k2) enjoys the homogeneity property

[Dj
kR

±
0 (k2)u](x) = k−j−2{Dj

kR
±
0 (k2)|k=1uk}(kx),(2.4)

uk(x) = u(x/k).
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We prove the lemma for the case k = 1 first. Let φ ∈ C∞
0 (Rm) be such

that φ(x) = 1 for |x| ≤ 1 and φ(x) = 0 for |x| ≥ 2. Write G
(j)
± (x) for

the convolution kernel of Dj
kR

±
0 (k2)|k=1 and set G

(j)
1,±(x) = G

(j)
± (x)φ(x) and

G
(j)
2,±(x) = G

(j)
± (x)(1−φ(x)). Differentiating (2.2) and (2.3) by k shows that

G
(j)
1,±(x) satisfies the following estimate:

|G(j)
1,±(x)| ≤


Cj(1 + |x|2−m+j), if m is odd;

Cj(〈log |x|〉 + |x|2−m+j), if m is even and j ≤ m− 2;

Cj , if m is even and j ≥ m− 1,

and that G
(j)
2,±(x) can be written as

G
(j)
2,±(x) = e±i|x|aj,±(x)|x|(2j−m+1)/2,(2.5)

where aj,±(x) ∈ C∞(Rm) is supported by {|x| ≥ 1} and satisfies for any α

|Dαaj,±(x)| ≤ Cjα|x|−|α|.

Since G
(j)
1,±(x) is supported by the compact set {|x| ≤ 2}, the convolution

operator G
(j)
1,± with G

(j)
1,±(x) can be easily estimated by using the fractional

integration theory and Young’s inequality:

(i) If 0 ≤ j ≤ m − 3, G
(j)
1,± ∈ B(�p(Lq), �p(Lr)) for any 1 ≤ p ≤ ∞ and

1 ≤ r ≤ ∞ if 1/q < (j + 2)/m; 1 ≤ r < ∞ if 1/q = (j + 2)/m; and

1/q − (j + 2)/m ≤ 1/r ≤ 1 if 1/q > (j + 2)/m.

(ii) If j = m − 2, G
(j)
1,± ∈ B(�p(Lq), �p(L∞)) for any 1 ≤ p ≤ ∞, and

1 < q ≤ ∞ (if m is odd q = 1 can be included);

(iii) If j ≥ m− 1, G
(j)
1,± ∈ B(�p(L1), �p(L∞)) for any 1 ≤ p ≤ ∞.

On the other hand G
(j)
2,±(x) contains the oscillating factor e±i|x| and we

estimate the convolution operator G
(j)
2,± with the kernel (2.5) by a theo-

rem of Sogge (cf. [19], Lemma 5.4). We combine the result with the fact

G
(j)
2,± ∈ B(Lp, L∞), 1 ≤ p < 2m/(m + 2j + 1), which follows from Young’s

inequality, by using the interpolation theorem and the duality. We obtain

the followings:

(iv) If j ≤ (m − 2)/2, then G
(j)
2,± ∈ B(Lp, Lρ) for any p and ρ such that

(1/p, 1/ρ) ∈ Pm
j where Pm

j is the pentagon defined as above.

(v) If j ≥ m/2, then 2j−m+1 > 0 and G
(j)
2,± ∈ B(L1

j−(m−1)/2, L
∞
−j+(m−1)/2).
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Note here that �p1δ (Lq1) ⊂ �p2δ (Lq2) whenever p1 ≤ p2 and q1 ≥ q2. Thus,

combing estimates (i) ∼ (v), we obtain the lemma for the case k = 1.

It remains to estimate the operator norm for k ≥ 1. When j ≤ (m−2)/2

the estimates in the lemma immediately follow from (2.4) and Lemma 2.3.

When j ≥ m/2, the direct application of Lemma 2.3 would produce the

superfluous power kj−1. Note, however, that in this case G
(j)
2,±(x−y) satisfies

|G(j)
2,±(x− y)| ≤ C(|x|(2j−m+1)/2 + |y|(2j−m+1)/2 + 1),

and G
(j)
2,± is in fact a sum of two operators, one in B(L1

j−(m−1)/2, L
∞) and the

other in B(L1, L∞
−j+(m−1)/2). Hence, say in the case (b.2), Dj

kR
±
0 (k2) may be

written as a sum of two operators, one in B(�1j−(m−1)/2(L
q), �∞(Lr)) and the

other in B(�1(Lq), �∞−j+(m−1)/2(L
r)). Applying Lema 2.3 to each summand

separately and combining the results, we obtain the desired estimates. ✷

2.2 Integral kernels of φ(H) and R(0)

In this subsection, we study the integral kernel of φ(H) (resp. R(0))

assuming that V is of Kato class (resp. very short range). A real valued

function V (x) is said to be of Kato-class if

lim
ε→0

sup
x∈Rm

∫
|x−y|≤ε

|V (y)|
|x− y|m−2

dy = 0(2.6)

and to be very short range if, for some γ > 0, 〈x〉2+γV (x) satisfies (2.6).

In particular, we have for very short range potential that

‖V ‖(γ) ≡ sup
x∈Rm

〈x〉2+γ
∫
|x−y|<1

|V (y)|
|x− y|m−2

dy < ∞.(2.7)

We note that V which satisfies the assumption of Theorem 1.2 is very short

range.

If V is of Kato class, then, the multiplication operator V with V (x)

is H0-form bounded with relative bound zero and H = H0 + V defined

via the form sum is self-adjoint([13]). If we write A(x) = |V (x)|1/2 and

B(x) = V (x)1/2 ≡ |V (x)|1/2sign V (x) and A and B for the multiplications

by A(x) and B(x), respectively, then

R(z) = R0(z) −R0(z)B(1 +AR0(z)B)−1AR0(z), z ∈ C \ R.(2.8)
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The following lemma solves an open problem in Simon ([17]):

Lemma 2.4. Let V be of Kato-class and φ(λ) ∈ C∞
0 (R). Then, the

integral kernel Φ(x, y) of φ(H) satisfies |Φ(x, y)| ≤ Cδ(1+ |x−y|)−δ for any

δ ≥ 0. In particular, φ(H) is bounded in Lp for any 1 ≤ p ≤ ∞.

Proof. The following argument which has simplified the original proof

is due to Shu Nakamura (private communication). If we set Va(x) = V (x+a)

and H(a) = H0+Va, Φ(x+a, y+a) is the integral kernel of φ(H(a)). Hence,

it suffices to show

sup
|y|≤1

|Φ(x, y)| ≤ Cδ(1 + |x|)−δ(2.9)

with constants Cδ which is independent of a if H is replaced by H(a). (We

say that an estimate holds uniformly in a if it does with the same constant

when H is replaced by H(a), a ∈ Rm). Write φ(λ) = (λ − z)−Nψ(λ)(λ −
z)−N so that φ(H) = R(z)Nψ(H)R(z)N . By Theorem B.6.3 of [17], R(z)N

is bounded uniformly in a from L1
δ to L2

δ and from L2
δ to L∞

δ for any δ ∈ R,

if N and real −z are large enough. On the other hand ψ(H) is bounded in

L2
δ uniformly in a as will be shown below. Hence, φ(H) is bounded from L1

δ

to L∞
δ uniformly in a and

sup
x∈R,|y|≤1

〈x〉δ|Φ(x, y)|

≤ Cδ sup{‖φ(H)u‖L∞
δ

: ‖u‖L1
δ

= 1, supp u ⊂ B(O, 1)}
≤ Cδ‖φ(H)‖B(L1

δ
,L∞

δ
) < ∞.

It remains to show that ψ(H) is bounded in L2
δ for any δ > 0 uniformly

in a. It suffices to show that for any choice of 1 ≤ jk ≤ m, k = 1, . . . , � and

� = 1, 2, . . .

‖[xj1 , [xj2 , · · · , [xj� , ψ(H)] · · ·]]‖B(L2) ≤ C�(2.10)

uniformly in a. Let ψ(z) be an almost analytic extension of ψ(λ) which

satisfies for any n and N ≥ 0,

|(∂ψ/∂z)(z)| ≤ CnN |Im z|n(1 + |z|)−n−N , z ∈ C

and write

ψ(H) =
−1

2πi

∫
C

∂ψ

∂z
(z)(H − z)−1dz ∧ dz(2.11)
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(cf. [5]). Then, using inductively the obvious identity i[xj , R(z)] =

R(z)pjR(z) and using the fact that ‖R(z)‖ ≤ |Im z|−1 and ‖pjR(z)‖ ≤
C|Im z|−1, where the constant C is independent of a (cf. [17]), we immedi-

ately obtain the desired boundedness (2.10). ✷

If V is very short range, then V is form compact with respect to H0;

and in virtue of Lemma 2.1, the boundary values

lim
ε→+0

AR0(λ± iε)B ≡ Q±
0 (λ)

exist in the operator norm of L2 and are locally Hölder continuous in λ ∈
[0,∞). Moreover, 1 + Q±

0 (λ) is an isomorphism of L2(Rm) if and only if

λ is not an eigenvalue of H (λ is not the eigenvalue or resonance of H if

λ = 0). Thus, if non-negative eigenvalues and zero resonance are absent

from H, then the boundary values of the resolvent

lim
ε→+0

R(λ± iε) ≡ R±(λ)(2.12)

= R±
0 (λ) −R±

0 (λ)B(1 +Q±
0 (λ))−1AR±

0 (λ)

exist for all λ ∈ [0,∞) in the operator norm of B(L2
δ , L

2
−δ) and are locally

Hölder continuous in λ ∈ [0,∞) as well. Note that R±
0 (0) is independent of

the sign ± and so is R±(0). We write R±
0 (0) = R0(0) = G0 and R±(0) =

R(0). We have the following lemma on the integral kernel of R(0).

Theorem 2.5. Let V (x) be very short range. Suppose that zero is

not an eigenvalue nor resonance of H = H0 + V . Then, R(0) has the

integral kernel K(x, y) which is jointly continuous for x �= y and satisfies

|K(x, y)| ≤ C|x− y|2−m.

We begin the proof of Theorem 2.5 with the following elementary lemma.

In what follows we assume that 〈x〉2+γV (x) satisfies (2.6) for some 0 < γ <

1.

Lemma 2.6.Let 0 ≤ ρ < γ < 1. Then, with a constant C1 depending

only on m, ρ and γ,∫
Rm

〈y〉ρ|V (y)|dy
|x− y|m−2

≤ C1‖V ‖(γ)〈x〉ρ−γ ;(2.13)
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∫
Rm

|V (z)|dz
|x− z|m−2|z − y|m−2

≤
C1(〈x〉−γ + 〈y〉−γ)‖V ‖(γ)

|x− y|m−2
.(2.14)

Proof. Take φ ∈ C∞
0 (Rm) such that φ(x) = 0 for |x| ≥ 1/2 and∫

Rm φ(z)dz = 1. We estimate the integral over |x− y| ≥ 1 as follows:∫
|x−y|≥1

〈y〉ρ|V (y)|dy
|x− y|m−2

=

∫
Rm

dz

{∫
|x−y|≥1

〈y〉ρ|V (y)|φ(y − z)dy

|x− y|m−2

}
≤ 2m−2

∫
Rm

dz

{∫
Rm

〈y〉ρ|V (y)|φ(y − z)dy

(1 + |x− z|)m−2

}
≤ C2‖V ‖(γ)‖φ‖L∞

∫
Rm

dz

(1 + |x− z|)m−2〈z〉2+γ−ρ ≤ C3‖V ‖(γ)〈x〉ρ−γ .

Since the integral over |x− y| ≤ 1 is obviously bounded by a constant times

‖V ‖(γ)〈x〉ρ−2−γ , we obtain (2.13).

Write w = x − y and change the variable z by z + y. Let Ω1 = {z :

|w|/2 ≤ |z|} and Ω2 = {z : |w|/2 ≤ |z − w|}. It is clear that Rm = Ω1 ∪ Ω2

and by using (2.13) with ρ = 0,∫
Ω1

|V (z + y)|dz
|w − z|m−2|z|m−2

≤ 2m−2

|w|m−2

∫
Rm

|V (z + y)|dz
|w − z|m−2

≤ C1〈x〉−γ |w|2−m‖V ‖(γ);

∫
Ω2

|V (z + y)|dz
|w − z|m−2|z|m−2

≤ 2m−2

|w|m−2

∫
Rm

|V (z + y)|dz
|z|m−2

≤ C1〈y〉−γ |w|2−m‖V ‖(γ).

Adding these up, we obtain (2.14). ✷

The following is a corollary of Lemma 2.6 and proves Theorem 2.5 when

V is small.

Lemma 2.7. There exists a constant C0 > 0 such that, if ‖V ‖(γ) < C0,

then the integral kernel K(x, y) of R(0) is continuous for x �= y and satisfies

|K(x, y)| ≤ C|x− y|2−m.

Proof. The integral kernel of G0 = R±
0 (0) is given by the Newton

potential G0(x− y) = cm|x− y|2−m, cm = Γ(m− 2/2)/4πm/2. By Schwarz
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inequality and (2.13) with ρ = 0,

|(Q±
0 (0)u, v)| ≤ cm

∫
Rm

|A(x)||v(x)||B(y)||u(y)|
|x− y|m−2

dydx

≤ cm

(∫
Rm

|A(x)|2|u(y)|2
|x− y|m−2

dxdy

)1/2(∫
Rm

|B(y)|2|v(x)|2
|x− y|m−2

dydx

)1/2

≤ cmC1‖V ‖(γ)‖u‖‖v‖.

Hence, 1 +Q±
0 (0) is invertible in B(L2) if ‖V ‖(γ) < (cmC1)

−1, and we may

expand (1 + Q±
0 (0))−1 into the Neumann series in (2.12) with λ = 0 to

obtain

R(0) = G0 −G0V G0 +G0V G0V G0 − · · · .
Since any V with ‖V ‖(γ) < ∞ may be approximated arbitrarily close by

C∞
0 functions in the norm ‖ · ‖(γ′), γ

′ < γ, it is easy to see that the integral

kernels of the summands of the series are continuous for x �= y. Moreover

estimating them inductively by using (2.14), we obtain a majorant series∑∞
n=0 c

n+1
m (2C1‖V ‖(γ))

n|x − y|2−m for K(x, y). The latter series converges

uniformly on every compact subset of {(x, y) : x �= y} and produces the

bound |K(x, y)| ≤ C2|x − y|2−m if 2cmC1‖V ‖(γ) < 1. This proves the

Lemma. ✷

For proving Theorem 2.5 for general potentials, we shall use the following

lemma. For 0 < ρ < min(1, γ), Xρ is the Banach space defined by

Xρ = {u ∈ C(Rm \ {0}) : ‖u‖Xρ(2.15)

= sup
x∈Rm\{0}

〈x〉−ρ|x|m−2|u(x)| < ∞}.

We remark here that if K(x, y) is as in Lemma 2.7, then Ky(x) ≡ K(x+y, y)

belongs to Xρ and y → Ky is an Xρ valued continuous function. This

can be easily seen by the proof of the lemma (note that Ky(x) is K0(x)

corresponding to the potential Vy(x) = V (x+ y) and y → Vy is continuous

in the ‖ · ‖(γ′) norm, γ′ < γ).

Lemma 2.8. Let V1 ∈ C∞
0 (Rm). Let K0(x, y) be continuous for x �= y

and satisfy |K0(x, y)| ≤ C|x − y|2−m. Define the integral operator Zy for

y ∈ Rm by

Zyu(x) =

∫
Rm

K0(x+ y, z + y)V1(z + y)u(z)dz.(2.16)
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Then, Zy is a compact operator in Xρ and is norm continuous with respect

to y ∈ Rm.

Proof. We prove the lemma for m ≥ 5. The proof for m = 3, 4 may

be given by slightly modifying the following argument. Let S be the unit

ball of Xρ. Then for u ∈ S, we have as in (2.14)

|Zyu(x)| ≤ C

∫
Rm

|V1(z + y)|〈z〉ρdz
|x− z|m−2|z|m−2

(2.17)

≤
{

C|x|4−m, |x| ≤ 1;

Cy|x|2−m, |x| ≥ 1,

where Cy is a constant bounded for bounded y. Let ψ ∈ C∞
0 (Rm) be

such that ψ(x) = 1 for |x| ≥ 2 and ψ(x) = 0 for |x| ≤ 1. Set, for ε >

0, ψε(x) = ψ(x/ε) and let Zy,ε be the integral operator defined by (2.16)

with K0ε(x, y) = ψε(x − y)K0(x, y) in place of K0(x, y). Because of the

estimate (2.17) and the fact that K0ε(x, y) is jointly continuous with respect

to (x, y), it can be easily seen via Ascoli-Arzela’s lemma that Zy,ε is a

compact operator in Xρ and is norm continuous with respect to y. On the

other hand, for y in a compact subset of Rm, Zy,εu(x) = Zyu(x) for |x| ≥ C0

and we have for u ∈ S and ε → 0

sup
x∈Rm

|x|m−2|Zy,εu(x) − Zyu(x)|

≤ cm sup
|x|≤C0

|x|m−2
∫
|x−z|<2ε

〈z〉ρ|V1(z + y)|dz
|x− z|m−2|z|m−2

≤ sup
|x|≤C0

C

∫
|x−z|<2ε

|x|m−2dz

|x− z|m−2|z|m−2

≤ Cε2 sup
x∈Rm

∫
|z|<2/|x|

|x|2dz
|x̂− z|m−2|z|m−2

→ 0

uniformly with respect to y, where x̂ = x/|x|. This shows that Zy,ε converges

to Zy in the operator norm of Xρ locally uniformly with respect to y. Hence

Zy is compact and is norm continuous. ✷

Proof of Theorem 2.5. Decompose V (x) = V0(x) + V1(x) in such

a way that ‖V0‖(γ) < C0 and V1 ∈ C∞
0 (Rm), where C0 is the constant
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appeared in Lemma 2.7. Denote by K0(x, y) the integral kernel of K0 ≡
limε→0(H0 + V0 ± i0)−1. In virtue of Lemma 2.7, K0(x, y) is continuous for

x �= y and satisfies |K0(x, y)| ≤ C|x − y|2−m. Thus, by Lemma 2.8, the

integral operator Zy defined in Xρ by (2.16) with this K0(x, y) and V1(x) is

compact and is norm continuous with respect to y.

We show that 1 + Zy is an isomorphism of Xρ. Suppose that u(x) +

Zyu(x) = 0, u ∈ Xρ. Then |u(x)| is bounded by a constant times the RHS

of (2.17) and repeating the similar estimate implies that u(x) is continuous

and satisfies |u(x)| ≤ C〈x〉2−m. (This may also be seen by the elliptic

regularity theorem for Schrödinger operators with Kato class potentials, see

e.g. [16].) Set uy(x) = u(x − y). uy is continuous, |uy(x)| ≤ 〈x − y〉2−m,

and it satisfies the integral equation

uy(x) +

∫
Rm

K0(x, z)V1(z)uy(z)dz = 0.(2.18)

By applying −� + V0(x) to (2.18), we see −�uy(x) + V (x)uy(x) = 0. It

follows that u(x) ≡ 0, since uy ∈ L2
−1−ε(R

m) (or uy ∈ L2(Rm) if m ≥ 5),

and since we are assuming that zero is not resonance nor eigenvalue of

H = H0 + V . Thus 1 + Zy is an isomorphism of Xρ.
Set K0y(x) = K0(x+ y, y). By the remark after the definition (2.15) of

Xρ, K0y is an Xρ valued continuous function. Hence, Ky = (1 + Zy)
−1K0y

is well defined and is also an Xρ valued continuous function. Set K(x, y) =

Ky(x − y). K(x, y) is jointly continuous for x �= y; |K(x, y)| ≤ Cy〈x −
y〉ρ|x− y|2−m with Cy bounded for bounded y; and it satisfies the integral

equation

K(x, y) = K0(x, y) −
∫
Rm

K0(x, z)V1(z)K(z, y)dz.(2.19)

Note that (2.19) and (2.17) imply that K(x, y) in fact satisfies the estimate

|K(x, y)| ≤ Cy|x− y|2−m, where Cy is again bounded for bounded y.

We show that K(x, y) is the integral kernel of R(0) and it satisfies the

estimate mentioned in the theorem. Denote by K the integral operator with

the integral kernel K(x, y). Then, for u ∈ C∞
0 (R), Ku(x) is continuous,

|Ku(x)| ≤ C〈x〉2−m and, in virtue of (2.19), Ku = K0u−K0V1Ku. Subtract

R(0)u = K0u −K0V1R(0)u from this equation side by side and write v =

R(0)u−Ku. Then v ∈ L2
−1−ε, ε > 0, and it satisfies v+K0V1v = 0. Applying

H0 + V0 to both sides of this equation implies −�v(x) + V (x)v(x) = 0 and
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we conclude v = 0 because zero is not a resonance or an eigenvalue of H.

Hence Ku = R(0)u for any u ∈ C∞
0 and R(0) = K. Since R(0)∗ = R(0),

we have K(x, y) = K(y, x) and |K(x, y)| ≤ Cx|x− y|2−m with Cx bounded

for bounded x. Going back to (2.19), we conclude |K(x, y)| ≤ C|x− y|2−m.

This completes the proof of Theorem 2.5. ✷

Since K(x, y) satisfies −�xK(x, y)+V (x)K(x, y) = δ(x−y), we expect

from the elliptic regularity that K(x, y) is smooth where V is. We prove

the following result.

Lemma 2.9. Suppose V is as in Theorem 2.5 and, in addition, DαV (x)

satisfies (2.7) for |α| ≤ �. Let K(x, y) be the integral kernel of R(0). Then,

for y �= 0, K(x, x− y) is C� with respect to x ∈ Rm and |Dα
xK(x, x− y)| ≤

Cα|y|2−m, |α| ≤ �.

Proof. Let τh be the translation by h and Vh(x) = V (x + h). Then

K(x+ h, y+ h) is the integral kernel of τhR(0)τ−1
h = (−�+Vh)

−1 ≡ Rh(0)

and the resolvent equation Rh(0) − R(0) = −Rh(0)(Vh − V )R(0) implies

that

K(x+h, y+h)−K(x, y) = −
∫
Rm

K(x+h, z+h)(V (z+h)−V (z))K(z, y)dz.

Hence Theorem 2.5, Lemma 2.6 and the assumption on DV together imply

(∂/∂hj)K(x+ h, y + h)|h=0 = −
∫
Rm

K(x, z)(∂V/∂zj)(z)K(z, y)dz.

Repeating this argument, we obtain

Dα
hK(x+ h, y + h)|h=0 =

|α|∑
�=1

∑
α1+···+α�=α

Cα1,...,α�
Gα1,...,α�

(x, y),

where Gα1,...,α�
(x, y) is the integral kernel of R(0)V (α1)R(0) · · ·V (α�)R(0).

Applying Theorem 2.5 and Lemma 2.6 and using the assumptions on DαV

for estimating Gα1,...,α�
(x, y), we obtain the lemma immediately. ✷

We need the following lemma.

Lemma 2.10. Let 1 ≤ p, q, r ≤ ∞ satisfy r−1 ≥ p−1 + q−1 − 1. Then:

(1) If ρ, σ < m and ρ + σ > m. Then ‖f ∗ g‖�∞ρ+σ−m(Lr) ≤ C‖f‖�∞ρ (Lp) ·
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‖g‖�∞σ (Lq) .

(2) If ρ or σ > m, then ‖f ∗ g‖�∞
min(ρ,σ)

(Lr) ≤ C‖f‖�∞ρ (Lp) · ‖g‖�∞σ (Lq).

Proof. Take φ ∈ C∞
0 (|x| < 1/2) such that

∫
φ(x)dx = 1 and set

fy(x) = φ(x − y)f(x) and etc. Clearly fy is supported by y + B(O, 1/2),

f(x) =
∫
fy(x)dy and we may write

(f ∗ g)(x) =

∫
(fy ∗ gz)(x)dydz.

Note that fy ∗ gz is supported by y + z + B(O, 1). It follows by Young’s

inequality that, if Q∗ is the cube of side 4 with center at the origin,

‖f ∗ g‖Lr(Qn) ≤ C

∫
y+z−n∈Q∗

‖fy‖Lp(Rm)‖gz‖Lq(Rm)dydz

≤ C‖f‖�∞ρ (Lp)‖g‖�∞σ (Lq)

∫
y+z−n∈Q∗

〈y〉−ρ〈z〉−σdydz.

Estimating the last integral in a standard fashion, we obtain the lemma. ✷

The following lemma implies the estimate (1.12) in the introduction.

Lemma 2.11. Let V satisfy (1.1) for |α| ≤ [(m − 2)/2] and δ > (m +

3)/2. Then:∫
Rm

{∫
〈x〉2σ|DαV (x)Dβ

xK(x, x− y)DγV (x− y)|2dx
}1/2

dy < ∞,(2.20)

for |α+ β + γ| ≤ [(m− 2)/2] and σ < δ − 2.

Proof. In virtue of Lemma 2.9, the left hand side of (2.20) is bounded

by a constant times∫
Rm

{∫
〈x〉2σ|DαV (x)DγV (x− y)|2dx

}1/2 dy

|y|m−2
.(2.21)

We estimate (2.21) by applying Lemma 2.10. We denote the function

{· · ·}1/2 in (2.21) by Wαγ(y). If m = 3, we have only the case α = β = γ = 0.

By using Lemma 2.10, (2), we have

W00(y) =

{∫
〈x〉2σ|V (x)V (x− y)|2dx

}1/2

∈ �∞δ−σ(L
2).
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Hence, if σ < δ − 2, we have (2.21) ≤
∫
Rm(|Wαγ(y)|/|y|)dy < ∞.

When m = 4 or = 5, we only prove (2.20) for the case |α| = 1 and

β = γ = 0. We may assume p0(> m/2) is close to m/2. We have |V |2 ∈
�∞2δ(L

q0/2), 1/q0 = 1/p0 − 1/m, by Sobolev’s lemma. Thus Lemma 2.10 im-

plies Wαγ ∈ �∞δ−σ(L
r), 1/r = 2/p0 − 1/m − 1/2 < 2/m, and∫

Rm(|Wαγ(y)|/|y|m−2)dy < ∞, if σ < δ − 2. The proof for m ≥ 6 is

similar (in fact easier) and we omit the details. ✷

2.3 Lp boundedness of W1

We close this section by recalling the argument in [21] that shows that

W1 defined by (1.2):

W1u(x) ≡ − 1

2πi
lim
ε↓0

∫ ∞

−∞
R0(λ− iε)V R0(λ+ iε)u(x)dλ

is bounded in Lp. We begin with the following lemma (Lemma 2.3 of [21]),

which may be proved by computing the inverse Fourier transform of essen-

tially one dimensional function ξ → (2ηξ − η2 + iε)−1.

Lemma 2.12. Let η ∈ Rm \ {0} and η̂ = η/|η|. Then

lim
ε↓0

1

(2π)m/2

∫
Rm

eixξ f̂(ξ)

2ηξ − η2 + iε
dξ =

1

2i|η|

∫ ∞

0
e−it|η|/2f(x+ tη̂)dt.(2.22)

The following proposition proves that W1 is bounded in Lp under a

rather mild condition on V (x). Σ is the unit sphere of Rm and dω is its

surface element.

Proposition 2.13. Set for t ∈ R and ω ∈ Σ

K̂V (t, ω) =
i

2(2π)m/2

∫ ∞

0
V̂ (rω)rm−2eitr/2dr .(2.23)

We write xω = x− 2(xω)ω for the reflection of x along the ω-axis. Then:

1. The operator W1 can be expressed as follows:

W1u(x) =

∫
Σ
dω

∫ ∞

2xω
K̂V (t, ω)u(tω + xω)dt.(2.24)
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2. For any 1 ≤ p ≤ ∞, we have

‖W1u‖Lp(Rm) ≤ 2‖K̂V ‖L1([0,∞)×Σ)‖u‖Lp(Rm) .(2.25)

3. Let σ > 1/2 and ρ > m/2+σ. Then, there exist constants C1, C2 such

that

‖K̂V ‖L1([0,∞)×Σ) ≤ C1‖〈x〉σV ‖H(m−3)/2 ≤ C2

∑
|α|≤�0

‖DαV ‖�∞ρ (Lp0 ) ,(2.26)

where p0, �0 are as in Theorem 1.2.

Proof. We compute the Fourier transform of W1u . Performing the

λ-integration first via the residue theorem, we see that it is equal to

−1

(2πi)

1

(2π)m/2
lim
ε↓0

∫ ∞

−∞

{∫
Rm

V̂ (η)û(ξ − η)dη

(ξ2 − λ+ iε)((ξ − η)2 − λ− iε)

}
dλ(2.27)

= lim
ε↓0

−1

(2π)m/2

∫
Rm

V̂ (η)û(ξ − η)

2ξη − η2 + iε
dη .

We then invert the Fourier transform. Applying (2.22), we deduce

W1u(x) =
−1

(2π)m/2
(2.28)

×
∫
Rm

V̂ (η)

2i|η|

{∫ ∞

0
e−it|η|/2+iη(x+tη̂)u(x+ tη̂)dt

}
dη .

Introducing the polar coordinates η = rω, r > 0, ω ∈ Σ, and changing the

order of integration, we obtain

W1u(x) =

∫
Σ
dω

∫ ∞

0
dt

{
i

2(2π)m

∫ ∞

0
V̂ (rω)ei(t+2xω)r/2rm−2dr

}
u(x+ tω) .

The identity (2.24) follows from this by the change of variable t → t −
2(xω). Observing that x → xω is measure preserving, we apply Minkowski’s

inequality to (2.24) and obtain (2.25).

By Parseval-Plancherel formula we have∫ ∞

0
|K̂V (t, ω)|2dt =

1

2(2π)m−1

∫ ∞

0
|V̂ (rω)|2r2m−4dr.
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Integrating both sides with respect to ω over Σ gives

‖K̂V ‖2
L2([0,∞)×Σ) =

1

2(2π)m−1

∫
Rm

|ξ|m−3|V̂ (ξ)|2dξ ≤ C‖V ‖2
H(m−3)/2 .

Similarly we have

‖tK̂V ‖2
L2([0,∞)×Σ) ≤ C

∫
Rm

|ξ|m−3(|∇ξV̂ (ξ)|2 + |ξ|−2|V̂ (ξ)|2)dξ

≤ C‖〈x〉V ‖2
H(m−3)/2 .

Interpolating these two estimates by the complex interpolation method, we

deduce that for any σ > 1/2,

‖K̂V ‖L1([0,∞)×Σ) ≤ Cσ‖〈t〉σK̂V ‖L2([0,∞)×Σ) ≤ Cσ‖〈x〉σV ‖H(m−3)/2 .

The second inequality of (2.26) is obvious since p0 ≥ 2. ✷

3. Estimate at low energy

In what follows we assume that V satisfies the condition of Theorem 1.2

with � = 0. In this section, we prove that the low energy part W±φ1(H0)
2 =

φ1(H)W±φ1(H0) of W± is bounded in Lp, where φ1 ∈ C∞
0 (R1) is such that

φ1(λ) = 1 for |λ| ≤ 1 and φ1(λ) = 0 for |λ| ≥ 2. We prove this for the case

m ≥ 4 is even only. Nevertheless, we state some results for the case m ≥ 3

is odd as well when we think them of independent interest.

Since V is clearly very short range and H = H0 + V admits no positive

eigenvalues ([2]), all statements in the previous section hold. Moreover,

writing V (x) = A(x)B(x) as before, we have the following properties which

are all well known in scattering theory (cf. [1], [7], [14]):

1. AR0(λ ± i0)B ≡ Q±
0 (λ) ∈ B(L2) is uniformly bounded on [0,∞) and

1 +Q±
0 (λ) has a bounded inverse in B(L2) for all λ ∈ [0,∞). We have

the resolvent equation (2.12):

R±(λ) = R±
0 (λ) −R±

0 (λ)B(1 +Q±
0 (λ))−1AR±

0 (λ).(3.29)

2. AR±(λ)B are uniformly bounded in B(L2) and locally Hölder contin-

uous on [0,∞) .

3. A and B are H0- as well as H-smooth in the sense of Kato:
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sup
ε>0

∫ ∞

−∞
‖AR0(λ± iε)u‖2dλ ≤ C‖u‖2;(3.30)

sup
ε>0

∫ ∞

0
‖AR(λ± iε)u‖2dλ ≤ C‖u‖2.

4. The wave operators W± exist and have the stationary expression (1.2)

∼ (1.3).

In virtue of Proposition 2.13 the Lp boundedness of φ1(H)W±φ1(H0) is

equivalent to that of W2,low = φ1(H)W2φ1(H0). We decompose W2,low =

W
(1)
2,low +W

(2)
2,low by splitting the resolvent as R−(λ) = R̃−(λ) +R(0) in the

formula (1.3):

W
(1)
2,lowu = φ1(H)(3.31)

×
{

1

2πi

∫ ∞

0
R−

0 (λ)V R(0)V (R+
0 (λ) −R−

0 (λ))dλ

}
φ1(H0)u,

W
(2)
2,lowu = φ1(H)(3.32)

×
{

1

2πi

∫ ∞

0
R−

0 (λ)V R̃−(λ)V (R+
0 (λ) −R−

0 (λ))dλ

}
φ1(H0)u.

We prove that W
(1)
2,low and W

(2)
2,low are both bounded in Lp separately.

We rewrite (3.31) as follows. By using that R+
0 (λ) = R−

0 (λ) for λ ≤ 0,

we extend the region of integration to the whole line and write

(W
(1)
2,lowu, v)

=
1

2πi

∫ ∞

0
(AR(0)B ·A(R+

0 (λ) −R−
0 (λ))φ1(H0)u,BR

+
0 (λ)φ1(H)v)dλ.

Here, in virtue of (3.30), AR−
0 (λ)φ1(H0)u and BR+

0 (λ)φ1(H)v are boundary

values of L2-valued Hardy functions in the lower and upper half planes

respectively. Hence they are orthogonal to each other and we obtain

(W
(1)
2,lowu, v) =

1

2πi

∫ ∞

0
〈V R(0)V R+

0 (λ)φ1(H0)u,R
+
0 (λ)φ1(H)v〉dλ.(3.33)

Recall that φ1(H0), φ1(H) are bounded in Lp as shown in section 2. Denote

the integral kernel of R(0) by K(x, y), the multiplication with the function
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My(x) = V (x)K(x, x − y)V (x − y) by My, and the translation by y ∈ Rm

by τy. Then we write V R(0)V in the form

V R(0)V u(x) =

∫
Rm

V (x)K(x, x− y)V (x− y)u(x− y)dy(3.34)

=

∫
Rm

Myτyu(x)dy,

and inserting (3.34) into (3.33), we obtain

(W
(1)
2,lowu, v)(3.35)

=
1

2πi

∫ ∞

−∞

∫
Rm

〈MyR
+
0 (λ)φ1(H0)τyu,R

+
0 (λ)φ1(H)v〉dydλ.

Here the integral is absolutely convergent with respect to dydλ. Indeed, for

σ > 1/2 we have 〈x〉σMy(x) ∈ H(m−3)/2(Rm
x ) for some σ > 1/2 in virtue of

Lemma 2.11 and ‖My‖Lm/2(Rm
x ) ≤ C‖〈x〉σMy(x)‖H(m−3)/2(Rm

x ) by Sobolev’s

lemma. Hence |My|1/2 is H0-smooth for every y ∈ Rm ([7]):∫
R
‖|My|1/2R±

0 (λ)u‖2dλ ≤ C‖〈x〉σMy(x)‖H(m−3)/2(Rm
x )‖u‖2

L2

and, thanks to (2.20) we have∫ ∞

−∞

∫
Rm

|〈MyR
+
0 (λ)φ1(H0)τyu,R

+
0 (λ)φ1(H)v〉|dλdy

≤ C‖φ1(H0)u‖L2‖φ1(H)v‖L2

∫
Rm

‖〈x〉σMy‖H(m−3)/2dy < ∞.

It follows by changing the order of integration in (3.35) that

(W
(1)
2,lowu, v)(3.36)

=

∫
Rm

{
1

2πi

∫ ∞

−∞
〈R−

0 (λ)MyR
+
0 (λ)φ(H0)τyu, φ1(H)v〉dλ

}
dy

and the application of Proposition 2.13 and (2.20) to (3.36) yields, with

σ > 1/2 and 1/p+ 1/q = 1 that

|(W (1)
2,lowu, v)| ≤ C

∫
Rm

‖〈x〉σMy‖H(m−3)/2dy · ‖u‖Lp‖v‖Lq ≤ C1‖u‖Lp‖v‖Lq

Thus, we have proved the following lemma.
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Lemma 3.14. W
(1)
2,low is bounded in Lp for any 1 ≤ p ≤ ∞.

Before starting the proof of the Lp boundedness of W
(2)
2,low, we record

some results about the differentiability of R±(λ) that are necessary in what

follows. They are simple consequences of the resolvent equation (3.29),

Lemma 2.1 and the decay property of the potential DαV ∈ �∞δ (Lp0), and

we omit the proof.

Lemma 3.15. Let 0 ≤ j ≤ (m+2)/2 and ε > 0. Then R±(λ) is j times

differentiable as a B(L2
j+1/2+ε, L

2
−j−1/2−ε) valued function of λ ∈ (0,∞).

Lemma 3.16. Let 2 ≤ ρ ≤ (m + 2)/2 and s > ρ + 1/2. Then, for

0 < k < 1,

‖(d/dk)jR̃±(k2)‖B(L2
s,L

2
−s)

≤
{

Cjk
2−j〈log k〉, if m ≥ 4;

Cjk
1−j , if m = 3,

(3.37)

for 0 ≤ j ≤ ρ.

We show that the integral kernel W
(2)
2,low(x, y) of W

(2)
2,low satisfies the

criterion (1.6). Using the identity (R+
0 (λ) − R−

0 (λ))φ1(H0) = (R+
0 (λ) −

R−
0 (λ))φ1(λ) and changing the variable λ = k2, we write

W
(2)
2,low =

1

πi

∫ ∞

0
φ1(H)R−

0 (k2)V R̃−(k2)V (R+
0 (k2) −R−

0 (k2))(3.38)

×φ1(H0)φ̃1(k
2)kdk ,

where φ̃1 ∈ C∞
0 (R) is such that φ̃1(λ)φ1(λ) = φ1(λ), Hence, if we de-

note the integral kernels of R±
0 (k2)φ1(H0) and R±

0 (k2)φ1(H) respectively

by G
(∗)
± (x, y, k) and G

(∗∗)
± (x, y, k), and if we set G

(∗)
±,k,y(x) = G

(∗)
± (x, y, k)

and G
(∗∗)
±,k,y(x) = G

(∗∗)
± (x, y, k), then W

(2)
2,low(x, y) is given by W

(2)
2,low(x, y) =

W
(2),+
2,low (x, y) −W

(2),−
2,low (x, y), where

W
(2),±
2,low (x, y) =

1

πi

∫ ∞

0
φ̃(k2)〈R̃−(k2)V G

(∗)
±,k,y, V G

(∗∗)
+,k,x〉kdk,(3.39)

Recall that the integral kernel of R±
0 (k2) is given by G±(x − y, k) (see

(2.2)) and that we are assuming m is even. Expanding (z ± (it/2))ν in the
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Hankel formula (2.3):

±i z
νH

(j)
ν (z)

4(2π)ν =
∑ν

s=0 C
±
νse

±izzsH±
νs(z),

H±
νs(z) =

∫∞
0 e−tt2ν−s−1/2

(
z ± it

2

)−1/2
dt.

(3.40)

and introducing ϕ(x, y) = |x− y| − |x|, we decompose

G±,x,k(y) = e±ik|x|
ν∑
s=0

ksC±
νs

e±ikϕ(x,y)H±
νs(k|x− y|)

|x− y|m−2−s(3.41)

≡ e±ik|x|
ν∑
s=0

ksG±,x,k,s(y) ,

where C±
νs are constants and the definition of G±,x,k,s(y) should be obvious.

We have obvious inequality |ϕ(x, y)| ≤ |y|. We decompose G
(∗)
± (x, y, k)

and G
(∗∗)
± (x, y, k) accordingly: Write Φ0(x, y) and Φ(x, y) for the kernels of

φ(H0) and φ(H) respectively, and define

G
(∗)
±,x,k,s(y) =

∫
Rm

e±ik(|z|−|x|)G±,z,k,s(y)Φ0(z, x)dz ;

G
(∗∗)
±,x,k,s(y) =

∫
Rm

e±ik(|z|−|x|)G±,z,k,s(y)Φ(z, x)dz .(3.42)

We have
G

(∗)
±,x,k(y) = e±ik|x|

∑ν
s=0 k

sG
(∗)
±,x,k,s(y) ,

G
(∗∗)
±,x,k(y) = e±ik|x|

∑ν
s=0 k

sG
(∗∗)
±,x,k,s(y) ,

(3.43)

and inserting (3.43) into (3.39) yields

W
(2),±
2,low (x, y) =

ν∑
s,s′=0

1

πi

∫ ∞

0
e−ik(|x|∓|y|)(3.44)

×φ̃1(k
2)〈R̃−(k2)V G

(∗)
±,y,k,s, V G

(∗∗)
+,x,k,s′〉ks+s

′+1dk .

We write each summand in the RHS of (3.44)

T±
ss′(x, y) =

∫ ∞

0
e−ik(|x|∓|y|)φ̃1(k

2)L±
ss′(x, y, k)k

s+s′+1dk,(3.45)

L±
ss′(x, y, k) = (1/πi)〈R̃−(k2)V G

(∗)
±,y,k,s, V G

(∗∗)
+,x,k,s′〉 .(3.46)
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Lemma 3.17. Let α+β = 0, 1, . . . , (m+2)/2 and s = 0, . . . , (m−2)/2.

Then, for some ε > 0,

‖V Dβ
kG

(∗)
±,x,k,s‖L2

α+1+ε
(3.47)

≤
{

C〈x〉−m+s+3/2k−1/2−β , if m is even;

C〈x〉−m+2+s, if m is odd,

for 0 < k ≤ 2. The estimate (3.47) remains true if G
(∗)
±,x,k,s is replaced by

G
(∗∗)
±,x,k,s.

Proof. We prove only the case m is even. We have |k|x|(k|x| ±
(it/2))−1| ≤ 1 and

|Dβ
kH

±
νs(k|x|)| ≤ C|x|β

∣∣∣∣∫ ∞

0
e−tt2ν−s−1/2(k|x| ± (it/2))−1/2−βdt

∣∣∣∣
≤ C|x|β(k|x|)−1/2−β = Ck−1/2−β|x|−1/2

It follows that |Dβ
kG±,x,k,s(y)| ≤ Ck−1/2−β|x−y|3/2−m+s〈y〉β. On the other

hand we know from Lemma 2.4 that |Φ0(z, x)| ≤ CN 〈z − x〉−N for any N .

Using these, we deduce from (3.42) that

|Dβ
kG

(∗)
±,x,k,s(y)| ≤ Ck−1/2−β〈x− y〉3/2−m+s〈y〉β.

Since ‖V (y)〈y〉β〈y〉α+1+ε‖L2(Qn) ≤ C〈n〉α+β+1+ε−δ and δ− (α+β+1+ ε) >

m − 1 for sufficiently small ε > 0, the estimate (3.47) for G
(∗)
±,x,k,s follows.

The proof for G
(∗∗)
±,x,k,s is similar. ✷

Applying Lemma 2.1 and Lemma 3.17 with β = 0, we obtain that

|L±
ss′(x, y, k)| ≤ Ck−1〈x〉−m+s′+3/2〈y〉−m+s+3/2

and by integration

|T±
ss′(x, y)| ≤ C〈x〉−m+s′+3/2〈y〉−m+s+3/2.(3.48)
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For improving the decay estimate of (3.48), we apply integrations by parts

with respect to the variable k µss′ = max{s, s′} + 2 times in (3.45). A

computation with Leibniz’ formula shows that

D
µss′
k (φ̃(k2)ks+s

′+1L±
ss′(x, y, k))

=
∑

α+β+γ=µss′

×Cαβγ〈Dα
k (φ̃(k2)ks+s

′+1R̃−(k2))V Dβ
kG

(∗)
±,y,k,s, V D

γ
kG

(∗∗)
+,x,k,s′〉

(3.49)

and applying Lemma 3.17 and Lemma 3.16, we see that each summand in

(3.49) is bounded in modulus by a constant times

ks+s
′+3−α〈log k〉k−1/2−β〈y〉−m+s+3/2k−1/2−γ〈x〉−m+s′+3/2

≤ C〈log k〉〈x〉−m+s′+3/2〈y〉−m+s+3/2, 0 ≤ k ≤ 2 .
(3.50)

It follows that no boundary terms appear in the following integration by

parts:

T±
ss′(x, y) =

∫ ∞

0

(−Dk)
µss′ (e−ik(|x|∓|y|))

(|x| ∓ |y|)µss′
φ̃(k2)L±

ss′(x, y, k)k
s+s′+1dk

=
1

(|x| ∓ |y|)µss′

×
∫ ∞

0
e−ik(|x|∓|y|)D

µss′
k (φ̃(k2)L±

ss′(x, y, k)k
s+s′+1)dk

and, in virtue of (3.49) ∼ (3.50),

|T±
ss′(x, y)| ≤ Cs,s′〈x〉−m+s′+3/2〈y〉−m+s+3/2||x| ∓ |y||−µss′

Combining this with (3.48) and summing up for 0 ≤ s, s′ ≤ ν = (m− 2)/2,

we obtain

|W (2),±
2,low (x, y)| ≤

ν∑
s,s′=0

Cs,s′
〈x〉−m+s′+3/2〈y〉−m+s+3/2

〈|x| ∓ |y|〉µss′
.(3.51)

Now we can complete the proof of the following

Lemma 3.18. The functions W
(2),±
2,low (x, y) satisfy the estimates (1.6)

and the operator W
(2)
2,low is bounded in Lp for any 1 ≤ p ≤ ∞.
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Proof. We integrate (3.51) with respect to the variable x by using

the polar coordinates: The (s, s′)-summand in the RHS produces a constant

times ∫
Rm

〈x〉−m+s′+3/2〈y〉−m+s+3/2

〈|x| ∓ |y|〉µss′
dx

≤ C

∫ ∞

0

〈r〉s′+1/2dr

〈r − |y|〉µss′ 〈y〉m−s−3/2

≤ C

∫ ∞

−∞

〈r〉s′+1/2 + 〈y〉s′+1/2

〈r〉µss′ 〈y〉m−s−3/2
dr .

(3.52)

Here s′ + 1/2 ≤ m− s− 3/2, since s+ s′ ≤ m− 2, and the supy∈Rm of the

RHS is finite. Hence,

sup
y∈Rm

∫
Rm

|W±
2,low(x, y)|dx < ∞ .

We may likewise prove the other relation of (1.6) and the lemma follows. ✷

4. Estimate at high energy

In this section we prove that the high energy part φ2(H)W2φ2(H0)u of

W2 is also bounded in Lp. Recall that W2 is given by (1.3):

W2u =
1

2πi

∫ ∞

0
R−

0 (λ)V R−(λ)V {R+
0 (λ) −R−

0 (λ)}udλ

and that φ2 ∈ C∞(R) is such that φ2(λ) = 1 for λ ≥ 2 and φ2(λ) = 0 for

λ ≤ 1. As the argument in this section is very much similar to that of the

previous section as well as of section 4 of [21], we shall be rather sketchy

here.

Expand R−(λ) via the repeated use of the resolvent equation (3.29):

R−(λ) =
2N−1∑
n=0

(−1)nR−
0 (λ)(V R−

0 (λ))n + (R−
0 (λ)V )NR−(λ)(V R−

0 (λ))N ,

and decompose W2 =
∑2N+2

n=2 (−1)nW (n) accordingly, where W (n) is given

by

W (n)u =
1

2πi

∫ ∞

0
R−

0 (λ)(V R−
0 (λ))n−1V {R+

0 (λ) −R−
0 (λ)}udλ,

n = 2, . . . , 2N + 1;

W (2N+2)u =
1

2πi

∫ ∞

0
R−

0 (λ)V FN (λ)V {R+
0 (λ) −R−

0 (λ)}udλ.
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Here we wrote FN (λ) = (R−
0 (λ)V )NR−(λ)(V R−

0 (λ))N . It is shown in sec-

tion 2 of [21] by repeated application of the argument similar to the one

used in the proof of Proposition 2.13 that W (n)u, n = 2, . . . , 2N+1, has the

following expression: Set for s1, . . . , sn ∈ R1 and ω1, . . . , ωn ∈ Σ, Σ being

the unit sphere of Rm,

Kn(s1, · · · , sn, ω1, · · · , ωn) = Cn(s1 · · · sn)m−2
n∏
j=1

V̂ (sjωj − sj−1ωj−1),

where C is an absolute constant, whose precise value is not important here,

and sjωj = 0 if j = 0; and denote its “Fourier transform” with respect to

the radial variables (s1, · · · , sn) by

K̂n(t1, . . . , tn, ω1, . . . , ωn)

=

∫
[0,∞)n

e
i
∑n

j=1
tjsj/2Kn(s1, . . . , sn, ω1, . . . , ωn)ds1 · · · dsn.

Then W (n)u, n = 2, . . . , 2N + 1, can be written in the form

W (n)u(x) =

∫
[0,∞)n−1×I×Σn

×K̂n(t1, . . . , tn−1, τ, ω1, . . . , ωn)u(xωn + ρ)dt1 · · · dtn−1dτdω1 · · · dωn

where I = (2x · ωn,∞) is the range of the integration by the variable τ ,

xωn = x− 2(ωn · x)ωn, is the reflection of x along ωn, and ρ = t1ω1 + · · · +
tn−1ωn−1 + τωn. Since x → xωn is measure preserving and ρ is independent

of x, Minkowski’s inequality implies as in section 2 that

‖W (n)u‖Lp ≤ 2‖K̂n‖L1([0,∞)n×Σn)‖f‖Lp , 1 ≤ p ≤ ∞.(4.53)

We showed in Lemma 2.5 of [21] that for any σ > 1

‖K̂n‖L1([0,∞)n×Σn) ≤ Cn‖F(〈x〉σV )‖nLm∗ .

Set ρ = (m − 2)/2 if m ≥ 4, ρ = 0 if m = 3 and t = 2(m − 1)/(m − 3). If

m ≥ 4, we have tρ > m and, by Hölder’s inequality,

‖F(〈x〉σV )‖Lm∗ ≤ ‖〈ξ〉−ρ‖Lt‖〈ξ〉ρF(〈x〉σV )‖L2 ≤ C‖〈x〉σV ‖Hρ



Schrödinger operators III 343

for any σ and this holds obviously if m = 3. On the other hand it is clearly

possible to find 1 < σ < δ such that

‖〈x〉σV ‖Hρ ≤ C1

∑
|α|≤�0

‖DαV ‖�∞
δ

(Lp0 ).

This proves that W (n) hence φ2(H)W (n)φ2(H0) are bounded in Lp if n =

2, . . . , 2N + 1.

For completing the proof of Theorem 1.2, it remains only to prove that

the operator φ2(H)W (2N+2)φ2(H0) is bounded in Lp. We write it in the

following form:

φ2(H)
1

2πi

(∫ ∞

0
R−

0 (λ)V FN (λ)V {R+
0 (λ) −R−

0 (λ)}φ̃2(λ)dλ

)
φ2(H0) .

Here φ̃2 ∈ C∞(R) is such that φ̃2(λ)φ2(λ) = φ2(λ) and φ̃2(λ) = 0 for

λ ≤ 1/2. We need only prove that the operator inside the parenthesis

T± =

∫ ∞

0
R−

0 (k2)V FN (k2)V R±
0 (k2)φ̃2(k

2)kdk

is bounded in Lp. The integral kernel T±(x, y) of T± can be computed as

in the previous section and are given by

T±(x, y) =

∫ ∞

0
(FN (k2)V G±,y,k, V G+,x,k)φ̃2(k

2)kdk(4.54)

=

∫ ∞

0
e−ik(|x|∓|y|)(FN (k2)V G̃±,y,k, V G̃+,x,k)φ̃2(k

2)kdk,

where we wrote as in (3.41):

G±,x,k(y) = e±ik|x|
ν∑
s=0

ksG±,x,k,s(y) ≡ e±ik|x|G̃±,x,k(y).(4.55)

Here, as can be easily see from (2.2) and (2.3), we have for k ≥ 1/4:

|Dρ
kG̃±,x,k(y)| ≤ Cρ〈y〉ρ|x− y|2−m(1 + k|x− y|)(m−3)/2.(4.56)

Using Lemma 2.1 and Lemma 2.2 for the mapping property and the decay

of the resolvent in the k variable, we obtain as in section 4 of [21] that, for

sufficiently large N ,

|φ̃2(k
2)(FN (k2)V G±,y,k, V G+,x,k)| ≤ C〈k〉−3〈x〉−(m−1)/2〈y〉−(m−1)/2.
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Integrating with respect to the variable k gives

|T±(x, y)| ≤ C〈x〉−(m−1)/2〈y〉−(m−1)/2.(4.57)

which is, however, is not sufficient for T±(x, y) to satisfy the criterion (1.6).

For proving that T±(x, y) enjoys better decay property, we perform integra-

tions by parts µ = (m+ 2)/2 times in (4.54) as in the previous section:

T±(x, y) =

∫ ∞

0
(|y| ∓ |x|)−µ(Dµ

ke
−ik(|x|±|y|))(4.58)

·(FN (k2)V G̃±,y,k, V G̃+,x,k)φ̃2(k
2)kdk

=
∑

α+β+γ+δ=µ

∫ ∞

0

e−ik(|x|−|y|)

(|x| ∓ |y|)µ

×(Dα
kFN (k2)V Dβ

k G̃±,y,k, V D
γ
kG̃+,x,k)D

δ
k(φ̃2(k

2)k)dk.

Note that we do not have to worry about singularities at k = 0 because

φ̃2(k
2) = 0 for 0 ≤ k ≤ 1/4. By using again Lemma 2.1 and Lemma 2.2, we

see that

|(Dα
kFN (k2)V Dβ

k G̃±,y,k, V D
γ
kG̃+,x,k)|(4.59)

≤ C〈k〉−3〈x〉−(m−1)/2〈y〉−(m−1)/2.

Thus applying (4.59) to (4.58), and combining the result with (4.57), we

obtain

|T±(x, y)| ≤ C〈x〉−(m−1)/2〈y〉−(m−1)/2〈|x| ∓ |y|〉−(m+2)/2.

Thus the estimation as in the final paragraph of section 3 implies that

T±(x, y) satisfies (1.6). Thus φ2(H)W (2N+2)φ2(H0) is also bounded in Lp.

This completes the proof of Theorem 1.2.
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