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Commuting famailies of differential operators

invariant under the action of a Weyl group

By Toshio OsHIMA and Hideko SEKIGUCHI

Abstract. For a Weyl group W of a classical root system (X, E),
we study W-invariant commuting differential operators on E whose
highest order terms generate the W-invariant differential operators with
constant coefficients. We show that the potential function for the Lapla-
cian in this commuting family of differential operators is expressed by
the Weierstrass elliptic functions. The commuting differential operators
define a generalization of hypergeometric equations.

0. Introduction

Let (X, E) be an irreducible and reduced root system of rank n and let
W be the corresponding Weyl group. We denote by S(E) the symmetric
algebra over the complexification E. of the vector space E. Let 9 denote
the algebra homomorphism of S(F) to the ring of differential operators on
FE such that

0.1) O(X)0) ) = ol + 1) o

for functions ¢ on F and X € E. We fix a system of homogeneous generators
P1,... ,pp of the algebra S(E)" of W-invariant elements of S(E). Here we
choose p; so that degp; = 2.

In this paper we shall study a system of differential operators

(0.2) P;=0(p;) +R; for j=1,...,n
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satisfying

P; are W-invariant,

ord Ry =0,

ord Rj <degp; —1 for2<j<n,
[P,,Pj]=0 for1<i<j<mn

(0.3)

in the case when the root system is of the classical type with n > 1.

We fix a W-invariant inner product (, ) on F and identify F and its dual
by this inner product. We extend ( , ) on E. X E. as a complex bilinear
form. Since Ri(z) is a function and O(p;) is a Laplacian on E under a
natural coordinate system of E, the operator

(0.4) P = ; 8_903 + R(z)

is a Euclidean Laplacian with the potential R(x) by putting R = R; for
simplicity.

The radial parts of the generators of the ring of invariant differential
operators on a Riemannian symmetric space give an example of the com-
muting family ([HC]). In this case

i —2 «1>x>
(0.5) R(z) = Z Cqsinh™ ———,

2
aext
where ¥ is a restricted root system corresponding to the Riemannian sym-

metric space, X7 is its positive system,

1
(0.6) Co = Zma(ma + 2ma — 2){a, a)

and m,, is the dimension of the root space for a € ¥, which satisfies
(0.7) Me = My for weWw

and only takes special integers. Then J. Sekiguchi, Heckman-Opdam and
Debiard ([Sj], [H1], [H2], [HO], [Opl], [Op2], [D]) studied the operator (0.4)
with (0.5)—(0.7) and proved the existence of a commuting family.



Commuting families of differential operators 3

On the other hand, the operator P; which allows such a commuting fam-
ily is called a completely integrable quantum system and has been studied
from the view point of mathematical physics (cf. [OP2]). The construction
of such system is usually related to a root system and the most general
potential function which has been proposed is written by elliptic functions.
The similar fact is also true in the case of classical dynamical systems
(cf. [OP1], [P], [IM], [1]).

The main purpose of this paper is to prove that the potential function
R(x) which allows the existence of a commuting family of differential op-
erators with conditions (0.2) and (0.3) can be explicitly expressed by the
Weierstrass elliptic function p(¢) and moreover to give certain uniqueness
properties of the commuting family in terms of R(x). We note that the re-
sults in this paper are also valid in the case of classical dynamical systems
because the same but easier proof for them works.

In this paper we assume that the coefficients of the operators P; can be
extended to holomorphic functions on a W-invariant connected open subset
Y of the complexification E. of E. Here ' = Q\ V with a proper analytic
subset V' of an open neighborhood 2 of the origin of E..

In §2 we shall prove that the potential function R(x) can be expressed
by even functions uq(t) of one variable:

(0.8) R@) = Y ualla )
aEXT
with

(0.9) Ua(t) = upa(t) for a€e X, we W.

Here ¥ is a positive system of X.

In §3 we shall prove a uniqueness for the commuting algebra C[P,... ,
P,] in terms of two generators with small orders.

In §4 and §5 we shall study R(x) when the root system is of type A,
and prove that

(0.10) ug(t) = Co + Crp(t) for a € BT

with suitable Cy, C7 € C. Moreover we shall construct the commuting
operators P, ..., P,. These operators and their pairwise commutativity
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seem to be known. See [OP3] and references therein. But one of the proofs
of the commutativity in [OP3] is insufficient (cf. Remark 3.7).

In §6 and §7 we shall study R(x) when the root system is of type B,
or of type D,,. First we shall give a uniqueness theorem (cf. Theorem 6.5)
and a functional differential equation (cf. Theorem 6.1) which is equivalent
to the commutativity of P; and an operator of the fourth order. When
n > 2, we shall solve the equation (cf. Theorem 7.10), which says that the
potential function R(x) is explicitly expressed by g except for a trivial case.

If the root system is of type By, we shall only determine R(x) when the
coefficients of the differential operators have expansions of Harish-Chandra
type (cf. Theorem 7.12). Moreover owing to this result we have a character-
ization of Sekiguchi-Heckman-Opdam’s operators corresponding to classical
Weyl groups (cf. Remark 7.14). The complete solutions for type Bz and
the explicit form of commuting differential operators for type B, and D,
are given in successive papers [O0S], [OO] and [O].

For readers’ convenience, in §8 we shall give some examples of commuting
families we have constructed and write them in an algebraic form. We
shall see that in general the ordinary differential equation corresponding
to the potential of a higher rank equals the generic Fuchsian equation of
the second order on P'(C) which has four regular singular points. If we
specialize parameters of the equation, it coincides with the equations of
Lamé’s functions, Mathieu’s functions, Gauss’ hypergeometric functions,
Kummer’s confluent hypergeometric functions or Bessel functions. Hence
our commuting families are naturally considered as a generalization of these
ordinary differential equations to systems of partial differential equations.

The authors thank Masaki Kashiwara and Hiroyuki Ochiai for the con-
versations with them which encourage us to write this paper. In particular
Ochiai pointed us out a simplification of our original proof of Theorem 2.1.

The main result in this paper is announced in [Sh] and [OOS].

1. Notation
For a positive number m we fix an orthonormal basis {e1,... ,en} of
the Euclidean space R™ and use the coordinate system (x1,... ,x,) with

R™ 3 z1e14- - +xmem. Then the root system (X, E) of type A,, is naturally
realized in

(1.1) E={(x1,...,2m) eR"; 21+ -+ 2, =0}
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with m = n 4+ 1 and we may choose the positive system

(1.2) Yt ={e;—ej;1<i<j<m}.

Similarly in the case when (X, E) is of type D,, we have £ = R" and
(1.3) Yt ={ei—ej eit+ej;1<i<j<n}

and in the case when (X, F) is of type B,, we have E = R" and

(1.4) St={e;1<i<n}U{ei—¢j, e;+e;;1<i<j<n}

We note that we need not to distinguish the root systems of type B, and
type C), in our problem.

For the coordinate system (z1,... ,Z;,) of R"™ we put
0
a@' = ;
8:1:1-

aa :8?1 8%711’

laf = a1 + - + am,

Oir,...ig) = Y 0Ou

VA ik
1<v<m
Here a = (a1, ... ,auy,) with non-negative integers ;.
Let P =) pa(x)0“ be a differential operator. Then we put

tp — Z \a|aa )

In this paper we call the operator is self-adjoint (resp. skew self-adjoint) if
tP = P (resp. '\P = —P).

For integers k and ¢ with k < ¢ we put [k,¢| = {k,k+1,... ,¢} and for
a subset I of [k, /] we denote by |I| the number of elements of I.

For an element g of the permutation group &y of the set [1,k] with
1 <k < 'm we denote by g(P) the operator transformed from P by the co-
ordinate transformation (z1,...,%k, ... ,Tm) = (To(1)s- -+ > To(k)s -+ » Tm)-
Then the operator P is said to be symmetric for the coordinate (z1,... ,xx)
if g(P) = P for all g € &,
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Moreover we denote by P~ the operator transformed from P by the
coordinate transformation (x1,...,%n) — (—21,... ,—Zy). Then we say
that P has an even (resp. odd) parity if P~ = P(resp. P~ = —P).

Lastly in this section we review on the Weierstrass elliptic function p
(cf. [WW]), which is a doubly periodic meromorphic function on C with the
Laurent development

(1.5) 0(2|2w1,2ws) = 272 4+ ag2? + agzt + ag2® + - -

at the origin. The complex numbers w; and wy are primitive half-periods:
(1.6) p(z+ 2miws + 2mows|2wr, 2ws) = p(z|2w1,2we) for my,my € Z.
It has the expansion

1 1 1
Y Y% ;;Qz—m w)

where the sum ranges over all w = 2mjw; + 2maws except 0 (my, mo € Z).
This g is uniquely characterized by the differential equation

(1.8) (¢)* =49° — 920 — 93
with the condition
(1.9) o has a pole of order 2 at the origin.

Here g2 and g3 are complex numbers, which have the relation
g2 =60) w ! =20a,
w#0

g3 =140 w0 = 28ay.
w#0

(1.10)

The complex numbers w; and wo are linearly independent over R but we
allow the period to be infinity. In other words, the numbers go and g3 are
any complex numbers. For example we have

8

1 4
o(z|v/—1m,00) = sinh ™2 2z + 3 when g¢o = 3 and g3 = ~57

(1.11)
9(z|00,00) = 272 when gy = g3 = 0.
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2. Reduction to one variable

of the operator P; in (0.4)

Now we examine the potential function R(z)
(0.3) and we shall prove

which allows the commuting family (0.2) and

THEOREM 2.1. Suppose the root system is of type A, withn > 1 or of
type By, with n > 1 or of type D,, with n > 2. Let {Py,...,P,} be a system
of differential operators of the form (0.2) which satisfies (0.3). Then there
exist even functions u(t) and v(t) of one variable such that

R(z) = Z u(w; — ;) if W is of type Ay,
1<i<j<n+1

R(z) = Z (u(gvZ — ;) +u(z; + x])) + Z v(z;)
1<i<j<n 1<j<n

if W is of type By,
R(zx) = Z (u(:z:Z —xj) + u(zr; + x])> if W is of type D,.

1<i<j<n

Note that ‘P; = Py and ![P, Q] = —['P,'Q)] for differential operators P
and Q. Hence in the following study to determine the potential function
R(z) we may assume

(2.1 Py = (-1)"P P,

by replacing P; by (Pj + (—1)4%itp;) /2.

First consider the case when the root system is of type A,. Identifying
E with a hyperplane of R™ with m =n + 1 as in (1.1), we can assume the
existence of the following system of commuting differential operators:

(2.2) Ay =01+ 4 0O,
Ny= > 80;+R(=),
1<i<j<m

Ag= > 000+ Y didi+ap.

1<i<j<k<m 1<i<m
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Here R(x),a% and ag are functions of z and the function —2R(x) corre-
sponds to the original R(z) in (0.4) because P, = A} — 2A,. The commu-
tativity [Aq, A;] = 0 implies

(2.3) AlR = Ala’i = Alao =0.

Now consider the equation [Ag, Ag] = 0. Then the vanishing of the term
0? implies d(i)a% = 0 and by combining this with (2.3) we have

(2.4) dial = 0.
The term 9;9; with i < j implies d(j)a} + 8(i)al = d(i, )R and hence
(2.5) d;at + dal = (8; + 9;)R for 1<i<j<m.
Therefore from (2.4) and (2.5) we have
(2.6) 0;0;(0i+0;) R=0 for 1<i<j<m.

First we prepare

LEMMA 2.2. Let ui(x),...un(z) be functions satisfying

Oiuj + 0ju; =0  fori # j.

Then
0j0ku; =0 for different indices i,j and k.

Moreover if O;u; = 0 for any i, we have

0;0ku; =0 fori, j, k=1,... ,m.

Proor. When ¢, j and k are different indices, 0;0,u; = —0;0;ui, =
0;0ku; = —0Or0ju; and we have the first claim. The last claim is also
obtained by this equality for arbitrary indices ¢, j and k. OJ
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Now we claim the following lemma which means that the potential func-
tion R is a sum of functions depends only on two coordinates in (x1,... ,

Tm)-
LEMMA 2.3 (type A,). Under the above notation

(2.7) 0;0;0,R=0 for 1<i<j<k<m.

PROOF. Let i, j and k are indices in [1, m] which are mutually different.
Then (2.5) implies 9;(a% — R) + i(a] — R) = 0 and we have 9,0y R = 0;0)a}
by Lemma 2.2 and the lemma follows from (2.4). O

Now we shall continue the proof of Theorem 2.1. Put Ris = 015:R.
Then it satisfies (01 + 02)R12 = 03R12 = -+- = 9 R12 = 0 and we have
Ri9 = r(x1—x2) with a function r(t). Note that r(¢) is an even holomorphic
function for 0 < |t| < 1 because of our assumption for Ay. Let u(t) be a
function with u” = —r. Define a W-invariant function by

1<i<j<m

Here 0,0;S(x) = 0 for k = 2,... ,m and we can choose a function ¢(t)
with 01¢(z1) = 015(x). Then the function T'(z) = S(x) — 321 <jcpm ¢(25)
satisfies 0;T(xz) = 0 for j = 1,... ,m. Hence replacing ¢(z;) if necessary,

Wwe may assume

Rx)= > ulmi—z)+ > o)

1<i<j<m 1<j<m

Then by using (2.3) we have ¢'(z;) = 0 and therefore ¢ is constant.
Modifying u by a constant, we may moreover assume ¢ = 0.

Since r(t) is an even function, we may assume u(t) = w(t) 4+ C'logt with
an even holomorphic function w(t) for 0 < |t| < 1 and a complex number
C € C. Then we have C' = 0 because R(x) is a single valued holomorphic

function on €’. Thus we have Theorem 2.1 when the root system is of type
Ap.
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REMARK 2.4 (H.Ochiai). Suppose the root system is of type A,.
Then it is clear from the above argument that we have

Rx) = ) ual(a,x))
aext
with suitable functions us(t) even if we omit the assumption of the W-

invariance for P;.

Next we consider the case when the root system is of type B,, with n > 1
or of type D,, with n > 2. Then we may put

(2.8) Pi= Y 0} +R(x),
1<i<n
Py= Y 0207+ ) abo}
1<i<j<n 1<i<n
+ Z aéjlaiaj—k Z aziai—Fao
1<i<j<n 1<i<n

as in the case of type A,. We shall use the convention aijl = aﬁ ifi>j.
First we study the condition [P}, P»] = 0. The terms 813, (91-2(9j and 0;0;0

imply

(2.9) dial =0,

(2.10) diab + 0ia = ;R for 1<i,j <n with i # j,

(2.11)  9al¥ + 9,0tk + 0pa, =0 for 1<i<j<k<n,

respectively. Then we have 8?8iR = 0?0@-(8]-}2) = 83281'(5]-@% + (91-@?'1) =

afafaﬁjl = 030, R and hence

(2.12) 618](82 + 83)(82 — 8J)R =0.

Now we prepare

LEMMA 2.5.  Given functions u;(x) and w;i(x) = ug;j(z) of (x1,... ,zp)
for1<i<nandl1l <j<k>n. Supposen >3 and
Bjui + 8¢uij =0 for i#j,

2.13
( ) 8iujk + @-uki + 8kuij =0 for i£j#k#I.
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Then

(2.14) &2 0ku; =0
and

(2.15) 0;0r0pu; = 0.

Moreover if

(2.16) Ou; =0 for i=1,...,n,
then

2 _
(2.17) Ortig =0

({9an == 8auij =0 Zf |Oé’ Z 3.

Here i, j, k and ¢ are arbitrary indices in [1,n] which are different to each
other and if n = 3, we ignore (2.15).

PrOOF. It follows from (2.13) that a;akui = —é)?ﬁiuik = 0;0;(Osug; +

Opuj;) = —8?8kuj — 0;0;0ku; = —2838kuj and therefore this equals
—2(—28?8;&%) and we have (2.14).
If n > 3, we have similarly 20;0,0,u; = —0;010;ui — 0;000;ui, =

—agﬁjukg. Permuting the indices j, k and £ in this equation and summing
up them, we get (2.15) because of (2.13).

Now suppose (2.16). Then 8j2uij = —0;0;u; = 0 and 3;’% = —8?81-%-)- =
0. Thus we have 0%u; = 0 if || > 3. Hence if || > 2, we have 0%0ju;; =
—0*dju; = 0 and therefore we have 9p07u;; = —00k(Ojuji + Ojuy;) = 0.
Suppose n > 4. Then 0,0yui; = —0p0iujr — 0pOjup; = 0;0jupe + O0;Opug; +
8;‘8]&%5 + @-&Wk = 281'83‘1%@ — 8;385%- and so 8g(9kuij = aiajukg. Hence
Om0;0jupe = OmOpOrusj = 0p0;0jupy, and this also equals 0,0;0;uep,. Since
O, + Optmk + Omuge = 0, we have 0,,0;0jury = 0. Thus we have com-
pleted the proof of the lemma. [

LEMMA 2.6 (type By or Dy,).

(2.18) 0;0;0,R=0 for 1<i<j<k<n.
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PROOF. Put u; = a) — R and u;j = aijl. Then Lemma 2.5 and (2.10)
and (2.11) imply

020;(R—ab) =0 fori#j#k+#1i,
0;01Oy(R — ab) = 0 for different indices i, j, k and /.

Applying 0; to these equations, we have

0;0f0;R=0 fori#j#k#i,
0;0;0,0,R = 0 for different indices ¢, j, k and ¢

because of (2.9).
Put Ry = 0102R. Then

(2.19) Riy = ¢(x1,22) + Z Ciz;
i—3

with a function ¢ of (1, x2) and numbers C; € C.

Here we note that C; do not depend on i because of the W-invariance
of R.

If the root space is of type B,, Ris is invariant under the coordinate
change x3 — —x3 and C; = 0 in (2.19). Hence 0;0203R = 0 and we have
Lemma 2.6.

Suppose the root system is of type D,. Since D3 ~ A3, we may assume
n > 3. Then by considering the coordinate change (x3,x4) +— (—x3, —x4)
we have the same conclusion. [

Now we shall continue the proof of Theorem 2.1 when the root system is
of type By, with n > 1 or type D,, with n > 3. Under the expression (2.19)
it follows from (2.12) that

¢(x1,m2) = ur (21 + x2) — u2(21 — T2)
with suitable holomorphic functions u; (t) and ug(t) with 0 < |¢| < 1. Here

ug is an even function since ¢(x1,x2) is symmetric for (z1,x2). Moreover
we have u; = wug because the coordinate transformation (xi,z2,...) —
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(x1,—x9,...) or (1, 22,23, 24,...) — (X1, —T2, —x3,Z4,...) transforms ¢
into —¢.

Let u(t) be the function with u” = us. Then by the same argument as
in the case of A,,, we have

(2.20) R(x) = Z (w(w; + ) + u(z; — x;)) + Z v(x;)

1<i<j<n 1<i<n

with a suitable holomorphic function v(¢). Since R(z) is a W-invariant
holomorphic function, we can conclude that u(t) and v(t) are even holo-
morphic functions for 0 < |t| < 1. Thus we have Theorem 2.1 when the
root system is of type B,.

The remaining part of the proof is to show that we may assume v equals
0 in the expression when the root system is of type D,,. Before we prove
it, we express functions aé and aijl by the functions v and v for our later
purpose:

LEMMA 2.7. Under the notation above we may assume

ab(x) = Z (w(wk + m0) + w(zy — 0)) + Z v(xg),
: 1<k<t<n 1<k<n

aty = u(z; + z;) — u(z; — ;)

by replacing u and v if necessary.

PROOF. Note that if we define a} and aijl by (2.21), the system of equa-
tions (2.11) holds. Hence if we denote the differences between the original
functions and the above corresponding functions by the same notation with
a bar, they satisfy

diay = 9;ay + dyayy = dal; + d;al + dayh = 0.
Owing to Lemma 2.5, we have
ayy = 2Cx12y + (21 + x2)P1(2) + da(2')

with a constant C' and polynomial functions ¢;(z’) of 2/ = (x3,...,xp)
with degree at most j for j =1 and 2.
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Since @}? is invariant or changes into —ai? under the coordinate trans-
formation (x1,x2,z3) — (—x1,—x2,23) or (x1,z2,23) — (—x1,x2, —3),
respectively, we have ¢1 = 0 and ¢ = C’x3-- -z, with a constant C’. But
since 03ai? is symmetric for (21, z9,z3), we have 93al? = 0 by the relation
03ai? + 01a%} + Dsai? = 0. Hence we can conclude dijl = 2Cz;z;.

Replacing u(t) and v(t) by u(t)4+Ct? and v(t) —2C(n—1)t?, respectively,
we may assume diljl = 0. Then we have 9;a}, = 9;a} = 0 and therefore @
are constant. Finally subtracting a constant multiple of P; from P,, we
have the Lemma. []

Lastly we assume the root system is of type D,, to prove Theorem 2.1.
We introduce the following operator which commutes with P;.

(2.22) Py=01-0n+ > ay.i,00 0 + R (x,0).
i1+ Fin=n—2

Here R/(x, 0) is a suitable W-invariant differential operator of order < n—2.
We put a(j, k) = a;y..;,, with the indices i1, -- i, given by

, {1 if v#jand v #Kk,
= 0 if v=jor v==k.

Then by the term 0205 - - - 9, of [Py, P!] we have

(2.23) 2 )" dja(l,j) = R

2<j<n

Furthermore by the term 9205 - - - 9, of [Py, P] with Lemma 2.7 we have
2 )" 9a(l,j) =daz+ Y 95ay]
2<j<n 2<j<n

= Y (W@ + ) +d (31— ).

2<j<n

(2.24)

Comparing this with (2.20) and (2.23), we have v = 0. Modifying u by a
constant, we have Theorem 2.1 and subtracting a constant multiple of P;
from P», we may assume Lemma 2.7 with v = 0.
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3. Uniqueness of the commuting family

In this section we shall prove that the generator P; and the generator, say
Py, having the lowest order among the remaining generators {Ps, ... , P}
of the commuting family (0.3) uniquely determine the commuting algebra
C[Py, ..., P,

In the subsequent sections we shall study the relation [P}, P5] = 0 and
we shall get a more refined result on the dependence of the commuting
algebra on the potential function R(z). First we prepare

LEMMA 3.1. Let

(3.1) 9(2,0) = > qa(x)&”

la|=K

be a homogeneous polynomial of & = (&1,... ,&m) of degree K whose coeffi-
cients are functions of x = (x1,... ,Zy) and consider the conditions

(3.2.0) {> &9} =0
i=1

and

(3.3) Z qa ()0 is symmetric for (x1,... ,Tm).
la|l=K

Here { ) } 1s the Poisson bracket defined by

" Of 0 " Of 9
(3.4) {f,g}—;a—éa—i— 2

i) If (3.2.2) holds, then qq(x) are polynomials.
ii) Fiz a positive integer N with N > 3. Then the functions q, are
constants if one of the following conditions holds:

i=1

5) K < N —2 and condition (3.2.N) holds.

6) K =N —1 and conditions (3.2.2) and (3.2.N) hold.

.7) K = N and conditions (3.2.2), (3.2.N) and (3.3) hold.
8) K=N+1, N >4 and conditions (3.2.2), (3.2.N) and
(3.3) hold.
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PRrROOF. In this proof we always assume that the index oo € Z™ satisfies
|| = K. Put 6, = (61, ... ,0my) with Kronecker’s §.
Note that for 3 € Z™, the coefficients of the term ¢ of (3.2.2) mean

(3.9) > 0ugps, =0
v=1
and in general, the coefficients of the term ¢ of (3.2.N) mean

m
(3.10) > Ovap-(v-1)s, = 0.

v=1

Here we use the convention that g, = 0 if a has a negative component.
Suppose (3.2.2) and fix an index j. Applying 8j{_aj to (3.9) with g =
a + 0, we have

K+4+1—a; K—aj
aj JQa = - Z aj ! vda+8;—6,-
VA

If K —a; =0, then a, = 0 for v # j and the above equation is reduced
to 0jqo = 0. Then by the induction on the non-negative integer K — a; we
can prove

(3.11) 9" g, = 0.
Thus we have lemma 3.1 i).

Note that if o € Z™ satisfies ), < N—2forv =1,... ,m, then equation
(3.10) with 8 = o + (N — 1)6; equals

(3.12) 9jqa = 0.

If (3.5) holds, (3.12) is valid for any j and « and therefore g, are constant.
To prove the remaining part of the Lemma, we may assume that ¢, (x) are
polynomials without constant terms because of the assumption (3.2.2).
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Suppose (3.6). Then the above argument assures that we may assume

o =0if o, < N —-2forv=1,...,m and we have the expression
m

(3.13) a(z,€) =) af(x)g).
v=1

Since K > 1, we have 0;a¥ = 0 from equation (3.9) with 8 = é; + K¢; for
any ¢ and j and we have the lemma.
Suppose (3.7). Then by the same argument as above we can write

(3.14) g(z.€) = > ak > @)ag
v=1 VFEL
1<vju<m

In equation (3.10), putting f = (2K — 1)6; and § = (2K — 2)61 + 62, we
have

(3.15) Daj; = daty_1 =0

and putting 8 = K61 + (K — 1)62 and 8 = (K — 1)61 + 62 + (K — 1)d3, we
have

(3.16) dhage + dharfe_y =0,
(3.17) draff_y + saif_y =0,

respectively. On the other hand, from equation (3.9) with 5 = Ké; + 62 we
have

(3.18) dak + 013k 1 =0,

It follows from (3.15), (3.16) and (3.18) that

(3.19) Doate = 01ats | =0

and it follows from (3.15), (3.17) and Lemma 2.2 that

(3.20) a2, | = 010405 | = 0.
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Then from (3.7), (3.15), (3.19) and (3.20) we have a% = 0 and alK =
C'>_, i jTv With a constant number C. But equation (3.17) proves C' = 0.
Suppose (3.8). Note that K = N + 1 > 5. We may assume

(3.21) q(z,&) = ZaK ek + Y ark 4 (@)&E0
v

Y Ak L@EE T Y ak L (2)68K 2

vEN v<p, TERY

Putting 5 = (2K —2)61, (2K —3)61 + 02, (2K —4)61 +262 and (2K —4)6; +
b2 + 63, we obtain

(322) 81aK = 81a1K 1= 81@2[( 2 = 61@11[( 2 = =0
from (3.10). Similarly putting 5 = Ké;1 + (K —2)b2, 8 = (K —1)61 + (K —

2)52+63, 6= (K—2)61+(K—2)62+263 and 8 = (K—2)51+(K—2)52+53+54
in equation (3.10) we have

(3.23) Drazfc_o + Baje =0,
(3.24) daiik_s + Oaaly_y =0,
(3.25) Drads_g + Baadic_o =0,
(3.26) daiti_s + Baaiif_y =0,

respectively. On the other hand, putting 8 = Ké1 + 62, 8 = (K —1)61 + 262
and § = (K — 1)61 + 62 + 63 in equation (3.9), we have

(3.27) a3t | + Bhal =0,
(3.28) dazg_s + Orafy_y =0,
(3:29) Oratii—s + Ooaig_1 + Osai_y =0,
respectively. '
By (3.22) and (3.27) we have dya}, = 0 and in general we have d;a% = 0
fori,j =1,...,m and hence a’ = 0.

Note that (3.22) and (3.29) means

(3.30) a3k | 4+ dzaik- | =0.
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Then from (3.28), (3.22), (3.30), (3.3) and Lemma 2.2 we obtain
(3.31) dpaf_y = B3ai_y = D2baaj_ =0

and from (3.23), (3.22), (3.25), (3.3) and Lemma 2.2 we obtain

(3.32) Dasfe_y = Oiads_o = 0104a35_5 =0

and from (3.22), (3.24), (3.31), (3.26), (3.3) and Lemma 2.2 we obtain
(3.33) Ftariic o = D0sa1ikc o = Oaiiyc » = D105aiiic o = 0.
Thus from (3.3), (3.31), (3.32), (3.32) we have the expression

aig_q = Ci(zs + - + ),
(3.34) ayg_y = Ca(x3+ -+ z0),
a%i’}(_g = 03(.%‘2 + 333) + 04(1‘4 4+ xn)

with suitable constant numbers C;. Then from (3.24), (3.25), (3.26) and
(3.30) we can conclude C3 + C; = 0, 2Cy = 0, 2Cy = 0 and 2C; = 0,
respectively, which completes the proof of the Lemma. [

Now we give the theorem in this section:

THEOREM 3.2. Without loss of generality we suppose that the order of
the generator Py of our commuting family (0.2) equals 3 (resp. 4) in the
case when the root system is of type A, (resp. By, or Dy,). Then Py and Py
uniquely determine the commuting algebra C[Py, ..., P,].

Proor. First consider the case when the root system is of type A,.
We may assume that

(3.35) L= OF+Ri(2,0) for k=1,...,m
=1

generate our commuting algebra with the identification (1.1). Here
ord Ry (z,0) < k, Rj(z,0) = 0 and ord R5(z,0) = 0. We shall prove that
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Aly; is uniquely determined modulo C[A],... Ayl for N =3,... ,m—1,
which implies the theorem.

Suppose this is not true for some N. Then there exist W-invariant
differential operators A’y (1) and A’y ;(2) with the same principal symbol
S0, 6V which commute with A, ..., Ay

Put Q = Ay, (1) = A% 1(2) and K = ord@Q. We may assume the
principal symbol ¢(z, &) = o(Q) of @ really depends on x because otherwise
we can reduce the order of @) by subtracting an element of C[A], ..., A’].

Then the condition [A%, Q] = [Ay, Q] = 0 implies one of the conditions
(3.5), (3.6) and (3.7) and therefore Lemma 3.1 proves that ¢(x,&) does
not depend on z. This contradicts our assumption and hence we have the
theorem.

In the case when the root system is of type B,, we may assume ord P; =
2jand o(Pj) =), f?j. Then the proof proceeds in the same way as in the
case when the root system is of type A,. In the case when the root system
is of type D,, we can prove the theorem in the same way if we define the
operators P; from lower order ones. [J

Since the condition
(3.36) {ngk,q(xl, U Y 3 P ,§n)} =0 forany k>1
i=1

implies that ¢ does not depend on z, we have the following as in the proof
of Theorem 3.2.

ProposiTION 3.3. Let P be a W-invariant differential operator which
commutes with any element of the commuting algebra C[Py, ..., P,]. Then
Pe (C[Pl,... ,Pn].

Now we give the lemmas which shall be used later.

LEMMA 3.4. Let Qo(z,0), Q1(z,0) and Q2(x,0) be differential opera-
tors of the form

Qolx,0) => 07 + qo(a),
=0

Ql(fﬂ, 6) = Z QIa(x)aa’ Qg((L‘, 8) = Z qg‘(x)aa.
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Suppose qo(x) and ¢5(x) are polynomial functions of x and furthermore
suppose [Qo(x,0),Q1(x,0)] = Q2(x,0) + r(z)Q1(x,0) with a polynomial
)

function r(x). Then qff(x) are also polynomial functions of x.

PrROOF. We shall prove that ¢{'(x) are polynomial functions of = by
the induction on the number |a.

If o] > ord Q1 (x, 0), the claim is clear. Let k be a nonnegative integers
and suppose ¢f(z) are polynomial functions of z if |a] > k. Then the
(k 4+ 1)-th order term of [Qo(zx, D), @Q1(x,0)] = Q2(x, ) shows

DG @t = > (ap@) +r(2)g] (2))€”
i=1 o=k |B]=k+1

with some polynomial functions ag(x).
Choosing a positive integer N so that deg (ag(x) + r(m)qf(x)) < N, we

have .
(D& > et =0
=1 |a|=K
for £ = 1,...,n. Then Lemma 3.1 proves that (’?lquf‘(a:) are polynomial
functions of = for |a| =k and £ =1,... ,n and so are ¢f*(z). O

LEMMA 3.5. Let Qo(z,0), Q1(x,0) and Q2(x,d) be holomorphic differ-
ential operators defined on a connected open dense subset of the n-dimen-
sional complex vector space E. such that Qq is of the form

Qo(x,0) = 07 + qo(x)
=1

and they satisfy

[Qo, Q1] = [Qo, Q2] =0, qo(—) = qo().

Suppose there exist linearly independent vectors Ti,... ,T, in E. such that
the operators Qo, Q1 and Qo are invariant under the parallel translations
on E. by the vectors 7; for j = 1,...,n. Then'Q1 = Q7, 'Q2 = Q; and
(Q1,Q2] =0
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PROOF. First note that *(P~) = (*P)~ for any differential operator
P. Put §=0Q — tQI Then [Qo,S] = —[Qo,tQI] = t[Qo,Ql]_ = 0 and
Lemma 3.1 proves that o(S) is a polynomial function of (z,&) and hence
the invariance by the parallel translations shows that o(S) does not depend
on z. Combining this with tS~ = —S, we can conclude S = 0 and therefore
Q1= Q1.

Put R = [Qla QQ] Since [QOa R] = [Q17 [QOa QQH - [QQ; [Q07 Ql]] = 07 we
have similarly ‘R = R~ and ‘Q2 = Q5. Then

R="[Q1,Q:] ='[Q7,Q5] =['Q7.'Q7] = [Q2, Q1] = —R,
which proves the Lemma. [J

The following proposition also gives a uniqueness for the commuting
algebra.

ProrosiTiON 3.6. Let Pi,..., P, be the commuting differential op-
erators corresponding to the Weyl group of type A,, B, or D,. Sup-
pose the coefficients of P; are holomorphic on a connected open dense sub-
set of E. and moreover suppose there exist linearly independent vectors
T, ... ,Tn of E. such that P; are invariant under the parallel translations
byti(i, 5 =1,...,n). Let Q be a W-invariant differential operator with the
same tnvariant property under the parallel translations. Then the condition
[P1,Q] =0 implies Q € C[P,...,P,].

Proor. Thisis a direct consequence of Lemma 3.5 and Proposition 3.3.
O

REMARK 3.7. In [OP3, §5 Proposition 1] and [OP2] it is claimed that
W-invariant differential operators which commute with P, are completely
determined by their terms of highest degree. But it is incorrect, which is
clear by example (8.18). Note that if 6 = —24 in (8.18), it corresponds to
type I (v(q) = ¢~?2) for the root system Bs under the notation in [OP3].
The same incorrect argument is used to prove the pairwise commutativity
of P, ..., P, (cf. [OP3, §5 Proposition 2 and Appendix E]).

The following lemma will be used in the proof of Theorem 6.5.
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LEMMA 3.8. Let p(x1,... ,Zn, &1, ,&n) = Z|a‘:3pa(x)§a be a ho-
mogeneous polynomial of & such that p(x,d) is symmetric and invariant
under the coordinate transformation (x1,x2) +— (—z1,—x2). Suppose
(X €,p(x, )} =0,

i) If n > 4, then p(z,§) = 0.

ii) If n > 2 and p(z,0) is invariant under the coordinate change x1 —
—x1, then p(z,£) = 0.

iii) If n =4, then

1 1
(3.37) p(z,§) =C Z 9(51‘296’3%5? - 5210151031345%52
SICH

with a suitable constant C', where g naturally acts on suffices.

PROOF. Since p,(x) are polynomials by Lemma 3.1 i) and the assump-
tion implies 2 ) &;g—fj =0, we have

3 3 3
p(x,€) = h(zg — 221,23 — 201, ..., Ty — — 21,81, ,&n)
& &1 &1
with a suitable polynomial function h of (2n — 1)-variables. Moreover p, ()
are polynomials of x with degree at most three because p(z,§) is a polyno-
mial of £ with degree at most three.

Put
p(x,€) =Y ab&? + Y af &+ Y afi&ikik
i#j i<j<k

with polynomials aj, a5 and al} of z. Then the coefficients of &2, £3¢,,
§163, 3665 and &6€38s of the equation {3 3" &2, p(z, €)} = 0 show

810,%, = 0,
82@% + 81a% =0,
(3.38) Doad? + O1a3} = 0,

12 13 123
83a21 + 82a21 + 81a111 - O,

123 124 134 234
(94@111 + 830,111 + 820/111 + 81@111 = O,
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respectively.

Note that the assumption of the invariance says that a3 changes into —a}
under (:51,:1:2) — (—z1,—x2). Moreover aj is symmetric for (xg,...,2p)
and deg a3 < 3 Hence the condition 81(13 = 0 proves a3 = 0 in the cases i)

and ii) and a3 Cxoxszy with C € C in the case iii).

Suppose the invariance in ii) and suppose n > 2 Then 0ya3? = 93a}? =
and we can put ai? = z2¢(x3,. .. ,x,) because ai} changes 1nto —al? under
Ty — —x9. But 2¢ = 0hal? + 81a21 = 0 and therefore ad? = 0. Thus

01a1% = 0 and the invariance under x1 — —1 proves ai?} = O'

It is easy to check that (3.37) satisfies {d &2, p(z,€)} = 0 in the case
n = 4 and hence subtracting the right hand side of (3.37) from p(z, &), the
proof is reduced to the case a3 = 0.

Suppose n > 4 and a3 = 0. Then we have similarly al? = zo¢(xs, ... ,

x,) by the invariance under (x1,73) — (—z1, —22), which implies a}? =
81a111 = 0 as in the proof of ii) and we have a{?} = (C+C'(z3+ - +22))-
T4--- T, because ai?} changes into —ai% under (w1,z4) — (—x1, —24).
Here C' = 0 if n > 4. Thus we have a}?3 = 0 by the last equation of

(3.38). O
4. Determination of the potential function - type A,

In this section we consider the case when the root system is of type A,.
We have W-invariant differential operators

A=) o,

1<i<m
(4.1) Ay= Y 90+ R(x),
1<i<j<m
Ag = Z 8Zajak + Z a’laz + ap
1<i<j<k<m 1<i<m

satisfying [A1, Ag] = [Ag, Asz] = [A1,As] = 0and tA; = (—1)%A; fori = 1,2
and 3. Theorem 2.1 says the existence of an even function u(t) with

(4.2) R(z)= > ulw— ;)

Moreover we have
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LEMMA 4.1. There exist a constant number C' with

Ag — CAl = Z 816]8k + Z Z U(ﬂ?j — :L*k)&

1<i<j<k<m i=1  jk#i
1<j<k<m

PROOF. We remark that if

(4.3) ai = Z u(z; — xg),

the functions a} satisfy (2.4) and (2.5). Hence put

ai =a} — Z u(xj — xp).

j ki
1<j<k<m

Then the commutativity implies
O;at = djal + dial =0 for 1<i<j<m

and by Lemma 2.2 we have 8]-(9;.3&% =0 for j, k=2,...,m. Since ai is

symmetric for (zo,... ,Zm),
EL% :C+C/($2—|—---—|—xm)

with constant numbers C' and C’. Now the equation ), 81-&% = 0 means
C’" = 0. Since Ag is skew self-adjoint, we have Lemma 4.1. [J

Lemma 4.1 assures that we may assume (4.3). Then the above proof
shows ord [Ag, Ag] < 1. Since [Ag, As] is self-adjoint, we can prove that the
condition [Ag, As] = 0 is equals to

(4.4) Y 0i0;0eR+ Y diR=0

1<i<j<k<m 1<k<m
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by the 0-th order term of [Ag, As]. Applying (4.2) and (4.3) to (4.4), we
have

(4.5) i{( > u(:ﬂu—x,,)>8k< > u(xi—xj)>}=0.

k=1 1, vk 1<i<j<m
1<u<v<m

Since the term containing «'(z; — x;) with ¢ < j in the left hand side of
(4.5) equals

( Youlmy -z - Y U(xu—wu)>ul(wi—%‘)

u<v, p,v#i U<V, P v#E]
= ( Z u(zy — ) + Z u(xy — ;) + Z u(z; — :r;.ﬂ)@zu(mz —xj)
k<i<j i<k<j i<j<k
+ < Z u(zk — ;) + Z u(z; — xg) + Z u(z; — xk)>8]~u(mi —xj),
k<i<j i<k<j i<j<k
we have

PROPOSITION 4.2. Under the above notation the necessary and suffi-
cient condition for [A1, Ag] = [Ag, Ag] = [A1, As] =0 equals

(4.6) Z U,-jk(u) =0

1<i<j<k<m
with
(4.7) Uiji(u) = u(zj — z)0; (w(z; — x;) + u(z; — )

+ u(z; — x1)0; (u(acZ — ;) +u(z; — xk.))
+ u(:rl — xj)ak (u(mz — (Ek) + ’LL(.%]' — l‘k))

Now we solve equation (4.6) for wu:

THEOREM 4.3. Let u(t) be an even holomorphic function for 0 < |t| <
1 satisfying (4.6). Then there exist complex numbers Cy and Cy such that

(4.8) u(t) = Clp(tpwl, 20(.12) + Cy
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Here o(t|2w1,2wsy) is Weierstrass’ elliptic function with primitive periods
2w and 2ws.

Conversely for complex numbers Cy, C1, w1 and ws, the function given
by (4.8) satisfies (4.6). Here w1 and wy are complex numbers which are
linearly independent over R and allowed to be cc.

PrOOF. Note that p and g’ are even and odd functions, respectively.
Then it is clear from the addition formula (cf. [WW]) of p-function

p(x) @'(r) 1
(4.9) ply) ¢'y) 1|=0
p(z) ¢'(2) 1

)
for complex numbers x,y and z with x +y+ 2 =10

that the function u given by (4.8) satisfies Ujji(u) = 0 and therefore it is a
solution of (4.6).

Let u(t) be an even holomorphic function for 0 < |¢t| < 1 satisfying (4.6).
Put s = z; — z; and t = x; — x3, and suppose 0 < |s| < [t] < 1. Then

Uijie(w) = u(t) (v (s) + /(s + 1)) +uls +¢) (— u'(s) + ' (¢))
+u(s)(—d(s+1t) —u(t))

= - <(u(s +1) —u(t)u'(s) + (v (s + 1) + u’(t))u(s))
+ F(s,t)

(4.10)

with a function F'(s,t). Here we note that F'(s,t) is holomorphic function
of s at the origin if ¢ is fixed with the condition 0 < [¢| < 1.

Now put s = x1 — 22 and t; = xj_1 — z; for j = 3,... ,m. Fix complex
numbers t3,... ,t, with 0 < |t;| < 1 and suppose 0 < |s| < |t;| < 1 for
j=3,...,m. Then condition (4.6) implies

(4.11) — Z ((u(s ttg+ -+ t) —ults+ -+ t5))u(s)
j=3
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with a holomorphic function f(s) on a neighborhood of the origin. Now we
may assume the number

C:ZUI(t3+~-~+t]~)
=3

is not zero for generic t3,--- ,t,, and from (4.11) we have
(4.12) —(C + c1(s)s)su/(s) — 2(C + ca(s)s)u(s) = f(s)

with holomorphic functions ¢1(s) and c2(s) on a neighborhood of the origin.
Since the origin is the regular singular point for the differential equation
(4.12) for uw and its characteristic exponent equals —2, the origin is at most
a pole of order 2 for u.

First suppose u(s) is holomorphic at the origin. We may assume u(0) =
u/(0) = 0 because u 4+ C’ is also a solution of (4.6) for C’ € C. Then

Uijo(u)] = u(wi — x)05u(z; — z5) + w(zi — 25)0u(r; — ;)

T;=x
= —0; (u(a:l — a:j)2>,

Ti=2j =T}

Uijr(w)

and

Z Uijk(u)‘m:mg:m:xm - Z Uljk(u)‘xgzmj::ck

1<i<j<k<m 1<j<k<m

Hence % (u(t)?) = 0 and therefore u(t) is constant, which implies u = 0.

Therefore replacing v by C'u + C” with suitable C',C” € C, we may
assume

u(t) = t72 + Cot? + Cut* + Ct® + - -
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with complex numbers Cj. Then under the same notation in equation (4.10)
we have

Usji(u) = %u(t) (u(s +1t) — u(s)) — %u(s) (u(s +1t)— u(t))

u® e
= %u(t){(u@) p B ey
(4.13) — (572 4 Cys* +C4s4+---)}
)

——{(S_2+CQS2+C4S4+"')

.(u(l).(t) u@(t) 5 u®(t) 3+_,_)},

S+ ST + S

The coefficient of s~2 in the expansion (4.13) equals —u™® (£)+uM () = 0
and therefore (4.13) is holomorphic at s = 0.
The coefficient of s° equals

9
ot

1 d
(t)? — Eu(3)(t) = E(t_Q + Cot? + Oyt + -+ )?

1
- 6(74!t’5 + 410yt + -+ +),

which is holomorphic at the origin and takes the value zero at the point.
Thus we have

Y Uikl

1<i<j<k<m

— Z {2u(x2 — xp)u' (22 — xp) — lu(g) (z2 — ﬂfk)}

T1=2T2 2<k 6

+2 Z Ugjk(’u,) + Z ka(u)

2<j<k<m 2<i<j<k<m

and by the induction on £ it is easy to show

Lzl )

1<i<j<k<m
1
=(1+2+---+(-1)) Z {2u(zy — zp)u (wg — k) — éu(?’)(xg — )}
i<k

+ 0 Z Ugjk(u) + Z Uijk(u).

t<j<k<m 1<i<j<k<m

Tp—1=T¢
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When ¢ = m — 1, we have

-9 -1 1
(m )2(m ) <2u($m—1 - xm)u,(xm—l — Tp) — EU( )( Tm—1— Qi'm)> =0
and thus

2u®) = 12(u?),
20 = 12u® — g,
2u'u” = 12u% — gott’,
(u')? = 4u’ — gau — g3
with suitable complex numbers g3 and g3. Since u has a pole of order 2 at

the origin, this differential equation implies that u is Weierstrass’ elliptic
function. OJ

REMARK 4.4. The claim of Theorem 4.3 follows from the commuta-
tivity of the operators A; for ¢ = 1, 2 and 3. In fact we do not use the
existence of the commuting operators A; of order > 3 for the proof.

5. Construction of commuting families - type A,

As in the previous section we assume the root system is of type A,
and we shall construct a commuting family of differential operators A; for
j=1,...,m=n+ 1. In fact we shall prove the operators

(5.1) A= > > {( > H“‘”)Hax}

nggg JC[1,m] AeX(Jl) acA jedJ
|J|=k—2¢

form a commuting family for any function u given by Theorem 4.3. Here

) = {{Bla"' Bets Bis... B, e (j €J) are orthogonal
to each other and §; € E+}

for J C [1,m] and we define

Z Hu a,z)) =1 and H&r
J

AEX(J;0) a€A jeb
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We may write them in the following way:
5.2 L
(5:2) = Z#ng_%)(uzzé)
0<e<k 9e6m
by putting

Y]
0x2i410T2i42 - - '(93322‘+j

(5.3) Lij = u(x1 —x2)u(ws —x4) - - - u(@2i—1 — T2;)

Here &,, is the permutation group of the set [1,m] = {1,... ,m} and we
denote G(Z,j) = {g € Gm; ( z]) ,J}

LEMMA 5.1. These operators satisfy

(5.4) Ak, A1) = [Ag, Ao =0, Ay = A, = (—1)FA
for k=1,....m

PROOF. Note that [Ag, Aq] = 0 and A, = A = (—1)FA, are clear
by definition. Furthermore it is easy to see that (5.1) implies that the
commutator [Ay, Ag] vanishes except for the terms 0j, ---0;, with j; <
Jo < < J

Suppose Q = [Ag, As] # 0. Since 'Q = (—1)¥71Q, the order of Q is odd
if k£ is even and even otherwise. Let £ — 2NN — 1 be the order of Q with a
nonnegative integer N and put I = [k — 2N, m] and J = [1,k — 2N — 1].
Then the coefficient of J; - - - O—an—1 of [Ag, Ag] equals

(5.5) i > 2)0; Y u(zy — 7))

i=k—2N AeZ(JU{i};N) v<p
k—2N—1

Z d(3) > ulx)

AeXS(J\{i};N+1)

Y Y ) S

i=k—2N AeX(JU{i};N) v#£i

+ Z | Z Z up (@) (x; — zj)
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by denoting

(5.6) ua(z) = [ ul{e, 2)).

a€A

Hence for k—2N < v < p < m, the sum of the terms in (5.5) which contain
o' (z, — x,) equals

5.7 (AE(Z INEEID SENRIE) LIRS

JU{v};N) Aex(Ju{u};N)
i€N\{v,u} AeX(JU{p,v,i};N—1)

cup (@) (u(w; — ) — ulw; — ) (2 — 20).

Since we have

> > <U($i_"Eu)auu(%u—l?“)-f—u(xi—:Ey)auu(a:l,—x“)> —0

k—2N<v<pu<m icI\{u,v}

from the addition formula (4.9), the terms (5.7) cancel out if we sum up
them for all v and p satisfying £ — 2N < v < 4 < m. On the other
hand, in the expression (5.5) it is easy to see that the terms u'(z; — x,) for
i €[k —2N,m]and v € [1,k — 2N — 1] vanish. This assures the vanishing
of the term of order £k — 2N — 1 of (), which contradicts the assumption.
Thus we have the Lemma. []

Now we can state our main theorem when the root system is of type A,.

THEOREM 5.2. 1) For Weierstrass’ elliptic function p(t|2wi,2ws) and
any complex numbers Cy and C1 we put

(58) u(t) = Clp(t@wl, QWQ) + Co.
Then the differential operators Ay given by (5.1) satisfy

A, Aj] =0 for 1<i<j<m,

5.9 .
(5.9) N = A7 = (=1)'A; for 1<i<m.
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Here we note that wi and wy are allowed to be infinity.

ii) Let © be a W-invariant connected open neighborhood of the origin of
C™. Let D(A,,) be a commutative algebra generated by suitable W -invariant
differential operators whose coefficients are holomorphic on an open dense
subset Q' of Q such that Q\ Q' is an analytic subset of . Suppose D(A;,)
contains the operators

(5.10) ( Z 87]65> + Rp(z,0) for k=1,---,m.

1<ij<-<ip<m " k

Here Ry(x,0) are differential operators of order < k — 1. Furthermore
suppose Ri(x,0) =0, ord Ra(z,0) < 0 and ord R3(x,0) < 1. Then D(A,)
coincides with C[Aq, ..., Ay,] which is determined by a suitable function u
of the form (5.8).

Proor. Owing to Theorem 3.2, Proposition 3.3, Theorem 4.3 and
Lemma 5.1, we have only to prove the commutativity of A;. But it fol-
lows from Lemma 3.5 and the analytic continuation for the parameters of

p(t). O

REMARK 5.3. It is clear that the commuting algebra C[Aq,---,A,]
in Theorem 5.2 stays invariant even if we change the constant number Cj
in (5.8).

Furthermore it is easy to show that if we consider Cy as an element
which commutes with any differential operator and consider the differential
operators A,, and Al = [A,,, z1+" - -+2,,] defined by (5.1) as a polynomial
of Cy, then their coefficients of C(’f for k =0,1,... form a complete set of
generators of the commuting algebra.

6. A functional differential equation satisfied by the potential
function - type B, and D,

Hereafter in this paper we shall study the case when the root system is
of type B,, with n > 1 or of type D,, with n > 3. In this section we examine
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W-invariant differential operators P; and P» of the form

Pi= Y 0} +R(x)

1<i<n
R(z) = Z (w(w; + ) + u(z; — x;)) + Z v(x;),
1<i<j<n 1<i<n
(6.1) 292 i 52
P2 = Z 8Z 8] + Z a28i
1<i<j<n 1<i<n
1<i<j<n 1<i<n

which satisfy [Pl, PQ] =0 and tPQ = PQ.
The term 0; of [Py, P] gives

(6.2) Z d%al + 20;a0 = Z 20,0°R + 2050, R + Z a0, R
1<v<n Vi A
1<v<n 1<v<n

We may assume that ab and a” are given by (2.21). Furthermore we
may assume v = 0 if the root system is of type D,,, which follows from the
argument in the last part of §2.

The condition ! P, = P, is equivalent to

(6.3) al == Z (u'(zi + @) + U (2 — 2))

and from (6.2) we have

(6.4) 20ia9 = 20,0,R — Za% +2a50,R+ > ai{o

v#i v#i
= Z xz + xz/ + U(g)( - 331/))
v#£i
+2<Z((x,,+m#)+u v —Ty) +Z xl,>
VWA v#£i

v<p
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: (Z (W (i + @) + 4 (2 — 2,)) + v’(:r:i)>

v£i
+ ; { <u(acZ +xy) — u(z; — x"))
. <; (u' (2 + 20) = /(2 — 20)) + ”/(x”))> }

THEOREM 6.1.

i) Under the above notation the condition [Py, Ps] = 0 is equivalent to
the existence of a W-invariant function agy satisfying (6.4).

ii) The compatibility condition of the integrability of equation (6.4) for
ag 18

(6.5) ((n —2)(u" (21 + x3) + " (v1 — x3)) + v"(x1)>
: <u(ac1 +29) — u(wy — xg))
+3 ((n —2)(u/ (21 + a3) + ' (21 — a3)) + v'(m1)>
. (u’(xl 4 0) + (21 — m))
+2 ((n —2) (u(ar + x3) + u(zy — x3)) + v(m))
: (u"(xl +22) —u (w1 — xQ))
+(n—2) <u”(:v1 +a3) —u(x) — x3)> (u(a:l + a3) —ulz) — :cg))
= (- Dz 420+ 2 ) 47
: (u(xl +29) — u(wy — xg))

+3 <(n —2)(u'(z2 + x3) + ' (z2 — 23)) + v'(x2)>
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: (u'(ml + @) — (21 — m2)>

+2 <(n —2) (u(as + x3) + u(z2 — 23)) + v(xg))

: (u”(:rl +m9) — (w1 — m))

+(n—2) <u”(m2 +a3) — (s — x3)> <u(ac2 +23) — u(my — :c3)> .

PROOF. Suppose there exists a W-invariant function satisfying (6.4).
Since the commutator satisfies /[Py, Po] = —[P1, P»], the order of [Pi, P,
equals 1 or 3 or 5 if it is not zero.

It is clear that the order is smaller than 5. Furthermore equations (2.21)
and (6.4) assure the vanishing of the 3-rd and and first order terms, respec-
tively. Hence we have the first statement of the theorem.

Note that the function R and the operator Y, a%d; are symmetric with
respect to the coordinate. Therefore the compatibility condition for equa-
tion (6.4) equals

(6.6) U (21,29, 2") = 01U (22, 21, 2")
by putting

(6.7)  U(xy,xe,2") = Z 2010°R — Z d%al + 2a301 R + Z al?o,R.
I/;él v y;él

with ' = (z3,... ,z,). Defining a symmetric function

(6.8) S(a)=Y_ <u<2> (2 + ) + u? (x, —x,) + 20(%)@(%))

p<v

T (Z (up + 2) + ulzy scy))>2

pu<v

13 (ulo +2) — ulo, — 3,))°
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+ 2;0(%)( > (ulwp+ ) —u(z, — xu))>,

p<v, p,v#k

we have

(6.9) Ul(xy,z2,2") — 01S(x) = Z (u(z1 + zp) — u(zr — 3,))0 ()

+2 ,;1 (71 + 7)) + ;>(;‘1 —ay))v(zy)
—9 < ; (w(zr +2p) + u(z) — xu)))
. <V§>:1 (u' (21 + @) + o (21 — xv))>
n { ;1 (u(@1 + zp) — u(er — @)
. <#§ (' + 20) — o (2 — m))) }

Then

(6.10) QU (x1,x2,2") — 81025 ()
= ( (z1 + @2) — U(Z'l — 3))v" (22)
( x1 + x2) "(z1 — xg))v x2)
(/1‘1+x2 — (21 — 22))v(12)
( x1 + 2) (1 — xz))
( "(x1+ 22) +u (361 —x2) + 01 W (xq, I))
— 2(u(x1 + x9) + u(z1 — x2) + Wi(ay, x'))
. (U’/(ﬂ?l +x2) — (931 - 962))
+ (W' (21 + @2) + v (z1 — x2))32W(962, )
+ (u(z1 + 22) + u(z1 — 22)) 3 W (22,2”)

+ Z u(zy + ) — u(z) — a:,,)) (u (xo +x,) —u" (29 — xl,))
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by putting
(6.11) W(z1,2) = Z (u(z1 + ) + u(z1 — ).
3<v<n
Denoting

(6.12) Q(x1,x2,7")
= (fW (21, 2") + 0" (21)) (u(z1 + 22) — u(z1 — 22))
+ 3(nW (z1,2") + V' (1)) (v (21 + 32) — v/ (21 — 22))
+2(W(z1,2") +v(z1)) (v (z1 + 22) — u" (21 — 22))
+ Z (v (z1 + 20) — (21 — @) (u(z2 + 7)) — u(z2 — 1)),

v>3

the compatibility condition (6.6) can be stated as

(6.13) Q(z1,9,7") = Q(x9,71,2').

Then if we put x3 = x4 = --- = z,,, we obtain (6.5).
On the other hand, if (6.5) holds, the function

(6.14) D(x1,x2,x3)

:(u (v1 +x3) +u” :Ul—xg)(

+3(u(m1+a:3) £L‘1—(E3)< (x1 + x2) (xl—mg)

+2(u (x1+333)+u :El—xg))(u”( )

+ (W' (21 4 x3) — W' (@1 — x3)) (u(22 + 23) — u(22 — 23))

— (v (a:2+903)+u (z2 — x3)) (u( )

—3(u (2 + z3) + ' (x2 — m3)) (W(

— 2(u(z2 + 3) + u(z2 — 23))
)

— (o2 -+ 23) = (a2 = 29) (a1 + 23) — s — 59)

u(xy + z2) —u(ml—xz))
)
z1 4 x2) — U’ (21 — 22))

(u x1 + x2) — u(x1 — x2)

Ty + 32) +u' (21 — 372))

(u'(

(u 1+ 132) —u’ (11 — :L'g))
does not depend on z3 and therefore (6.13) holds. OJ

REMARK 6.2. If we put

A(z1,23) = (n — 2) (u(z1 + 3) + u(z1 — 23)) + v(21)
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Uz, z2) = u(x) + x2) — u(x) — 29)
B(z1,22,23) = (n — 2) (u(@1 + 23) — u(w1 — 3)) (u(z2 + x3) — u(z2 — 23))
8 aU($1,l’2) 4 aA($1,£L'3)

C =—(24 U
(w1, 22, 23) pr < (w1, 23) . . (w1, 22)
0B
+ (151,1132,1133)),
8x1
condition (6.5) is equivalent to
(6.15) C(J)l,fﬁz,x;g) :C(.%‘Q,wl,l'g).

When the root system is of type Bs, we can state our result in this
section as follows.

PROPOSITION 6.3.  Suppose the root system is of type Bs.
i) In Theorem 2.1 we can choose functions u(t), v(t) and T(x,y) such
that

Ria,y) = u(w+y) + u(e - y) + v(@) + o().
©16) 25 T(wp) = v/(@) (ule + 9) — ule ~ )

+ 2v(x) (u'(x +y) —u(x — y))
and

(6.17) T(z,y) =T(y,x).

ii) Assume that for given functions u(t) and v(t) there exists a function
T(xz,y) satisfying (6.16) and (6.17). Then the following two differential
operators are commutative.

0? 0?
P = a2 T a7 +u(z+y) +ulx —y) +v(x) +v(y),
o 0? 0? 0?

Py = W + U(y)@ + ’U(IE)a—y2 + (U(w + y) - u(ac - y)) dxdy
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(u'(x—l—y)%—u’(m—y))% + %(u’(m%—y) —u’(x—y))%

2
2 " "
+(u(x+y)—4u(a:—y)) +u(x+y)n2tu(ac—y)

- (o + S ) ) ot
T

+o(z)o(y) + T(z,y)

0x? Oy?

iii) We can choose functions u(t) and v(t) in Theorem 2.1 such that

(6.18) aa—; (U(LE) (u(z +y) — u(z — y)))
+ (0@ 3 (ute 4 )~ ule =) )

iv) If a pair (u(t),v(t)) = (uo(t),v0(t)) is a solution of (6.18), then the
pair (u(t),v(t)) = (Cruo(Ct) + Ca, Civo(Ct) +C4) for complex numbers C,
C1, C1, Cy and C with C # 0 and the pair (u(t), v(t)) = (vo(%)mo(\/ﬁt))
also satisfy (6.18).

ProOOF. The first and the second claims follow from the proof of The-
orem 6.1. In fact putting x = z9 and y = 1, they follow from (2.21), (6.3),
(6.4), (6.8) and (6.9) and the fact that the right hand side of (6.16) equals
%(an —S—(u(zx+y) —ulx— y))z)

The third claim is obvious from Remark 6.2 and the first pair (u(t), v(t))
in iv) clearly satisfies (6.18).

The last pair in iv) is obtained by the fact that the coordinate transfor-
mation

(6.19) X=—(-y),Y= %(fﬁty)

Sl
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gives an automorphism of the Weyl group Bs which is identified with a
group of linear transformations of R?. In fact, we can rewrite (6.18) in the
form

(v(x) —o(y))u"(z +y) +3(v'(x) = V' (y)u' (z +y)
+2(v"(z) — " (y))u(z +y)

= (v(z) —v(Y)u" (z —y) + 3(v'(z) +v'(y))u'(z — y)
+2(v"(x) — " (y))u(z — y)

and the transformation (6.19) proves the second claim. [

When the rank of the root system is larger than 2, we have

PROPOSITION 6.4. i) If the root system is of type D, with n > 3, then
the function u in Theorem 2.1 satisfies (6.18) with v = w.

ii) If the root system is of type B,, with n > 3 or of type D,, with n > 3,
then we can choose the function u in Theorem 2.1 such that

(6.20) ul (@) (u(z +y) — ulz —y))
+3u® () (uW (2 + y) — D (z —y))
+2u® (2) (W@ (z + y) — u® (2 — y)) + 4P (2)uM (y)
= u® () (u(z +y) — u(z —y))
+3u® (y) (u (2 + y) + uV (z — y))
+2u (y) (u® (@ + y) — P (2 — y)) + 2P (y)u (@),

i) Let u(t) and E(z,y,2) be functions which satisfy
(6.21) (%E(:E, y,2) =2 <u(:L’ +2) +u(r — z))
(S tule ) —ute - )
+ <%(u(m 2+ ule - z)))
-<Mx+w—u@—y0
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+ (a% (u(z + 2) — u(z — z)))
: <U(y +2) —u(y — Z)>,

(6.22) E(z,y,z) = E(y,x, 2).

Then D(x,y,z) =0 for the function D defined by (6.14).
Furthermore if u(t) is holomorphic on ', then (6.20) is also valid.

PrOOF. The first claim is clear by putting v = 0 and 3 = 0 in (6.15).

Applying ;—;% to (6.15) and moreover putting 1 = z, 9 = y and x3 = 0,
we obtain (6.20).

Since D(z,y,z) = %E(m, Y, z)—a%E(y, x, z), equations (6.21) and (6.22)
imply D(z,y,z) = 0 and therefore we obtain (6.20) in the same way as the
proof of the claim ii). OJ

For the uniqueness of our commuting family we have the following

THEOREM 6.5. Let {Py,...,P,} be a family of differential operators
of the form (0.2) which satisfies (0.3). Suppose the root system is of type
D, withn > 4 or of type B, withn > 2. We may assume that the principal
symbol of Py equals >, 51-25]2- and that u and v in (2.20) satisfy (2.21).
Then the commuting algebra C[P,... , P,] is uniquely determined by the
pair (u,v). Here we put v =0 in the case of type D,,.

Proor. If ‘P, = P,, we have the theorem from Theorem 3.2 and the
proof of Theorem 6.1. Put P» = 3, 81-28]2- + Ry. Let o(R2) denote the
principal symbol of Ry. Then we have {}_¢2,0(Rs)} = 0.

Suppose ord Ry = 3. Since Ry is W-invariant, Lemma 3.8 implies that
W is of type D4 and o(R2) equals the right hand side of (3.37) with C' # 0.

Then we may assume
Py = 01020304 + Ry

with ord Ry < 3. Let o3(R4) denote the symbol R4 of order 3. Note that
[P1, P,] = [P1,Py] = [Py, Py] = 0. Hence o3(R4) = C'o(Ry) with some
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C’ € C and by the equality [Py — C'P,, P;] = 0, we have

(&8s -0 Y &g,

1<i<j<n

1 1 1
C Z 9(§x2m3x4€?— 59&11:3:645%52— 5(m%+w§+m§—xﬁ)x4§1§2§3)} = 0.
g€6y

Then the coefficients of £7¢5 in the above shows —2CC’z3x4 = 0 and hence
C' = 0. The coefficients of £i¢¢s prove —Czawz = 0. This leads the
contradiction because C' # 0.

Thus we have ord Ry < 2. Put Q = P, — '!P5. Suppose Q # 0,
then ord@ = 1 and [P;,Q] = 0. But it is easy to see that the equa-
tion {>°¢2,0(Q)} = 0 never holds for differential operator of order 1 if
o(Q)(x,d) is symmetric. Thus we can conclude Py = ' P,. [J

7. Solutions of the functional differential equation - type B,
and D,

In this section we want to solve the functional differential equations
(6.18) and (6.20).

LEMMA 7.1. i) Suppose u(t) and v(t) are holomorphic functions for
0 < |t| < 1 satisfying (6.18). Then if v’ # 0 and v' # 0, the origin is at
most a pole of order 2 for u(t) and v(t).

ii) Let (u(t),v(t)) be a meromorphic solution of (6.18) defined on a
neighborhood of the origin. Consider the Laurent developments

w(t) = UptF + Upot* 2 4 Uppat™ ™+

7.1
= o(t) = Vit" + Voo™ 4 Vgt 4

Here U; € C, V; € C, and k and £ are nonzero even integers. If Uy, # 0 and
Vi # 0, then (k,£) equals (—2,-2), (=2,2), (—=2,4), (—2,6), (2,2), (2,-2),
(4,—2) or (6,—-2).

Proor. Using the Laurent development

uD(@)  uB(@) 4
TR y+"')'

(7.2) wx+y) —ulr—y) = 2<



44 Toshio OsHIMA and Hideko SEKIGUCHI

with respect to y, it follows from (6.18) that
0? uM (z) u®(z) 4
R L e A =)

uM(z)  uB(z
R (o 2 )

To prove i) we fix  with 0 < |z| < 1 and /(z) # 0. Suppose 0 < |y| <
|z|. Then (7.3) implies

fz,y) = y(u'(2) +yea(z, 9))0" (y) + 3(u' () + yer (2, ) (2) + co(@, y)v (@)

with suitable holomorphic functions f(z,y), co(x,y), ci(x,y) and ca(z,y)
of y defined on a neighborhood of the origin. Since this equation for v has
a regular singularity at the origin with the characteristic exponents 0 and
—2, the origin is at most a pole of order 2 for the solution v.

On the other hand Proposition 6.3 iv) assures that the origin is also at
most a pole of order 2 for u and moreover that we may suppose £ > k to
prove the second part of the lemma.

Suppose ¢ > 4 and ¢ > k. Then the coefficients of y in equation (7.3)
shows

%(U(w‘)u(l)(gj)) + %(v(m)u@) (z)) = 0.

Expanding this into the Laurent series of z, the coefficients of zF+¢—3

proves
k(k+0—1)(k+€—2)ViUy + k(k — 1)(k + £ — 2)VUy, = 0

and hence we can conclude that k£ equals 2—/ or 1 — %, from which we have
(¢,k) = (4,—2) or (6,—2) because of the assumption. [J

Now we want to get solutions of (6.18). Suppose (u(t),v(t)) is a holo-
morphic solution of (6.18) defined for 0 < || < 1. Furthermore suppose
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u # 0,0 #0, u(—t) = u(t) and v(—t) = v(t). Then Lemma 7.1 assures
that we may assume k = ¢ = —2 in (7.1). Here Uy may be 0 and V; may
be 0. Subtracting constant numbers from u and v, respectively, we may

moreover assume Uy = V) = 0.
Then (7.3) equals

82

0xdy

1) (3)

u U

{“/“)(Ty”fy”“‘)
u® @

+2“<f‘f>(7y2+fy4+"')}

0? _
= 8m8y{(_2v_2y PpoVhyt +4Viyt + )

NORNC
Gy e)

(7.4)

O 4@
T+ (2Voay 2V + 2Viyt ) (o +“2_!y2+...)}.

Comparing the coefficients of 4 and 32 in the above, we have

LEMMA 7.2. Under the above notation

2
(7.5) uMy + 20y = ﬁV_zu“) +2-22Vou+ C

and

2-4!-.3
— Viu + Cy

(7.6) w4 2uWp = %szu(@ +2-42Vu® +

with suitable constant numbers Cp and Cs.

Now we give solutions of equation (6.18). The claim i) in Proposition 7.3
is not necessary for our later purpose if we have Proposition 7.8. The proof
of Proposition 7.8 is similar as that of Proposition 7.3 i). The both proofs
are elementary but the latter one is more complicated. Hence we shall also
give the former one for the reader’s convenience. In fact, it is useful for the
calculation in the proofs to have the aid of a computer with an algebraic
programming system such as Reduce, Maple, Mathematica.
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PROPOSITION 7.3. Let (u(t),v(t)) be a holomorphic solution of (6.18)
defined for 0 < |t| < 1. Assume that ' # 0, v/ # 0, u(—t) = u(t) and
v(—t) = v(t).

i) If u = v, then there exist complex numbers A, A1, Ap, w1 and wo
such that

(77) u(t) = Alp(t|2w1, 2&)2) + AO
or
(78) u(t) = A1t2 + Agt_Q + Ap.

ii) Suppose u(t) = p(t|2w1,2ws). Then there exist complex numbers C,
Cy, Cy, C3 and Cy such that

_ Cap(t)* + Csp(t)* + Cap(t)* + Crp(t) + Co

- ¢'(t)? '

On the other hand for any compler numbers C;, there exists a function

T(x,y) satisfying (6.16) and (6.17) if the function v is defined by (7.9).
iii) Suppose u(t) = t?>+Ct=2 with a complex number C. Then there exist

complex numbers Cy, C1 and Co such that

(7.9) v(t)

(7.10) v(t) = Co + C1t72 + CQt2.

Conversely for any complex numbers Cy, C1 and Co and the function v
giwen by (7.10), there exists a function T(x,y) which satisfies (6.16) and
(6.17).

PROOF. First we shall prove the claim iii). Put

(7.11) { u(t) = at™2+ Bt

v(t) = yt72 4 6t2

with complex numbers «, G, v and 6. Then

_50 x 2
u(x+y)—u(w—y)—28—y(—a$2_y2—i—ﬁmy>
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and
(1.12) @) {ule+9) - ulo — ) + 200 (2 + )~ o - ) =25
with
(6% (0% fl?2 2
(7.13) T(w,y) = erilyz)f + 48827y,

Hence (6.18) is clear from (6.16) and (6.17).

Next suppose u(t) = t2 + Ct~2. We want to prove that v is of the form
(7.10). Subtracting a suitable function of the form of the right hand side of
(7.10) from v, we may assume ¢ = 4 in (7.1). We shall show v = 0, which
proves Proposition 7.3 iii).

If C =0, then (7.5) means

9 /
2t +2(t) = C

with a constant number C’ and therefore we have v = 0.
Hence we may assume C' # 0. Multiplying the both sides of (7.6) by
itG, we get
9 4, .8 ' 6
—t— +1 t) = t t —t
O 5 T 0)v(t) = 6V4(Ct* + )+24

with a constant C’. This proves that

3V,
U(t) = ‘/4t4 + Vét6 + %ts + Vlotlo.

Since

w4+ 200 = 40V, + (16Vs — 8CV3)t5 + &g“ts + 24Vt

equation (7.5) assures Vy = Vg = Vip = 0.
Next we shall prove the claim ii). Suppose u(t) = p(t) and v(t) is given
by (7.10). We shall show equation (6.18). Put

Q(t) = Oyt + Cst® 4+ Cot? + C1t + C,.
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Then we have the following lemma by direct calculation.
LEMMA 7.4.
2Q(s) — Q'(s)(s —t) = 2B(s,t) — (2C45> 4 C35)(s — t)°.

by denoting

(7.14) B(S,t) = 0482t2 +C3Sts+t +028t+015—|—t + Cy
Since p satisfies
0 ¢ (z)
7.15 px—i—y—px_y:_(i
(7.15) (@ +y) = ple=y) I \py) — p(x)

(cf. [WW]), we have

(7.16) ' (z)(u(z+y) —ulz —y)) + 2v(z) (W (z +y) — u'(z — y))

_ g{@ Q(p(w))) ¢ (z)

Iy |0z ¢ (2)? " p(y) — p(z)

2Q(p(x)) 0 ¢ (x)
O e e )}

_ Q{%)(@(sv)) - Q'(p(x))(p(x) — p(y))}

dy (p(z) — p(y))?

9 B(p(z), p(y))

Since B(s,t) is symmetric for (s,t), we obtain (6.16) and (6.18).

Next suppose (u(t),v(t)) satisfies (6.18) with u(t) = p(t). Subtracting
a suitable function of the form of the right hand side of (7.8) from v(t), we
may assume ¢ > 8 in (7.1) to prove the claim ii). But Lemma 7.1 assures
that v = 0 and we have the claim.

Now we shall prove i) and hence we suppose u = v. Note that if u is
given by (7.7) or (7.8) and v = u, then u and v satisfy (6.18) (cf. (1.8)).
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Use the developments (7.1) and equations (7.5) and (7.6). Then we may
assume k = —2 or k = 2 and moreover U, = 1 and Uy = 0 by virtue of
Lemma 7.1.

Comparing the coefficients of t2 in equation (7.5), we have

j+2
Z 4v(j + v)UzUsjra—2s
(717) v=—1
2 . : . .
— B(Qj + 1)(2] + 2)(2] + 3)(2] + 4)U72U2j+4 — 8U2U2j =0
for any positive integer j.
First suppose k = 2. Then for j > 2 we have

j—1
4(] + 1)U2j + 4j(2j)U2j + Z4V(j + V)UQVU2j+2—21/ — 8Uzj—2 = 0.
v=2
and therefore
j—1
425 — 1) + DU = =4 _v(j + 1)U Usj 1220
v=2

Hence by the induction on j, we have Uy; = 0 for j > 2, which means
u(t) = t2.

Next suppose k = —2. Then in equation (7.17) there only appear U,
for v < 2j +4. We can prove that if j > 2, then Uj;ji4 are inductively
determined by U, with v < 2j +4. In fact, since the term containing Usj44
in (7.17) equals

2(—2)(2j + 4)U_2U2j+4 + 2(—2)(—3)U_2U2j+4
+ 2(2j + 4)(2j + 3)U2j+4U_2

2 . ) ) )
- 1—5(23 +1)(25 +2)(25 +3)(2) +4)U_2U2514

2 . : :
=~ 15 (27 = 22 + 7)(45% + 10] + 9)Vajpa,

we have

(7.18) %5(6 — 3)(20 + 3) (402 — 60 + 5)Uy
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T
N

— vl +v— 2)U2VU2(471171) — 202U (p—9)
1

1%

for ¢ = j+2 > 3. By putting £ =4, 5, 6 and 7 in (7.18), we obtain

3
(7.19) Us = 17U2Us,
(7.20) Ug = 13U2U6 + 13U4,
35
21
(7.21) Uiz = 3729U2 Us+ 113U4U6’
270 75 30
22
(7.22) Uia = 3504 V2U10 + 155 Uals + 901U6’

respectively. In general, if £ > 4, U, are determined by U, with v < £ and
therefore the solution of (6.19) with u = v is uniquely determined by the
numbers Us, Uy and Ug.

Similarly the coefficients of t% and #® in (7.6) mean

140 26
2
(7 3) Ui = 3883U2 Uy + 353U4U6,
90 50 15
24 = 2.
(7 ) Uiy = 333 —UsUyg + — 333 UsUg + 833U

Now it follows from (7.21) and (7.23) that
(7.25) U4(U3 — 3Us) = 0.

Note that Us = 3U3 if u is a p-function. Since u(t) = p(t) is a solution
of (6.18) and since Uy with ¢ > 4 are uniquely determined by Usa, Uy and
Us, we can conclude that u(t) is Weierstrass’ elliptic function if UJ = 3Us.

Hence to prove the proposition we may assume U22 # 3Ug. Then we
have Uy = 0 and Uyg = £UzUs by (7.20). Combining this with (7.22) and
(7.24), we get

(7.26) Us(Us — 3Us) = 0.

Then by the assumption UZ # 3Us we have Uy = Ug = 0 and therefore we
can conclude u(t) = t~2 + Ust? by the same reason as in the case U3 =
3Us. U
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REMARK 7.5. 1) Suppose u(t) = p(t|2w;, 2w2) and put ws = —w; — wa.
If wq and wy are finite complex numbers, then the condition that v is of the
form (7.9) is equivalent to say that

(7.27)  w(t) = Chp(t) + Clp(t +wi) + Chp(t + ws) + Chp(t + w3) + C}

with suitable complex numbers C{, C1, C5, C% and C (cf. [WW]).
ii) For complex numbers C7, Cy and Cs, the pair

(7.28) (u(t), v(t)) = (Crp(t), C2p(t) + C3p(2t))

satisfies equation (6.18), which follows from the duplication formula for p(t)
(cf. [WWI).

COROLLARY 7.6. Suppose the root system is of type Bo in Theorem 2.1.
i) Suppose u = 0. Then (6.18) always holds and our commuting differ-
ential operators are

P =Q1+Q2, Po=Q10Q2
with
Qj = 07 +v(zy)

for j =1 and 2.

ii) The case when v = 0 is also trivial. It corresponds to the case when
v =0 by the symmetry given by Proposition 6.3 iv).

iii) Suppose

(7.29) (u(t),v(t)) = (at™2 4 Bt2, yt=2 4 6t2)

(7.30)  (u(t),v(t))

B Cup(t)* + Cap(t)? + Cap(t)? + Crp(t) + Co
- (A@(t)a / 2

¢ (1)
Then there exists a commuting algebra C[Py, P;], where Py and Py are de-
fined by Proposition 6.3 i) through (7.13) or (7.16).

).



52 Toshio OsHIMA and Hideko SEKIGUCHI

Now we shall solve equation (6.20). Suppose u(t) is meromorphic at the
origin. We may assume that u(t) has the form given in (7.1).

Suppose k < —2 and Uy = 1. Then by using (7.2), the coefficient of
y*~3 of (6.20) means

((k)(k —1)(k—2)(k—3) + (k)(k—1)(k —2)(342))u/(z) =0

and therefore we have k = —2.

Hence we may assume k = —2 in the expansion (7.1) of u(¢) if we allow
Ur = 0. Furthermore we may assume Uy = 0 by subtracting a constant
from u. Then expanding (6.20) into the Laurent series of y, we have

I C)
oD Y S
“ { AT }

u® 4)
®3) B
+ 3u { 1 y+ S Y +- }

oy )
= <(—2)(—3)(—4)(—5)U_2y_6 +4-3-2-1U;+ - )
WV y®
{ TR }
(—2 )(=3)(=4)U_oy~ +4-3-2U4y+~->

{3<u_ MR ) +2u(1)}

< —2)(=3)U—2y~ +2UQ+4-3U4y2+...>

u® u(5)
2 1 y+ y +-

<( 2)U_oy ™3 + 2Usy + 4Uyy> + - ){—QU(S)}.

The coefficients of y and y> in the above equation imply
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5@ 4 Wy — U4_—22u(7> 144U,

1 2 U_ 20
“u® @ L 2,,@,,0) - X229 4 272, (5) Usu® UtV
3u U +3u U 1080u + 3 u'” 4+ 56U4u'” + 960Ugu" "/,

respectively. Integrating the above equations, we have

LEMMA 7.7. Suppose a meromorphic function
(7.31) u(t) = U_ogt ™2 + Ugt?® + Ugt 4+ Ugt® + - --

defined on a neighborhood of the origin satisfies (6.20). Then it also satisfies
the differential equations

(7.32) %u(ﬁ) —2(u")? — u®h! + 144U4u = C
and

(7.33) 1U0—_83u(8) — %u(‘l)u(z) — é(u(?’))2 + QTUZU(‘D +56U,u? 4+ 960Usu = C’

with suitable constants C' and C".
Now the following proposition solves the equation (6.20).

PROPOSITION 7.8. Let u(t) be a meromorphic function defined on a
neighborhood of the origin. Suppose u(t) satisfies (6.20). Then u(t) is of
the form (7.7) or (7.8).

Conversely any function u(t) of the form (7.7) or (7.8) satisfies (6.20).

Now we prepare

LEMMA 7.9. Let u(t) be a function of the form (7.7) or (7.8). Then
D(x1, 22, 23) = 0 with the function D(x1,x2,x3) defined by (6.14).

ProOOF. First suppose u(t) is given by (7.7). Then Theorem 5.2 assures
the existence of the commuting algebra D(A,,) corresponding to the poten-
tial function R(z) defined by u. Since As ~ D3, we have D(x1,x9,x3) =0
from Theorem 2.1 and Theorem 6.1
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Next suppose u(t) is given by (7.8). Put

22y% 4+ 2222 + 4?22
(22 — y?)? (2% — 22)(y* — 2?)

(7.34) E(z,y,2) = 843

SAA 2x2y2 + 2222 4+ y222 22 22
+ 384142 (22 — y2)2 x2—22+y2—22
+ 16 A3 (x%y? + 222% 4 922%)
2 2
x° +
+ 8A0A1ﬁ + 8A0A2($2 + yz)

Then we can prove equality (6.21) by direct calculation. Hence Lemma 7.9
follows from Proposition 6.4 iii). OJ

PROOF OF PROPOSITION 7.8. First expand equations (7.32) and (7.33)
into the Laurent series of t. Then the coefficients of ¢4, ¢6, ¢3, 19, t12 and
14 in (7.32) show

(7.35) 13U _oUyg — 2UUs — UZ = 0,

(7.36) 195U _oUyp — 14UUs — 24U4Us = 0,

(7.37) 21590 _oUyy — 90U2U g — 170U4Us — 105U2 = 0,

(7.38) 2888U U5 — TTUsU15 — 1532U4U1 — 202UsUs = 0,

(7.39) 20070U Uy — 364U5U14 — 735U4U79
—1020UgU7¢ — 560U3 = 0,

(7.40) 976350 _oUsg — 1260U2U16 — 2576U,U 14

—3675Us Uy — 4270UsU 9 = 0

by dividing 1680, 560, 168, 336, 112 and 48, respectively.
In general, comparing the coefficients of t2#76 in (7.32), we obtain

1
(T41)  52k(2k — 2)(2k - 8)(2k + 3)(4k? — 16k + 43)U_oUsy,

—2

=) (2v)(2v —1)(4k —2v — 2)(2k — 2v — 8)U2, Up(j—p—1)

v=1

— 144U4U2(k,3)

N
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for k > 4. This equation implies that Usj are uniquely determined by Us,
with v < k if £ > 5 and U_5 # 0. Hence we see that u(t) is uniquely
determined by Usa, Uy, Ug and Uy if U_5 # 0. In fact, from (7.35), (7.36)
and (7.36) we have

1
(7.42) Ui = —(2U2U6 + Uf)

(7.43) Uip = TR (7U2U8 + 12U4Us),

5!
(7.44) Uy = 98067 (36UQ Us + 18U2U4 + 442U4Ug + 273U6)
ifU_5=1.

Similarly the coefficients of ¢, t8, +10 and #12 in (7.33) mean

(7.45) 221U Uy — 20U4Ug — 15UZ = 0,

(7.46) 57U _oUy — 3UsUyg — 5UsUs = 0,

(7.47) 135150 _oUyg — 462U4U15 — 795UUy g — 466U2 = 0,
(7.48) 939550 _oUsg — 2184U,4U14 — 3885UsU12 — 4690UU 19 = 0,

by dividing 1008, 21600, 336 and 144, respectively.
First suppose U_s = 1. Then substituting U4 in (7.45) by the right
hand side of (7.44), we have

30

and hence if Uy # 0

(7.49) Us = (2U3Us + UyUZ — 6UZ).

3
11U,

Now suppose U_g = 1 and Uy # 0. Then from (7.43), (7.44), (7.38) and
(7.49) we have

(7.50) U = 71;’(] (14U3Us + TUSU} — 42U,U2 + 44U2Us),

(7.51) Uiy = 8U2 Us + 4U2U4 - 13U6)

2431 (
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(7.52) U (1078U5U6 + 539U U2 + 36156U2UZ

~ 10324600,
+ 31443U,UUs + 4180U} — 118170U¢).

Then applying (7.42), (7.49) and (7.52) to (7.46), we have
(7.53) (3Us — U3) (130U — 14U3Us — TUUZ) = 0.

Now we suppose U_g = 1, Uy # 0 and 3Us # U3. If Uy = 0, then (7.53)
implies Ug = 0, which contradicts the assumption just we have made. Hence
we conclude Uy # 0. Then from (7.53) we have

1
(7.54) Ui = 7—U2(13OU62 — 14U3Uy).

In this case we get

Une — 10U 16U 4508
10 — —7U2 ) 12 — 7U2U47 14 — —119 )
20U3
Ujg = ———90—(TU2 + 65U5),
16 931U22U4( 2 +65Us)
48U

Uso (154390Us — 5523U2).

14716849050,
Applying these equations to (7.48), we obtain

19918080 5 9
18030700, 00 (306 — U2) =0
and therefore U = 0 because 3Us # Uz. Then from (7.53) we have UsU} =
0, which contradicts our assumption.

Thus we have proved that if U_o = 1 and Uy # 0, then Ug = éU% and

u is uniquely determined by Us and Uy. Since Weierstrass’ elliptic function
is a solution of (6.20), we can conclude in this case that u(t) is Weierstrass’
elliptic function.
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Next we assume that U_o = 1 and Uy = 0. In this case we have

2U,Us 14U,Ug 15U )
U — Uso = Uy = 12U2 + 91U,
10 3 12 T 14 28067( 5+ 6);
Us
7.55 Ui = 539U2 + 196950,
( ) 16 281580( 9 + 6);
Uis = —————(3276U3 Uy + 245061U,U2 + T85876U2).
18 = 55330169 26+ 256 + 5)

from (7.35), (7.42), (7.43), (7.44) and (7.39). Applying these equations with
Uy =0 to (7.45), we have

180U¢
127

(U3 — 3Ug) = 0.
If Us = 0, then (7.47) is reduced to

—47432U2
669

by using (7.55) and therefore Ug = 0 and we can conclude u(t) = t~2 + Uyt?
in the same way as in the case when U_5 = 1 and Uy # 0.
Consider the case when Uy = 0, Us = U7 # 0. In this case (7.46) is
similarly reduced to
—847U2Us B
3705
and hence Ug = 0. Then we can similarly conclude that u(t) is the -
function.

Thus we have proved the proposition when U_s = 1. Since we can reduce
the proof of the proposition to this special case if U_5 # 0, we may assume
U_5=0.

Choose a positive integer ¢ such that Usy # 0 and Uy, = 0 if v < /L.
Suppose ¢ > 3. Then the equation (7.41) with & = 2¢ + 1 says

20(2¢ — 1)(6¢ + 2)(2¢ — 6)U3, = 0,
which implies ¢ = 3.

Hence we can conclude that the condition U_9 = Uy = Uy = Ug = 0
assures u(t) = 0.
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If U_g =U; =0, we have Uy = 0 from (7.35) and therefore Us = 0 from
(7.45) and we can conclude u(t) = 0.
Suppose U_y = 0 and Uz # 0. Then from (7.35) and (7.36) we have

~U? —120,Us  6U}
Ug= —2 Us= Cd .
20, U, U2
and (7.45) is reduced to
—7T020U7 _
v

Hence Uy = Ug = Ug = 0 and we can conclude u(t) = Ust? by the similar
argument as before.
Thus we have completed the proof of the proposition. [J

Now we state our main result in this section. For any even function w(t)
we can define the following trivial commuting family

Eoog2
(7.56) Q= Z H (@ + w(ﬂfz‘u)) for k=1,...,n

1<y i< <ip<nv=1

D(w) = C[Q1, ..., @nl.

THEOREM 7.10. Suppose there exist a W -invariant connected open
neighborhood Q of the origin of C™ such that the potential function R(x)
in (0.4) is a holomorphic function defined on an open dense subset Q) of Q.
Here Q\ Q' is an analytic subset of .

i) If the root system is of type D,, with n > 3, then the function u(t) in
Theorem 2.1 equals A1p(t|2wr, 2w2) + Ag or Ait? + Agt =2 + Ay with suitable
complex numbers A; and wy.

ii) Suppose the root system is of type B, with n > 3 and suppose
C[Py, ..., P,] is not equal to any trivial commuting algebra D(w). Then
there exist complex numbers A;, C; and wy, such that

u(t) = Alp(t\le, 2w2) + Ao,

(7.57) o(t) = Cip(t)* + Csp(t)> + Cap(t)? + Crp(t) + Co
¢ (1)2 '
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or

u(t) = A1t? + Ast™2 + Ay,
(7.58) ®) soon Tt
v(t) = C1t? + Cot™2 + Cy.

Here we remark that wy, (k= 1,2) may be infinite.

PROOF. The theorem is clear from Proposition 6.4, Proposition 7.3 and
Proposition 7.8. [

REMARK 7.11. The proof of Theorem 7.10 shows that when n > 2,
(7.57) and (7.58) give all the solutions of (6.5) such that u(t) and v(t) are
holomorphic for 0 < |t| <« 1.

When the root system is of type By, Theorem 7.10 is not valid (cf.
[OOS]). On the other hand, we have the following result under the assump-
tion that the coefficients of the differential operators have expansions of
Harish-Chandra type.

THEOREM 7.12. i) Assume the root system is of type Bs in Theo-
rem 2.1. Suppose v’ # 0, v' # 0 and the functions u(logs) and v(log s)
are meromorphic for |s| < 1 under the notation (6.1). Then there exist a
positive integer r and complex numbers C1,...,Cy with

(7.59) C2Cs = C4Cs =0
such that (u(t),v(t)) or (v(t),u(2t)) equals

(7.60) (01 sinh™2 gt + Oy sinh™2rt + C5 cosh rt + Cy cosh 2rt + Cs,
C sinh ™2 gt + C7sinh ™2 rt + Cg).
i) If (u(t),v(t)) equals (7.60) with complex numbers C1,. .. ,Cs satisfying

(7.59). Then u(t) and v(t) satisfy the assumption in Proposition 6.3 ii) and
therefore we have commuting differential operators.
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PROOF. Suppose the meromorphic functions
{ u(logt) =3, Ut
v(logs) =3 s Vsl

satisfies (6.18). Here r and ' are integers and U; and V; are complex
numbers with U, # 0. By subtracting constant numbers from u and v, we
may assume Uy = Vp = 0 and r # 0.

Since

u(log s + logt) — u(log s — logt) = Z Ui(th —t79)s",
2>

for 0 < |s| < |t| < 1 it follows from (6.18) that

(s (Z v (v - 17s) |

g (T v g (S vt = 9
_ (t%)z{( S it (YUl - ti)si))}
o] (v (T - s}

and therefore

Y (i + )20+ HUV(E — 7)™

>r

>

= > (@i 4+ )i+ DUNGEH = (20— )i = UVt ).
J‘g:’

(7.61)

If Vs # 0 and 7’ < 0, the coefficients of ¢"s"*"" in (7.61) means

(r+r)2r+"UV, =0
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and therefore r = —r' or r = —%/. Hence Proposition 6.3 iv) assures that
we may assume r > 0 by replacing (u(t),v(t)) by (v(t),u(2t)) if necessary.
Admitting V,» to be 0, we may assume

r>0 and 1 = —2r.

When j < 0, the coefficients of t"s" ™/ means (r + j)(2r + j)U,V; = 0 and
therefore

(7.62) Vi=0 for =2r<j<-—r and —7r<j<O0.

The terms in (7.61) corresponding to s” imply

> i+ ) UiVesi(t —t7)

r<i<3r
= > @D +DUVH = 3 @r =) = UVt
jz=2r j=—2r

and hence from (7.62) we have

3r2U Vo, (127 — t727) + 492U, Vo, (37 — t737)

(7.63) =3 <(’r + B)kUViey — (1 — k)kUTVW)t’“
k>—3r

by denoting V; = 0 for j < —2r.
If k # +2r and k # +3r, then by the coefficients of t* of (7.63) we have

(r+ kKU Vi = (r — k)kU Viyr
and hence
(7.64) Vi=0 if j#0 modr
and

(7.65) Vi = ji—lv(j,l)r for j > 4.
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Furthermore the coefficients of t=2", #2" and %" in (7.63) mean

—3r2Us, V_, = —(2r)(=3r)U,V_,
3r2Us V., = 612UV, — 202U, V3,

and
472Us, V_gp = 120U, Vay — 612U, Vay.,

respectively, and thus we have

(7.66) V(U — 2U,) =0,
(7.67) Var = 3(Vi = V),
(7.68) Vir = 2(Vay — Vg,).

On the other hand, the coefficients of t~"s%" in (7.61) says
—6r°U,V, = =3r*Us, V,
and therefore
(7.69) Vi (Usy — 2U,) = 0.

Now we remark that relations (7.64), (7.65), (7.67) and (7.68) show that
the numbers V_y,, V_,., V. and V3, uniquely determine the function v(log s)
because we have assumed Vj; = 0.

On the other hand, if V; are the coefficients of tJ of the function ﬁ,
they satisfy (7.64), (7.65), (7.67) and (7.68). In fact it is clear from the

equation
t (0.0}
=) kt*.
(1 _ t)2 Z
k=1
Similarly it is easy to see that the functions (l_tii;.)% tr+t7" and 2 4t

have the same property.
Thus we can conclude that

(7.70) v(t) = Cy sinh ™2 gt + Cysinh ™2 7t + C3 cosh rt + Cy cosh 2rt
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with some constant numbers C1,...,Cy.
Next we shall show

(7.71) u(t) = Cgsinh ™2 gt + C7sinh ™2 7t

with some constant numbers Cg and C%, which proves the first part of the
theorem by virtue of relations (7.66) and (7.69). Here we note that we have
assumed that U, # 0 with r > 0.

If v(log s) is holomorphic at the origin s = 0, it follows from (7.70) that
u(t) is of the form (7.71) because (v(t),u(2t)) is also a solution of (6.18).

To examine the case when v(logs) is not holomorphic at the origin,
we shall study the solution (v(t),u(2t)) of (6.18) and the proof of Theo-
rem 7.12 i) is reduced to the determination of u(t) satisfying (7.61) under
the assumption r < 0, U, # 0 and 7’ > 0 by replacing r if necessary. Under
this assumption, the terms in (7.61) corresponding to s” prove

> ((@r+ )+ HUVGEH = 20 = ) = UV ) =0

jzr’
and furthermore by the coefficients of =" in the above we have
(J—r)G—2r)V;=( —r)jVj—2r for j>0,

which means ,
v(t) = Cysinh ™2 §t + Chsinh ™2 rt

with some complex numbers Cf; and C%. Thus we have completed the proof
of Theorem 7.12 i).

First suppose Cs = 0 to prove the second part of the theorem. If
(v(2t),u(t)) equals (7.60), (u(t),v(t)) is a special case given in Theorem
7.3 ii) and therefore it satisfies the assumption in Proposition 6.3 ii). Hence
the second part follows from Proposition 6.3 iv) when Cg = 0.

Next suppose Cy = Cy = 0. We have proved that if (u(t),v(t)) equals

(Crsinh™ Lt + Gy coshrt + Cs, Crsinh ™ rt),

or
(Cl sinh ™2 't + C5 cosh 21t + Cs, C sinh ™2 7/t + Cg),
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with suitable positive numbers r and 7/, it satisfies the assumption in Propo-
sition 6.3 ii).
Putting 7' = £, it is clear that

u(t) = C sinh ™2 gt + Cscoshrt + Cs,

v(t) = Cg sinh 2 %t + Crsinh ™2 rt + Cy

satisfy the same assumption. Thus we have completed the proof of Theo-
rem 7.12 owing to Proposition 6.3 iv). O

Combining Proposition 3.6, Theorem 5.2, Theorem 7.10 and Theorem
7.12, we have

THEOREM 7.13. Let u and v be functions in Theorem 2.1. Suppose
u and v are holomorphic except some isolated singular points and suppose
u(log s) and v(logs) are holomorphically extended to the point s = 0.

i) If the root system is of type A, with n > 1 or of type D, with n > 2,
then

(7.72) u(t) = Cy sinh =2 kt + C.

ii) Suppose the root system is of type By, and suppose v’ # 0 and v’ # 0.
If n > 2, then

u(t) = Cysinh™2 kt 4 Cy,

(7.73) L L
v(t) = Ay sinh™* kt + Agsinh™“ 2kt + Ag

and if n =2, then (7.73) holds or

u(t) = Ay sinh ™2 kt 4+ Agsinh™2 2kt + Ay,

(7.74) ,
v(t) = Cy sinh™ 2kt + Cy.

In i) and ii), Ao, A1, Aa, Cy and Cy are complex numbers and 2k is a
positive integer.

ili) Suppose P;j are invariant under the parallel translation xi — x1 +
21y/—1. Then u and v in Theorem 2.1 determine the commuting algebra
ClPy,..., P,
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REMARK 7.14. The assumption in Theorem 7.13 gives a characteri-
zation for the commuting algebra C[P,...,P,] to be equal to the one
constructed by [D1], [H1], [H2], [Opl], [Op2] and [Sj].

8. Examples

In this paper we have studied the potential function R(z) of a Laplacian
which allows a commuting family of differential operators invariant under
the action of a classical Weyl group. In this section we first consider the
one-dimensional analogue of the potential function we have obtained. That
is the ordinal differential equation

d%y
(81) W + ua(t)y =0
for the function u, in (0.8).
Then the most general potential function in Theorem 7.10 gives

d?y  Cap(t)! + C3p(t)® + Cop(t)? + Cip(t) + Co

(8.2) e IOk

y=0.
Note that
[0 = 49" — 920 — g3
=4(p —e1)(p — e2)(p — e3)
with some complex numbers ej, e and ez and then
g2

p// — 6@2 _ E

=2{(p—ea)(p—e3)+(p—e3)p—e1)+(p—e)p—e2)},

o 1 1 1 1
/225(_ tomo )
[@] P —e1 P —€e2 €3

Putting = = p(t), we have & = ¢/(t)L and

d? o d® 1/ 1 1 1 d
I LA =Rl | Cremidererm ryarn) b
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Hence equation (8.2) equals

Py 1, 1 1 1 \dy
8.4 Yy _( )—
(8:4) da:2+2 x—el+x—eg+x—eg dx

C4l‘4+03$3+021’2+011‘+00

16(z — e1)2(z — e2)?(x — e3)?

y = 0.

Suppose e1 # eg # eg # e1. Then (8.4) can be written as

>y 1 1 1 1 dy
8.5 4y, - ad
(8.5) d:1:2+2<1*—61 x—eg+z—63>dx
Ay Ao As

* <(x —e1)?  (x—e9)? + (x —e3)?

B B B
LI 2 3 )y:O
r — € Xr — €9 Tr — €3

with some complex numbers A1, Ay, A3, By, By and Bj satisfying
(86) B+ By + B3 =0.

Equation (8.5) is a Fuchsian equation on P!(C) which has the four regular
singular points ey, es, eg and co. The indicial equations for the singular
points are

1
p2._§pj+A-:0 at x =e; forj=1, 2and 3,

(8.7)
poo——poo+z j+eBj)=0 atxz=oc.

By the transformation y — (z — e1)* (z — e2)*2(x — e3) 3y with complex
numbers A1, A2 and Az, the equation is transformed into Huen’s equation
(cf. [WW]) and moreover we obtain any Fuchsian equation on P!(C) of
order 2 which has the four regular singular points.

On the other hand, if

(8.8) o (t) = Cysinh ™2t 4+ Cy sinh ™2 2t 4 Cs
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or

(8.9) uq(t) = Cycosh 2t + C5
or

(8.10) Ua(t) = A1t? + Aot ™2 + Ay

(cf. Theorem 7.10 and Theorem 7.12), (8.1) is isomorphic to the Gauss
hypergeometric equation or the modified Mathieu equation or the equa-
tion of the paraboloid of revolution which is equivalent to the equation of
Whittaker functions, respectively.

When the root system is of type A,, Theorem 4.3 says u, = C1p + Cp
and the corresponding equation (8.1) is the Weierstrassian form of Lamé’s
equation, which corresponds to A1 = Ay = A3 =0 in (8.5). In particular if
Uq(t) = Cysinh™2t 4 Cp or uq(t) = C1t=2 4 C, the equation is reduced to
the Legendre equation or the Bessel equation, respectively.

Next consider the case when the root system is of type As. First remark
that

// s 2
ol2s) = 155~ 20(5),
/ s 2 / 2
1) plsn+es—t) = S OO a0 a0,

2(p(s) — (1))
o()0/(t)
(p(s) — p(1))°

o~
~—

pls +1) —p(s —t) =

For (x1,22,23) € C3, we consider the coordinate system (X,Y, Z) with
(8.12) 2X =a1 —x0, X +Y =21 — 23, Z = 23.

Then 2Y = z; + z3 — 223 and

0 0 10 0 0 10 0 0 0

921 OX 120V Dmy  OX 20V 0xs OV 07



68 Toshio OsHIMA and Hideko SEKIGUCHI

The commuting family in this case is generated by

A = i + i + i
81‘1 8902 8953’
0? 0? 0?
Ag - 8$18:E2 + 8332&%3 + 83018903
(8.13) + C’p(azl — :Ug) + Cp(l‘g — 1’3) + Cp(:l?l - 1’3),
As = 0 + Cp(zr — 963)i
8117181‘28333 0xy

0 0
+ Cp(.’lfl — .ng)a—xZ + C@(L]Z’l — x2)8_13

Let J be the left ideal of the ring of differential operators generated by
Al = 8% and put x = p(X), Yy = p(Y) and z = p(Z) Then

B 32 _§ 32 N 32
0X?2 490Y2 09YOZ

+Cp2X)+Cp(X —=Y)+Cp(X +Y)

(8.14) Ay =

2 3 82
= (4B — dgox — g3) s — > (dy® — dgoy — g3) ——
(42° — 4gox — g3) 52~ 14 — 492y 93) oy
2
g2, 0 3 ga. O 62 — 2
_(6x2_7)8__1(6y2_5)8_+0 ( 7) 5
x Y 4(423 — gow — g3)

42° 4+ 4y° — gow — goy — 293
2
2(z - )

A (O 1PN D
37 \aox2 aav2)\oy oz

+cp(x_y)<i+l a)

+C 4Cr —2Cy  mod J,

0X ' 20y
0 10 0
+Cp(X—|—Y)<— 8—X + 58_5/) —I-Cp(QX)a—Y

0X2 40Y2?)0Y 0X
+C<p(X+Y)+p(X_Y)+p(2X)>8iY mod J

2 2
E<‘9 _ Lo >3—c(p<x+3/)—p(x—y>)i

2
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53
VAy? — goy — g3 | (42 — go gs)aany
92) 0?

2
+ (62~ — > ) 52y

_Z — —ga)—— — Z(6y? — LY =—
42° —go — g3 O

Ty o

C
+ 7 (4903 + 4y — (g2 + 8)x — goy — 293
1222 — go > 8}

813 — 2gox + 2g3 6_y ’

Now consider the case when the root system is of type By. Use the
coordinate system (s,t) € C? and put x = p(s) and y = p(t). Let

u(t) = Ap(t),
(8.15) ~ Cap(t)* + C3p(t)® + Cop(t)® + Cip(t) + Co
o) = (0

in Proposition 6.3 and Proposition 7.3. Then by (7.16) we have

(8.16)
0? 02
A _
952 8t2+ (p(s+1t)+p(s—1))
N Cyz* + C323 4 Coz? + Crz + C N Cyy* + C3y® + Coy® + C1y + Cy
423 — go — g3 4y3 — goy — g3

9? go. O 0?
(3 2 3
= (4z —9236—93)8 2+(6 2)8 + (4y —923/—93)8—y2

P =

2
0455 +C3:‘C +02:L‘ + Cix+ Cy n C4y —|—ng —l—ng +C1y+Co
423 — gox — g3 4y® — g2y — g3
0? u(s +t) —u(s —t)]? 0? 0?

Py =

95Ot + 9 +U(t)@ “'”(5)@ + v(s)v(t)
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N 2AC 2%y? + ACszy(x + y) + 2ACo2y + AC) (2 + y) + 2AC)
2(z — y)?
2
— VT g — ) (A — gy — g5) =
0rdy

n A/ (423 — gox — g3) (49> — goy — 93)]2

2(z — y)?
N Cay* + C3y> + Coy® + Cry + Cp
43 — goy — g3
82 gz 0
. 3 —_— — [ 2 — — —
((456 gox gg)&52 + (6x 5 )839)

4 C4l‘4 + 031)3 + 02.%‘2 + Cll‘ + C()
423 — gox — g3

2
: <(4y3 — g2y — 93)%2 + (6y° — %)%)
n (Cyz* + C323 + Cox® + Crz + Cp)(Cay* + C3y3 + Coy? + Cry + Cp)

(423 — gox — g3)(4y> — g2y — 93)
n 2AC 1 2%y? + ACsxy(x + y) + 2ACxy + AC (z + y) + 2AC)

2(z — y)? '

Here we note that the coefficients of the differential operator P are rational
functions under the coordinate (z,y).
On the other hand, if

(8.17) (u(t),v(t)) = (at 2+ B2, 4t~ + 6t2),

the commuting operators are

82 82
~ o2 oe
2+ t2

T2 et (284 6)(s* +13) + (s> +177),

0? st 2
= | 555~ 2047(82 — iy + 2f3st

+ (yt72 + 5t2)8—2 + (ys72 + 632)8—2
052 ot?

(8.18) P

Py
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4a6s%t? + dary

2,2
52— ) + 486s°t

+ (ys 2 4+ 65 (vt 72 + 6t2) +

from Proposition 6.3 and (7.16). In particular, if @ = = 0, we have

0% 02

_ - 2 2
(8.19) P = 552 + 92 + A(s” + ),
52 2 52 52
p= |2 _ 2 YV 209
2 8sat+(’\ 6)st] +6<t 552 T8 at2>

+ (21 — 6)8s5°t*

by putting A = 23 + 6.
Lastly we consider the operators when

(8.20)  (u(t), v(t)) = (« sinh™2t 4 Bcosh2t, ysinh 2 ¢ + §sinh ™2 2t),

which is given by Theorem 7.12. Putting = = sinh?s and y = sinh?¢, we
have

w(s + 1) + uls — t) = Qa% +28(1 + 22)(1 + 2y),
—4da
u(s+t)—u(s—t)= <W + 85) V(1 +z)y(1+y),
_7 o
vls) = : 4r(l+x)’

0 0
E_Ll af(l—i-a:)a—z

and

0 24+ x+vy ad
2gr (20 I + g+ e+

=0'(s)(u(s +t) —u(s —t)) + 2v(s) (v (s + 1) — /(s — 1)).
Thus by Proposition 6.3 we have

(8.21)
o o2
+ s

P ==
1™ 952 " oe2
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+ a(sinh_Q(s +t) 4 sinh™2(s — t)) + B(cosh2(s + t) + cosh 2(s — t))

+ ’y( sinh™2 s + sinh 2 t) + (5( sinh™2 2s + sinh =2 2t)
2 2

0 0 0
+8(1+ 2:3)% + 16y(1 + y)ﬁ +8(1+ 2y)a—y

+26(1 4 22)(1 + 2y)

= 162(1 —i—:v)aa 5

T +y+ 2xy
(x—y)?

" WG * é) " 6<4x(11+ N 4@/(11+ y))7

82
Po= [85815
N a(sinh™2(s +t) —sinh ?(s — t)) + B(cosh 2(s +¢) — cosh2(s — t)) |°
2

+ 2«

82

0?
+ (7 sinh™2¢ 4 §sinh ™ Zt) — + (7 sinh ™2 s + § sinh ™2 25) 92

052
+ (’y sinh™2 s + 6 sinh 2 23) (’y sinh ™2t + 6 sinh 2 2t)
2ay(2 4 sinh s + sinh t) + @
sinh?(s + t) sinh?(s — t)
2

= [16\/:13 1+ y)afay + ((x__Q 2 + 4ﬁ) V(1 1+y)

0? 0?
+ (% * 4y(16+ y))w + (% * 4x(16—|— J;))(?—yQ
) )
+ (% + 4x(1 4+ x)) (% + 4y(1 + y))

2ary(2 6
+ il (_;ai—;)z) e +408v(x + y).

+ 46~ (sinh? s + sinh? t)

Here if we use the symmetric coordinate system

(8.22) { X =2ty

Y =y

then by

_9o0_,0 8_9 0
or 09X Yoy’ oy  ax  Tay’
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and

A N Y G
aroy  \ox Yoy J\ax T oy
52 52 2 9
=~ axz T Xoxay T Vavz Tay

f(m’y)a% * f(y’fﬁ)a% = f(ﬂf’y)((% +yaiy> + f(y,x) <8iX - x%)
- (fa + 500 5%

+ () +afn)) 57

82 82 82
o) g + 1) = (1) + 10)) s
82
0XoY

52
+ (1w + 2100 ) 5

+2 <yf(:v, y) +xf(y, w))

these operators are

82 62
2_ —_— _—
(8.23) PL=16(X + X z}f)aX2 +16(2+ X)Y XY
2 0 0
+16(X +2Y)Y o7 2+16(1+X)a—+8(X+4Y)8Y
X +2Y X
X+ X2-2v
Y1+ X+Y)
0? 0? 0? 0
Pg_[16 Y(1+X+Y)(8X2+X8X8Y+Y8Y2+8—Y>

+ (o7 24Y+45) Y +X+Y)r

<X X+X2—2Y>82
+ (7

vy i x ) ) axe
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[00S]

[OP]

[OP2]

[OP3]

Toshio OsHIMA and Hideko SEKIGUCHI

+(2y 46212 o
TP X +Y) ) oxoy
X +2Y 0?
+<7X+64(1+X+Y)>6Y2
72 v6(2 + X) 52

+?+4y(1+X+Y) * 16Y(1+ X +Y)

N 209(2+ X) +
X2 —4Y

+46vX.
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