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Abstract

R. Coleman and W. McCallum calculated the Jacobi sum Hecke characters explicitly
using their computation of the stable reduction of the Fermat curve in [CW]. In this paper,
we give an elementary proof of the main result of them without using rigid geometry or
the stable model of the Fermat curve.

1 Introduction

R. Coleman and W. McCallum calculated the Jacobi sum Hecke characters explicitly using
their computation of the stable reduction of the Fermat curve in [CW].

In this paper, we give an elementary proof of the main result of them about the Jacobi sum
Hecke characters without using rigid geometry or the stable model of the Fermat curve. Let
K denote a finite extension of Q,. We fix a prime number [ # p. Let Ug be the projective line
minus {0, 1,00} over K and %, the smooth Q-sheaf on U associated to a certain quotient of
the Fermat curve. Our aim is to calculate explicitly the Galois action on the étale cohomology
group H}(Ug, %) which realizes the Jacobi sum Hecke character as in [CW]. (Theorem 3.1.)

The author was inspired by an argument of [AS, Proposition 4.11]. It is a great pleasure for
the author to thank Professor T. Saito for teaching me the paper of Coleman and McCallum,
several discussions and reading this paper carefully. This research is supported by JSPS-
Fellowships for Young Scientists.

2 Preliminaries

In this section, we fix some notations and show key lemmas to prove the main theorem.

Let K be a henselian discrete valuation field of mixed characteristic (0,p) with O the
integer ring, with mg the maximal ideal and with F' the residue field. For an integer ¢ > 0, we



put U}? =1+mk and G K* :=U ;? /U gﬂ). We denote by ordx the normalized additive
valuation of K. We put ex := ordg (p). We fix a uniformizer 7x and write p = umsk for some
unit u € Of%.

Lemma 2.1. Let the notation and the assumption be as above.
1. Let i > f}l be a positive integer. Then the p-th power map KX — KX induces an
isomorphism .

Gr;K*5Grie, K*;14+a— 1+ pa.

2. Leti= ;TCET be an integer. Then the p-th power map K* — K* induces the following map

Gr;K* — Gripe,, K*;14+a— 1+ pa + aP.
Proof. Since we have (14 a)? =1+ pa+ a? (mod pa?), the assertions follow immediately. O

Let p be an odd prime number and n,p |m’ positive integers and we put m = p"m/. Let K
denote a finite extension of Q, containing m-th roots of unity with the residue field k. We fix
¢ a primitive p-th root of unity in K. Let m € K be an element satisfying 7°~1 = —p, ﬁ =1
(mod 7). Let ! be a prime number prime to p. Let x : um (K) — @lx be a non-trivial character.
We define 9 : F,, — Q; to be the composite Fp —> pp(K) C pm(K) — Q, where the
first map has the form 1 — ¢ and the last map is x. We denote by X' : fim (k) — @Ix the

composite of the canonical isomorphism gy, (k) = pims (K ) and the restriction x|, _, (k) to the
subgroup fim (K) C pm(K). We assume that 1 and x' are non-trivial

Let U be a regular noetherian scheme which is flat over Ox and D C U an irreducible
divisor. We assume that U\D = U Qo, K. For an invertible function f on U, we write f for
the image of f by the restriction map I'(U, O};) — I'(D, OF). For an invertible function f on
U 4 (f) denotes the smooth Q;-sheaf on U\ D associated to the character x and the equation

f For an invertible function f on D, () denotes the Kummer sheaf on D defined by
the character x’ and the equation y™ = f. For a regular function h on D, %, (k) denotes the
Artin-Schreier sheaf on D associated to the additive character 1)y and the equation a? —a = h.

Corollary 2.2. Let the notation and the assumption be as above. Let f be an invertible function
on U. We assume that f — 1 is divisible by mPp"~! and put h:= (f — 1) /wpp"_l.

1. The sheaf 5 (f) extends to a smooth sheaf on U, which we denote by X

2. The restiction of # to D is the sheaf Ly, (X

Proof. 1. Let Ok be the henselization of the local ring Ouy,, where 7 is the generic point of
the divisor D. The sheaf J# (f) is equal to the Kummer sheaf ¥ defined by the equation
yP™ =147Ph at SpecK by the assumption and Lemma 2.1.1. Let k;, ko be integers satisfying
kip+kom' = 1. We have X = 8k & A ®k2 where 1, K5 are the Kummer sheaves defined
by equations y™ =1+ #Ph and y? = 1 + #Ph respectively. Obviously the sheaf J#; extends to
a smooth sheaf whose restriction to the special fiber is a trivial sheaf. Hence, to prove 1, it is
sufficient to prove that the Kummer covering of SpecK defined by the equation y? = 1 + 7Ph
extends to a finite étale covering of SpecOk by the Zariski-Nagata’s purity theorem(SGA 2 X
3.4). We consider a polynominal g = MM where a is an indeterminant. Then g is
contained in the polynominal ring Oxk|a] and an Ok-scheme SpecOk|a]/(g) is finite étale over
SpecOk and its generic fiber is the Kummer covering y? = 1 + nPh. Therefore the required
assertion follows.

2. The special fiber of the scheme SpecOk|[a]/(g) in the proof in 1 is defined by the following



equation a? — a = h. Hence the restriction of & to D is the Artin-Schreier sheaf defined by
the equation a? — a = koh = —-. O

In the following, we collect some well known facts on the cospecialization map.

Lemma 2.3. Let K be a finite extension of Q, with the integer ring Ok . Let Y be a noetherian
scheme of dimension 2 which is proper and separable over Ok (i.e. flat over Ok and its fibers
are geometrically reduced. Jwith fibers geometrically connected. Letl be a prime number prime to
p and A denotes a finite commutative Z;-algebra. Let W C Y be an open subscheme such that the
complement Y\W is flat over Ok. Then the cospecialization map HX(Ws, A) — H(Wg, A)
1s injective.

Proof. We consider the following commutative diagram

0 —— H°(Ys, A) —— HO((Y\W)s, A) —> H}(Ws, A) — H'(Ys, )

lz l lp lp

where the horizontal sequences are exact. Since the scheme Y\W is flat over Of, the cospe-
cialization map HO((Y\W)s,A) — H°((Y\W)g,A) is injective. Since the fibers of ¥ are
geometrically connected, the map H°(Y;,A) — H°(Y%,A) is an isomorphism. The cospe-
cialization map H'(Y;,A) — H(Yg,A) is injective by the semi-continuity theorem of the
fundamental group in Corollaire 2.4 in SGA1 X. Hence we have proved the required assertion
by the diagram chasing. . O

Corollary 2.4. Let X be o regular noetherian scheme of dimension 2 which is proper and
separable over Ok and U C X an open subscheme. We assume that X\U is flat over Ok. Let
f:W — U be a finite Galois étale covering of Galois group G. We assume that the fibers of
W are geometrically connected. Let p : G — GL(V) be an l-adic representation on a finite
dimensional Q;-vector space V. We denote by K, the smooth Q;-sheaf on U associated to the
covermg W — U and the representation p. Then the cospecialization map H! o (Us, H,) —
H}(Ug, #,) is injective.

Proof. We consider the following cartesian diagram

W——Y

yol

U——X

where f: Y — X is the normalization of X along f : W — U. Since W C Y satisfies the
conditions in Lemma 2.3, the cospecialization map H! (W5, Q) — H(Wg,Q,) is injective.
We consider the following commutative diagram

cosp.

Hcl(W.?,f*‘%/) HI(WKaf*‘)i/)

f* T f* T
HY(Us, ;) ——— H}(Ug, ;)
where the horizontal arrows are the cospecialization maps. Since the pull-back f* : H}(Us, %, 5)

— H}(Ws, f*%,) is injective and f*H, is a constant sheaf, the assertion follows from the
above commutative diagram. O



3 Main theorem and its proof

Let a, b, c be integers satisfying a+b+c = 0. We assume a = p"d’, (p,a’) = 1, (p,b) = 1, (p,¢) = 1
and n > r. We put K = Qp(m,). For an element f € K >< , we denote by 2(f) the smooth
Q;-sheaf on SpecK defined by the quadratic Kummer extenswn v =f

Let F% . : y™ = (—1)°2%(1 — z)® be a quotient of the Fermat curve over K. This curve

is a finite Galms étale covering of Uy := P} — {0,1,00} = SpecK[z*!, 11 ] of Galois group
pm(K). We simply write J#, for the smooth Q;-sheaf #;((—1)°z%(1 — z)®) on Uk under the
notation in Corollary 2.2. We will compute the Galois action on the étale cohomology group
H 1(U &> Hy) explicitly. We have dim H}(Ug, %) = 1. Note that the Galois representation

H!(Ug, %) is a direct factor of the Tate module of the Jacobian of the Fermat curve "  and
the Tate module realizes the Jacobi sum Hecke character by CM theory as in [CW, Corollary
5.2]. The Galois representation H}(Ug, Jy) is described by using Hilbert symbols and Gauss

sum as follows.

Theorem 3.1. (Coleman and McCallum) Let the notation and the assumption be as above.
1. We assume that n = r. Then we have an isomorphism

H, (Ug, Hy) ~ K ((=1)*(mp™)*) @ H(Gpp iy Hi (5 )®=%o(-—3))

as a G -representation of degree 1.
2. We assume that p > 5 andn > r. We put vy = —me, € k. Then we have an isomorphism

H; (Ug, ) = Hy(a®°c) @ 2(mp™") @ H (A}, Ly, (15%))
as a G g-representation of degree 1.

Remark 3.2. If we identify a G k-representation of degree 1 with a character of K* by the
local class field theory, the Kummer sheaf %, (f) on SpecK for an element f € KX is identified

with the Hilbert symbol KX — Q;;a — x((a, f)m)-

Lemma 3.3. 1. We have dim H}(A}, Zy,(vs?)) =1 and the geometric Frobenius acts on this
unramified representation H} (Ak,,%,o (vs2)) as the multiplication by the quadratic Gauss sum
Zsek Ui (vs?) where iy, is the composite of the trace map k — F,, and the additive character
‘2»00 We have dim H}(G,, ,;,:%/ (s%) ®$¢0( L5)) =1 and the geometric Frobenius acts on the
unramified representatzon HY Gy Hry (5%) ® Zyo(:28)) as the multiplication by the Gauss
sumb—izsekx X ((£)m)® 1/Jk(m, s) where (5)m: : K — pmy (k) is the m/-th power Legendre
symbol. :

Proof. These follow from [D, Sommes Trig. (4.3)(i) and (4.3)(ii)]. (See also [AS, Lemma 4.12]
for 1 and [La, Proposition (1.4.3.2)] for 2.) O

Proof of Theorem 38.1. 1. If we change a coordinate x = mwp™s, the sheaf J on Uk has the
following form y™ = (—1)¢(mp™)®s®(1 — mp™s)®. We put f := (1 — 7p™s)® and consider an Og-
scheme U := SpecOx[s*!, ] whose special fiber is D := G, = Speck[s!]. The projection
formula induces an isomorphism

H (U, ) = Ao ((=1)%(1p™)%) © Hy (Ug,, Hx(s°f))- (3.1)

as a Gg-representation of degree 1. We have J# (s®f) ~ J# (s*) ® 4, (f). By the assumption
n = r, the sheaf J (s®) extends to a smooth sheaf on U whose restriction to D is the Kummer



sheaf 7, (s"'). We have (f —1)/#Pp"~t|p = bs. Hence, by Corollary 2.2, the sheaf Hy ()
extends to a smooth sheaf on U whose restriction to the special fiber D = G,k is the sheaf
Zyo(;%s). Thereby we obtain the following cospecialization map

B G B0 (%) ® Ly (39)) — HE (U, Hs (1) (3.2)

and this map is injective by Corollary 2.4. We have dim H} (G pr Ay (s*)® Lo %s)) =1

by Lemma 3.3.2 and obviously dim H}(Ug, % (s2f)) = dim H}(Ug,Q;) = 1. Hence the map
(3.2) induces an isomorphism. Therefore the required assertion 1 follows from (3.1).

2. If we change a coordinate t = 1+ £z, the sheaf %, is associated to the following equation
y™ = a%’c(1 — t)*(1 + 2¢). We put f := (1 —¢t)°(1 + £¢). In the same way as (3.1), the
projection formula induces an isomorphism as a G g-representation of degree 1

HY (Ug, ) = Hy (a®8e) @ HY (Ug, H5(f))- (3.3)

We consider the quadratic extension K; := K ((mp™")/2)/K and again change a coordinate
t = (mp"~")}/2s. Let U denote an O, -scheme SpecOg, [s, ). Then the generic fiber of U is
canonically isomorphic to Uy, = ]P’}{l —{0,1,00} and the special fiber D := Uj is isomorphic
to A} = Speck(s].

We calculate the Galois action on H}(Ug, %5 (f)). Since we assume p > 5,n > r, we have
(f —1)/7Pp"1p = —‘;;;32. Hence, by Corollary 2.2, the sheaf J# (f) extends to a smooth
sheaf on U whose restriction to the special fiber A} is the Artin-Schreier sheaf Zyo(78?). Hence
we acquire the following cospecialization map H; (Ag, %y, (vs?)) — H2(Ug, H#5(f)). We have
dim H}(Ag, %y, (vs?)) = 1 by Lemma 3.3.1 and obviously we have dim Hl(Ug, #(f)) = 1.
Since the cospecialization map is injective by Corollary 2.4, the map induces an isomorphism

H (A, Ly, (v8%) = H (Ug, H5,(f)).

as a G, -representation of degree 1. We write 2(mp™~") for the character Gx — {*1};0 —
((mp"~T)1/2)7=1, Then the Galois group G acts on Aj as s — 2(mp™")(0)s. The inertia
group Ik, acts on Hj (A}, Zy,(vs?)) trivially and the quotient Ix/Ik, acts on this group as
2(mp™~T). Thereby we obtain the following isomorphism

Hg (Mg, Lyo(18%)) ® 2(mp™™") ~ HY(Ug, Hy(f)) (34)
as a G-representation. By the isomorphisms (3.3) and (3.4), the required assertion 2 follows.
Hence we have proved the main theorem. O
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