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Commuting families of differential operators

invariant under the action of a Weyl group

By Toshio Oshima and Hideko Sekiguchi

Abstract. For a Weyl group W of a classical root system (Σ, E),
we study W -invariant commuting differential operators on E whose
highest order terms generate the W -invariant differential operators with
constant coefficients. We show that the potential function for the Lapla-
cian in this commuting family of differential operators is expressed by
the Weierstrass elliptic functions. The commuting differential operators
define a generalization of hypergeometric equations.

0. Introduction

Let (Σ, E) be an irreducible and reduced root system of rank n and let

W be the corresponding Weyl group. We denote by S(E) the symmetric

algebra over the complexification Ec of the vector space E. Let ∂ denote

the algebra homomorphism of S(E) to the ring of differential operators on

E such that

(0.1) (∂(X)φ)(x) =
d

dt
φ(x + tX)|t=0

for functions φ on E and X ∈ E. We fix a system of homogeneous generators

p1, . . . , pn of the algebra S(E)W of W -invariant elements of S(E). Here we

choose p1 so that deg p1 = 2.

In this paper we shall study a system of differential operators

(0.2) Pj = ∂(pj) + Rj for j = 1, . . . , n
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34K05.

1



2 Toshio Oshima and Hideko Sekiguchi

satisfying

(0.3)




Pj are W -invariant,

ordR1 = 0,

ordRj ≤ deg pj − 1 for 2 ≤ j ≤ n,

[Pi, Pj ] = 0 for 1 ≤ i < j ≤ n

in the case when the root system is of the classical type with n > 1.

We fix a W -invariant inner product 〈 , 〉 on E and identify E and its dual

by this inner product. We extend 〈 , 〉 on Ec × Ec as a complex bilinear

form. Since R1(x) is a function and ∂(p1) is a Laplacian on E under a

natural coordinate system of E, the operator

(0.4) P1 =
n∑
j=1

∂2

∂x2
j

+ R(x)

is a Euclidean Laplacian with the potential R(x) by putting R = R1 for

simplicity.

The radial parts of the generators of the ring of invariant differential

operators on a Riemannian symmetric space give an example of the com-

muting family ([HC]). In this case

(0.5) R(x) =
∑
α∈Σ+

Cα sinh−2 〈α, x〉
2

,

where Σ is a restricted root system corresponding to the Riemannian sym-

metric space, Σ+ is its positive system,

(0.6) Cα =
1

4
mα(mα + 2m2α − 2)〈α, α〉

and mα is the dimension of the root space for α ∈ Σ, which satisfies

(0.7) mα = mwα for w ∈ W

and only takes special integers. Then J. Sekiguchi, Heckman-Opdam and

Debiard ([Sj], [H1], [H2], [HO], [Op1], [Op2], [D]) studied the operator (0.4)

with (0.5)–(0.7) and proved the existence of a commuting family.
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On the other hand, the operator P1 which allows such a commuting fam-

ily is called a completely integrable quantum system and has been studied

from the view point of mathematical physics (cf. [OP2]). The construction

of such system is usually related to a root system and the most general

potential function which has been proposed is written by elliptic functions.

The similar fact is also true in the case of classical dynamical systems

(cf. [OP1], [P], [IM], [I]).

The main purpose of this paper is to prove that the potential function

R(x) which allows the existence of a commuting family of differential op-

erators with conditions (0.2) and (0.3) can be explicitly expressed by the

Weierstrass elliptic function ℘(t) and moreover to give certain uniqueness

properties of the commuting family in terms of R(x). We note that the re-

sults in this paper are also valid in the case of classical dynamical systems

because the same but easier proof for them works.

In this paper we assume that the coefficients of the operators Pj can be

extended to holomorphic functions on a W -invariant connected open subset

Ω′ of the complexification Ec of E. Here Ω′ = Ω \V with a proper analytic

subset V of an open neighborhood Ω of the origin of Ec.

In §2 we shall prove that the potential function R(x) can be expressed

by even functions uα(t) of one variable:

(0.8) R(x) =
∑
α∈Σ+

uα(〈α, x〉)

with

(0.9) uα(t) = uwα(t) for α ∈ Σ, w ∈ W.

Here Σ+ is a positive system of Σ.

In §3 we shall prove a uniqueness for the commuting algebra C[P1, . . . ,

Pn] in terms of two generators with small orders.

In §4 and §5 we shall study R(x) when the root system is of type An
and prove that

(0.10) uα(t) = C0 + C1℘(t) for α ∈ Σ+

with suitable C0, C1 ∈ C. Moreover we shall construct the commuting

operators P2, . . . , Pn. These operators and their pairwise commutativity
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seem to be known. See [OP3] and references therein. But one of the proofs

of the commutativity in [OP3] is insufficient (cf. Remark 3.7).

In §6 and §7 we shall study R(x) when the root system is of type Bn
or of type Dn. First we shall give a uniqueness theorem (cf. Theorem 6.5)

and a functional differential equation (cf. Theorem 6.1) which is equivalent

to the commutativity of P1 and an operator of the fourth order. When

n > 2, we shall solve the equation (cf. Theorem 7.10), which says that the

potential function R(x) is explicitly expressed by ℘ except for a trivial case.

If the root system is of type B2, we shall only determine R(x) when the

coefficients of the differential operators have expansions of Harish-Chandra

type (cf. Theorem 7.12). Moreover owing to this result we have a character-

ization of Sekiguchi-Heckman-Opdam’s operators corresponding to classical

Weyl groups (cf. Remark 7.14). The complete solutions for type B2 and

the explicit form of commuting differential operators for type Bn and Dn
are given in successive papers [OOS], [OO] and [O].

For readers’ convenience, in §8 we shall give some examples of commuting

families we have constructed and write them in an algebraic form. We

shall see that in general the ordinary differential equation corresponding

to the potential of a higher rank equals the generic Fuchsian equation of

the second order on P
1(C) which has four regular singular points. If we

specialize parameters of the equation, it coincides with the equations of

Lamé’s functions, Mathieu’s functions, Gauss’ hypergeometric functions,

Kummer’s confluent hypergeometric functions or Bessel functions. Hence

our commuting families are naturally considered as a generalization of these

ordinary differential equations to systems of partial differential equations.

The authors thank Masaki Kashiwara and Hiroyuki Ochiai for the con-

versations with them which encourage us to write this paper. In particular

Ochiai pointed us out a simplification of our original proof of Theorem 2.1.

The main result in this paper is announced in [Sh] and [OOS].

1. Notation

For a positive number m we fix an orthonormal basis {e1, . . . , em} of

the Euclidean space R
m and use the coordinate system (x1, . . . , xm) with

R
m � x1e1+· · ·+xmem. Then the root system (Σ, E) of type An is naturally

realized in

(1.1) E = {(x1, . . . , xm) ∈ R
m ; x1 + · · · + xm = 0}
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with m = n + 1 and we may choose the positive system

(1.2) Σ+ = {ei − ej ; 1 ≤ i < j ≤ m}.

Similarly in the case when (Σ, E) is of type Dn we have E = R
n and

(1.3) Σ+ = {ei − ej , ei + ej ; 1 ≤ i < j ≤ n}

and in the case when (Σ, E) is of type Bn we have E = R
n and

(1.4) Σ+ = {ei ; 1 ≤ i ≤ n} ∪ {ei − ej , ei + ej ; 1 ≤ i < j ≤ n}.

We note that we need not to distinguish the root systems of type Bn and

type Cn in our problem.

For the coordinate system (x1, . . . , xm) of R
m we put

∂i =
∂

∂xi
,

∂α = ∂α1
1 · · · ∂αm

m ,

|α| = α1 + · · · + αm,

∂(i1, . . . , ik) =
∑

ν �=i1,... ,ik
1≤ν≤m

∂ν .

Here α = (α1, . . . , αm) with non-negative integers αi.

Let P =
∑

pα(x)∂α be a differential operator. Then we put

tP =
∑

(−1)|α|∂αpα(x).

In this paper we call the operator is self-adjoint (resp. skew self-adjoint) if
tP = P (resp. tP = −P ).

For integers k and  with k <  we put [k,  ] = {k, k + 1, . . . ,  } and for

a subset I of [k,  ] we denote by |I| the number of elements of I.

For an element g of the permutation group Sk of the set [1, k] with

1 ≤ k ≤ m we denote by g(P ) the operator transformed from P by the co-

ordinate transformation (x1, . . . , xk, . . . , xm) �→ (xσ(1), . . . , xσ(k), . . . , xm).

Then the operator P is said to be symmetric for the coordinate (x1, . . . , xk)

if g(P ) = P for all g ∈ Sk.
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Moreover we denote by P− the operator transformed from P by the

coordinate transformation (x1, . . . , xm) �→ (−x1, . . . ,−xm). Then we say

that P has an even (resp. odd) parity if P− = P (resp. P− = −P ).

Lastly in this section we review on the Weierstrass elliptic function ℘

(cf. [WW]), which is a doubly periodic meromorphic function on C with the

Laurent development

(1.5) ℘(z|2ω1, 2ω2) = z−2 + a2z
2 + a4z

4 + a6z
6 + · · ·

at the origin. The complex numbers ω1 and ω2 are primitive half-periods:

(1.6) ℘(z + 2m1ω1 + 2m2ω2|2ω1, 2ω2) = ℘(z|2ω1, 2ω2) for m1,m2 ∈ Z.

It has the expansion

(1.7) ℘(z|2ω1, 2ω2) =
1

z2
+

∑
ω �=0

(
1

(z − ω)2
− 1

ω2

)

where the sum ranges over all ω = 2m1ω1 + 2m2ω2 except 0 (m1, m2 ∈ Z).

This ℘ is uniquely characterized by the differential equation

(1.8) (℘′)2 = 4℘3 − g2℘− g3

with the condition

(1.9) ℘ has a pole of order 2 at the origin.

Here g2 and g3 are complex numbers, which have the relation

(1.10)

g2 = 60
∑
ω �=0

ω−4 = 20a2,

g3 = 140
∑
ω �=0

ω−6 = 28a4.

The complex numbers ω1 and ω2 are linearly independent over R but we

allow the period to be infinity. In other words, the numbers g2 and g3 are

any complex numbers. For example we have

(1.11)
℘(z|

√
−1π,∞) = sinh−2 z +

1

3
when g2 =

4

3
and g3 = − 8

27
,

℘(z|∞,∞) = z−2 when g2 = g3 = 0.
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2. Reduction to one variable

Now we examine the potential function R(x) of the operator P1 in (0.4)

which allows the commuting family (0.2) and (0.3) and we shall prove

Theorem 2.1. Suppose the root system is of type An with n > 1 or of

type Bn with n > 1 or of type Dn with n > 2. Let {P1, . . . , Pn} be a system

of differential operators of the form (0.2) which satisfies (0.3). Then there

exist even functions u(t) and v(t) of one variable such that

R(x) =
∑

1≤i<j≤n+1

u(xi − xj) if W is of type An,

R(x) =
∑

1≤i<j≤n

(
u(xi − xj) + u(xi + xj)

)
+

∑
1≤j≤n

v(xj)

if W is of type Bn,

R(x) =
∑

1≤i<j≤n

(
u(xi − xj) + u(xi + xj)

)
if W is of type Dn.

Note that tP1 = P1 and t[P,Q] = −[tP, tQ] for differential operators P

and Q. Hence in the following study to determine the potential function

R(x) we may assume

(2.1) tPj = (−1)ordPjPj

by replacing Pj by (Pj + (−1)ordPj tPj)/2.

First consider the case when the root system is of type An. Identifying

E with a hyperplane of R
m with m = n + 1 as in (1.1), we can assume the

existence of the following system of commuting differential operators:

∆1 = ∂1 + · · · + ∂m,

∆2 =
∑

1≤i<j≤m
∂i∂j + R(x),

∆3 =
∑

1≤i<j<k≤m
∂i∂j∂k +

∑
1≤i≤m

ai1∂i + a0.

(2.2)



8 Toshio Oshima and Hideko Sekiguchi

Here R(x), ai1 and a0 are functions of x and the function −2R(x) corre-

sponds to the original R(x) in (0.4) because P1 = ∆2
1 − 2∆2. The commu-

tativity [∆1,∆j ] = 0 implies

(2.3) ∆1R = ∆1a
i
1 = ∆1a0 = 0.

Now consider the equation [∆2,∆3] = 0. Then the vanishing of the term

∂2
i implies ∂(i)ai1 = 0 and by combining this with (2.3) we have

(2.4) ∂ia
i
1 = 0.

The term ∂i∂j with i < j implies ∂(j)ai1 + ∂(i)aj1 = ∂(i, j)R and hence

(2.5) ∂ja
i
1 + ∂ia

j
1 = (∂i + ∂j)R for 1 ≤ i < j ≤ m.

Therefore from (2.4) and (2.5) we have

(2.6) ∂i∂j(∂i + ∂j)R = 0 for 1 ≤ i < j ≤ m.

First we prepare

Lemma 2.2. Let u1(x), . . . um(x) be functions satisfying

∂iuj + ∂jui = 0 for i �= j.

Then

∂j∂kui = 0 for different indices i, j and k.

Moreover if ∂iui = 0 for any i, we have

∂j∂kui = 0 for i, j, k = 1, . . . ,m.

Proof. When i, j and k are different indices, ∂j∂kui = −∂j∂iuk =

∂i∂kuj = −∂k∂jui and we have the first claim. The last claim is also

obtained by this equality for arbitrary indices i, j and k. �
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Now we claim the following lemma which means that the potential func-

tion R is a sum of functions depends only on two coordinates in (x1, . . . ,

xm).

Lemma 2.3 (type An). Under the above notation

(2.7) ∂i∂j∂kR = 0 for 1 ≤ i < j < k ≤ m.

Proof. Let i, j and k are indices in [1,m] which are mutually different.

Then (2.5) implies ∂j(a
i
1−R)+∂i(a

j
1−R) = 0 and we have ∂j∂kR = ∂j∂ka

i
1

by Lemma 2.2 and the lemma follows from (2.4). �

Now we shall continue the proof of Theorem 2.1. Put R12 = ∂1∂2R.

Then it satisfies (∂1 + ∂2)R12 = ∂3R12 = · · · = ∂mR12 = 0 and we have

R12 = r(x1−x2) with a function r(t). Note that r(t) is an even holomorphic

function for 0 < |t| � 1 because of our assumption for ∆2. Let u(t) be a

function with u′′ = −r. Define a W -invariant function by

S(x) = R(x) −
∑

1≤i<j≤m
u(xi − xj).

Here ∂1∂kS(x) = 0 for k = 2, . . . ,m and we can choose a function φ(t)

with ∂1φ(x1) = ∂1S(x). Then the function T (x) = S(x) −
∑

1≤j≤m φ(xj)

satisfies ∂jT (x) = 0 for j = 1, . . . ,m. Hence replacing φ(xj) if necessary,

we may assume

R(x) =
∑

1≤i<j≤m
u(xi − xj) +

∑
1≤j≤m

φ(xj).

Then by using (2.3) we have
∑
j φ

′(xj) = 0 and therefore φ is constant.

Modifying u by a constant, we may moreover assume φ = 0.

Since r(t) is an even function, we may assume u(t) = w(t)+C log t with

an even holomorphic function w(t) for 0 < |t| � 1 and a complex number

C ∈ C. Then we have C = 0 because R(x) is a single valued holomorphic

function on Ω′. Thus we have Theorem 2.1 when the root system is of type

An.
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Remark 2.4 (H.Ochiai). Suppose the root system is of type An.

Then it is clear from the above argument that we have

R(x) =
∑
α∈Σ+

uα(〈α, x〉)

with suitable functions uα(t) even if we omit the assumption of the W -

invariance for Pj .

Next we consider the case when the root system is of type Bn with n > 1

or of type Dn with n > 2. Then we may put

P1 =
∑

1≤i≤n
∂2
i + R(x),

P2 =
∑

1≤i<j≤n
∂2
i ∂

2
j +

∑
1≤i≤n

ai2∂
2
i

+
∑

1≤i<j≤n
aij11∂i∂j +

∑
1≤i≤n

ai1∂i + a0

(2.8)

as in the case of type An. We shall use the convention aij11 = aji11 if i > j.

First we study the condition [P1, P2] = 0. The terms ∂3
i , ∂

2
i ∂j and ∂i∂j∂k

imply

∂ia
i
2 = 0,(2.9)

∂ja
i
2 + ∂ia

ij
11 = ∂jR for 1 ≤ i, j ≤ n with i �= j,(2.10)

∂ia
jk
11 + ∂ja

ik
11 + ∂ka

ij
11 = 0 for 1 ≤ i < j < k ≤ n,(2.11)

respectively. Then we have ∂3
j ∂iR = ∂2

j ∂i(∂jR) = ∂2
j ∂i(∂ja

i
2 + ∂ia

ij
11) =

∂2
i ∂

2
j a
ij
11 = ∂3

i ∂jR and hence

(2.12) ∂i∂j(∂i + ∂j)(∂i − ∂j)R = 0.

Now we prepare

Lemma 2.5. Given functions ui(x) and ujk(x) = ukj(x) of (x1, . . . , xn)

for 1 ≤ i ≤ n and 1 ≤ j < k ≥ n. Suppose n ≥ 3 and

(2.13)
∂jui + ∂iuij = 0 for i �= j,

∂iujk + ∂juki + ∂kuij = 0 for i �= j �= k �= i.
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Then

(2.14) ∂2
j ∂kui = 0

and

(2.15) ∂j∂k∂�ui = 0.

Moreover if

(2.16) ∂iui = 0 for i = 1, . . . , n,

then

(2.17)
∂2
j uij = 0,

∂αui = ∂αuij = 0 if |α| ≥ 3.

Here i, j, k and  are arbitrary indices in [1, n] which are different to each

other and if n = 3, we ignore (2.15).

Proof. It follows from (2.13) that ∂2
j ∂kui = −∂2

j ∂iuik = ∂j∂i(∂iukj +

∂kuji) = −∂2
i ∂kuj − ∂i∂i∂kuj = −2∂2

i ∂kuj and therefore this equals

−2(−2∂2
j ∂kui) and we have (2.14).

If n > 3, we have similarly 2∂j∂k∂�ui = −∂j∂k∂iui� − ∂j∂�∂iuik =

−∂2
i ∂juk�. Permuting the indices j, k and  in this equation and summing

up them, we get (2.15) because of (2.13).

Now suppose (2.16). Then ∂2
j uij = −∂j∂iui = 0 and ∂3

j ui = −∂2
j ∂iuij =

0. Thus we have ∂αui = 0 if |α| ≥ 3. Hence if |α| ≥ 2, we have ∂α∂iuij =

−∂α∂jui = 0 and therefore we have ∂�∂
2
kuij = −∂�∂k(∂iujk + ∂juki) = 0.

Suppose n > 4. Then ∂�∂kuij = −∂�∂iujk − ∂�∂juki = ∂i∂juk� + ∂i∂ku�j +

∂j∂kui� + ∂j∂iu�k = 2∂i∂juk� − ∂k∂�uij and so ∂�∂kuij = ∂i∂juk�. Hence

∂m∂i∂juk� = ∂m∂�∂kuij = ∂�∂i∂jumk and this also equals ∂k∂i∂ju�m. Since

∂ku�m + ∂�umk + ∂muk� = 0, we have ∂m∂i∂juk� = 0. Thus we have com-

pleted the proof of the lemma. �

Lemma 2.6 (type Bn or Dn).

(2.18) ∂i∂j∂kR = 0 for 1 ≤ i < j < k ≤ n.
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Proof. Put ui = ai2 − R and uij = aij11. Then Lemma 2.5 and (2.10)

and (2.11) imply

∂2
k∂j(R − ai2) = 0 for i �= j �= k �= i,

∂j∂k∂�(R − ai2) = 0 for different indices i, j, k and  .

Applying ∂i to these equations, we have

∂i∂
2
k∂jR = 0 for i �= j �= k �= i,

∂i∂j∂k∂�R = 0 for different indices i, j, k and  

because of (2.9).

Put R12 = ∂1∂2R. Then

(2.19) R12 = φ(x1, x2) +
n∑
i=3

Cixi

with a function φ of (x1, x2) and numbers Ci ∈ C.

Here we note that Ci do not depend on i because of the W -invariance

of R.

If the root space is of type Bn, R12 is invariant under the coordinate

change x3 �→ −x3 and Ci = 0 in (2.19). Hence ∂1∂2∂3R = 0 and we have

Lemma 2.6.

Suppose the root system is of type Dn. Since D3 � A3, we may assume

n > 3. Then by considering the coordinate change (x3, x4) �→ (−x3,−x4)

we have the same conclusion. �

Now we shall continue the proof of Theorem 2.1 when the root system is

of type Bn with n > 1 or type Dn with n > 3. Under the expression (2.19)

it follows from (2.12) that

φ(x1, x2) = u1(x1 + x2) − u2(x1 − x2)

with suitable holomorphic functions u1(t) and u2(t) with 0 < |t| � 1. Here

u2 is an even function since φ(x1, x2) is symmetric for (x1, x2). Moreover

we have u1 = u2 because the coordinate transformation (x1, x2, . . . ) �→
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(x1,−x2, . . . ) or (x1, x2, x3, x4, . . . ) �→ (x1,−x2,−x3, x4, . . . ) transforms φ

into −φ.

Let u(t) be the function with u′′ = u2. Then by the same argument as

in the case of An, we have

(2.20) R(x) =
∑

1≤i<j≤n

(
u(xi + xj) + u(xi − xj)

)
+

∑
1≤i≤n

v(xi)

with a suitable holomorphic function v(t). Since R(x) is a W -invariant

holomorphic function, we can conclude that u(t) and v(t) are even holo-

morphic functions for 0 < |t| � 1. Thus we have Theorem 2.1 when the

root system is of type Bn.

The remaining part of the proof is to show that we may assume v equals

0 in the expression when the root system is of type Dn. Before we prove

it, we express functions ai2 and aij11 by the functions u and v for our later

purpose:

Lemma 2.7. Under the notation above we may assume

(2.21)

ai2(x) =
∑
k,� �=i

1≤k<�≤n

(
u(xk + x�) + u(xk − x�)

)
+

∑
k �=i

1≤k≤n

v(xk),

aij11 = u(xi + xj) − u(xi − xj)

by replacing u and v if necessary.

Proof. Note that if we define ai2 and aij11 by (2.21), the system of equa-

tions (2.11) holds. Hence if we denote the differences between the original

functions and the above corresponding functions by the same notation with

a bar, they satisfy

∂iā
i
2 = ∂j ā

i
2 + ∂iā

ij
11 = ∂iā

jk
11 + ∂j ā

ik
11 + ∂kā

ij
11 = 0.

Owing to Lemma 2.5, we have

ā12
11 = 2Cx1x2 + (x1 + x2)φ1(x

′) + φ2(x
′)

with a constant C and polynomial functions φj(x
′) of x′ = (x3, . . . , xn)

with degree at most j for j = 1 and 2.
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Since ā12
11 is invariant or changes into −ā12

11 under the coordinate trans-

formation (x1, x2, x3) �→ (−x1,−x2, x3) or (x1, x2, x3) �→ (−x1, x2,−x3),

respectively, we have φ1 = 0 and φ2 = C ′x3 · · ·xn with a constant C ′. But

since ∂3ā
12
11 is symmetric for (x1, x2, x3), we have ∂3ā

12
11 = 0 by the relation

∂3ā
12
11 + ∂1ā

23
11 + ∂2ā

13
11 = 0. Hence we can conclude āij11 = 2Cxixj .

Replacing u(t) and v(t) by u(t)+Ct2 and v(t)−2C(n−1)t2, respectively,

we may assume āij11 = 0. Then we have ∂iā
i
2 = ∂j ā

i
2 = 0 and therefore āi2

are constant. Finally subtracting a constant multiple of P1 from P2, we

have the Lemma. �

Lastly we assume the root system is of type Dn to prove Theorem 2.1.

We introduce the following operator which commutes with P1.

(2.22) P ′
n = ∂1 · · · ∂n +

∑
i1+···+in=n−2

ai1···in∂
i1
1 · · · ∂inn + R′(x, ∂).

Here R′(x, ∂) is a suitable W -invariant differential operator of order < n−2.

We put a(j, k) = ai1···in with the indices i1, · · · , in given by

iν =

{
1 if ν �= j and ν �= k,

0 if ν = j or ν = k.

Then by the term ∂2∂3 · · · ∂n of [P1, P
′
n] we have

(2.23) 2
∑

2≤j≤n
∂ja(1, j) = ∂1R.

Furthermore by the term ∂2
1∂2 · · · ∂n of [P2, P

′
n] with Lemma 2.7 we have

(2.24)

2
∑

2≤j≤n
∂ja(1, j) = ∂1a

1
2 +

∑
2≤j≤n

∂ja
1j
11

=
∑

2≤j≤n

(
u′(x1 + xj) + u′(x1 − xj)

)
.

Comparing this with (2.20) and (2.23), we have v′ = 0. Modifying u by a

constant, we have Theorem 2.1 and subtracting a constant multiple of P1

from P2, we may assume Lemma 2.7 with v = 0.
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3. Uniqueness of the commuting family

In this section we shall prove that the generator P1 and the generator, say

P2, having the lowest order among the remaining generators {P2, . . . , Pn}
of the commuting family (0.3) uniquely determine the commuting algebra

C[P1, . . . , Pn].

In the subsequent sections we shall study the relation [P1, P2] = 0 and

we shall get a more refined result on the dependence of the commuting

algebra on the potential function R(x). First we prepare

Lemma 3.1. Let

(3.1) q(x, ξ) =
∑

|α|=K
qα(x)ξα

be a homogeneous polynomial of ξ = (ξ1, . . . , ξm) of degree K whose coeffi-

cients are functions of x = (x1, . . . , xm) and consider the conditions

(3.2. )
{ m∑
i=1

ξ�i , q(x, ξ)
}

= 0

and

(3.3)
∑

|α|=K
qα(x)∂α is symmetric for (x1, . . . , xm).

Here
{

,
}

is the Poisson bracket defined by

(3.4)
{
f, g

}
=

m∑
i=1

∂f

∂ξi

∂g

∂xi
−

m∑
i=1

∂f

∂xi

∂g

∂ξi
.

i) If (3.2.2) holds, then qα(x) are polynomials.

ii) Fix a positive integer N with N ≥ 3. Then the functions qα are

constants if one of the following conditions holds:

K ≤ N − 2 and condition (3.2.N) holds.(3.5)

K = N − 1 and conditions (3.2.2) and (3.2.N) hold.(3.6)

K = N and conditions (3.2.2), (3.2.N) and (3.3) hold.(3.7)

K = N + 1, N ≥ 4 and conditions (3.2.2), (3.2.N) and(3.8)

(3.3) hold.
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Proof. In this proof we always assume that the index α ∈ Z
m satisfies

|α| = K. Put δν = (δ1ν , . . . , δmν) with Kronecker’s δ.

Note that for β ∈ Z
m, the coefficients of the term ξβ of (3.2.2) mean

(3.9)
m∑
ν=1

∂νqβ−δν = 0

and in general, the coefficients of the term ξβ of (3.2.N) mean

(3.10)
m∑
ν=1

∂νqβ−(N−1)δν = 0.

Here we use the convention that qα = 0 if α has a negative component.

Suppose (3.2.2) and fix an index j. Applying ∂
K−αj

j to (3.9) with β =

α + δj , we have

∂
K+1−αj

j qα = −
∑
ν �=j

∂
K−αj

j ∂νqα+δj−δν .

If K − αj = 0, then αν = 0 for ν �= j and the above equation is reduced

to ∂jqα = 0. Then by the induction on the non-negative integer K −αj we

can prove

(3.11) ∂
K+1−αj

j qα = 0.

Thus we have lemma 3.1 i).

Note that if α ∈ Z
m satisfies αν ≤ N−2 for ν = 1, . . . ,m, then equation

(3.10) with β = α + (N − 1)δj equals

(3.12) ∂jqα = 0.

If (3.5) holds, (3.12) is valid for any j and α and therefore qα are constant.

To prove the remaining part of the Lemma, we may assume that qα(x) are

polynomials without constant terms because of the assumption (3.2.2).
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Suppose (3.6). Then the above argument assures that we may assume

qα = 0 if αν ≤ N − 2 for ν = 1, . . . ,m and we have the expression

(3.13) q(x, ξ) =
m∑
ν=1

aνK(x)ξKν .

Since K > 1, we have ∂ia
ν
j = 0 from equation (3.9) with β = δi + Kδj for

any i and j and we have the lemma.

Suppose (3.7). Then by the same argument as above we can write

(3.14) q(x, ξ) =
m∑
ν=1

aνK(x)ξKν +
∑
ν �=µ

1≤ν,µ≤m

aνµ1k−1(x)ξνξ
K−1
µ .

In equation (3.10), putting β = (2K − 1)δ1 and β = (2K − 2)δ1 + δ2, we

have

(3.15) ∂1a
1
K = ∂1a

21
1K−1 = 0

and putting β = Kδ1 + (K − 1)δ2 and β = (K − 1)δ1 + δ2 + (K − 1)δ3, we

have

∂2a
1
K + ∂1a

12
1K−1 = 0,(3.16)

∂1a
23
1K−1 + ∂3a

21
1K−1 = 0,(3.17)

respectively. On the other hand, from equation (3.9) with β = Kδ1 + δ2 we

have

(3.18) ∂2a
1
K + ∂1a

21
1K−1 = 0.

It follows from (3.15), (3.16) and (3.18) that

(3.19) ∂2a
1
K = ∂1a

12
1K−1 = 0

and it follows from (3.15), (3.17) and Lemma 2.2 that

(3.20) ∂2
1a

23
1K−1 = ∂1∂4a

23
1K−1 = 0.
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Then from (3.7), (3.15), (3.19) and (3.20) we have aiK = 0 and aij1K−1 =

C
∑
ν �=i,j xν with a constant number C. But equation (3.17) proves C = 0.

Suppose (3.8). Note that K = N + 1 ≥ 5. We may assume

q(x, ξ) =
∑
ν

aνK(x)ξKν +
∑
ν �=µ

aνµ1K−1(x)ξνξ
K−1
µ(3.21)

+
∑
ν �=µ

aνµ2K−2(x)ξ2
νξ
K−2
µ +

∑
ν<µ, τ �=µ,ν

aνµτ11K−2(x)ξνξµξ
K−2
τ .

Putting β = (2K−2)δ1, (2K−3)δ1 +δ2, (2K−4)δ1 +2δ2 and (2K−4)δ1 +

δ2 + δ3, we obtain

(3.22) ∂1a
1
K = ∂1a

21
1K−1 = ∂1a

21
2K−2 = ∂1a

231
11K−2 = 0

from (3.10). Similarly putting β = Kδ1 + (K − 2)δ2, β = (K − 1)δ1 + (K −
2)δ2+δ3, β = (K−2)δ1+(K−2)δ2+2δ3 and β = (K−2)δ1+(K−2)δ2+δ3+δ4

in equation (3.10) we have

∂1a
12
2K−2 + ∂2a

1
K = 0,(3.23)

∂1a
132
11K−2 + ∂2a

31
1K−1 = 0,(3.24)

∂1a
32
2K−2 + ∂2a

31
2K−2 = 0,(3.25)

∂1a
342
11K−2 + ∂2a

341
11K−2 = 0,(3.26)

respectively. On the other hand, putting β = Kδ1 +δ2, β = (K−1)δ1 +2δ2

and β = (K − 1)δ1 + δ2 + δ3 in equation (3.9), we have

∂1a
21
1K−1 + ∂2a

1
K = 0,(3.27)

∂1a
21
2K−2 + ∂2a

21
1K−1 = 0,(3.28)

∂1a
231
11K−2 + ∂2a

31
1K−1 + ∂3a

21
1K−1 = 0,(3.29)

respectively.

By (3.22) and (3.27) we have ∂2a
1
K = 0 and in general we have ∂ia

j
K = 0

for i, j = 1, . . . ,m and hence aiK = 0.

Note that (3.22) and (3.29) means

(3.30) ∂2a
31
1K−1 + ∂3a

21
1K−1 = 0.
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Then from (3.28), (3.22), (3.30), (3.3) and Lemma 2.2 we obtain

(3.31) ∂2a
21
1K−1 = ∂2

2a
31
1K−1 = ∂2∂4a

31
1K−1 = 0

and from (3.23), (3.22), (3.25), (3.3) and Lemma 2.2 we obtain

(3.32) ∂1a
12
2K−2 = ∂2

1a
32
2K−2 = ∂1∂4a

32
2K−2 = 0

and from (3.22), (3.24), (3.31), (3.26), (3.3) and Lemma 2.2 we obtain

(3.33) ∂2
1a

132
11K−2 = ∂1∂3a

132
11K−2 = ∂2

1a
342
11K−2 = ∂1∂5a

342
11K−2 = 0.

Thus from (3.3), (3.31), (3.32), (3.32) we have the expression

(3.34)

a21
1K−1 = C1(x3 + · · · + xn),

a21
2K−2 = C2(x3 + · · · + xn),

a231
11K−2 = C3(x2 + x3) + C4(x4 + · · · + xn)

with suitable constant numbers Ci. Then from (3.24), (3.25), (3.26) and

(3.30) we can conclude C3 + C1 = 0, 2C2 = 0, 2C4 = 0 and 2C1 = 0,

respectively, which completes the proof of the Lemma. �

Now we give the theorem in this section:

Theorem 3.2. Without loss of generality we suppose that the order of

the generator P2 of our commuting family (0.2) equals 3 (resp. 4) in the

case when the root system is of type An (resp. Bn or Dn). Then P1 and P2

uniquely determine the commuting algebra C[P1, . . . , Pn].

Proof. First consider the case when the root system is of type An.

We may assume that

(3.35) ∆′
k =

m∑
i=1

∂ki + R′
k(x, ∂) for k = 1, . . . ,m

generate our commuting algebra with the identification (1.1). Here

ordR′
k(x, ∂) < k, R′

1(x, ∂) = 0 and ordR′
2(x, ∂) = 0. We shall prove that
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∆′
N+1 is uniquely determined modulo C[∆′

1, . . . ,∆
′
N ] for N = 3, . . . ,m−1,

which implies the theorem.

Suppose this is not true for some N . Then there exist W -invariant

differential operators ∆′
N+1(1) and ∆′

N+1(2) with the same principal symbol∑
i ξ
N+1
i which commute with ∆′

1, . . . ,∆
′
N .

Put Q = ∆′
N+1(1) − ∆′

N+1(2) and K = ordQ. We may assume the

principal symbol q(x, ξ) = σ(Q) of Q really depends on x because otherwise

we can reduce the order of Q by subtracting an element of C[∆′
1, . . . ,∆

′
N ].

Then the condition [∆′
2, Q] = [∆′

N , Q] = 0 implies one of the conditions

(3.5), (3.6) and (3.7) and therefore Lemma 3.1 proves that q(x, ξ) does

not depend on x. This contradicts our assumption and hence we have the

theorem.

In the case when the root system is of type Bn we may assume ordPj =

2j and σ(Pj) =
∑
i ξ

2j
i . Then the proof proceeds in the same way as in the

case when the root system is of type An. In the case when the root system

is of type Dn we can prove the theorem in the same way if we define the

operators Pj from lower order ones. �

Since the condition

(3.36)
{ n∑
i=1

ξ2k
i , q(x1, . . . , xn, ξ1, . . . , ξn)

}
= 0 for any k ≥ 1

implies that q does not depend on x, we have the following as in the proof

of Theorem 3.2.

Proposition 3.3. Let P be a W -invariant differential operator which

commutes with any element of the commuting algebra C[P1, . . . , Pn]. Then

P ∈ C[P1, . . . , Pn].

Now we give the lemmas which shall be used later.

Lemma 3.4. Let Q0(x, ∂), Q1(x, ∂) and Q2(x, ∂) be differential opera-

tors of the form

Q0(x, ∂) =
n∑
i=0

∂2
i + q0(x),

Q1(x, ∂) =
∑

qα1 (x)∂α, Q2(x, ∂) =
∑

qα2 (x)∂α.
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Suppose q0(x) and qα2 (x) are polynomial functions of x and furthermore

suppose [Q0(x, ∂), Q1(x, ∂)] = Q2(x, ∂) + r(x)Q1(x, ∂) with a polynomial

function r(x). Then qα1 (x) are also polynomial functions of x.

Proof. We shall prove that qα1 (x) are polynomial functions of x by

the induction on the number |α|.
If |α| > ordQ1(x, ∂), the claim is clear. Let k be a nonnegative integers

and suppose qα1 (x) are polynomial functions of x if |α| > k. Then the

(k + 1)-th order term of [Q0(x, ∂), Q1(x, ∂)] = Q2(x, ∂) shows

{ n∑
i=1

ξ2
i ,

∑
|α|=k

qα1 (x)ξα
}

=
∑

|β|=k+1

(
aβ(x) + r(x)qβ1 (x)

)
ξβ

with some polynomial functions aβ(x).

Choosing a positive integer N so that deg
(
aβ(x) + r(x)qβ1 (x)

)
< N , we

have { n∑
i=1

ξ2
i ,

∑
|α|=K

∂N� qα1 (x)ξα
}

= 0

for  = 1, . . . , n. Then Lemma 3.1 proves that ∂N� qα1 (x) are polynomial

functions of x for |α| = k and  = 1, . . . , n and so are qα1 (x). �

Lemma 3.5. Let Q0(x, ∂), Q1(x, ∂) and Q2(x, ∂) be holomorphic differ-

ential operators defined on a connected open dense subset of the n-dimen-

sional complex vector space Ec such that Q0 is of the form

Q0(x, ∂) =
n∑
i=1

∂2
i + q0(x)

and they satisfy

[Q0, Q1] = [Q0, Q2] = 0, q0(−x) = q0(x).

Suppose there exist linearly independent vectors τ1, . . . , τn in Ec such that

the operators Q0, Q1 and Q2 are invariant under the parallel translations

on Ec by the vectors τj for j = 1, . . . , n. Then tQ1 = Q−
1 , tQ2 = Q−

2 and

[Q1, Q2] = 0
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Proof. First note that t(P−) = (tP )− for any differential operator

P . Put S = Q1 − tQ−
1 . Then [Q0, S] = −[Q0,

tQ−
1 ] = t[Q0, Q1]

− = 0 and

Lemma 3.1 proves that σ(S) is a polynomial function of (x, ξ) and hence

the invariance by the parallel translations shows that σ(S) does not depend

on x. Combining this with tS− = −S, we can conclude S = 0 and therefore
tQ1 = Q−

1 .

Put R = [Q1, Q2]. Since [Q0, R] = [Q1, [Q0, Q2]]− [Q2, [Q0, Q1]] = 0, we

have similarly tR = R− and tQ2 = Q−
2 . Then

R = t[Q1, Q2]
− = t[Q−

1 , Q−
2 ] = [tQ−

2 , tQ−
1 ] = [Q2, Q1] = −R,

which proves the Lemma. �

The following proposition also gives a uniqueness for the commuting

algebra.

Proposition 3.6. Let P1, . . . , Pn be the commuting differential op-

erators corresponding to the Weyl group of type An, Bn or Dn. Sup-

pose the coefficients of Pj are holomorphic on a connected open dense sub-

set of Ec and moreover suppose there exist linearly independent vectors

τ1, . . . , τn of Ec such that Pi are invariant under the parallel translations

by τj(i, j = 1, . . . , n). Let Q be a W -invariant differential operator with the

same invariant property under the parallel translations. Then the condition

[P1, Q] = 0 implies Q ∈ C[P1, . . . , Pn].

Proof. This is a direct consequence of Lemma 3.5 and Proposition 3.3.

�

Remark 3.7. In [OP3, §5 Proposition 1] and [OP2] it is claimed that

W -invariant differential operators which commute with P1 are completely

determined by their terms of highest degree. But it is incorrect, which is

clear by example (8.18). Note that if δ = −2β in (8.18), it corresponds to

type I (v(q) = q−2) for the root system B2 under the notation in [OP3].

The same incorrect argument is used to prove the pairwise commutativity

of P2, . . . , Pn (cf. [OP3, §5 Proposition 2 and Appendix E]).

The following lemma will be used in the proof of Theorem 6.5.
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Lemma 3.8. Let p(x1, . . . , xn, ξ1, . . . , ξn) =
∑

|α|=3 pα(x)ξα be a ho-

mogeneous polynomial of ξ such that p(x, ∂) is symmetric and invariant

under the coordinate transformation (x1, x2) �→ (−x1,−x2). Suppose

{
∑

ξ2
i , p(x, ξ)} = 0.

i) If n > 4, then p(x, ξ) = 0.

ii) If n ≥ 2 and p(x, ∂) is invariant under the coordinate change x1 �→
−x1, then p(x, ξ) = 0.

iii) If n = 4, then

p(x, ξ) = C
∑
g∈S4

g
( 1

3!
x2x3x4ξ

3
1 − 1

2!
x1x3x4ξ

2
1ξ2(3.37)

− 1

3!
(x2

1 + x2
2 + x2

3 − x2
4)x4ξ1ξ2ξ3

)

with a suitable constant C, where g naturally acts on suffices.

Proof. Since pα(x) are polynomials by Lemma 3.1 i) and the assump-

tion implies 2
∑

ξi
∂p
∂xi

= 0, we have

p(x, ξ) = h(x2 −
ξ2

ξ1
x1, x3 −

ξ3

ξ1
x1, . . . , xn −

ξn
ξ1

x1, ξ1, . . . , ξn)

with a suitable polynomial function h of (2n−1)-variables. Moreover pα(x)

are polynomials of x with degree at most three because p(x, ξ) is a polyno-

mial of ξ with degree at most three.

Put

p(x, ξ) =
∑

ai3ξ
3
i +

∑
i�=j

aij21ξ
2
i ξj +

∑
i<j<k

aijk111ξiξjξk

with polynomials ai3, aij21 and aijk111 of x. Then the coefficients of ξ4
1 , ξ3

1ξ2,

ξ2
1ξ

2
2 , ξ2

1ξ2ξ3 and ξ1ξ2ξ3ξ4 of the equation {1
2

∑
ξ2
i , p(x, ξ)} = 0 show

(3.38)

∂1a
1
3 = 0,

∂2a
1
3 + ∂1a

12
21 = 0,

∂2a
12
21 + ∂1a

21
21 = 0,

∂3a
12
21 + ∂2a

13
21 + ∂1a

123
111 = 0,

∂4a
123
111 + ∂3a

124
111 + ∂2a

134
111 + ∂1a

234
111 = 0,
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respectively.

Note that the assumption of the invariance says that a1
3 changes into −a1

3

under (x1, x2) �→ (−x1,−x2). Moreover a1
3 is symmetric for (x2, . . . , xn)

and deg a1
3 ≤ 3. Hence the condition ∂1a

1
3 = 0 proves a1

3 = 0 in the cases i)

and ii) and a1
3 = Cx2x3x4 with C ∈ C in the case iii).

Suppose the invariance in ii) and suppose n ≥ 2. Then ∂1a
12
21 = ∂2

2a
12
21 = 0

and we can put a12
21 = x2φ(x3, . . . , xn) because a12

21 changes into −a12
21 under

x2 �→ −x2. But 2φ = ∂2a
12
21 + ∂1a

21
21 = 0 and therefore a12

21 = 0. Thus

∂1a
123
111 = 0 and the invariance under x1 �→ −x1 proves a123

111 = 0.

It is easy to check that (3.37) satisfies {
∑

ξ2
i , p(x, ξ)} = 0 in the case

n = 4 and hence subtracting the right hand side of (3.37) from p(x, ξ), the

proof is reduced to the case a1
3 = 0.

Suppose n ≥ 4 and a1
3 = 0. Then we have similarly a12

21 = x2φ(x3, . . . ,

xn) by the invariance under (x1, x2) �→ (−x1,−x2), which implies a12
21 =

∂1a
123
111 = 0 as in the proof of ii) and we have a123

111 =
(
C +C ′(x2

4 + · · ·+x2
n)
)
·

x4 · · ·xn because a123
111 changes into −a123

111 under (x1, x4) �→ (−x1,−x4).

Here C ′ = 0 if n > 4. Thus we have a123
111 = 0 by the last equation of

(3.38). �

4. Determination of the potential function - type An

In this section we consider the case when the root system is of type An.

We have W -invariant differential operators

(4.1)

∆1 =
∑

1≤i≤m
∂i,

∆2 =
∑

1≤i<j≤m
∂i∂j + R(x),

∆3 =
∑

1≤i<j<k≤m
∂i∂j∂k +

∑
1≤i≤m

ai1∂i + a0

satisfying [∆1,∆2] = [∆2,∆3] = [∆1,∆3] = 0 and t∆i = (−1)i∆i for i = 1, 2

and 3. Theorem 2.1 says the existence of an even function u(t) with

(4.2) R(x) =
∑

1≤i<j≤m
u(xi − xj).

Moreover we have
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Lemma 4.1. There exist a constant number C with

∆3 − C∆1 =
∑

1≤i<j<k≤m
∂i∂j∂k +

m∑
i=1

∑
j,k �=i

1≤j<k≤m

u(xj − xk)∂i

Proof. We remark that if

(4.3) ai1 =
∑
j,k �=i

1≤j<k≤m

u(xj − xk),

the functions ai1 satisfy (2.4) and (2.5). Hence put

āi1 = ai1 −
∑
j,k �=i

1≤j<k≤m

u(xj − xk).

Then the commutativity implies

∂iā
i
1 = ∂j ā

i
1 + ∂iā

j
1 = 0 for 1 ≤ i < j ≤ m

and by Lemma 2.2 we have ∂j∂kā
1
1 = 0 for j, k = 2, . . . ,m. Since ā1

1 is

symmetric for (x2, . . . , xm),

ā1
1 = C + C ′(x2 + · · · + xm)

with constant numbers C and C ′. Now the equation
∑
i ∂iā

1
1 = 0 means

C ′ = 0. Since ∆3 is skew self-adjoint, we have Lemma 4.1. �

Lemma 4.1 assures that we may assume (4.3). Then the above proof

shows ord [∆2,∆3] ≤ 1. Since [∆2,∆3] is self-adjoint, we can prove that the

condition [∆2,∆3] = 0 is equals to

(4.4)
∑

1≤i<j<k≤m
∂i∂j∂kR +

∑
1≤k≤m

ak1∂kR = 0
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by the 0-th order term of [∆2,∆3]. Applying (4.2) and (4.3) to (4.4), we

have

(4.5)
m∑
k=1

{( ∑
µ, ν �=k

1≤µ<ν≤m

u(xµ − xν)

)
∂k

( ∑
1≤i<j≤m

u(xi − xj)

)}
= 0.

Since the term containing u′(xi − xj) with i < j in the left hand side of

(4.5) equals

( ∑
µ<ν, µ,ν �=i

u(xµ − xν) −
∑

µ<ν, µ,ν �=j
u(xµ − xν)

)
u′(xi − xj)

=

( ∑
k<i<j

u(xk − xj) +
∑
i<k<j

u(xk − xj) +
∑
i<j<k

u(xj − xk)

)
∂iu(xi − xj)

+

( ∑
k<i<j

u(xk − xi) +
∑
i<k<j

u(xi − xk) +
∑
i<j<k

u(xi − xk)

)
∂ju(xi − xj),

we have

Proposition 4.2. Under the above notation the necessary and suffi-

cient condition for [∆1,∆2] = [∆2,∆3] = [∆1,∆3] = 0 equals

(4.6)
∑

1≤i<j<k≤m
Uijk(u) = 0

with

Uijk(u) = u(xj − xk)∂i
(
u(xi − xj) + u(xi − xk)

)
+ u(xi − xk)∂j

(
u(xi − xj) + u(xj − xk)

)
+ u(xi − xj)∂k

(
u(xi − xk) + u(xj − xk)

)
.

(4.7)

Now we solve equation (4.6) for u:

Theorem 4.3. Let u(t) be an even holomorphic function for 0 < |t| �
1 satisfying (4.6). Then there exist complex numbers C0 and C1 such that

(4.8) u(t) = C1℘(t|2ω1, 2ω2) + C0
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Here ℘(t|2ω1, 2ω2) is Weierstrass’ elliptic function with primitive periods

2ω1 and 2ω2.

Conversely for complex numbers C0, C1, ω1 and ω2, the function given

by (4.8) satisfies (4.6). Here ω1 and ω2 are complex numbers which are

linearly independent over R and allowed to be ∞.

Proof. Note that ℘ and ℘′ are even and odd functions, respectively.

Then it is clear from the addition formula (cf. [WW]) of ℘-function

∣∣∣∣∣∣
℘(x) ℘′(x) 1

℘(y) ℘′(y) 1

℘(z) ℘′(z) 1

∣∣∣∣∣∣ = 0(4.9)

for complex numbers x, y and z with x + y + z = 0

that the function u given by (4.8) satisfies Uijk(u) = 0 and therefore it is a

solution of (4.6).

Let u(t) be an even holomorphic function for 0 < |t| � 1 satisfying (4.6).

Put s = xi − xj and t = xj − xk and suppose 0 < |s| � |t| � 1. Then

(4.10)

Uijk(u) = u(t)
(
u′(s) + u′(s + t)

)
+ u(s + t)

(
− u′(s) + u′(t)

)
+ u(s)

(
− u′(s + t) − u′(t)

)

= −
((

u(s + t) − u(t)
)
u′(s) +

(
u′(s + t) + u′(t)

)
u(s)

)

+ F (s, t)

with a function F (s, t). Here we note that F (s, t) is holomorphic function

of s at the origin if t is fixed with the condition 0 < |t| � 1.

Now put s = x1 − x2 and tj = xj−1 − xj for j = 3, . . . ,m. Fix complex

numbers t3, . . . , tm with 0 < |tj | � 1 and suppose 0 < |s| � |tj | � 1 for

j = 3, . . . ,m. Then condition (4.6) implies

(4.11) −
m∑
j=3

((
u(s + t3 + · · · + tj) − u(t3 + · · · + tj)

)
u′(s)

+
(
u′(s + t3 + · · · + tj) + u′(t3 + · · · + tj)

)
u(s)

)
= f(s)
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with a holomorphic function f(s) on a neighborhood of the origin. Now we

may assume the number

C =
m∑
j=3

u′(t3 + · · · + tj)

is not zero for generic t3, · · · , tm and from (4.11) we have

(4.12) −(C + c1(s)s)su
′(s) − 2(C + c2(s)s)u(s) = f(s)

with holomorphic functions c1(s) and c2(s) on a neighborhood of the origin.

Since the origin is the regular singular point for the differential equation

(4.12) for u and its characteristic exponent equals −2, the origin is at most

a pole of order 2 for u.

First suppose u(s) is holomorphic at the origin. We may assume u(0) =

u′(0) = 0 because u + C ′ is also a solution of (4.6) for C ′ ∈ C. Then

Uijk(u)
∣∣
xj=xk

= u(xi − xj)∂ju(xi − xj) + u(xi − xj)∂ju(xi − xj)

= −∂i

(
u(xi − xj)

2

)
,

Uijk(u)
∣∣
xi=xj=xk

= 0

and

∑
1≤i<j<k≤m

Uijk(u)
∣∣
x2=x3=···=xm =

∑
1<j<k≤m

U1jk(u)
∣∣
x2=xj=xk

= −
(
m− 1

2

)
∂1

(
u(x1 − x2)

2

)
.

Hence d
dt

(
u(t)2

)
= 0 and therefore u(t) is constant, which implies u = 0.

Therefore replacing u by C ′u + C ′′ with suitable C ′, C ′′ ∈ C, we may

assume

u(t) = t−2 + C2t
2 + C4t

4 + C6t
6 + · · ·
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with complex numbers Cj . Then under the same notation in equation (4.10)

we have

(4.13)

Uijk(u) =
∂

∂t
u(t)

(
u(s + t) − u(s)

)
− ∂

∂s
u(s)

(
u(s + t) − u(t)

)

=
∂

∂t
u(t)

{(
u(t) +

u(1)(t)

1!
s +

u(2)(t)

2!
s2 + · · ·

)

− (s−2 + C2s
2 + C4s

4 + · · · )
}

− ∂

∂s

{(
s−2 + C2s

2 + C4s
4 + · · ·

)

·
(u(1)(t)

1!
s +

u(2)(t)

2!
s2 +

u(3)(t)

3!
s3 + · · ·

)}
.

The coefficient of s−2 in the expansion (4.13) equals −u(1)(t)+u(1)(t) = 0

and therefore (4.13) is holomorphic at s = 0.

The coefficient of s0 equals

∂

∂t
u(t)2 − 1

6
u(3)(t) =

d

dt
(t−2 + C2t

2 + C4t
4 + · · · )2

− 1

6
(−4!t−5 + 4!C4t + · · · ),

which is holomorphic at the origin and takes the value zero at the point.

Thus we have

∑
1≤i<j<k≤m

Uijk(u)

∣∣∣∣
x1=x2

=
∑
2<k

{
2u(x2 − xk)u

′(x2 − xk) −
1

6
u(3)(x2 − xk)

}

+ 2
∑

2<j<k≤m
U2jk(u) +

∑
2<i<j<k≤m

Uijk(u).

and by the induction on  it is easy to show(
· · ·

( ∑
1≤i<j<k≤m

Uijk(u)

∣∣∣∣
x1=x2

)∣∣∣∣
x2=x3

· · ·
)∣∣∣∣
x�−1=x�

=
(
1 + 2 + · · · + ( − 1)

)∑
�<k

{
2u(x� − xk)u

′(x� − xk) −
1

6
u(3)(x� − xk)

}

+  
∑

�<j<k≤m
U�jk(u) +

∑
�<i<j<k≤m

Uijk(u).
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When  = m− 1, we have

(m− 2)(m− 1)

2

(
2u(xm−1 − xm)u′(xm−1 − xm) − 1

6
u(3)(xm−1 − xm)

)
= 0

and thus

2u(3) = 12(u2)′,

2u(2) = 12u2 − g2,

2u′u′′ = 12u2u′ − g2u
′,

(u′)2 = 4u3 − g2u− g3

with suitable complex numbers g2 and g3. Since u has a pole of order 2 at

the origin, this differential equation implies that u is Weierstrass’ elliptic

function. �

Remark 4.4. The claim of Theorem 4.3 follows from the commuta-

tivity of the operators ∆i for i = 1, 2 and 3. In fact we do not use the

existence of the commuting operators ∆i of order > 3 for the proof.

5. Construction of commuting families - type An

As in the previous section we assume the root system is of type An
and we shall construct a commuting family of differential operators ∆j for

j = 1, . . . ,m = n + 1. In fact we shall prove the operators

(5.1) ∆k =
∑

0≤�≤ k
2

∑
J⊂[1,m]
|J |=k−2�

{( ∑
Λ∈Σ(J ;�)

∏
α∈Λ

u(〈α, x〉)
)∏
j∈J

∂

∂xj

}

form a commuting family for any function u given by Theorem 4.3. Here

Σ(J ;  ) =
{
{β1, . . . , β�}; β1, . . . , β�, ej (j ∈ J) are orthogonal

to each other and βi ∈ Σ+
}

for J ⊂ [1,m] and we define

∑
Λ∈Σ(J ;0)

∏
α∈Λ

u(〈α, x〉) = 1 and
∏
j∈∅

∂

∂xj
= 1.
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We may write them in the following way:

(5.2) ∆k =
∑

0≤�≤ k
2

∑
g∈Sm

1

#G( , k − 2 )
g(L�,k−2�)

by putting

(5.3) Li,j = u(x1−x2)u(x3−x4) · · ·u(x2i−1−x2i)
∂j

∂x2i+1∂x2i+2 · · · ∂x2i+j
.

Here Sm is the permutation group of the set [1,m] = {1, . . . ,m} and we

denote G(i, j) = {g ∈ Sm; g(Li,j) = Li,j}.

Lemma 5.1. These operators satisfy

[∆k,∆1] = [∆k,∆2] = 0, t∆k = ∆−
k = (−1)k∆k(5.4)

for k = 1, . . . ,m.

Proof. Note that [∆k,∆1] = 0 and t∆k = ∆−
k = (−1)k∆k are clear

by definition. Furthermore it is easy to see that (5.1) implies that the

commutator [∆k,∆2] vanishes except for the terms ∂j1 · · · ∂j� with j1 <

j2 < · · · < j�.

Suppose Q = [∆k,∆2] �= 0. Since tQ = (−1)k−1Q, the order of Q is odd

if k is even and even otherwise. Let k − 2N − 1 be the order of Q with a

nonnegative integer N and put I = [k − 2N,m] and J = [1, k − 2N − 1].

Then the coefficient of ∂1 · · · ∂k−2N−1 of [∆k,∆2] equals

m∑
i=k−2N

∑
Λ∈Σ(J∪{i};N)

uΛ(x)∂i
∑
ν<µ

u(xν − xµ)(5.5)

−
k−2N−1∑
i=1

∂(i)
∑

Λ∈Σ(J\{i};N+1)

uΛ(x)

=

m∑
i=k−2N

∑
Λ∈Σ(J∪{i};N)

uΛ(x)

(∑
ν �=i

u′(xi − xν)

)

+

k−2N−1∑
i=1

m∑
j=k−2N

∑
Λ∈Σ(J∪{j};N)

uΛ(x)u′(xi − xj)
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by denoting

(5.6) uΛ(x) =
∏
α∈Λ

u(〈α, x〉).

Hence for k−2N ≤ ν < µ ≤ m, the sum of the terms in (5.5) which contain

u′(xν − xµ) equals

( ∑
Λ∈Σ(J∪{ν};N)

uΛ(x) −
∑

Λ∈Σ(J∪{µ};N)

uΛ(x)

)
u′(xν − xµ)(5.7)

=
∑

i∈I\{ν,µ}

∑
Λ∈Σ(J∪{µ,ν,i};N−1)

· uΛ(x)
(
u(xi − xν) − u(xi − xµ)

)
u′(xν − xµ).

Since we have

∑
k−2N≤ν<µ≤m

∑
i∈I\{µ,ν}

(
u(xi−xµ)∂νu(xν−xµ)+u(xi−xν)∂µu(xν−xµ)

)
= 0

from the addition formula (4.9), the terms (5.7) cancel out if we sum up

them for all ν and µ satisfying k − 2N ≤ ν < µ ≤ m. On the other

hand, in the expression (5.5) it is easy to see that the terms u′(xi − xν) for

i ∈ [k − 2N,m] and ν ∈ [1, k − 2N − 1] vanish. This assures the vanishing

of the term of order k − 2N − 1 of Q, which contradicts the assumption.

Thus we have the Lemma. �

Now we can state our main theorem when the root system is of type An.

Theorem 5.2. i) For Weierstrass’ elliptic function ℘(t|2ω1, 2ω2) and

any complex numbers C0 and C1 we put

(5.8) u(t) = C1℘(t|2ω1, 2ω2) + C0.

Then the differential operators ∆k given by (5.1) satisfy

(5.9)
[∆i,∆j ] = 0 for 1 ≤ i < j ≤ m,

t∆i = ∆−
i = (−1)i∆i for 1 ≤ i ≤ m.
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Here we note that ω1 and ω2 are allowed to be infinity.

ii) Let Ω be a W -invariant connected open neighborhood of the origin of

C
m. Let D(An) be a commutative algebra generated by suitable W -invariant

differential operators whose coefficients are holomorphic on an open dense

subset Ω′ of Ω such that Ω \Ω′ is an analytic subset of Ω. Suppose D(An)

contains the operators

(5.10)

( ∑
1≤i1<···<ik≤m

∂k

∂xi1 · · · ∂xik

)
+ Rk(x, ∂) for k = 1, · · · ,m.

Here Rk(x, ∂) are differential operators of order ≤ k − 1. Furthermore

suppose R1(x, ∂) = 0, ordR2(x, ∂) ≤ 0 and ordR3(x, ∂) ≤ 1. Then D(An)

coincides with C[∆1, . . . ,∆m] which is determined by a suitable function u

of the form (5.8).

Proof. Owing to Theorem 3.2, Proposition 3.3, Theorem 4.3 and

Lemma 5.1, we have only to prove the commutativity of ∆j . But it fol-

lows from Lemma 3.5 and the analytic continuation for the parameters of

℘(t). �

Remark 5.3. It is clear that the commuting algebra C[∆1, · · · ,∆m]

in Theorem 5.2 stays invariant even if we change the constant number C0

in (5.8).

Furthermore it is easy to show that if we consider C0 as an element

which commutes with any differential operator and consider the differential

operators ∆m and ∆′
m = [∆m, x1+· · ·+xm] defined by (5.1) as a polynomial

of C0, then their coefficients of Ck0 for k = 0, 1, . . . form a complete set of

generators of the commuting algebra.

6. A functional differential equation satisfied by the potential

function - type Bn and Dn

Hereafter in this paper we shall study the case when the root system is

of type Bn with n > 1 or of type Dn with n > 3. In this section we examine
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W -invariant differential operators P1 and P2 of the form

(6.1)

P1 =
∑

1≤i≤n
∂2
i + R(x),

R(x) =
∑

1≤i<j≤n

(
u(xi + xj) + u(xi − xj)

)
+

∑
1≤i≤n

v(xi),

P2 =
∑

1≤i<j≤n
∂2
i ∂

2
j +

∑
1≤i≤n

ai2∂
2
i

+
∑

1≤i<j≤n
aij11∂i∂j +

∑
1≤i≤n

ai1∂i + a0

which satisfy [P1, P2] = 0 and tP2 = P2.

The term ∂i of [P1, P2] gives

(6.2)
∑

1≤ν≤n
∂2
νa
i
1 + 2∂ia0 =

∑
ν �=i

1≤ν≤n

2∂i∂
2
νR + 2ai2∂iR +

∑
ν �=i

1≤ν≤n

aiν11∂νR.

We may assume that ai2 and aij11 are given by (2.21). Furthermore we

may assume v = 0 if the root system is of type Dn, which follows from the

argument in the last part of §2.

The condition tP2 = P2 is equivalent to

(6.3) ai1 =
1

2

∑
ν �=i

1≤ν≤n

(
u′(xi + xν) + u′(xi − xν)

)

and from (6.2) we have

2∂ia0 =
∑
ν �=i

2∂i∂
2
νR −

∑
ν

∂2
νa
i
1 + 2ai2∂iR +

∑
ν �=i

aiν11∂νR(6.4)

=
∑
ν �=i

(
u(3)(xi + xν) + u(3)(xi − xν)

)

+ 2

( ∑
ν,µ �=i
ν<µ

(
u(xν + xµ) + u(xν − xµ)

)
+
∑
ν �=i

v(xν)

)
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·
(∑
ν �=i

(
u′(xi + xν) + u′(xi − xν)

)
+ v′(xi)

)

+
∑
ν �=i

{(
u(xi + xν) − u(xi − xν)

)

·
(∑
µ �=ν

(
u′(xµ + xν) − u′(xµ − xν)

)
+ v′(xν)

))}
.

Theorem 6.1.

i) Under the above notation the condition [P1, P2] = 0 is equivalent to

the existence of a W -invariant function a0 satisfying (6.4).

ii) The compatibility condition of the integrability of equation (6.4) for

a0 is

(
(n− 2)

(
u′′(x1 + x3) + u′′(x1 − x3)

)
+ v′′(x1)

)
(6.5)

·
(
u(x1 + x2) − u(x1 − x2)

)

+ 3

(
(n− 2)

(
u′(x1 + x3) + u′(x1 − x3)

)
+ v′(x1)

)

·
(
u′(x1 + x2) + u′(x1 − x2)

)

+ 2

(
(n− 2)

(
u(x1 + x3) + u(x1 − x3)

)
+ v(x1)

)

·
(
u′′(x1 + x2) − u′′(x1 − x2)

)

+ (n− 2)

(
u′′(x1 + x3) − u′′(x1 − x3)

)(
u(x1 + x3) − u(x1 − x3)

)

=

(
(n− 2)

(
u′′(x2 + x3) + u′′(x2 − x3)

)
+ v′′(x2)

)

·
(
u(x1 + x2) − u(x1 − x2)

)

+ 3

(
(n− 2)

(
u′(x2 + x3) + u′(x2 − x3)

)
+ v′(x2)

)
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·
(
u′(x1 + x2) − u′(x1 − x2)

)

+ 2

(
(n− 2)

(
u(x2 + x3) + u(x2 − x3)

)
+ v(x2)

)

·
(
u′′(x1 + x2) − u′′(x1 − x2)

)

+ (n− 2)

(
u′′(x2 + x3) − u′′(x2 − x3)

)(
u(x2 + x3) − u(x2 − x3)

)
.

Proof. Suppose there exists a W -invariant function satisfying (6.4).

Since the commutator satisfies t[P1, P2] = −[P1, P2], the order of [P1, P2]

equals 1 or 3 or 5 if it is not zero.

It is clear that the order is smaller than 5. Furthermore equations (2.21)

and (6.4) assure the vanishing of the 3-rd and and first order terms, respec-

tively. Hence we have the first statement of the theorem.

Note that the function R and the operator
∑
i a
i
1∂i are symmetric with

respect to the coordinate. Therefore the compatibility condition for equa-

tion (6.4) equals

(6.6) ∂2U(x1, x2, x
′) = ∂1U(x2, x1, x

′)

by putting

(6.7) U(x1, x2, x
′) =

∑
ν �=1

2∂1∂
2
νR −

∑
ν

∂2
νa

1
1 + 2a1

2∂1R +
∑
ν �=1

a1ν
11∂νR.

with x′ = (x3, . . . , xn). Defining a symmetric function

S(x) =
∑
µ<ν

(
u(2)(xµ + xν) + u(2)(xµ − xν) + 2v(xµ)v(xν)

)
(6.8)

+

(∑
µ<ν

(
u(xµ + xν) + u(xµ − xν)

))2

+
1

2

∑
µ<ν

(
u(xµ + xν) − u(xµ − xν)

)2



Commuting families of differential operators 37

+ 2
∑
k

v(xk)

( ∑
µ<ν, µ,ν �=k

(
u(xµ + xν) − u(xµ − xν)

))
,

we have

U(x1, x2, x
′) − ∂1S(x) =

∑
ν>1

(
u(x1 + xν) − u(x1 − xν)

)
v′(xν)(6.9)

+ 2
∑
ν>1

(
u′(x1 + xν) + u′(x1 − xν)

)
v(xν)

− 2

(∑
ν>1

(
u(x1 + xν) + u(x1 − xν)

))

·
(∑
ν>1

(
u′(x1 + xν) + u′(x1 − xν)

))

+

{∑
ν>1

(
u(x1 + xν) − u(x1 − xν)

)

·
( ∑
µ �=1,ν

(
u′(xµ + xν) − u′(xµ − xν)

))}

Then

∂2U(x1, x2, x
′) − ∂1∂2S(x)(6.10)

=
(
u(x1 + x2) − u(x1 − x2)

)
v′′(x2)

+ 3
(
u′(x1 + x2) + u′(x1 − x2)

)
v′(x2)

+ 2
(
u′′(x1 + x2) − u′′(x1 − x2)

)
v(x2)

− 2
(
u′(x1 + x2) − u′(x1 − x2)

)
·
(
u′(x1 + x2) + u′(x1 − x2) + ∂1W (x1, x

′)
)

− 2
(
u(x1 + x2) + u(x1 − x2) + W (x1, x

′)
)

·
(
u′′(x1 + x2) − u′′(x1 − x2)

)
+
(
u′(x1 + x2) + u′(x1 − x2)

)
∂2W (x2, x

′)

+
(
u(x1 + x2) + u(x1 − x2)

)
∂2

2W (x2, x
′)

+
∑
ν>2

(
u(x1 + xν) − u(x1 − xν)

)(
u′′(x2 + xν) − u′′(x2 − xν)

)
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by putting

(6.11) W (x1, x
′) =

∑
3≤ν≤n

(
u(x1 + xν) + u(x1 − xν)

)
.

Denoting

Q(x1, x2, x
′)(6.12)

=
(
∂2

1W (x1, x
′) + v′′(x1)

)(
u(x1 + x2) − u(x1 − x2)

)
+ 3

(
∂1W (x1, x

′) + v′(x1)
)(

u′(x1 + x2) − u′(x1 − x2)
)

+ 2
(
W (x1, x

′) + v(x1)
)(

u′′(x1 + x2) − u′′(x1 − x2)
)

+
∑
ν≥3

(
u′′(x1 + xν) − u′′(x1 − xν)

)(
u(x2 + xν) − u(x2 − xν)

)
,

the compatibility condition (6.6) can be stated as

(6.13) Q(x1, x2, x
′) = Q(x2, x1, x

′).

Then if we put x3 = x4 = · · · = xn, we obtain (6.5).

On the other hand, if (6.5) holds, the function

D(x1, x2, x3)(6.14)

=
(
u′′(x1 + x3) + u′′(x1 − x3)

)(
u(x1 + x2) − u(x1 − x2)

)
+ 3

(
u′(x1 + x3) + u′(x1 − x3)

)(
u′(x1 + x2) − u′(x1 − x2)

)
+ 2

(
u(x1 + x3) + u(x1 − x3)

)(
u′′(x1 + x2) − u′′(x1 − x2)

)
+
(
u′′(x1 + x3) − u′′(x1 − x3)

)(
u(x2 + x3) − u(x2 − x3)

)
−
(
u′′(x2 + x3) + u′′(x2 − x3)

)(
u(x1 + x2) − u(x1 − x2)

)
− 3

(
u′(x2 + x3) + u′(x2 − x3)

)(
u′(x1 + x2) + u′(x1 − x2)

)
− 2

(
u(x2 + x3) + u(x2 − x3)

)(
u′′(x1 + x2) − u′′(x1 − x2)

)
−
(
u′′(x2 + x3) − u′′(x2 − x3)

)(
u(x1 + x3) − u(x1 − x3)

)

does not depend on x3 and therefore (6.13) holds. �

Remark 6.2. If we put

A(x1, x3) = (n− 2)
(
u(x1 + x3) + u(x1 − x3)

)
+ v(x1)
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U(x1, x2) = u(x1 + x2) − u(x1 − x2)

B(x1, x2, x3) = (n− 2)
(
u(x1 + x3) − u(x1 − x3)

)(
u(x2 + x3) − u(x2 − x3)

)

C(x1, x2, x3) =
∂

∂x1

(
2A(x1, x3)

∂U(x1, x2)

∂x1
+

∂A(x1, x3)

∂x1
U(x1, x2)

+
∂B(x1, x2, x3)

∂x1

)
,

condition (6.5) is equivalent to

(6.15) C(x1, x2, x3) = C(x2, x1, x3).

When the root system is of type B2, we can state our result in this

section as follows.

Proposition 6.3. Suppose the root system is of type B2.

i) In Theorem 2.1 we can choose functions u(t), v(t) and T (x, y) such

that

R(x, y) = u(x + y) + u(x− y) + v(x) + v(y),

2
∂

∂y
T (x, y) = v′(x)

(
u(x + y) − u(x− y)

)
(6.16)

+ 2v(x)
(
u′(x + y) − u′(x− y)

)

and

(6.17) T (x, y) = T (y, x).

ii) Assume that for given functions u(t) and v(t) there exists a function

T (x, y) satisfying (6.16) and (6.17). Then the following two differential

operators are commutative.

P1 =
∂2

∂x2
+

∂2

∂y2
+ u(x + y) + u(x− y) + v(x) + v(y),

P2 =
∂4

∂x2∂y2
+ v(y)

∂2

∂x2
+ v(x)

∂2

∂y2
+
(
u(x + y) − u(x− y)

) ∂2

∂x∂y
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+
1

2

(
u′(x + y) + u′(x− y)

) ∂

∂x
+

1

2

(
u′(x + y) − u′(x− y)

) ∂

∂y

+

(
u(x + y) − u(x− y)

)2

4
+

u′′(x + y) + u′′(x− y)

2
+ v(x)v(y) + T (x, y)

=

(
∂2

∂x∂y
+

u(x + y) − u(x− y)

2

)2

+ v(y)
∂2

∂x2
+ v(x)

∂2

∂y2
+ v(x)v(y)

+ T (x, y).

iii) We can choose functions u(t) and v(t) in Theorem 2.1 such that

∂2

∂x2

(
v(x)

(
u(x + y) − u(x− y)

))
(6.18)

+
∂

∂x

(
v(x)

∂

∂x

(
u(x + y) − u(x− y)

))

=
∂2

∂y2

(
v(y)

(
u(x + y) − u(x− y)

))

+
∂

∂y

(
v(y)

∂

∂y

(
u(x + y) − u(x− y)

))
.

iv) If a pair
(
u(t), v(t)

)
=

(
u0(t), v0(t)

)
is a solution of (6.18), then the

pair
(
u(t), v(t)

)
=

(
C1u0(Ct)+C2, C

′
1v0(Ct)+C ′

2

)
for complex numbers C,

C1, C ′
1, C2 and C ′

2 with C �= 0 and the pair
(
u(t), v(t)

)
=

(
v0(

t√
2
), u0(

√
2t)

)
also satisfy (6.18).

Proof. The first and the second claims follow from the proof of The-

orem 6.1. In fact putting x = x2 and y = x1, they follow from (2.21), (6.3),

(6.4), (6.8) and (6.9) and the fact that the right hand side of (6.16) equals
∂
∂y

(
2a0 − S − (u(x + y) − u(x− y))2

)
.

The third claim is obvious from Remark 6.2 and the first pair
(
u(t), v(t)

)
in iv) clearly satisfies (6.18).

The last pair in iv) is obtained by the fact that the coordinate transfor-

mation

(6.19) X =
1√
2
(x− y), Y =

1√
2
(x + y)
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gives an automorphism of the Weyl group B2 which is identified with a

group of linear transformations of R
2. In fact, we can rewrite (6.18) in the

form

(
v(x) − v(y)

)
u′′(x + y) + 3

(
v′(x) − v′(y)

)
u′(x + y)

+ 2
(
v′′(x) − v′′(y)

)
u(x + y)

=
(
v(x) − v(y)

)
u′′(x− y) + 3

(
v′(x) + v′(y)

)
u′(x− y)

+ 2
(
v′′(x) − v′′(y)

)
u(x− y)

and the transformation (6.19) proves the second claim. �

When the rank of the root system is larger than 2, we have

Proposition 6.4. i) If the root system is of type Dn with n ≥ 3, then

the function u in Theorem 2.1 satisfies (6.18) with v = u.

ii) If the root system is of type Bn with n ≥ 3 or of type Dn with n ≥ 3,

then we can choose the function u in Theorem 2.1 such that

u(4)(x)
(
u(x + y) − u(x− y)

)
(6.20)

+ 3u(3)(x)
(
u(1)(x + y) − u(1)(x− y)

)
+ 2u(2)(x)

(
u(2)(x + y) − u(2)(x− y)

)
+ 4u(3)(x)u(1)(y)

= u(4)(y)
(
u(x + y) − u(x− y)

)
+ 3u(3)(y)

(
u(1)(x + y) + u(1)(x− y)

)
+ 2u(2)(y)

(
u(2)(x + y) − u(2)(x− y)

)
+ 4u(3)(y)u(1)(x).

iii) Let u(t) and E(x, y, z) be functions which satisfy

∂

∂y
E(x, y, z) = 2

(
u(x + z) + u(x− z)

)
(6.21)

·
(

∂

∂x

(
u(x + y) − u(x− y)

))

+

(
∂

∂x

(
u(x + z) + u(x− z)

))

·
(
u(x + y) − u(x− y)

)
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+

(
∂

∂x

(
u(x + z) − u(x− z)

))

·
(
u(y + z) − u(y − z)

)
,

E(x, y, z) = E(y, x, z).(6.22)

Then D(x, y, z) = 0 for the function D defined by (6.14).

Furthermore if u(t) is holomorphic on Ω′, then (6.20) is also valid.

Proof. The first claim is clear by putting v = 0 and x3 = 0 in (6.15).

Applying ∂2

∂x2
3

to (6.15) and moreover putting x1 = x, x2 = y and x3 = 0,

we obtain (6.20).

Since D(x, y, z) = ∂
∂xE(x, y, z)− ∂

∂yE(y, x, z), equations (6.21) and (6.22)

imply D(x, y, z) = 0 and therefore we obtain (6.20) in the same way as the

proof of the claim ii). �

For the uniqueness of our commuting family we have the following

Theorem 6.5. Let {P1, . . . , Pn} be a family of differential operators

of the form (0.2) which satisfies (0.3). Suppose the root system is of type

Dn with n ≥ 4 or of type Bn with n ≥ 2. We may assume that the principal

symbol of P2 equals
∑
i<j ξ

2
i ξ

2
j and that u and v in (2.20) satisfy (2.21).

Then the commuting algebra C[P1, . . . , Pn] is uniquely determined by the

pair (u, v). Here we put v = 0 in the case of type Dn.

Proof. If tP2 = P2, we have the theorem from Theorem 3.2 and the

proof of Theorem 6.1. Put P2 =
∑
i<j ∂

2
i ∂

2
j + R2. Let σ(R2) denote the

principal symbol of R2. Then we have {
∑

ξ2
i , σ(R2)} = 0.

Suppose ordR2 = 3. Since R2 is W -invariant, Lemma 3.8 implies that

W is of type D4 and σ(R2) equals the right hand side of (3.37) with C �= 0.

Then we may assume

P4 = ∂1∂2∂3∂4 + R4

with ordR4 ≤ 3. Let σ3(R4) denote the symbol R4 of order 3. Note that

[P1, P2] = [P1, P4] = [P2, P4] = 0. Hence σ3(R4) = C ′σ(R2) with some
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C ′ ∈ C and by the equality [P4 − C ′P2, P2] = 0, we have

{ξ1ξ2ξ3ξ4 − C ′ ∑
1≤i<j≤n

ξ2
i ξ

2
j ,

C
∑
g∈S4

g
( 1

3!
x2x3x4ξ

3
1−

1

2!
x1x3x4ξ

2
1ξ2−

1

3!
(x2

1+x2
2+x2

3−x2
4)x4ξ1ξ2ξ3

)
} = 0.

Then the coefficients of ξ5
1ξ2 in the above shows −2CC ′x3x4 = 0 and hence

C ′ = 0. The coefficients of ξ4
1ξ2ξ3 prove −Cx2x3 = 0. This leads the

contradiction because C �= 0.

Thus we have ordR2 ≤ 2. Put Q = P2 − tP2. Suppose Q �= 0,

then ordQ = 1 and [P1, Q] = 0. But it is easy to see that the equa-

tion {
∑

ξ2
i , σ(Q)} = 0 never holds for differential operator of order 1 if

σ(Q)(x, ∂) is symmetric. Thus we can conclude P2 = tP2. �

7. Solutions of the functional differential equation - type Bn
and Dn

In this section we want to solve the functional differential equations

(6.18) and (6.20).

Lemma 7.1. i) Suppose u(t) and v(t) are holomorphic functions for

0 < |t| � 1 satisfying (6.18). Then if u′ �= 0 and v′ �= 0, the origin is at

most a pole of order 2 for u(t) and v(t).

ii) Let
(
u(t), v(t)

)
be a meromorphic solution of (6.18) defined on a

neighborhood of the origin. Consider the Laurent developments

(7.1)
u(t) = Ukt

k + Uk+2t
k+2 + Uk+4t

k+4 + · · · ,
v(t) = V�t

� + V�+2t
�+2 + V�+4t

�+4 + · · · .

Here Ui ∈ C, Vj ∈ C, and k and  are nonzero even integers. If Uk �= 0 and

V� �= 0, then (k,  ) equals (−2,−2), (−2, 2), (−2, 4), (−2, 6), (2, 2), (2,−2),

(4,−2) or (6,−2).

Proof. Using the Laurent development

(7.2) u(x + y) − u(x− y) = 2

(
u(1)(x)

1!
y +

u(3)(x)

3!
y3 + · · ·

)
.
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with respect to y, it follows from (6.18) that

∂2

∂x2

(
v(x)(

u(1)(x)

1!
y +

u(3)(x)

3!
y3 + · · · )

)
(7.3)

+
∂

∂x

(
v(x)

∂

∂x
(
u(1)(x)

1!
y +

u(3)(x)

3!
y3 + · · · )

)

=
∂2

∂y2

(
v(y)(

u(1)(x)

1!
y +

u(3)(x)

3!
y3 + · · · )

)

+
∂

∂y

(
v(y)

∂

∂y
(
u(1)(x)

1!
y +

u(3)(x)

3!
y3 + · · · )

)
.

To prove i) we fix x with 0 < |x| � 1 and u′(x) �= 0. Suppose 0 < |y| �
|x|. Then (7.3) implies

f(x, y) = y(u′(x) + yc2(x, y))v′′(y) + 3(u′(x) + yc1(x, y))v′(x) + c0(x, y)v(x)

with suitable holomorphic functions f(x, y), c0(x, y), c1(x, y) and c2(x, y)

of y defined on a neighborhood of the origin. Since this equation for v has

a regular singularity at the origin with the characteristic exponents 0 and

−2, the origin is at most a pole of order 2 for the solution v.

On the other hand Proposition 6.3 iv) assures that the origin is also at

most a pole of order 2 for u and moreover that we may suppose  ≥ k to

prove the second part of the lemma.

Suppose  ≥ 4 and  ≥ k. Then the coefficients of y in equation (7.3)

shows
∂2

∂x2

(
v(x)u(1)(x)

)
+

∂

∂x

(
v(x)u(2)(x)

)
= 0.

Expanding this into the Laurent series of x, the coefficients of xk+�−3 proves

k(k +  − 1)(k +  − 2)V�Uk + k(k − 1)(k +  − 2)V�Uk = 0

and hence we can conclude that k equals 2−  or 1− �
2 , from which we have

( , k) = (4,−2) or (6,−2) because of the assumption. �

Now we want to get solutions of (6.18). Suppose
(
u(t), v(t)

)
is a holo-

morphic solution of (6.18) defined for 0 < |t| � 1. Furthermore suppose
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u′ �= 0, v′ �= 0, u(−t) = u(t) and v(−t) = v(t). Then Lemma 7.1 assures

that we may assume k =  = −2 in (7.1). Here Uk may be 0 and V� may

be 0. Subtracting constant numbers from u and v, respectively, we may

moreover assume U0 = V0 = 0.

Then (7.3) equals

∂2

∂x∂y

{
v′(x)

(u(1)

2!
y2 +

u(3)

4!
y4 + · · ·

)
(7.4)

+ 2v(x)
(u(2)

2!
y2 +

u(4)

4!
y4 + · · ·

)}

=
∂2

∂x∂y

{(
− 2V−2y

−3 + 2V2y
1 + 4V4y

3 + · · ·
)

·
(u(0)

1!
y +

u(2)

3!
y3 + · · ·

)

+
(
2V−2y

−2 + 2V2y
2 + 2V4y

4 + · · ·
)(u(0)

0!
+

u(2)

2!
y2 + · · ·

)}
.

Comparing the coefficients of y1 and y3 in the above, we have

Lemma 7.2. Under the above notation

(7.5) u(1)v′ + 2u(2)v =
2

3 · 5V−2u
(4) + 2 · 22V2u + C1

and

(7.6) u(3)v′ + 2u(4)v =
2

5 · 7V−2u
(6) + 2 · 42V2u

(2) +
2 · 4! · 3

1!
V4u + C2

with suitable constant numbers C1 and C2.

Now we give solutions of equation (6.18). The claim i) in Proposition 7.3

is not necessary for our later purpose if we have Proposition 7.8. The proof

of Proposition 7.8 is similar as that of Proposition 7.3 i). The both proofs

are elementary but the latter one is more complicated. Hence we shall also

give the former one for the reader’s convenience. In fact, it is useful for the

calculation in the proofs to have the aid of a computer with an algebraic

programming system such as Reduce, Maple, Mathematica.
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Proposition 7.3. Let
(
u(t), v(t)

)
be a holomorphic solution of (6.18)

defined for 0 < |t| � 1. Assume that u′ �= 0, v′ �= 0, u(−t) = u(t) and

v(−t) = v(t).

i) If u = v, then there exist complex numbers A2, A1, A0, ω1 and ω2

such that

(7.7) u(t) = A1℘(t|2ω1, 2ω2) + A0

or

(7.8) u(t) = A1t
2 + A2t

−2 + A0.

ii) Suppose u(t) = ℘(t|2ω1, 2ω2). Then there exist complex numbers C0,

C1, C2, C3 and C4 such that

(7.9) v(t) =
C4℘(t)4 + C3℘(t)3 + C2℘(t)2 + C1℘(t) + C0

℘′(t)2
.

On the other hand for any complex numbers Ci, there exists a function

T (x, y) satisfying (6.16) and (6.17) if the function v is defined by (7.9).

iii) Suppose u(t) = t2+Ct−2 with a complex number C. Then there exist

complex numbers C0, C1 and C2 such that

(7.10) v(t) = C0 + C1t
−2 + C2t

2.

Conversely for any complex numbers C0, C1 and C2 and the function v

given by (7.10), there exists a function T (x, y) which satisfies (6.16) and

(6.17).

Proof. First we shall prove the claim iii). Put

(7.11)

{
u(t) = αt−2 + βt2,

v(t) = γt−2 + δt2

with complex numbers α, β, γ and δ. Then

u(x + y) − u(x− y) = 2
∂

∂y

(
− α

x

x2 − y2
+ βxy2

)
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and

(7.12) v′(x)
(
u(x + y) − u(x− y)

)
+ 2v(x)

(
u′(x + y) − u′(x− y)

)
= 2

∂T

∂y

with

(7.13) T (x, y) =
4αγ + 4αδx2y2

(x2 − y2)2
+ 4βδx2y2.

Hence (6.18) is clear from (6.16) and (6.17).

Next suppose u(t) = t2 + Ct−2. We want to prove that v is of the form

(7.10). Subtracting a suitable function of the form of the right hand side of

(7.10) from v, we may assume  = 4 in (7.1). We shall show v = 0, which

proves Proposition 7.3 iii).

If C = 0, then (7.5) means

2(t
∂

∂t
+ 2)v(t) = C ′

with a constant number C ′ and therefore we have v = 0.

Hence we may assume C �= 0. Multiplying the both sides of (7.6) by
1
24 t

6, we get

C(−t
∂

∂t
+ 10)v(t) = 6V4(Ct4 + t8) +

C ′

24
t6

with a constant C ′. This proves that

v(t) = V4t
4 + V6t

6 +
3V4

C
t8 + V10t

10.

Since

u(1)v′ + 2u(2)v = 4CV4 + (16V6 − 8CV10)t
6 +

60V4

C
t8 + 24V10t

10,

equation (7.5) assures V4 = V6 = V10 = 0.

Next we shall prove the claim ii). Suppose u(t) = ℘(t) and v(t) is given

by (7.10). We shall show equation (6.18). Put

Q(t) = C4t
4 + C3t

3 + C2t
2 + C1t + C0.
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Then we have the following lemma by direct calculation.

Lemma 7.4.

2Q(s) −Q′(s)(s− t) = 2B(s, t) − (2C4s
2 + C3s)(s− t)2.

by denoting

(7.14) B(s, t) = C4s
2t2 + C3st

s + t

2
+ C2st + C1

s + t

2
+ C0

Since ℘ satisfies

(7.15) ℘(x + y) − ℘(x− y) =
∂

∂y

(
℘′(x)

℘(y) − ℘(x)

)

(cf. [WW]), we have

v′(x)
(
u(x + y) − u(x− y)

)
+ 2v(x)

(
u′(x + y) − u′(x− y)

)
(7.16)

=
∂

∂y

{( ∂

∂x

Q(℘(x))

℘′(x)2
) ℘′(x)

℘(y) − ℘(x)

+
2Q(℘(x))

℘′(x)2
∂

∂x

( ℘′(x)

℘(y) − ℘(x)

)}

=
∂

∂y

{
2Q(℘(x)) −Q′(℘(x))(℘(x) − ℘(y))

(℘(x) − ℘(y))2

}

= 2
∂

∂y

B(℘(x), ℘(y))(
℘(x) − ℘(y)

)2 .

Since B(s, t) is symmetric for (s, t), we obtain (6.16) and (6.18).

Next suppose (u(t), v(t)) satisfies (6.18) with u(t) = ℘(t). Subtracting

a suitable function of the form of the right hand side of (7.8) from v(t), we

may assume  ≥ 8 in (7.1) to prove the claim ii). But Lemma 7.1 assures

that v = 0 and we have the claim.

Now we shall prove i) and hence we suppose u = v. Note that if u is

given by (7.7) or (7.8) and v = u, then u and v satisfy (6.18) (cf. (1.8)).



Commuting families of differential operators 49

Use the developments (7.1) and equations (7.5) and (7.6). Then we may

assume k = −2 or k = 2 and moreover Uk = 1 and U0 = 0 by virtue of

Lemma 7.1.

Comparing the coefficients of t2j in equation (7.5), we have

(7.17)

j+2∑
ν=−1

4ν(j + ν)U2νU2j+2−2ν

− 2

15
(2j + 1)(2j + 2)(2j + 3)(2j + 4)U−2U2j+4 − 8U2U2j = 0

for any positive integer j.

First suppose k = 2. Then for j ≥ 2 we have

4(j + 1)U2j + 4j(2j)U2j +

j−1∑
ν=2

4ν(j + ν)U2νU2j+2−2ν − 8U2j−2 = 0.

and therefore

4(2j − 1)(j + 1)U2j = −4

j−1∑
ν=2

ν(j + ν)U2νU2j+2−2ν .

Hence by the induction on j, we have U2j = 0 for j ≥ 2, which means

u(t) = t2.

Next suppose k = −2. Then in equation (7.17) there only appear Uν
for ν ≤ 2j + 4. We can prove that if j ≥ 2, then U2j+4 are inductively

determined by Uν with ν < 2j +4. In fact, since the term containing U2j+4

in (7.17) equals

2(−2)(2j + 4)U−2U2j+4 + 2(−2)(−3)U−2U2j+4

+ 2(2j + 4)(2j + 3)U2j+4U−2

− 2

15
(2j + 1)(2j + 2)(2j + 3)(2j + 4)U−2U2j+4

= − 2

15
(2j − 2)(2j + 7)(4j2 + 10j + 9)U2j+4,

we have

1

15
( − 3)(2 + 3)(4 2 − 6 + 5)U2�(7.18)
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=
�−2∑
ν=1

ν( + ν − 2)U2νU2(�−ν−1) − 2U2U2(�−2)

for  = j + 2 ≥ 3. By putting  = 4, 5, 6 and 7 in (7.18), we obtain

U8 =
3

11
U2U4,(7.19)

U10 =
2

13
U2U6 +

1

13
U2

4 ,(7.20)

U12 =
35

3729
U2

2U4 +
11

113
U4U6,(7.21)

U14 =
270

3604
U2U10 +

75

1802
U4U8 +

30

901
U2

6 ,(7.22)

respectively. In general, if  ≥ 4, U� are determined by Uν with ν <  and

therefore the solution of (6.19) with u = v is uniquely determined by the

numbers U2, U4 and U6.

Similarly the coefficients of t6 and t8 in (7.6) mean

U12 =
140

3883
U2

2U4 +
26

353
U4U6,(7.23)

U14 =
90

833
U2U10 +

50

833
U4U8 +

15

833
U2

6 .(7.24)

Now it follows from (7.21) and (7.23) that

(7.25) U4(U
2
2 − 3U6) = 0.

Note that U6 = 1
3U

2
2 if u is a ℘-function. Since u(t) = ℘(t) is a solution

of (6.18) and since U2� with  ≥ 4 are uniquely determined by U2, U4 and

U6, we can conclude that u(t) is Weierstrass’ elliptic function if U2
2 = 3U6.

Hence to prove the proposition we may assume U2
2 �= 3U6. Then we

have U4 = 0 and U10 = 2
13U2U6 by (7.20). Combining this with (7.22) and

(7.24), we get

(7.26) U6(U
2
2 − 3U6) = 0.

Then by the assumption U2
2 �= 3U6 we have U4 = U6 = 0 and therefore we

can conclude u(t) = t−2 + U2t
2 by the same reason as in the case U2

2 =

3U6. �
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Remark 7.5. i) Suppose u(t) = ℘(t|2ω1, 2ω2) and put ω3 = −ω1 −ω2.

If ω1 and ω2 are finite complex numbers, then the condition that v is of the

form (7.9) is equivalent to say that

(7.27) v(t) = C ′
0℘(t) + C ′

1℘(t + ω1) + C ′
2℘(t + ω2) + C ′

3℘(t + ω3) + C ′
4

with suitable complex numbers C ′
0, C ′

1, C ′
2, C ′

3 and C ′
4 (cf. [WW]).

ii) For complex numbers C1, C2 and C3, the pair

(7.28) (u(t), v(t)) = (C1℘(t), C2℘(t) + C3℘(2t))

satisfies equation (6.18), which follows from the duplication formula for ℘(t)

(cf. [WW]).

Corollary 7.6. Suppose the root system is of type B2 in Theorem 2.1.

i) Suppose u = 0. Then (6.18) always holds and our commuting differ-

ential operators are

P1 = Q1 + Q2, P2 = Q1Q2

with

Qj = ∂2
j + v(xj)

for j = 1 and 2.

ii) The case when v = 0 is also trivial. It corresponds to the case when

v = 0 by the symmetry given by Proposition 6.3 iv).

iii) Suppose

(7.29) (u(t), v(t)) = (αt−2 + βt2, γt−2 + δt2)

or

(u(t), v(t))(7.30)

= (A℘(t),
C4℘(t)4 + C3℘(t)3 + C2℘(t)2 + C1℘(t) + C0

℘′(t)2
).

Then there exists a commuting algebra C[P1, P2], where P1 and P2 are de-

fined by Proposition 6.3 i) through (7.13) or (7.16).
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Now we shall solve equation (6.20). Suppose u(t) is meromorphic at the

origin. We may assume that u(t) has the form given in (7.1).

Suppose k ≤ −2 and Uk = 1. Then by using (7.2), the coefficient of

yk−3 of (6.20) means

(
(k)(k − 1)(k − 2)(k − 3) + (k)(k − 1)(k − 2)(3 + 2)

)
u′(x) = 0

and therefore we have k = −2.

Hence we may assume k = −2 in the expansion (7.1) of u(t) if we allow

Uk = 0. Furthermore we may assume U0 = 0 by subtracting a constant

from u. Then expanding (6.20) into the Laurent series of y, we have

u(4)

{
u(1)

1!
y +

u(3)

3!
y3 + · · ·

}

+ 3u(3)

{
u(2)

1!
y +

u(4)

3!
y3 + · · ·

}

+ 4u(4)

{
u(3)

1!
y +

u(5)

3!
y3 + · · ·

}

=

(
(−2)(−3)(−4)(−5)U−2y

−6 + 4 · 3 · 2 · 1U4 + · · ·
)

·
{

u(1)

1!
y +

u(3)

3!
y3 + · · ·

}

+

(
(−2)(−3)(−4)U−2y

−5 + 4 · 3 · 2U4y + · · ·
)

·
{

3

(
u(1)

1!
+

u(3)

3!
y2 + · · ·

)
+ 2u(1)

}

+

(
(−2)(−3)U−2y

−4 + 2U2 + 4 · 3U4y
2 + · · ·

)

·
{

2

(
u(3)

1!
y +

u(5)

3!
y3 + · · ·

)}

+

(
(−2)U−2y

−3 + 2U2y + 4U4y
3 + · · ·

){
− 2u(3)

}
.

The coefficients of y and y3 in the above equation imply
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5u(3)u(2) + u(4)u(1) =
U−2

42
u(7) + 144U4u

(1),

1

3
u(5)u(2) +

2

3
u(4)u(3) =

U−2

1080
u(9) +

2U2

3
u(5) + 56U4u

(3) + 960U6u
(1),

respectively. Integrating the above equations, we have

Lemma 7.7. Suppose a meromorphic function

(7.31) u(t) = U−2t
−2 + U2t

2 + U4t
4 + U6t

6 + · · ·

defined on a neighborhood of the origin satisfies (6.20). Then it also satisfies

the differential equations

(7.32)
U−2

42
u(6) − 2(u′′)2 − u(3)u′ + 144U4u = C

and

(7.33)
U−2

1080
u(8)− 1

3
u(4)u(2)− 1

6
(u(3))2 +

2U2

3
u(4) +56U4u

(2) +960U6u = C ′

with suitable constants C and C ′.

Now the following proposition solves the equation (6.20).

Proposition 7.8. Let u(t) be a meromorphic function defined on a

neighborhood of the origin. Suppose u(t) satisfies (6.20). Then u(t) is of

the form (7.7) or (7.8).

Conversely any function u(t) of the form (7.7) or (7.8) satisfies (6.20).

Now we prepare

Lemma 7.9. Let u(t) be a function of the form (7.7) or (7.8). Then

D(x1, x2, x3) = 0 with the function D(x1, x2, x3) defined by (6.14).

Proof. First suppose u(t) is given by (7.7). Then Theorem 5.2 assures

the existence of the commuting algebra D(An) corresponding to the poten-

tial function R(x) defined by u. Since A3 � D3, we have D(x1, x2, x3) = 0

from Theorem 2.1 and Theorem 6.1
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Next suppose u(t) is given by (7.8). Put

E(x, y, z) = 8A2
1

2x2y2 + x2z2 + y2z2

(x2 − y2)2(x2 − z2)(y2 − z2)
(7.34)

+ 8A1A2

(
2x2y2 + x2z2 + y2z2

(x2 − y2)2
+

z2

x2 − z2
+

z2

y2 − z2

)

+ 16A2
2(x

2y2 + x2z2 + y2z2)

+ 8A0A1
x2 + y2

(x2 − y2)2
+ 8A0A2(x

2 + y2).

Then we can prove equality (6.21) by direct calculation. Hence Lemma 7.9

follows from Proposition 6.4 iii). �

Proof of Proposition 7.8. First expand equations (7.32) and (7.33)

into the Laurent series of t. Then the coefficients of t4, t6, t8, t10, t12 and

t14 in (7.32) show

13U−2U10 − 2U2U6 − U2
4 = 0,(7.35)

195U−2U12 − 14U2U8 − 24U4U6 = 0,(7.36)

2159U−2U14 − 90U2U10 − 170U4U8 − 105U2
6 = 0,(7.37)

2888U−2U16 − 77U2U12 − 1532U4U10 − 202U6U8 = 0,(7.38)

20070U−2U18 − 364U2U14 − 735U4U12(7.39)

−1020U6U10 − 560U2
8 = 0,

97635U−2U20 − 1260U2U16 − 2576U4U14(7.40)

−3675U6U12 − 4270U8U10 = 0

by dividing 1680, 560, 168, 336, 112 and 48, respectively.

In general, comparing the coefficients of t2k−6 in (7.32), we obtain

1

42
2k(2k − 2)(2k − 8)(2k + 3)(4k2 − 16k + 43)U−2U2k(7.41)

=

k−2∑
ν=1

(2ν)(2ν − 1)(4k − 2ν − 2)(2k − 2ν − 8)U2νU2(k−ν−1)

− 144U4U2(k−3)
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for k ≥ 4. This equation implies that U2k are uniquely determined by U2ν

with ν < k if k ≥ 5 and U−2 �= 0. Hence we see that u(t) is uniquely

determined by U2, U4, U6 and U8 if U−2 �= 0. In fact, from (7.35), (7.36)

and (7.36) we have

U10 =
1

13
(2U2U6 + U2

4 ),(7.42)

U12 =
2

195
(7U2U8 + 12U4U6),(7.43)

U14 =
5

28067
(36U2

2U6 + 18U2U
2
4 + 442U4U8 + 273U2

6 ),(7.44)

if U−2 = 1.

Similarly the coefficients of t6, t8, t10 and t12 in (7.33) mean

221U−2U14 − 20U4U8 − 15U2
6 = 0,(7.45)

57U−2U16 − 3U4U10 − 5U6U8 = 0,(7.46)

13515U−2U18 − 462U4U12 − 795U6U10 − 466U2
8 = 0,(7.47)

93955U−2U20 − 2184U4U14 − 3885U6U12 − 4690U8U10 = 0,(7.48)

by dividing 1008, 21600, 336 and 144, respectively.

First suppose U−2 = 1. Then substituting U14 in (7.45) by the right

hand side of (7.44), we have

30

127
(6U2

2U6 + 3U2U
2
4 − 11U4U8 − 18U2

6 ) = 0

and hence if U4 �= 0

(7.49) U8 =
3

11U4
(2U2

2U6 + U2U
2
4 − 6U2

6 ).

Now suppose U−2 = 1 and U4 �= 0. Then from (7.43), (7.44), (7.38) and

(7.49) we have

U12 =
3

715U4
(14U3

2U6 + 7U2
2U

2
4 − 42U2U

2
6 + 44U2

4U6),(7.50)

U14 =
15

2431
(8U2

2U6 + 4U2U
2
4 − 13U2

6 ),(7.51)
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U16 =
1

1032460U4
(1078U4

2U6 + 539U3
2U

2
4 + 36156U2

2U
2
6(7.52)

+ 31443U2U
2
4U6 + 4180U4

4 − 118170U3
6 ).

Then applying (7.42), (7.49) and (7.52) to (7.46), we have

(7.53) (3U6 − U2
2 )(130U2

6 − 14U2
2U6 − 7U2U

2
4 ) = 0.

Now we suppose U−2 = 1, U4 �= 0 and 3U6 �= U2
2 . If U2 = 0, then (7.53)

implies U6 = 0, which contradicts the assumption just we have made. Hence

we conclude U2 �= 0. Then from (7.53) we have

(7.54) U2
4 =

1

7U2
(130U2

6 − 14U2
2U6).

In this case we get

U10 =
10U2

6

7U2
, U12 =

16U3
6

7U2U4
, U14 =

45U2
6

119
,

U16 =
20U3

6

931U2
2U4

(7U2
2 + 65U6),

U20 =
48U3

6

14716849U2U4
(154390U6 − 5523U2

2 ).

Applying these equations to (7.48), we obtain

19918080

489307U2U4
U3

6 (3U6 − U2
2 ) = 0

and therefore U6 = 0 because 3U6 �= U2
2 . Then from (7.53) we have U2U

2
4 =

0, which contradicts our assumption.

Thus we have proved that if U−2 = 1 and U4 �= 0, then U6 = 1
3U

2
2 and

u is uniquely determined by U2 and U4. Since Weierstrass’ elliptic function

is a solution of (6.20), we can conclude in this case that u(t) is Weierstrass’

elliptic function.
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Next we assume that U−2 = 1 and U4 = 0. In this case we have

(7.55)

U10 =
2U2U6

13
, U12 =

14U2U8

195
, U14 =

15U6

28067
(12U2

2 + 91U6),

U16 =
U8

281580
(539U2

2 + 19695U6),

U18 =
2

56330469
(3276U3

2U6 + 245061U2U
2
6 + 785876U2

8 ).

from (7.35), (7.42), (7.43), (7.44) and (7.39). Applying these equations with

U4 = 0 to (7.45), we have

180U6

127
(U2

2 − 3U6) = 0.

If U6 = 0, then (7.47) is reduced to

−47432U2
8

669
= 0

by using (7.55) and therefore U8 = 0 and we can conclude u(t) = t−2 +U2t
2

in the same way as in the case when U−2 = 1 and U4 �= 0.

Consider the case when U4 = 0, U6 = 1
3U

2
2 �= 0. In this case (7.46) is

similarly reduced to
−847U2

2U8

3705
= 0.

and hence U8 = 0. Then we can similarly conclude that u(t) is the ℘-

function.

Thus we have proved the proposition when U−2 = 1. Since we can reduce

the proof of the proposition to this special case if U−2 �= 0, we may assume

U−2 = 0.

Choose a positive integer  such that U2� �= 0 and U2ν = 0 if ν <  .

Suppose  ≥ 3. Then the equation (7.41) with k = 2 + 1 says

2 (2 − 1)(6 + 2)(2 − 6)U2
2� = 0,

which implies  = 3.

Hence we can conclude that the condition U−2 = U2 = U4 = U6 = 0

assures u(t) = 0.
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If U−2 = U2 = 0, we have U4 = 0 from (7.35) and therefore U6 = 0 from

(7.45) and we can conclude u(t) = 0.

Suppose U−2 = 0 and U2 �= 0. Then from (7.35) and (7.36) we have

U6 =
−U2

4

2U2
, U8 =

−12U4U6

7U2
=

6U4
4

7U2
2

and (7.45) is reduced to
−7020U2

4

U2
2

= 0.

Hence U4 = U6 = U8 = 0 and we can conclude u(t) = U2t
2 by the similar

argument as before.

Thus we have completed the proof of the proposition. �

Now we state our main result in this section. For any even function w(t)

we can define the following trivial commuting family

(7.56)
Qk =

∑
1≤i1<i2<···<ik≤n

k∏
ν=1

(
∂2

∂x2
iν

+ w(xiν )

)
for k = 1, . . . , n

D(w) = C[Q1, . . . , Qn].

Theorem 7.10. Suppose there exist a W -invariant connected open

neighborhood Ω of the origin of C
n such that the potential function R(x)

in (0.4) is a holomorphic function defined on an open dense subset Ω′ of Ω.

Here Ω \ Ω′ is an analytic subset of Ω.

i) If the root system is of type Dn with n ≥ 3, then the function u(t) in

Theorem 2.1 equals A1℘(t|2ω1, 2ω2)+A0 or A1t
2 +A2t

−2 +A0 with suitable

complex numbers Ai and ωk.

ii) Suppose the root system is of type Bn with n ≥ 3 and suppose

C[P1, . . . , Pn] is not equal to any trivial commuting algebra D(w). Then

there exist complex numbers Ai, Cj and ωk such that

(7.57)

u(t) = A1℘(t|2ω1, 2ω2) + A0,

v(t) =
C4℘(t)4 + C3℘(t)3 + C2℘(t)2 + C1℘(t) + C0

℘′(t)2
.
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or

(7.58)
u(t) = A1t

2 + A2t
−2 + A0,

v(t) = C1t
2 + C2t

−2 + C0.

Here we remark that ωk (k = 1, 2) may be infinite.

Proof. The theorem is clear from Proposition 6.4, Proposition 7.3 and

Proposition 7.8. �

Remark 7.11. The proof of Theorem 7.10 shows that when n > 2,

(7.57) and (7.58) give all the solutions of (6.5) such that u(t) and v(t) are

holomorphic for 0 < |t| � 1.

When the root system is of type B2, Theorem 7.10 is not valid (cf.

[OOS]). On the other hand, we have the following result under the assump-

tion that the coefficients of the differential operators have expansions of

Harish-Chandra type.

Theorem 7.12. i) Assume the root system is of type B2 in Theo-

rem 2.1. Suppose u′ �= 0, v′ �= 0 and the functions u(log s) and v(log s)

are meromorphic for |s| � 1 under the notation (6.1). Then there exist a

positive integer r and complex numbers C1,. . . ,C8 with

(7.59) C2C6 = C4C6 = 0

such that
(
u(t), v(t)

)
or

(
v(t), u(2t)

)
equals

(7.60)
(
C1 sinh−2 r

2
t + C2 sinh−2 rt + C3 cosh rt + C4 cosh 2rt + C5,

C6 sinh−2 r

2
t + C7 sinh−2 rt + C8

)
.

ii) If
(
u(t), v(t)

)
equals (7.60) with complex numbers C1,. . . ,C8 satisfying

(7.59). Then u(t) and v(t) satisfy the assumption in Proposition 6.3 ii) and

therefore we have commuting differential operators.
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Proof. Suppose the meromorphic functions

{
u(log t) =

∑
i≥r Uit

i

v(log s) =
∑
j≥r′ Vjs

j

satisfies (6.18). Here r and r′ are integers and Ui and Vj are complex

numbers with Ur �= 0. By subtracting constant numbers from u and v, we

may assume U0 = V0 = 0 and r �= 0.

Since

u(log s + log t) − u(log s− log t) =
∑
i≥r

Ui(t
i − t−i)si,

for 0 < |s| � |t| � 1 it follows from (6.18) that

(
s
∂

∂s

)2
{(∑

j≥r′
Vjs

j
)(∑
i≥r

Ui(t
i − t−i)si)

)}

+
(
s
∂

∂s

){(∑
j≥r′

Vjs
j
)
s
∂

∂s

(∑
i≥r

Ui(t
i − t−i)si)

)}

=
(
t
∂

∂t

)2
{(∑

j≥r′
Vjt

j
)(∑
i≥r

Ui(t
i − t−i)si)

)}

+
(
t
∂

∂t

){(∑
j≥r′

Vjt
j
)
t
∂

∂t

(∑
i≥r

Ui(t
i − t−i)si)

)}

and therefore

(7.61)

∑
i≥r
j≥r′

(i + j)(2i + j)UiVj(t
i − t−i)si+j

=
∑
i≥r
j≥r′

(
(2i + j)(i + j)UiVjt

i+j − (2i− j)(i− j)UiVjt
−i+j

)
si.

If Vr′ �= 0 and r′ < 0, the coefficients of trsr+r
′
in (7.61) means

(r + r′)(2r + r′)UrVr′ = 0
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and therefore r = −r′ or r = − r′
2 . Hence Proposition 6.3 iv) assures that

we may assume r > 0 by replacing (u(t), v(t)) by (v(t), u(2t)) if necessary.

Admitting Vr′ to be 0, we may assume

r > 0 and r′ = −2r.

When j < 0, the coefficients of trsr+j means (r + j)(2r + j)UrVj = 0 and

therefore

(7.62) Vj = 0 for − 2r < j < −r and − r < j ≤ 0.

The terms in (7.61) corresponding to sr imply

∑
r≤i≤3r

r(i + r)UiVr−i(t
i − t−i)

=
∑
j≥−2r

(2r + j)(r + j)UrVjt
r+j −

∑
j≥−2r

(2r − j)(r − j)UrVjt
−r+j

and hence from (7.62) we have

(7.63)

3r2U2rV−r(t
2r − t−2r) + 4r2U3rV−2r(t

3r − t−3r)

=
∑
k≥−3r

(
(r + k)kUrVk−r − (r − k)kUrVk+r

)
tk

by denoting Vj = 0 for j < −2r.

If k �= ±2r and k �= ±3r, then by the coefficients of tk of (7.63) we have

(r + k)kUrVk−r = (r − k)kUrVk+r

and hence

(7.64) Vj = 0 if j �≡ 0 mod r

and

(7.65) Vjr =
j

j − 1
V(j−1)r for j > 4.
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Furthermore the coefficients of t−2r, t2r and t3r in (7.63) mean

−3r2U2rV−r = −(2r)(−3r)UrV−r

3r2U2rV−r = 6r2UrVr − 2r2UrV3r

and

4r2U3rV−2r = 12r2UrV2r − 6r2UrV4r,

respectively, and thus we have

V−r(U2r − 2Ur) = 0,(7.66)

V3r = 3(Vr − V−r),(7.67)

V4r = 2(V2r − V−2r).(7.68)

On the other hand, the coefficients of t−rs2r in (7.61) says

−6r2UrVr = −3r2U2rVr

and therefore

(7.69) Vr(U2r − 2Ur) = 0.

Now we remark that relations (7.64), (7.65), (7.67) and (7.68) show that

the numbers V−2r, V−r, Vr and V2r uniquely determine the function v(log s)

because we have assumed V0 = 0.

On the other hand, if Vj are the coefficients of tj of the function tr

(1−tr)2 ,

they satisfy (7.64), (7.65), (7.67) and (7.68). In fact it is clear from the

equation

t

(1 − t)2
=

∞∑
k=1

ktk.

Similarly it is easy to see that the functions t2r

(1−t2r)2 , tr + t−r and t2r + t−2r

have the same property.

Thus we can conclude that

(7.70) v(t) = C1 sinh−2 r

2
t + C2 sinh−2 rt + C3 cosh rt + C4 cosh 2rt
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with some constant numbers C1,. . . ,C4.

Next we shall show

(7.71) u(t) = C6 sinh−2 r

2
t + C7 sinh−2 rt

with some constant numbers C6 and C7, which proves the first part of the

theorem by virtue of relations (7.66) and (7.69). Here we note that we have

assumed that Ur �= 0 with r > 0.

If v(log s) is holomorphic at the origin s = 0, it follows from (7.70) that

u(t) is of the form (7.71) because (v(t), u(2t)) is also a solution of (6.18).

To examine the case when v(log s) is not holomorphic at the origin,

we shall study the solution (v(t), u(2t)) of (6.18) and the proof of Theo-

rem 7.12 i) is reduced to the determination of u(t) satisfying (7.61) under

the assumption r < 0, Ur �= 0 and r′ > 0 by replacing r if necessary. Under

this assumption, the terms in (7.61) corresponding to sr prove

∑
j≥r′

(
(2r + j)(r + j)UrVjt

r+j − (2r − j)(r − j)UrVjt
−r+j

)
= 0

and furthermore by the coefficients of tj−r in the above we have

(j − r)(j − 2r)Vj = (j − r)jVj−2r for j > 0,

which means

v(t) = C ′
6 sinh−2 r

2
t + C ′

7 sinh−2 rt

with some complex numbers C ′
6 and C ′

7. Thus we have completed the proof

of Theorem 7.12 i).

First suppose C6 = 0 to prove the second part of the theorem. If(
v(2t), u(t)

)
equals (7.60),

(
u(t), v(t)

)
is a special case given in Theorem

7.3 ii) and therefore it satisfies the assumption in Proposition 6.3 ii). Hence

the second part follows from Proposition 6.3 iv) when C6 = 0.

Next suppose C2 = C4 = 0. We have proved that if
(
u(t), v(t)

)
equals

(
C1 sinh−2 r

2
t + C3 cosh rt + C5, C7 sinh−2 rt

)
,

or (
C1 sinh−2 r′t + C3 cosh 2r′t + C5, C6 sinh−2 r′t + C8

)
,
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with suitable positive numbers r and r′, it satisfies the assumption in Propo-

sition 6.3 ii).

Putting r′ = r
2 , it is clear that

u(t) = C1 sinh−2 r

2
t + C3 cosh rt + C5,

v(t) = C6 sinh−2 r

2
t + C7 sinh−2 rt + C8

satisfy the same assumption. Thus we have completed the proof of Theo-

rem 7.12 owing to Proposition 6.3 iv). �

Combining Proposition 3.6, Theorem 5.2, Theorem 7.10 and Theorem

7.12, we have

Theorem 7.13. Let u and v be functions in Theorem 2.1. Suppose

u and v are holomorphic except some isolated singular points and suppose

u(log s) and v(log s) are holomorphically extended to the point s = 0.

i) If the root system is of type An with n > 1 or of type Dn with n > 2,

then

(7.72) u(t) = C1 sinh−2 kt + C0.

ii) Suppose the root system is of type Bn and suppose u′ �= 0 and v′ �= 0.

If n > 2, then

(7.73)
u(t) = C1 sinh−2 kt + C0,

v(t) = A1 sinh−2 kt + A2 sinh−2 2kt + A0

and if n = 2, then (7.73) holds or

(7.74)
u(t) = A1 sinh−2 kt + A2 sinh−2 2kt + A0,

v(t) = C1 sinh−2 2kt + C0.

In i) and ii), A0, A1, A2, C0 and C1 are complex numbers and 2k is a

positive integer.

iii) Suppose Pj are invariant under the parallel translation x1 �→ x1 +

2π
√
−1. Then u and v in Theorem 2.1 determine the commuting algebra

C[P1, . . . , Pn].
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Remark 7.14. The assumption in Theorem 7.13 gives a characteri-

zation for the commuting algebra C[P1, . . . , Pn] to be equal to the one

constructed by [D1], [H1], [H2], [Op1], [Op2] and [Sj].

8. Examples

In this paper we have studied the potential function R(x) of a Laplacian

which allows a commuting family of differential operators invariant under

the action of a classical Weyl group. In this section we first consider the

one-dimensional analogue of the potential function we have obtained. That

is the ordinal differential equation

(8.1)
d2y

dt2
+ uα(t)y = 0

for the function uα in (0.8).

Then the most general potential function in Theorem 7.10 gives

(8.2)
d2y

dt2
+

C4℘(t)4 + C3℘(t)3 + C2℘(t)2 + C1℘(t) + C0

℘′(t)2
y = 0.

Note that

[℘′]2 = 4℘3 − g2℘− g3

= 4(℘− e1)(℘− e2)(℘− e3)

with some complex numbers e1, e2 and e3 and then

℘′′ = 6℘2 − g2

2
= 2

{
(℘− e2)(℘− e3) + (℘− e3)(℘− e1) + (℘− e1)(℘− e2)

}
,

℘′′

[℘′]2
=

1

2

( 1

℘− e1
+

1

℘− e2
+

1

℘− e3

)
.

Putting x = ℘(t), we have d
dt = ℘′(t) ddx and

(8.3)
d2

dt2
= [℘′]2

{ d2

dx2
+

1

2

( 1

℘− e1
+

1

℘− e2
+

1

℘− e3

) d

dx

}
.
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Hence equation (8.2) equals

d2y

dx2
+

1

2

( 1

x− e1
+

1

x− e2
+

1

x− e3

)dy

dx
(8.4)

+
C4x

4 + C3x
3 + C2x

2 + C1x + C0

16(x− e1)2(x− e2)2(x− e3)2
y = 0.

Suppose e1 �= e2 �= e3 �= e1. Then (8.4) can be written as

d2y

dx2
+

1

2

( 1

x− e1
+

1

x− e2
+

1

x− e3

)dy

dx
(8.5)

+
( A1

(x− e1)2
+

A2

(x− e2)2
+

A3

(x− e3)2

+
B1

x− e1
+

B2

x− e2
+

B3

x− e3

)
y = 0

with some complex numbers A1, A2, A3, B1, B2 and B3 satisfying

(8.6) B1 + B2 + B3 = 0.

Equation (8.5) is a Fuchsian equation on P
1(C) which has the four regular

singular points e1, e2, e3 and ∞. The indicial equations for the singular

points are

(8.7)

ρ2
j −

1

2
ρj + Aj = 0 at x = ej for j = 1, 2 and 3,

ρ2
∞ − 1

2
ρ∞ +

3∑
j=1

(Aj + ejBj) = 0 at x = ∞.

By the transformation y �→ (x − e1)
λ1(x − e2)

λ2(x − e3)
λ3y with complex

numbers λ1, λ2 and λ3, the equation is transformed into Huen’s equation

(cf. [WW]) and moreover we obtain any Fuchsian equation on P
1(C) of

order 2 which has the four regular singular points.

On the other hand, if

(8.8) uα(t) = C1 sinh−2 t + C2 sinh−2 2t + C5
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or

(8.9) uα(t) = C3 cosh 2t + C5

or

(8.10) uα(t) = A1t
2 + A2t

−2 + A0

(cf. Theorem 7.10 and Theorem 7.12), (8.1) is isomorphic to the Gauss

hypergeometric equation or the modified Mathieu equation or the equa-

tion of the paraboloid of revolution which is equivalent to the equation of

Whittaker functions, respectively.

When the root system is of type An, Theorem 4.3 says uα = C1℘ + C0

and the corresponding equation (8.1) is the Weierstrassian form of Lamé’s

equation, which corresponds to A1 = A2 = A3 = 0 in (8.5). In particular if

uα(t) = C1 sinh−2 t + C0 or uα(t) = C1t
−2 + C0, the equation is reduced to

the Legendre equation or the Bessel equation, respectively.

Next consider the case when the root system is of type A2. First remark

that

(8.11)

℘(2s) =
1

4

℘′′(s)2

℘′(s)2
− 2℘(s),

℘(s + t) + ℘(s− t) =
℘′(s)2 + ℘′(t)2

2
(
℘(s) − ℘(t)

)2 − 2℘(s) − 2℘(t),

℘(s + t) − ℘(s− t) =
℘′(s)℘′(t)(

℘(s) − ℘(t)
)2 .

For (x1, x2, x3) ∈ C
3, we consider the coordinate system (X,Y, Z) with

(8.12) 2X = x1 − x2, X + Y = x1 − x3, Z = x3.

Then 2Y = x1 + x2 − 2x3 and

∂

∂x1
=

∂

∂X
+

1

2

∂

∂Y
,

∂

∂x2
= − ∂

∂X
+

1

2

∂

∂Y
,

∂

∂x3
=

∂

∂Y
+

∂

∂Z
.
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The commuting family in this case is generated by

∆1 =
∂

∂x1
+

∂

∂x2
+

∂

∂x3
,

∆2 =
∂2

∂x1∂x2
+

∂2

∂x2∂x3
+

∂2

∂x1∂x3

+ C℘(x1 − x2) + C℘(x2 − x3) + C℘(x1 − x3),(8.13)

∆3 =
∂3

∂x1∂x2∂x3
+ C℘(x2 − x3)

∂

∂x1

+ C℘(x1 − x3)
∂

∂x2
+ C℘(x1 − x2)

∂

∂x3
.

Let J be the left ideal of the ring of differential operators generated by

∆1 = ∂
∂Z and put x = ℘(X), y = ℘(Y ) and z = ℘(Z). Then

∆2 = − ∂2

∂X2
− 3

4

∂2

∂Y 2
+

∂2

∂Y ∂Z
(8.14)

+ C℘(2X) + C℘(X − Y ) + C℘(X + Y )

≡ −(4x3 − 4g2x− g3)
∂2

∂x2
− 3

4
(4y3 − 4g2y − g3)

∂2

∂y2

− (6x2 − g2

2
)
∂

∂x
− 3

4
(6y2 − g2

2
)
∂

∂y
+ C

(
6x2 − g2

2

)2

4
(
4x3 − g2x− g3

)2

+ C
4x3 + 4y3 − g2x− g2y − 2g3

2
(
x− y

)2 − 4Cx− 2Cy mod J,

∆3 =

(
∂2

∂X2
− 1

4

∂2

∂Y 2

)(
∂

∂Y
− ∂

∂Z

)

+ C℘(X − Y )

(
∂

∂X
+

1

2

∂

∂Y

)

+ C℘(X + Y )

(
− ∂

∂X
+

1

2

∂

∂Y

)
+ C℘(2X)

∂

∂Y

≡
(

∂2

∂X2
− 1

4

∂2

∂Y 2

)
∂

∂Y
− C

(
℘(X + Y ) − ℘(X − Y )

) ∂

∂X

+ C

(
℘(X + Y ) + ℘(X − Y )

2
+ ℘(2X)

)
∂

∂Y
mod J
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=
√

4y3 − g2y − g3

[
(4x3 − g2x− g3)

∂3

∂x2∂y

+ (6x2 − g2

2
)

∂2

∂x∂y

− 1

4
(4y3 − g2y − g3)

∂3

∂y3
− 3

4
(6y2 − g2

2
)
∂2

∂y2

− C
4x3 − g2 − g3

(x− y)2
∂

∂x

+
C

4

(
4x3 + 4y3 − (g2 + 8)x− g2y − 2g3

+
12x2 − g2

8x3 − 2g2x + 2g3

) ∂

∂y

]
.

Now consider the case when the root system is of type B2. Use the

coordinate system (s, t) ∈ C
2 and put x = ℘(s) and y = ℘(t). Let

(8.15)

u(t) = A℘(t),

v(t) =
C4℘(t)4 + C3℘(t)3 + C2℘(t)2 + C1℘(t) + C0

℘′(t)2

in Proposition 6.3 and Proposition 7.3. Then by (7.16) we have

P1 =
∂2

∂s2
+

∂2

∂t2
+ A(℘(s + t) + ℘(s− t))

(8.16)

+
C4x

4 + C3x
3 + C2x

2 + C1x + C0

4x3 − g2x− g3
+

C4y
4 + C3y

3 + C2y
2 + C1y + C0

4y3 − g2y − g3

= (4x3 − g2x− g3)
∂2

∂x2
+ (6x2 − g2

2
)
∂

∂x
+ (4y3 − g2y − g3)

∂2

∂y2

+ (6y2 − g2

2
)
∂

∂y
+

A(6x2 + 6y2 − g2)

(x− y)2
− 2Ax− 2Ay

+
C4x

4 + C3x
3 + C2x

2 + C1x + C0

4x3 − g2x− g3
+

C4y
4 + C3y

3 + C2y
2 + C1y + C0

4y3 − g2y − g3
,

P2 =

[
∂2

∂s∂t
+

u(s + t) − u(s− t)

2

]2

+ v(t)
∂2

∂s2
+ v(s)

∂2

∂t2
+ v(s)v(t)
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+
2AC4x

2y2 + AC3xy(x + y) + 2AC2xy + AC1(x + y) + 2AC0

2(x− y)2

=

[√
(4x3 − g2x− g3)(4y3 − g2y − g3)

∂2

∂x∂y

+
A
√

(4x3 − g2x− g3)(4y3 − g2y − g3)

2(x− y)2

]2

+
C4y

4 + C3y
3 + C2y

2 + C1y + C0

4y3 − g2y − g3

·
(

(4x3 − g2x− g3)
∂2

∂x2
+ (6x2 − g2

2
)
∂

∂x

)

+
C4x

4 + C3x
3 + C2x

2 + C1x + C0

4x3 − g2x− g3

·
(

(4y3 − g2y − g3)
∂2

∂y2
+ (6y2 − g2

2
)
∂

∂y

)

+
(C4x

4 + C3x
3 + C2x

2 + C1x + C0)(C4y
4 + C3y

3 + C2y
2 + C1y + C0)

(4x3 − g2x− g3)(4y3 − g2y − g3)

+
2AC4x

2y2 + AC3xy(x + y) + 2AC2xy + AC1(x + y) + 2AC0

2(x− y)2
.

Here we note that the coefficients of the differential operator P2 are rational

functions under the coordinate (x, y).

On the other hand, if

(8.17)
(
u(t), v(t)

)
=

(
αt−2 + βt2, γt−2 + δt2

)
,

the commuting operators are

P1 =
∂2

∂s2
+

∂2

∂t2
(8.18)

+ 2α
s2 + t2

(s2 − t2)2
+ (2β + δ)(s2 + t2) + γ(s−2 + t−2),

P2 =

[
∂2

∂s∂t
− 2α

st

(s2 − t2)2
+ 2βst

]2

+ (γt−2 + δt2)
∂2

∂s2
+ (γs−2 + δs2)

∂2

∂t2
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+ (γs−2 + δs2)(γt−2 + δt2) +
4αδs2t2 + 4αγ

(s2 − t2)2
+ 4βδs2t2

from Proposition 6.3 and (7.16). In particular, if α = γ = 0, we have

P1 =
∂2

∂s2
+

∂2

∂t2
+ λ(s2 + t2),(8.19)

P2 =

[
∂2

∂s∂t
+ (λ− δ)st

]2

+ δ

(
t2

∂2

∂s2
+ s2 ∂2

∂t2

)

+ (2λ− δ)δs2t2

by putting λ = 2β + δ.

Lastly we consider the operators when

(8.20)
(
u(t), v(t)

)
=

(
α sinh−2 t + β cosh 2t, γ sinh−2 t + δ sinh−2 2t

)
,

which is given by Theorem 7.12. Putting x = sinh2 s and y = sinh2 t, we

have

u(s + t) + u(s− t) = 2α
x + y + 2xy

(x− y)2
+ 2β(1 + 2x)(1 + 2y),

u(s + t) − u(s− t) =

( −4α

(x− y)2
+ 8β

)√
s(1 + x)y(1 + y),

v(s) =
γ

x
+

δ

4x(1 + x)
,

∂

∂s
= 4

√
x(1 + x)

∂

∂x

and

2
∂

∂t

(
2αγ

2 + x + y

(x− y)2
+

αδ

(x− y)2
+ 4βγ(x + y)

)

= v′(s)
(
u(s + t) − u(s− t)

)
+ 2v(s)

(
u′(s + t) − u′(s− t)

)
.

Thus by Proposition 6.3 we have

P1 =
∂2

∂s2
+

∂2

∂t2

(8.21)
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+ α
(
sinh−2(s + t) + sinh−2(s− t)

)
+ β

(
cosh 2(s + t) + cosh 2(s− t)

)
+ γ

(
sinh−2 s + sinh−2 t

)
+ δ

(
sinh−2 2s + sinh−2 2t

)

= 16x(1 + x)
∂2

∂x2
+ 8(1 + 2x)

∂

∂x
+ 16y(1 + y)

∂2

∂y2
+ 8(1 + 2y)

∂

∂y

+ 2α
x + y + 2xy

(x− y)2
+ 2β(1 + 2x)(1 + 2y)

+ γ

(
1

x
+

1

y

)
+ δ

(
1

4x(1 + x)
+

1

4y(1 + y)

)
,

P2 =

[
∂2

∂s∂t

+
α
(
sinh−2(s + t) − sinh−2(s− t)

)
+ β

(
cosh 2(s + t) − cosh 2(s− t)

)
2

]2

+
(
γ sinh−2 t + δ sinh−2 2t

) ∂2

∂s2
+
(
γ sinh−2 s + δ sinh−2 2s

) ∂2

∂t2

+
(
γ sinh−2 s + δ sinh−2 2s

)(
γ sinh−2 t + δ sinh−2 2t

)
+

2αγ(2 + sinh s + sinh t) + αδ

sinh2(s + t) sinh2(s− t)
+ 4βγ(sinh2 s + sinh2 t)

=

[
16
√

x(1 + x)y(1 + y)
∂2

∂x∂y
+
( −2α

(x− y)2
+ 4β

)√
x(1 + x)y(1 + y)

]2

+
(γ

y
+

δ

4y(1 + y)

) ∂2

∂x2
+
(γ

x
+

δ

4x(1 + x)

) ∂2

∂y2

+
(γ

x
+

δ

4x(1 + x)

)(γ

y
+

δ

4y(1 + y)

)

+
2αγ(2 + x + y) + αδ

(x− y)2
+ 4βγ(x + y).

Here if we use the symmetric coordinate system

(8.22)

{
X = x + y,

Y = xy

then by
∂

∂x
=

∂

∂X
+ y

∂

∂Y
,

∂

∂y
=

∂

∂X
+ x

∂

∂Y
,
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and

∂2

∂x∂y
=

(
∂

∂X
+ y

∂

∂Y

)(
∂

∂X
+ x

∂

∂Y

)

=
∂2

∂X2
+ X

∂2

∂X∂Y
+ Y

∂2

∂Y 2
+

∂

∂Y

f(x, y)
∂

∂x
+ f(y, x)

∂

∂y
= f(x, y)

(
∂

∂X
+ y

∂

∂Y

)
+ f(y, x)

(
∂

∂X
+ x

∂

∂Y

)

=

(
f(x, y) + f(y, x)

)
∂

∂X

+

(
yf(x, y) + xf(y, x)

)
∂

∂Y

f(x, y)
∂2

∂x2
+ f(y, x)

∂2

∂y2
=

(
f(x, y) + f(y, x)

)
∂2

∂X2

+ 2

(
yf(x, y) + xf(y, x)

)
∂2

∂X∂Y

+

(
y2f(x, y) + x2f(y, x)

)
∂2

∂Y 2
,

these operators are

P1 = 16(X + X2 − 2Y )
∂2

∂X2
+ 16(2 + X)Y

∂2

∂X∂Y
(8.23)

+ 16(X + 2Y )Y
∂2

∂Y 2
+ 16(1 + X)

∂

∂X
+ 8(X + 4Y )

∂

∂Y

+ 2α
X + 2Y

X2 − 4Y
+ 2β(1 + 2X + 4Y ) + γ

X

Y

+ δ
X + X2 − 2Y

4Y (1 + X + Y )
,

P2 =

[
16
√

Y (1 + X + Y )
( ∂2

∂X2
+ X

∂2

∂X∂Y
+ Y

∂2

∂Y 2
+

∂

∂Y

)

+
( −2α

X2 − 4Y
+ 4β

)√
Y (1 + X + Y )

]2

+

(
γ
X

Y
+ δ

X + X2 − 2Y

4Y (1 + X + Y )

)
∂2

∂X2
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+

(
2γ + δ

2 + X

4(1 + X + Y )

)
∂2

∂X∂Y

+

(
γX + δ

X + 2Y

4(1 + X + Y )

)
∂2

∂Y 2

+
γ2

Y
+

γδ(2 + X)

4Y (1 + X + Y )
+

δ2

16Y (1 + X + Y )

+
2αγ(2 + X) + αδ

X2 − 4Y
+ 4βγX.
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