π_{1} of smooth points of a log del Pezzo surface is finite : II

By R. V. Gurjar and D.-Q. Zhang

Abstract

Let S be a normal projective algebraic surface with at worst \log terminal singularities (i.e., quotient singularities) and ample anti-canonical divisor $-K_{S}$. In this Part II, we shall give a structure theorem (Theorem 1.1) for S and complete the proof of the following result stated in the Part I: The smooth part of S has finite fundamental group.

Introduction

A normal projective surface S over \mathbf{C} is called a log del Pezzo surface if S has at most quotient singularities and $-K_{S}$ is ample, where K_{S} denotes the canonical divisor of S. In Part I (cf. [2]) of this paper we set out to prove the following :

Main Theorem. The fundamental group of the space of smooth points of a log del Pezzo surface is finite.

In this part II, we will complete the proof of this result. We will use the notations and results from Part I freely. Recall from Part I that if \widetilde{S} is a minimal resolution of singularities of S, then we can find a "minimal" (-1)curve C on \widetilde{S} (cf. Lemma 3.1 and Prop. 3.6 of Part I). In $\S 3, \S 4, \S 5$ of Part I, we reduced to consider the cases (II-3) and (II-4) there. As remarked in the Introduction of Part I, it suffices to consider the case (II-4) (the "2component case"), to complete the proof of our Main Theorem. This will

[^0]be done in this part II of our paper. As in Part I, our proof for the case (II4) gives quite precise information about the configuration of $C+D$. After the results of parts I and II of our paper were announced in a conference in Kinosaki, Japan, A. Fujiki, R. Kobayashi and S. Lu have found another proof of our Main Theorem using differential geometric methods (cf. [1]). Their proof of the Main Theorem is short, but it does not seem to give as precise information about the singular locus of S as our proof.

Acknowledgements. The authors would like to thank the referee for very careful reading and valuable comments which make the paper much more readable.

1. The proof of the Main Theorem in the case (II-4)

In this section, we consider the case(II-4) in Remark 3.11 of Part I. We employ the notations there.

Recall that $f: \widetilde{S} \rightarrow S$ is a minimal resolution of singularities of S and $D=f^{-1}(\operatorname{Sing} S)$. We can also write

$$
f^{*} K_{S}=K_{\widetilde{S}}+D^{*}
$$

where D^{*} is an effective \mathbf{Q}-divisor with support contained by D (cf. Lemma 1.1 of Part \mathbf{I}).

The (-1)-curve C, used in the case(II-4) of Remark 3.11 in Part I, now meets exactly a (-2)-curve D_{1} and a $(-n)$-curve D_{2} with $n \geq 3$. Let Δ_{i} be the connected component of D containing D_{i}. Let $C+T_{i}(i=1,2)$ be the maximal twig of $C+\Delta_{i}$ such that $T_{i}=0$ if D_{i} is not a tip component of Δ_{i} and T_{i} is the maximal twig of Δ_{i} containing D_{i} otherwise.

Our aim is to prove the following Theorem 1.1, which will imply the Main Theorem in the case (II-4).

Theorem 1.1. Suppose that the case (II-4) in Remark 3.11 occurs. Then one of the following five cases occurs :
(1) Δ_{i} is a linear chain with D_{i} as a tip for $i=1$ or 2 . Hence $\pi_{1}\left(S^{o}\right)$ is finite (cf. Lemma 1.2 below).
(2) There are irreducible components $A_{i}(i=1, \cdots, a), B_{j}(j=1, \cdots, b)$ of $\Delta_{1}+\Delta_{2}$ and there is a \mathbf{P}^{1}-fibration $\varphi: \widetilde{S} \rightarrow \mathbf{P}^{1}$ such that
(2-1) a singular fiber of φ has support equal to $\operatorname{Supp}\left(C+\sum_{i} A_{i}\right)$,
(2-2) every component of $D-\sum_{j} B_{j}$ is contained in a singular fiber of φ, and
(2-3) $F \cdot \sum_{j} B_{j} \leq 2$ for a general fiber F of φ.
In particular, there is a \mathbf{C}^{*}-fibration on S^{o} and hence $\pi_{1}\left(S^{o}\right)$ is finite (cf. Lemma 2.2 of Part I).
(3) For $i=1$ and $j=2$, or $i=2$ and $j=1$, the intersection matrix of $C+T_{i}+\Delta_{j}$ has a positive eigenvalue and hence $\kappa\left(\widetilde{S}, C+T_{i}+\Delta_{j}\right)=2$.

In particular, $\pi_{1}\left(S^{o}\right)$ is finite (cf. Lemma 1.12).
(4) $C+\Delta_{1}+\Delta_{2}$ is described in Figure 1, 2, 3 or 4 below. Moreover, there is a \mathbf{P}^{1}-fibration $\varphi: \widetilde{S} \rightarrow \mathbf{P}^{1}$ such that $C+D$ and all singular fibers of φ are precisely described in the proof of Lemma 1.10. (We shall call them Case (4-1), (4-2), (4-3) or (4-4) of Theorem 1.1.)

Hence $\pi_{1}\left(S^{o}\right)$ is finite (cf. Lemma 1.13).
(5) $C+\Delta_{1}+\Delta_{2}$ is described in Figure 5 or 6 below, where the divisor H in Figure 5 might be a zero divisor. (We shall call them Case (5-5) or (5-6) of Theorem 1.1.)

Hence $\pi_{1}\left(S^{o}\right)$ is finite (cf. Lemma 1.13).

Theorem 1.1 is a consequence of Lemmas 1.3, 1.8, 1.9, 1.10 and 1.11 below.

Lemma 1.2. Suppose that Δ_{i} is a linear chain with D_{i} as a tip for $i=1$ or 2 . Then $\pi_{1}\left(S^{o}\right)$ is a finite group.

Proof. Suppose Δ_{1} is a linear chain with D_{1} as a tip. As the Picard number $\rho(S)=1$, we see that $C+\Delta_{1}+\Delta_{2}$ supports a divisor with strictly positive self-intersection. By Lemma 1.10 of Part I, we have a surjection $\pi_{1}\left(U-\Delta_{1}-\Delta_{2}\right) \rightarrow \pi_{1}(\widetilde{S}-D)$, where U is a small tubular neighborhood of $C \cup \Delta_{1} \cup \Delta_{2}$. We can write $U=U_{1} \cup U_{2}$, where U_{i} is a small neighborhood of $C \cup \Delta_{i}$. It is easy to see that $U_{i}-\Delta_{1}-\Delta_{2}$ contains a small neighborhood N_{i} of Δ_{i} as a strong deformation retract for $i=1,2$. By assumption, $\pi_{1}\left(N_{i}-\Delta_{i}\right)$ is finite for $i=1,2$ and by Mumford's presentation (cf. [3]), $\pi_{1}\left(N_{1}-\Delta_{1}\right)$ is a cyclic group generated by "the" loop γ_{1} in $C-\Delta_{1}-\Delta_{2}$ around the point $C \cap \Delta_{1}$. Now an easy application of Van-Kampen's theorem for the covering $U_{1}-\Delta_{1}-\Delta_{2}$ and $U_{2}-\Delta_{1}-\Delta_{2}$ of $U-\Delta_{1}-\Delta_{2}$ shows that $\pi_{1}\left(U-\Delta_{1}-\Delta_{2}\right)$ is finite and hence so is $\pi_{1}(\widetilde{S}-D)$.

Fig. 1

Fig. 2

Lemma 1.3. (1) Suppose that Δ_{1} contains $G_{i}(i=1, \cdots, s ; s \geq 3)$ such that $G_{i}^{2}=-2, G_{1}=D_{1}, G_{j} \cdot G_{j+1}=G_{s-2} \cdot G_{s}=1(j=1, \cdots, s-2)$. (This is the case if Δ_{1} consists of only (-2)-curves but D_{1} is not a tip of Δ_{1}.) Then Theorem 1.1 (2) or (3) occurs.
(2) Suppose that Δ_{1} is a fork with D_{1} as its central component. Then Theorem 1.1 (3) occurs.

Proof. (1) Let $S_{0}=2\left(C+G_{1}+\cdots+G_{s-2}\right)+G_{s-1}+G_{s}$ and let φ :

Fig. 3

Fig. 4

Fig. 5

Fig. 6
$\widetilde{S} \rightarrow \mathbf{P}^{1}$ be the \mathbf{P}^{1}-fibration with S_{0} as a singular fiber. If $\Delta_{1}=\sum_{i} G_{i}$, then Theorem 1.1 (2) occurs with $\sum_{i} A_{i}=\sum G_{i}, \sum_{i} B_{i}=B_{1}=D_{2}$. Otherwise, Theorem 1.1 (3) occurs. Indeed, the intersection matrix of $C+\Delta_{1}$ then has a positive eigenvalue.
(2) If the central component D_{1} meets two (-2)-components of $\Delta_{1}-D_{1}$, then we are reduced to the previous case. So we may assume that D_{1} meets $\Delta_{1}-D_{1}$ in one (-2)-component and two components of self intersections ≤-3. But then $D^{*} \geq 4 / 5 D_{1}+1 / 3 D_{2}$ (cf. Lemma 1.5 below) and $0<$
$-C .\left(K_{\widetilde{S}}+D^{*}\right) \leq 1-C \cdot\left(4 / 5 D_{1}+1 / 3 D_{2}\right)=1-4 / 5-1 / 3<0$, a contradiction (cf. Lemma 1.4 below).

This proves Lemma 1.3.
From now on till the end of the section, we shall assume the following hypothesis:
(*) neither the case of Lemma 1.2 nor the cases of Lemma 1.3 occur.

By the maximality of the twig $C+T_{i}$ and by the hypothesis $(*)$, if D_{i} is a tip component of $\Delta_{i}\left(\Delta_{i}\right.$ is a fork in this case) then there are irreducible components $H_{i}, H_{i 1}, H_{i 2}$ in $\Delta_{i}-T_{i}$ such that

$$
T_{i} \cdot\left(\Delta_{i}-T_{i}\right)=T_{i} \cdot H_{i}=1, H_{i} \cdot H_{i 1}=H_{i} \cdot H_{i 2}=1
$$

If D_{i} is not a tip component of Δ_{i}, then $T_{i}=0$ and we let $H_{i}:=D_{i}$ and H_{21}, H_{22} two components in $\Delta_{i}-D_{i}$ adjacent to D_{i}.

Let $\sigma: \widetilde{S} \rightarrow \widetilde{T}$ be the smooth blowing-down of curves in $C+T_{1}+T_{2}$ such that
(1) $\sigma\left(C+\Delta_{1}+\Delta_{2}\right)$ consists of exactly one (-1)-curve \widetilde{C}, with $\widetilde{C} \leq$ $\sigma\left(C+T_{1}+T_{2}\right)$, and several $\left(-n_{i}\right)$-curves with $n_{i} \geq 2$, and
(2) the condition(1) will not be satisfied if σ is replaced by the composite of σ and the blowing-down of \widetilde{C}.

Thus, $\sigma=i d$ if and only if D_{1} is not a tip of Δ_{1}. If $\sigma \neq i d$, then C is contracted by σ and $\sigma^{\prime}(\widetilde{C}) \leq D$.

Let $\widetilde{D}=D\left(\right.$ resp. $\left.\widetilde{\Delta}_{i}:=\sigma\left(\Delta_{i}\right)\right)$ if $\sigma=i d$, and $\widetilde{D}=\sigma(D)-\widetilde{C}$ (resp. $\widetilde{\Delta}_{i}:=\sigma\left(\Delta_{i}\right)$ with \widetilde{C} deleted if any) otherwise. Let $\widetilde{H}_{i}=\sigma\left(H_{i}\right), \widetilde{H}_{i j}=$ $\sigma\left(H_{i j}\right)$, etc. By the definition of σ there is an irreducible component J_{i} in $T_{i}+H_{i}$ such that

$$
\widetilde{C} \cdot \widetilde{D}=\widetilde{C} \cdot\left(\widetilde{J}_{1}+\widetilde{J}_{2}\right)=2, \quad \widetilde{C} \cdot \widetilde{J}_{i}=1, \quad \text { where } \widetilde{J}_{i}:=\sigma\left(J_{i}\right)
$$

The divisor \widetilde{D} on \widetilde{T} is contractible to quotient singularities with, say g : $\widetilde{T} \rightarrow T$ the contraction morphism. T is again a \log del Pezzo surface of
rank one with g as a minimal desingularization (cf. [4, Lemma 4.3]). So we can apply Lemma 1.1 of Part \mathbf{I} for T. In particular, we have

$$
g^{*} K_{T}=K_{\widetilde{T}}+\widetilde{D}^{*},-R \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right)>0
$$

for every curve R on \widetilde{T} which is not contractible by g. Here \widetilde{D}^{*} is an effective Q-divisor with support in \widetilde{D}.

Suppose that there are two smooth blowing-downs $\sigma_{1}: \widetilde{S} \rightarrow \widetilde{S}_{1}, \sigma_{2}$: $\widetilde{S}_{1} \rightarrow \widetilde{T}$ such that $\sigma=\sigma_{2} \cdot \sigma_{1}$. Let E be the unique (-1)-curve in $\sigma_{1}(C+$ $\Delta_{1}+\Delta_{2}$). Let $M:=D$ if $\sigma_{1}=i d$ and $M:=\sigma_{1}(D)-E$ otherwise. By [4, Lemma 4.3] and Lemma 1.1 in Part I, we have the following :

Lemma 1.4. M is contractible to quotient singularities with, say f_{1} : $\widetilde{S}_{1} \rightarrow S_{1}$ the contraction morphism, and S_{1} is again a log del Pezzo surface of rank one with f_{1} as a minimal desingularization. In particular, we have

$$
f_{1}^{*} K_{S_{1}}=K_{\widetilde{S}_{1}}+M^{*}, \quad-R .\left(K_{\widetilde{S}_{1}}+M^{*}\right)>0
$$

where M^{*} is an effective \mathbf{Q}-divisor with support contained in M and R is an arbitrary curve on \widetilde{S}_{1} not contracible by f_{1}. (We can take $R=E$.)

Throughout the proof of Theorem 1.1, we shall frequently make use of Lemma 1.5 below to estimate the coefficients of the effective \mathbf{Q}-divisor M^{*} in Lemma 1.4. For instance, we often combine Lemmas 1.4 and 1.5 to rule out certain cases.

To state Lemma 1.5 in a general setting, we need some preparation. Let X be a \log del Pezzo surface. Let $h: \widetilde{X} \rightarrow X$ be a minimal resolution of singularities of X and let $P=h^{-1}$ (Sing X). We decompose P into irreducible components : $P=\sum_{i=1}^{n} P_{i}$. By Lemma 1.1 in Part \mathbf{I}, we can write

$$
h^{*} K_{X}=K_{\tilde{X}}+P^{*}
$$

where $P^{*}=\sum_{i=1}^{n} \alpha_{i} P_{i}$ for some non-negative rational number α_{i}. Let $\left\{Q_{1}, \cdots, Q_{r}\right\}$ be a subset of $\left\{P_{1}, \cdots, P_{n}\right\}$, say $Q_{i}=P_{i}$ for $1 \leq i \leq r$. We formally assign an integer Q_{i}^{2} to Q_{i} so that $P_{i}^{2} \leq Q_{i}^{2} \leq-2$. Now we define rational numbers $\beta_{i}(1 \leq i \leq r)$ by the condition :

$$
Q_{j} .\left(K_{\tilde{X}}+\sum_{i=1}^{r} \beta_{i} Q_{i}\right)=0 \quad(j=1, \cdots, r)
$$

where we set $Q_{i} \cdot Q_{j}:=P_{i} \cdot P_{j}$ if $i \neq j$ and $Q_{i} . K_{\tilde{X}}:=-2-Q_{i}^{2}$. Then we have the following (cf. [4, Lemma 1.7]) :

LEMMA 1.5. We have $\alpha_{i} \geq \beta_{i}$ for $1 \leq i \leq r$ and $\alpha_{i} \geq 1+2 / P_{i}^{2}$ for $1 \leq i \leq n$.

Let us continue the proof of Theorem 1.1. Suppose that for $a=1$ or 2 , we have $J_{a}=H_{a}$ and $\widetilde{H}_{a}^{2}=-2$. Let $\widetilde{G} \sim K_{\widetilde{T}}+2\left(\widetilde{C}+\widetilde{H}_{a}\right)+\widetilde{H}_{a 1}+\widetilde{H}_{a 2}+\widetilde{J}_{b}$ where $\{a, b\}=\{1,2\}$ as sets. Note that $H^{2}(\widetilde{T}, \widetilde{G}) \cong H^{0}\left(\widetilde{T},-\left(2\left(\widetilde{C}+\widetilde{H}_{a}\right)+\right.\right.$ $\left.\left.\widetilde{H}_{a 1}+\widetilde{H}_{a 2}+\widetilde{J}_{b}\right)\right)=0$. Note also that $\widetilde{G} \cdot B=0$ for $B=\widetilde{C}, \widetilde{H}_{a}, \widetilde{H}_{a 1}, \widetilde{H}_{a 2}, \widetilde{J}_{b}$. Hence $\widetilde{G}^{2}=\widetilde{G} \cdot K_{\widetilde{T}}$. Now the Riemann-Roch theorem implies that

$$
h^{0}(\widetilde{T}, \widetilde{G}) \geq \frac{1}{2} \widetilde{G} \cdot\left(\widetilde{G}-K_{\widetilde{T}}\right)+1=1
$$

So we may assume that $\widetilde{G} \geq 0$.
Lemma 1.6. Assume the above conditions. Then we have:
(1) \widetilde{G} is a nonzero effective divisor.
(2) $\widetilde{G} \cap\left(\widetilde{C}+\widetilde{H}_{a}+\widetilde{H}_{a 1}+\widetilde{H}_{a 2}+\widetilde{J}_{b}\right)=\phi$. In particular, $\widetilde{G}_{1} \cdot \widetilde{G}=\widetilde{G}_{1} \cdot K_{\widetilde{T}}$ for every irreducible component \widetilde{G}_{1} of \widetilde{G}.
(3) We can decompose \widetilde{G} into $\widetilde{G}=\widetilde{\Sigma}+\widetilde{\Delta}$ such that Supp $\widetilde{\Delta}$ is contained in Supp \widetilde{D} and $\widetilde{\Sigma}=\sum_{i=1}^{r} \widetilde{\Sigma}_{i}(r \geq 1)$ where $\widetilde{\Sigma}_{i}$ is a (-1)-curve.
(4) Write $\sigma^{*} \widetilde{G} \sim \sigma^{*}\left(K_{\widetilde{T}}+2\left(\widetilde{C}+\widetilde{H}_{a}\right)+\widetilde{H}_{a 1}+\widetilde{H}_{a 2}+\widetilde{J}_{b}\right)=K_{\widetilde{S}}+s C+$ (an effective divisor with support in D). Then $r \leq s-1$.
(5) Let \widetilde{B} be an irreducible component of $\widetilde{D}-\left(\widetilde{H}_{a}+\widetilde{H}_{a 1}+\widetilde{H}_{a 2}+\widetilde{J}_{b}\right)$. Then $\widetilde{B} \cdot \widetilde{G}>0$ if and only if $\widetilde{B}^{2} \leq-3$ or $\widetilde{B} \cdot\left(\widetilde{H}_{a}+\widetilde{H}_{a 1}+\widetilde{H}_{a 2}+\widetilde{J}_{b}\right)>0$.
(6) If $\widetilde{\Sigma}$ is a reduced divisor, then $\widetilde{G}=\widetilde{\Sigma}$ and $\widetilde{\Sigma}$ is a disjoint union of $\widetilde{\Sigma}_{i}{ }^{\prime} s$.

Proof. From the definition of \widetilde{G}, one can calculate that:
$\operatorname{Clatm}(1) . \quad \widetilde{G} \cdot \widetilde{B}=0$ if \widetilde{B} is one of $\widetilde{C}, \widetilde{H}_{a}, \widetilde{H}_{a 1}, \widetilde{H}_{a 2}$ and \widetilde{J}_{b}. Moreover, $\widetilde{G} \cdot \widetilde{B} \geq 0$ for every irreducible component B of \widetilde{D}.

By the fact that $\left|K_{\widetilde{S}}+C+D\right|=\phi$ and the definition of σ, we get :
$\operatorname{Claim}(2) . \quad\left|K_{\widetilde{T}}+\widetilde{C}+\widetilde{D}\right|=\phi$.
(1) By the hypothesis $(*)$ which is stated after Lemma $1.3, \widetilde{J}_{b}$ meets an irreducible component \widetilde{B} of $\widetilde{\Delta}_{b}$. So, $\widetilde{G} \cdot \widetilde{B}=\left(K_{\widetilde{T}}+\widetilde{J}_{b}\right) \cdot \widetilde{B} \geq 1$. Hence $\widetilde{G}>0$.
(2) Suppose $\widetilde{G} \cap \widetilde{C} \neq \underset{\sim}{\phi}$. Then $\widetilde{C} \leq \widetilde{G}$ by Claim(1). Now, $\widetilde{H}_{a} \leq \widetilde{G}-\widetilde{C}$ because $\widetilde{H}_{a} .(\widetilde{G}-\widetilde{C})=-\widetilde{H}_{a} . \widetilde{C}=-1<0$. This leads to $0 \leq \widetilde{G}-\widetilde{C}-\widetilde{H}_{a} \in$ $\left|K_{\widetilde{T}}+\widetilde{C}+\widetilde{H}_{a}+\widetilde{H}_{a 1}+\widetilde{H}_{a 2}+\widetilde{J}_{b}\right| \subseteq\left|K_{\widetilde{T}}+\widetilde{C}+\widetilde{D}\right|$, a contradiction to Claim(2). So, $\widetilde{G} \cap \widetilde{C}=\phi$. One iterates this argument and can prove (2).
(3) Decompose \widetilde{G} into $\widetilde{G}=\widetilde{\Sigma}+\widetilde{\Delta}$ where Supp $\widetilde{\Delta} \subseteq \operatorname{Supp} \widetilde{D}$ and $\widetilde{\Sigma}$ contains no irreducible components of \widetilde{D}. First, by Claim (1), we have $\widetilde{G} \cdot \widetilde{\Delta}_{i} \geq 0$ for every irreducible component $\widetilde{\Delta}_{i}$ of $\widetilde{\Delta}$. Hence $0 \leq \widetilde{G} \cdot \widetilde{\Delta}=\widetilde{\Sigma} \cdot \widetilde{\Delta}+\widetilde{\Delta}^{2}<\widetilde{\Sigma} \cdot \widetilde{\Delta}$ when $\widetilde{\Delta} \neq 0$, because Supp $\widetilde{\Delta} \subseteq \operatorname{Supp} \widetilde{D}$ and \widetilde{D} is negative definite. This proves that $\widetilde{\Sigma} \neq 0$.

Let $\widetilde{\Sigma}_{i}$ be an irreducible component of $\widetilde{\Sigma}$. Note that $\widetilde{\Sigma}_{i} \cdot K_{\widetilde{T}} \leq \widetilde{\Sigma}_{i} .\left(K_{\widetilde{T}}+\right.$ $\left.\widetilde{D}^{*}\right)<0$ (cf. Lemma 1.4). So, if $\widetilde{\Sigma}_{i}^{2}<0$, then $\widetilde{\Sigma}_{i}$ is a (-1)-curve. Suppose that $\widetilde{\Sigma}_{i}^{2} \geq 0$. Then, by (2), $\widetilde{\Sigma}_{i}^{2} \leq \widetilde{\Sigma}_{i} \cdot \widetilde{G}=\widetilde{\Sigma}_{i} \cdot K_{\widetilde{T}}<0$. We reach a contradiction. This proves (3).
(4) By $(2), \sigma^{*} \widetilde{\Sigma}_{i}$ is again a (-1)-curve and $\sigma^{*}(\widetilde{\Delta}) \subseteq D$. Write $f(C) \equiv$ $c\left(-K_{S}\right), f\left(\sigma^{*} \widetilde{\Sigma}_{i}\right) \equiv e_{i}\left(-K_{S}\right)$, where $c>0, e_{i}>0$. Then $(s c-1)\left(-K_{S}\right) \equiv$ $f\left(\sigma^{*} \widetilde{G}\right) \equiv \sum_{i=1}^{r} e_{i}\left(-K_{S}\right)$. Since $K_{S}^{2}>0$, we have

$$
s c-1=\sum_{i} e_{i} \geq r c
$$

by the minimality of $-C .\left(K_{\widetilde{S}}+D^{*}\right)=c\left(K_{\widetilde{S}}+D^{*}\right)^{2}=c\left(K_{S}\right)^{2}$ (cf. the choice of C in Part I). Hence $(s-r) c \geq 1>0$. (4) then follows.
(5) follows from the equality : $\widetilde{B} \cdot \widetilde{G}=\widetilde{B} \cdot\left(K_{\widetilde{T}}+\widetilde{H}_{a 1}+\widetilde{H}_{a 2}+\widetilde{J}_{b}\right)$.
(6) By the condition, $\widetilde{\Sigma}_{i} \neq \widetilde{\Sigma}_{j}$ if $i \neq j$. So,

$$
-1=\widetilde{\Sigma}_{i}^{2}=\widetilde{\Sigma}_{i} \cdot \widetilde{G}-\widetilde{\Sigma}_{i} \cdot\left(\widetilde{\Delta}+\sum_{j \neq i} \widetilde{\Sigma}_{j}\right) \leq \widetilde{\Sigma}_{i} \cdot \widetilde{G}=\widetilde{\Sigma} \cdot K_{\widetilde{T}}=-1
$$

Thus, $\widetilde{\Sigma}_{i} \cdot\left(\widetilde{\Delta}+\sum_{j \neq i} \widetilde{\Sigma}_{j}\right)=0$ for every i. So, $\widetilde{\Sigma}$ is a disjoint union of $\widetilde{\Sigma}_{i}$'s and $\widetilde{\Sigma} \cap \widetilde{\Delta}=\phi$. In particular, $\widetilde{G} \cdot \widetilde{\Delta}=\widetilde{\Delta}^{2}$. By Claim(1), we have $\widetilde{G} \cdot \widetilde{\Delta} \geq 0$. So, $\widetilde{\Delta}^{2} \geq 0$. Since $\widetilde{\Delta}$ is contained in \widetilde{D} and \widetilde{D} is negative definite, we have $\widetilde{\Delta}=0$. This proves (6) and Lemma 1.6 is proved.

Corollary 1.7. Assume that σ is a contraction of curves in $C+T_{1}$. Assume further that $J_{1}=H_{1}$ and $\tilde{H}_{1}^{2}=-2$ (hence $J_{2}=D_{2}$ and the hypothesis in Lemma 1.6 is satisfied with $a=1)$. Then $K_{\widetilde{T}}+2\left(\widetilde{C}+\widetilde{H}_{1}\right)+$ $\widetilde{H}_{11}+\widetilde{H}_{12}+\widetilde{J}_{2} \sim \widetilde{G}=\widetilde{\Sigma}=\widetilde{\Sigma}_{1}$, i.e., \widetilde{G} is reduced and a (-1)-curve.

Proof. We apply Lemma 1.6 to $\widetilde{G} \sim K_{\widetilde{T}}+2\left(\widetilde{C}+\widetilde{H}_{1}\right)+\widetilde{H}_{11}+\widetilde{H}_{12}+\widetilde{J}_{2}$. By the hypothesis, $\sigma^{*} \widetilde{G} \sim K_{\widetilde{S}}+2 C+$ (an effective divisor with support in $D)$. Then Corollary 1.7 follows from Lemma 1.6.

Lemma 1.8. Suppose the case (II-4) in Remark 3.11 of Part I occurs. Then one of the following two cases occurs :
(1) Theorem 1.1, (2) or (3) occurs.
(2) $\left(\widetilde{J}_{a}^{2}, \widetilde{J}_{b}^{2}\right)=(-2,-2),(-2,-3)$ or $(-2,-4)$ where $\{a, b\}=\{1,2\}$ as sets. If $\widetilde{J}_{k}^{2}=-2$ (this is the case if $k=a$), then $J_{k}=H_{k}$ and $H_{k j}^{2} \leq-3$ for $j=1$ or 2 . Moreover, Δ_{2} is not a fork with D_{2} as its central component.

Proof. By [4, Lemma 4.4], $\widetilde{J}_{a}^{2}=-2$ for $a=1$ or 2. Let $\{a, b\}=\{1,2\}$ as sets.

Case(1) $\widetilde{J}_{b}^{2}=-2$. If \widetilde{J}_{s} is a tip of $\widetilde{\Delta}_{s}$ for $s=a$ or b, say $s=b$, then $J_{b} \neq H_{b}$ and Theorem 1.1 (3) occurs. Indeed, the intersection matrix of $\widetilde{C}+\widetilde{J}_{b}+\widetilde{\Delta}_{a}$ has a positive eigenvalue and so does $C+T_{b}+\Delta_{a}$. Thus we may assume $J_{a}=H_{a}, J_{b}=H_{b}$.

Suppose $H_{s 1}^{2}=H_{s 2}^{2}=-2$ for $s=a$ or b, say $s=a$. Let $S_{0}:=2(\widetilde{C}+$ $\left.\widetilde{H}_{a}\right)+\widetilde{H}_{a 1}+\widetilde{H}_{a 2}$ and let $\psi: \widetilde{S} \rightarrow \mathbf{P}^{1}$ be the \mathbf{P}^{1}-fibration with S_{0} as a singular fiber. If $\widetilde{\Delta}_{a}=\widetilde{H}_{a}+\widetilde{H}_{a 1}+\widetilde{H}_{a 2}$, then Theorem 1.1 (2) occurs with $\varphi=\psi \cdot \sigma, \sum_{i} B_{i}=B_{1}=H_{b}$. If $\widetilde{\Delta}_{a}>\widetilde{H}_{a}+\widetilde{H}_{a 1}+\widetilde{H}_{a 2}$, Theorem 1.1 (3) occurs. Indeed, the intersection matrix of $\widetilde{C}+\widetilde{\Delta}_{a}$ then has a positive eigenvalue and so does $C+T_{b}+\Delta_{a}$. Thus we may assume that $H_{a j}^{2} \leq-3$ for $j=1$ or 2 . The same argument works for $s=b$.

To finish the proof of Lemma 1.8 in this case, we have to consider the case where $\widetilde{\Delta}_{2}$ is a fork with \widetilde{D}_{2} as its central component. By the previous arguments, now we have $J_{1}=H_{1}, J_{2}=H_{2}=D_{2}, H_{11}^{2} \leq-3$ say, and \widetilde{H}_{2} meets $\widetilde{\Delta}_{2}-\widetilde{H}_{2}$ in one (-2)-component \widetilde{H}_{23} and two components $\widetilde{H}_{21}, \widetilde{H}_{22}$ of self intersections ≤-3.

Let $\sigma_{2}: \widetilde{S}_{1} \rightarrow \widetilde{T}$ be the blowing-up of the point $\widetilde{C} \cap \widetilde{D}_{2}$ and let L be
the exceptional curve of σ_{2}. Note that $\sigma \neq i d$ because $\widetilde{D}_{2}^{2}=-2$ while $D_{2}^{2} \leq-3$. So we have a smooth blowing-down $\sigma_{1}: \widetilde{S} \rightarrow \widetilde{S}_{1}$ such that $\sigma=\sigma_{2} \cdot \sigma_{1}$. Applying Lemma 1.4, we get $-L .\left(K_{\widetilde{S}_{1}}+M^{*}\right)>0$, where $M^{*} \geq 1 / 2 \sigma_{2}^{\prime} \widetilde{H}_{11}+1 / 2 \sigma_{2}^{\prime} \widetilde{H}_{1}+1 / 4 \sigma_{2}^{\prime} \widetilde{H}_{12}+1 / 4 \sigma_{2}^{\prime} \widetilde{C}+5 / 11 \sigma_{2}^{\prime} \widetilde{H}_{23}+10 / 11 \sigma_{2}^{\prime} \widetilde{D}_{2}+$ $7 / 11 \sigma_{2}^{\prime} \widetilde{H}_{22}+7 / 11 \sigma_{2}^{\prime} \widetilde{H}_{21}$ (cf. Lemma 1.5). This leads to $-L .\left(K_{\widetilde{S}_{1}}+M^{*}\right) \leq$ $1-L .\left(1 / 4 \sigma_{2}^{\prime} \widetilde{C}+10 / 11 \sigma_{2}^{\prime} \widetilde{D}_{2}\right)=1-1 / 4-10 / 11<0$. We reach a contradiction. So it is impossible that $\widetilde{\Delta}_{2}$ is a fork with \widetilde{D}_{2} as its central component. Lemma 1.8 is proved in the present case.

Case(2) $\widetilde{J}_{b}^{2} \leq-3$. Then by the definition of σ (cf. the second condition), $J_{a}=H_{a}$, i.e., \widetilde{J}_{a} is not a tip of $\widetilde{\Delta}_{a}$. If $H_{a 1}^{2}=H_{a 2}^{2}=-2$, then by the arguments in the above paragraph, Theorem 1.1, (2) or (3) occurs. So we may assume that $H_{a j}^{2} \leq-3$ for $j=1$ or 2 , say $j=1$.

We now prove that $d:=-\widetilde{J}_{b}^{2} \leq 4$. Since it is impossible that $\widetilde{\Delta}_{b}$ is a linear chain with \widetilde{J}_{b} as a tip, we have $\widetilde{D}^{*} \geq(d-2) /(d-1) \widetilde{J}_{b}+3 / 7 \widetilde{H}_{a 1}+2 / 7 \widetilde{H}_{a}+$ $1 / 7 \widetilde{H}_{a 1}$ (cf. Lemma 1.5). By Lemma 1.4 , we have $0<-\widetilde{C} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq$ $1-\widetilde{C} \cdot\left((d-2) /(d-1) \widetilde{J}_{b}+2 / 7 \widetilde{H}_{a}\right)=1 /(d-1)-2 / 7$. Hence $d \leq 4$.

To finish the proof of Lemma 1.8 in this case, we still have to consider the case where $\widetilde{\Delta}_{2}$ is a fork with \widetilde{D}_{2} as its central component. Now $J_{2}=$ $H_{2}=D_{2}$ and $J_{a}=H_{a}$. If $\widetilde{D}_{2}^{2}=-2$, i.e., if $a=2, b=1$, then $\widetilde{J}_{1}^{2} \leq-3$, and by the previous argument, \widetilde{D}_{2} meets $\widetilde{\Delta}_{2}-\widetilde{D}_{2}$ in one (-2)-component and two components of self intersections ≤-3. This will lead to a contradiction to $0<-\widetilde{C} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right)$ as in Lemma $1.3(2)$. So, we have $\widetilde{D}_{2}^{2} \leq-3, H_{11}^{2} \leq-3$ and $\widetilde{H}_{1}^{2}=-2$, i.e., $a=1, b=2$.

If $\sigma \neq i d$, then a contradiction is derived as in the case(1) above. If $\sigma=i d$, then $J_{1}=H_{1}=D_{1}, K_{\widetilde{S}}+2\left(C+D_{1}\right)+H_{11}+H_{12}+D_{2} \sim \widetilde{G}=\widetilde{\Sigma}$, where $\widetilde{\Sigma}$ is a (-1)-curve (cf. (4) and (6) of Lemma 1.6). We have also $\widetilde{\Sigma} . \widetilde{H}_{2 j}>0$ for $j=1,2$ and 3 , where $\widetilde{H}_{2 j}$ are irreducible components of D adjacent to D_{2} (cf. Lemma 1.6 (5)). Now applying Lemma 1.5, we get $D^{*} \geq 2 / 3 D_{2}+1 / 3 H_{21}+1 / 3 H_{22}+1 / 3 H_{23}$. Hence $-\widetilde{\Sigma} .\left(K_{\widetilde{S}}+D^{*}\right) \leq$ $1-\widetilde{\Sigma} .\left(1 / 3 H_{21}+1 / 3 H_{22}+1 / 3 H_{23}\right) \leq 0$, a contradiction to Lemma 1.4.

So it is impossible that $\widetilde{\Delta}_{2}$ is a fork with \widetilde{D}_{2} as its central component. Lemma 1.8 is proved in the present case.

Lemma 1.9. Suppose the case(2) in Lemma 1.8 occurs. Then it is
impossible that $\widetilde{J}_{1}^{2}=\widetilde{J}_{2}^{2}=-2$.
Proof. We consider the case where $\widetilde{J}_{1}^{2}=\widetilde{J}_{2}^{2}=-2$. By the hypothesis, we have $J_{i}=H_{i}, \widetilde{H}_{i}^{2}=-2$ for $i=1,2$ and we may assume that $H_{11}^{2} \leq$ $-3, H_{21}^{2} \leq-3$.

Case(1) σ is a contraction of curves contained in $C+T_{1}$.
Then the conditions of Corollary 1.7 are satisfied. Hence $K_{\widetilde{T}}+2(\widetilde{C}+$ $\left.\widetilde{H}_{1}\right)+\widetilde{H}_{11}+\widetilde{H}_{12}+\widetilde{H}_{2} \sim \widetilde{G}=\widetilde{\Sigma}$ where $\widetilde{\Sigma}$ is a (-1)-curve. Note that $\widetilde{\Sigma} \cdot \widetilde{H}_{21}=\widetilde{G} \cdot \widetilde{H}_{21}=\left(K_{\widetilde{T}}+\widetilde{H}_{2}\right) \cdot \widetilde{H}_{21} \geq 1+1(\mathrm{cf}$. Lemma 1.6 (2)). Let $\Sigma:=\sigma^{*}(\widetilde{\Sigma})$. Then Σ is again a (-1)-curve with $\Sigma . H_{21} \geq 2$ (cf. Lemma 1.6 (2)). On the other hand, $D^{*} \geq 1 / 2 D_{2}+1 / 2 H_{21}$ because $D_{2}^{2} \leq-3, H_{21}^{2} \leq-3$ (cf. Lemma 1.5). This leads to $-\Sigma \cdot\left(K_{\widetilde{S}}+D^{*}\right) \leq 1-1 / 2 \Sigma \cdot H_{21} \leq 0$, a contradicion to Lemma 1.4. So Case(1) is impossible.

Case(2) σ contracts at least one irreducible component of the maximal twig T_{2} of Δ_{2}.

By noting that $D_{1}^{2}=-2, D_{2}^{2} \leq-3$, there are two smooth blowing-downs $\sigma_{1}: \widetilde{S} \rightarrow \widetilde{S}_{1}, \sigma_{2}: \widetilde{S}_{1} \rightarrow \widetilde{T}$ such that $\sigma=\sigma_{2} \cdot \sigma_{1}$ and that :
(1) $\sigma_{1}\left(T_{1}+C+T_{2}\right)=T_{1}^{\prime}+E+T_{2}^{\prime}$ where E is a (-1)-curve and $T_{i}^{\prime} \leq \sigma_{1}\left(T_{i}\right)$,
(2) $T_{1}^{\prime}+\sigma_{1}\left(H_{1}\right)=\sum_{i=1}^{s} L_{i}, E \cdot L_{1}=L_{i} \cdot L_{i+1}=1(i=1, \cdots, s-1 ; s \geq$ 2), $L_{s}=\sigma_{1}\left(H_{1}\right), L_{1}^{2}=-2, L_{2}^{2}=-(t+1), L_{j}^{2}=-2(2<j<s)$, and
(3) $T_{2}^{\prime}+\sigma_{1}\left(H_{2}\right)=\sum_{i=1}^{t} M_{i}, E \cdot M_{1}=M_{i} \cdot M_{i+1}=1(i=1, \cdots, t-1 ; t \geq$ 2), $M_{t}=\sigma_{1}\left(H_{2}\right), M_{1}^{2}=-3, M_{t}^{2}=-s, M_{j}^{2}=-2(2 \leq j<j \geq 2, j \neq t)$.

Since $\sigma_{1}\left(\Delta_{1}+\Delta_{2}\right)-E$ is contractible to quotient singularities, we have $(s, t)=(2,2),(2,3)$ or $(3,2)$. By Lemma 1.4, we have $1-E \cdot M^{*}=-E \cdot\left(K_{\widetilde{S}_{1}}+\right.$ $\left.M^{*}\right)>0$. We can also get lower bounds for coefficients of M^{*} by applying Lemma 1.5 to $X=S_{1}, \sum_{i=1}^{s+t+4} Q_{i}=H_{11}+H_{21}+H_{12}+H_{22}+\sum_{i} L_{i}+$ $\sum_{j} M_{j}, Q_{1}^{2}=Q_{2}^{2}=-3, Q_{3}^{2}=Q_{4}^{2}=-2$. Now the inequality $1-E . M^{*}>0$, together with these lower bounds, will deduce an inequality $(2 t-1)(s-1)<$ 3. This is impossible because $s \geq 2$ and $t \geq 2$.

This proves Lemma 1.9.
In the proof of the following Lemmas 1.10 and 1.11 , to rule out most of the cases, we shall frequently use Lemma 1.5 to get an estimate on the coefficients of M^{*} and then deduce a contradiction to Lemma 1.4.

Lemma 1.10. Suppose that the case in Corollary 1.7 occurs. Suppose further that the case(2) in Lemma 1.8 occurs with $\left(\widetilde{J}_{a}^{2}, \widetilde{J}_{b}^{2}\right)=(-2,-3)$ or $(-2,-4)$ (hence $a=1, b=2, J_{1}=H_{1}, J_{2}=D_{2}$). Then Theorem 1.1, (3) or (4) occurs.

Proof. By the hypothesis in the case(2) of Lemma 1.8, we may assume that $H_{11}^{2} \leq-3$. By Corollary 1.7, $K_{\widetilde{T}}+2\left(\widetilde{C}+\widetilde{H}_{1}\right)+\widetilde{H}_{11}+\widetilde{H}_{12}+\widetilde{J}_{2} \sim \widetilde{G}=\widetilde{\Sigma}$ where $\widetilde{\Sigma}$ is a (-1)-curve.
$\operatorname{Claim}(1) . \quad$ (1) $\widetilde{D}^{*} \geq 3 / 7 \widetilde{H}_{11}+2 / 7 \widetilde{H}_{1}+1 / 7 \widetilde{H}_{12}+(a-2) /(a-1) \widetilde{J}_{2}$. Here $a:=-\widetilde{J}_{2}^{2} \geq 3$ and hence $(a-2) /(a-1) \geq 1 / 2$.
(2) $\widetilde{\Delta}_{1}$ is a linear chain.
(3) Either $\widetilde{\Delta}_{2}$ is a linear chain with $\widetilde{J}_{2}=\widetilde{H}_{2}$, or $\widetilde{\Delta}_{2}$ is a fork with \widetilde{J}_{2} as a tip.
(4) $\widetilde{\Delta}_{1}-\widetilde{H}_{11}$ consists of (-2)-curves.
(5) $\widetilde{\Delta}_{2}-\widetilde{J}_{2}$ consists of (-2)-curves.

Since $\widetilde{H}_{11}^{2} \leq-3$ and since it is imposible that $\widetilde{\Delta}_{2}$ is a linear chain with \widetilde{J}_{2} as a tip (cf. the hypothesis $(*)$ after Lemma 1.3), (1) follows.

If $\widetilde{\Delta}_{1}$ is not a linear chain, then $\widetilde{D}^{*} \geq 1 / 2 \widetilde{H}_{1}+1 / 2 \widetilde{H}_{11}$ (cf. Lemma 1.5). This leads to $-\widetilde{C} \cdot\left(K_{\widetilde{S}}+\widetilde{D}^{*}\right) \leq 1-\widetilde{C} \cdot\left(1 / 2 \widetilde{H}_{1}+1 / 2 \widetilde{J}_{2}\right)=0$, a contradiction to Lemma 1.4. So, (2) of Claim(1) is true.

Suppose (3) of Claim(1) is false. Then $\widetilde{\Delta}_{2}$ contains $L_{i}(i=1, \cdots, s ; s \geq$ 4) such that $L_{2}=\widetilde{J}_{2}, L_{i} \cdot L_{i+1}=L_{s-2} \cdot L_{s}=1(i=1, \cdots, s-2)$. So we have $\widetilde{D}^{*} \geq 1 / 3 L_{1}+2 / 3 \sum_{i=2}^{s-2} L_{i}+1 / 3 L_{s-1}+1 / 3 L_{s}$ (cf. Lemma 1.5). On the other hand, for $i=1,3$ (and also for $i=4$ if $s=4$), we have $L_{i} \cdot \widetilde{\Sigma}=$ $L_{i} \cdot\left(K_{\widetilde{T}}+\widetilde{D}_{2}\right) \geq 1$ (cf. Lemma 1.6). This leads to $-\widetilde{\Sigma} .\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq$ $1-\widetilde{\Sigma} \cdot\left(1 / 3 L_{1}+2 / 3 \sum_{i=2}^{s-2} L_{i}+1 / 3 L_{s-1}+1 / 3 L_{s}\right) \leq 0$. We reach a contradiction to Lemma 1.4. Thus, (3) of Claim(1) is true.

Suppose $\widetilde{\Delta}_{1}-\widetilde{H}_{11}$ contains a $(-n)$-curve B with $n \geq 3$. If B and \widetilde{H}_{12} are in the same connected component of $\widetilde{\Delta}_{1}-\widetilde{H}_{1}$, then $\widetilde{D}^{*} \geq 1 / 2 \widetilde{H}_{1}+1 / 2 \widetilde{J}_{2}$ (cf. Lemma 1.5) and hence $-\widetilde{C} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-\widetilde{C} \cdot\left(1 / 2 \widetilde{H}_{1}+1 / 2 \widetilde{J}_{2}\right)=0$, a contradiction to Lemma 1.4. If B and \widetilde{H}_{11} are in the same connected component of $\widetilde{\Delta}_{1}-\widetilde{H}_{1}$, we let $L_{1}+\cdots+L_{s}$ be a linear chain in $\widetilde{\Delta}_{1}$ such that $L_{1}=\widetilde{H}_{11}, L_{s}=B, L_{i} \cdot L_{i+1}=1(i=1, \cdots, s-1)$. Then one has $D^{*}>$ $1 / 2 \sum_{i} L_{i}\left(\mathrm{cf}\right.$. Lemma 1.5). Moreover, $L_{i} \cdot \widetilde{\Sigma}=L_{i} \cdot\left(K_{\widetilde{T}}+\widetilde{H}_{11}\right) \geq 1$ for $i=2, s$
and $L_{2} \cdot \widetilde{\Sigma} \geq 2$ if $s=2$. This leads to $-\widetilde{\Sigma} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-\widetilde{\Sigma} \cdot 1 / 2 \sum_{i} L_{i} \leq 0$, a contradiction to Lemma 1.4. Therefore, (4) of Claim(1) is true.

Suppose that $\widetilde{\Delta}_{2}-\widetilde{J}_{2}$ contains a $(-n)$-curve B with $n \geq 3$. Let $L_{1}+\cdots+$ L_{s} be a linear chain contained in $\widetilde{\Delta}_{2}$ such that $L_{1}=\widetilde{J}_{2}, L_{s}=B, L_{i} . L_{i+1}=$ $1(i=1, \cdots, s-1)$. Then we have $\widetilde{D}^{*} \geq 1 / 2 \sum_{i} L_{i}$ (cf. Lemma 1.5). Note that for $i=2$, s, we have $L_{i} \cdot \widetilde{\Sigma}=L_{i} \cdot\left(K_{\widetilde{T}}+\widetilde{J}_{2}\right) \geq 1$. Moreover, $L_{2} \cdot \widetilde{\Sigma} \geq 2$ if $s=2$. This leads to $-\widetilde{\Sigma} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-\widetilde{\Sigma} \cdot\left(1 / 2 \sum_{i} L_{i}\right) \leq 0$. We reach a contradiction to Lemma 1.4. Therefore, (5) of Claim(1) is true.

This proves Claim(1).
Claim(2). Suppose that $\widetilde{J}_{2}^{2}=-4$. Then Theorem 1.1 (3) occurs.
We consider the case $\widetilde{J}_{2}^{2}=-4$. Then $\widetilde{D}^{*} \geq 2 / 3 \widetilde{J}_{2}$ by Claim(1). If \widetilde{H}_{11} is not a tip of $\widetilde{\Delta}_{1}$ (resp. \widetilde{H}_{12} is not a tip, or $H_{11}^{2} \leq-4$), then by Lemma 1.5, $D^{*} \geq 6 / 11 \widetilde{H}_{11}+4 / 11 \widetilde{H}_{1}+2 / 11 \widetilde{H}_{12}$ (resp. $D^{*} \geq 4 / 9 \widetilde{H}_{11}+3 / 9 \widetilde{H}_{1}+2 / 9 \widetilde{H}_{12}$, or $\left.D^{*} \geq 3 / 5 \widetilde{H}_{11}+2 / 5 \widetilde{H}_{1}+1 / 5 \widetilde{H}_{12}\right)$. Any of the three cases implies that $-\widetilde{C} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-\widetilde{C} \cdot\left(1 / 3 \widetilde{H}_{1}+2 / 3 \widetilde{J}_{2}\right)=0$, a contradiction to Lemma 1.4.

Thus, $\widetilde{\Delta}_{1}=\widetilde{H}_{1}+\widetilde{H}_{11}+\widetilde{H}_{12}$ and $\widetilde{H}_{1}^{2}=-2, \widetilde{H}_{11}^{2}=-3, \widetilde{H}_{12}^{2}=-2(\mathrm{cf}$. Claim(1)). If \widetilde{J}_{2} is a tip of $\widetilde{\Delta}_{2}$, i.e., if $J_{2} \neq H_{2}$, then Theorem 1.1 (3) occurs since the intersection matrix of $\widetilde{C}+\widetilde{J}_{2}+\widetilde{\Delta}_{1}$ and hence that of $C+T_{2}+\Delta_{1}$ have a positive eigenvalue.

We may now assume that $J_{2}=H_{2}$. Then $\widetilde{D}^{*} \geq 2 / 3 \widetilde{H}_{2}+1 / 3 \widetilde{H}_{21}+1 / 3 \widetilde{H}_{22}$ (cf. Claim(1)). We shall show that this leads to a contradiction. By Claim(1), $\widetilde{\Delta}_{2}$ is now a linear chain. If $H_{2 j}$ is not tip of $\widetilde{\Delta}_{2}$ for $j=1$ and 2 , then $D^{*} \geq 2 / 4 \widetilde{H}_{21}+3 / 4 \widetilde{H}_{2}+2 / 4 \widetilde{H}_{22}$. This leads to $0<-\widetilde{C} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq$ $1-\widetilde{C} \cdot\left(2 / 7 \widetilde{H}_{1}+3 / 4 \widetilde{H}_{2}\right)=1-2 / 7-3 / 4<0$, a contradiction.

So we may assume that H_{21} is a tip of $\widetilde{\Delta}_{2}$. If $\widetilde{\Delta}_{2}$ has more than four irreducible components, then $D^{*} \geq 4 / 11 \widetilde{H}_{21}+8 / 11 \widetilde{H}_{2}+6 / 11 \widetilde{H}_{22}$. This leads to $0<-\widetilde{C} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-\widetilde{C} \cdot\left(2 / 7 \widetilde{H}_{1}+8 / 11 \widetilde{H}_{2}\right)=1-2 / 7-8 / 11<0$, a contradiction. Therefore, $H:=\widetilde{\Delta}_{2}-\left(\widetilde{H}_{21}+\widetilde{H}_{2}+\widetilde{H}_{22}\right)$ is zero or a (-2)-curve adjacent to $\widetilde{H}_{22}($ cf. Claim(1)).

Note that $\widetilde{\Sigma} \cdot \widetilde{H}_{2 j}=\left(K_{\widetilde{T}}+\widetilde{H}_{2}\right) \cdot \widetilde{H}_{2 j}=1$ for $j=1$ and 2 (cf. Lemma 1.6). If $B \cdot \widetilde{\Sigma}>0$ for some irreducible component B of $\widetilde{D}-\left(\widetilde{H}_{21}+\widetilde{H}_{22}\right)$, then B is not contained in $\widetilde{\Delta}_{1}$ nor $\widetilde{\Delta}_{2}, B^{2} \leq-3$ and $B . \widetilde{\Sigma}=B . K_{\widetilde{T}}$ (cf. Lemma 1.6
(5)). Hence $\widetilde{D}^{*} \geq 1 / 3 B$. This leads to $0<-\widetilde{\Sigma} .\left(K_{\widetilde{T}}+D^{*}\right) \leq 1-\widetilde{\Sigma} .(1 / 3 B+$ $\left.1 / 3 \widetilde{H}_{21}+1 / 3 \widetilde{H}_{22}\right)=0$, a contradiction. So, $\widetilde{\Sigma}$ meets transversally only \widetilde{H}_{21} and \widetilde{H}_{22} in \widetilde{D}.

Let $S_{0}^{\prime}:=2 \widetilde{\Sigma}+\widetilde{H}_{21}+\widetilde{H}_{22}$ and let $\psi: \widetilde{T} \rightarrow \mathbf{P}^{1}$ be the \mathbf{P}^{1}-fibration with S_{0}^{\prime} as a singular fiber. Let S_{1}^{\prime} be the singualr fiber containing $\widetilde{C}+\widetilde{\Delta}_{1}$. Then there is a (-1)-curve E such that $E . \widetilde{H}_{11}=1$ and $S_{1}^{\prime}=2\left(\widetilde{C}+\widetilde{H}_{1}\right)+$ $\widetilde{H}_{11}+\widetilde{H}_{12}+E$. Since $\rho(\widetilde{T})=1$ and since every irreducible component of $\widetilde{D}-\left(H+\widetilde{H}_{2}\right)$ is contained in singular fibers of ψ, every singular fiber S_{2}^{\prime} other than S_{1}^{\prime} consists of one (-1)-curve and several irreducible components of $\widetilde{D}($ cf. Lemma $1.1(4)$ of Part $\mathbf{I})$. Here we set $H:=\widetilde{\Delta}_{2}-\left(\widetilde{H}_{21}+\widetilde{H}_{2}+\widetilde{H}_{22}\right)$. Moreover, $H \neq 0$ because $\rho(T)=1$. So, H is a (-2)-curve adjacent to \widetilde{H}_{22}. Since H is a cross-section, $H . E=1$ and $S_{0}^{\prime}, S_{1}^{\prime}$ are the only singular fibers of ψ for otherwise H would meet a (-1)-curve F in some singular fiber S_{2}^{\prime} and F has multiplicity at least two.

Let $\tau: \widetilde{T} \rightarrow \Sigma_{2}$ be the smooth blowing-down of curves in singular fibers of ψ such that $\tau(H)^{2}=-2$. On the one hand, \widetilde{H}_{2} is a 2 -section with $\widetilde{H}_{2} \cap H=\phi$ and hence $\tau\left(\widetilde{H}_{2}\right)^{2}=8$. On the other hand, a calculation shows that $\tau\left(\widetilde{H}_{2}\right)^{2}=\widetilde{H}_{2}^{2}+1+4=1$. We reach a contradiction.

This proves Claim(2).
In view of Claim(2), we may assume that $\widetilde{J}_{2}^{2}=-3$. If \widetilde{J}_{2} is a tip of $\widetilde{\Delta}_{2}$, i.e., if $J_{2} \neq H_{2}$, then Theorem 1.1 (3) occurs. Indeed, the intersection matrix of $\widetilde{C}+\widetilde{J}_{2}+\widetilde{\Delta}_{1}$ and hence that of $C+T_{2}+\Delta_{1}$ then have a positive eigenvalue.

Thus we may assume that $J_{2}=H_{2}$. Then $\widetilde{\Delta}_{2}$ is a linear chain (cf. Claim(1)). We have also

$$
\widetilde{D}^{*} \geq 3 / 7 \widetilde{H}_{11}+2 / 7 \widetilde{H}_{1}+1 / 7 \widetilde{H}_{12}+1 / 4 \widetilde{H}_{21}+2 / 4 \widetilde{H}_{2}+1 / 4 \widetilde{H}_{22} .
$$

Note that $H . \widetilde{\Sigma}=H .\left(K_{\widetilde{T}}+\widetilde{H}_{11}+\widetilde{H}_{12}+\widetilde{H}_{2}\right)=1$ (cf. Lemma 1.6) if H is an irreducible component of $\widetilde{D}-\widetilde{H}_{1}$ adjacent to one of $\widetilde{H}_{11}, \widetilde{H}_{12}, \widetilde{H}_{2}$. In particular, $\widetilde{\Sigma} \cdot \widetilde{H}_{21}=\widetilde{\Sigma} \cdot \widetilde{H}_{22}=1$.
$\operatorname{Claim}(3) . \quad \widetilde{D}-\left(\widetilde{H}_{11}+\widetilde{H}_{2}\right)$ consists of (-2)-curves.
Suppose to the contrary that Claim(3) is false. Then $\widetilde{D}-\left(\widetilde{\Delta}_{1}+\widetilde{\Delta}_{2}\right)$ contains a $(-n)$-curve B with $n \geq 3$ (cf. Claim(1)). By Lemma 1.6, we have
$B \cdot \widetilde{\Sigma}=B \cdot K_{\widetilde{T}}=n-2$. Note that $\widetilde{D}^{*} \geq(n-2) / n B$ and $0<-\widetilde{\Sigma} .\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq$ $1-\widetilde{\Sigma} .(n-2) / n B=1-(n-2)^{2} / n$. So, $n=3$ and $B . \widetilde{\Sigma}=1$.

If $\widetilde{D}-\widetilde{H}_{1}$ has an irreducible component H adjacent to \widetilde{H}_{11}, then $\widetilde{D}^{*} \geq$ $3 / 11 H+6 / 11 \widetilde{H}_{11}+4 / 11 \widetilde{H}_{1}+2 / 11 \widetilde{H}_{12}$. This leads to $0<-\widetilde{\Sigma} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq$ $1-\widetilde{\Sigma} \cdot\left(1 / 3 B+3 / 11 H+1 / 4 \widetilde{H}_{21}+1 / 4 \widetilde{H}_{22}\right)=1-1 / 3-3 / 11-1 / 4-1 / 4<0$. We reach a contradiction. So, \widetilde{H}_{11} is a tip of $\widetilde{\Delta}_{1}$.

If $\widetilde{D}-\widetilde{H}_{1}$ has an irreducible component H adjacent to \widetilde{H}_{12} but H is not a tip of $\widetilde{\Delta}_{1}$, then $\widetilde{D}^{*} \geq 2 / 11 H+3 / 11 \widetilde{H}_{12}+4 / 11 \widetilde{H}_{1}+5 / 11 \widetilde{H}_{11}$. This leads to $0<-\widetilde{\Sigma} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-\widetilde{\Sigma} \cdot\left(1 / 3 B+2 / 11 H+1 / 4 \widetilde{H}_{21}+1 / 4 \widetilde{H}_{22}\right)=$ $1-1 / 3-2 / 11-1 / 4-1 / 4<0$. We reach again a contradiction. Thus, $H:=\widetilde{\Delta}_{1}-\left(\widetilde{H}_{11}+\widetilde{H}_{1}+\widetilde{H}_{12}\right)$ is zero or a (-2)-curve adjacent to \widetilde{H}_{12} (cf. Claim(1)).

Let $S_{0}^{\prime}:=2 \widetilde{\Sigma}+\widetilde{H}_{21}+\widetilde{H}_{22}$ and let $\psi: \widetilde{T} \rightarrow \mathbf{P}^{1}$ be the \mathbf{P}^{1} - fibration with $\widetilde{\widetilde{H}}_{0}^{\prime}$ as a singular fiber. Let S_{1}^{\prime} be the singular fiber containing $\widetilde{C}+\widetilde{H}_{1}+\widetilde{H}_{11}+\widetilde{H}_{12}$.

Suppose $H_{11}^{2}=-3$. Then there is a (-1)-curve E such that $E . \widetilde{H}_{11}=1$ and $S_{1}^{\prime}=2\left(\widetilde{C}+\widetilde{H}_{1}\right)+\widetilde{H}_{12}+\widetilde{H}_{11}+E$. Since B is a 2 -section, we have $B \cdot E=2$. This leads to $0<-E \cdot\left(K_{\widetilde{T}}+D^{*}\right) \leq 1-E \cdot\left(1 / 3 B+3 / 7 \widetilde{H}_{11}\right)=$ $1-(1 / 3) \cdot 2-3 / 7<0$, a contradiction. So, $H_{11}^{2} \leq-4$.

Suppose $\sigma \neq i d$. Let $\sigma_{2}: \widetilde{S}_{1} \rightarrow \widetilde{T}$ be the blowing-up of the point $P_{2}:=\widetilde{C} \cap \widetilde{H}_{2}$ and set $L:=\sigma_{2}^{-1}\left(P_{2}\right)$. Then by the hypothesis in Corollary 1.7 , there is a smooth blowing-down $\sigma_{1}: \widetilde{S} \rightarrow \widetilde{S}_{1}$ such that $\sigma=\sigma_{2} \cdot \sigma_{1}$. Applying Lemma 1.4, we have $-L .\left(K_{\widetilde{S}_{1}}+M^{*}\right)>0$, where $M^{*} \geq 2 / 3 \sigma_{2}^{\prime} \widetilde{H}_{11}+$ $2 / 3 \sigma_{2}^{\prime} \widetilde{H}_{1}+1 / 3 \sigma_{2}^{\prime} \widetilde{H}_{12}+1 / 3 \sigma_{2}^{\prime} \widetilde{C}+1 / 3 \sigma_{2}^{\prime} \widetilde{H}_{21}+2 / 3 \sigma_{2}^{\prime} \widetilde{H}_{2}+1 / 3 \sigma_{2}^{\prime} \widetilde{H}_{22}$. This leads to $0<-L .\left(K_{\widetilde{S}_{1}}+M^{*}\right) \leq 1-L .\left(1 / 3 \sigma_{2}^{\prime} \widetilde{C}+2 / 3 \sigma_{2}^{\prime} \widetilde{H}_{2}\right)=0$, a contradiction. So, $\sigma=i d$. Hence $\widetilde{T}=\widetilde{S}, H_{i}=D_{i}(i=1,2)$.

Let $S_{0}:=3 C+2 D_{1}+H_{12}+D_{2}$ and let $\varphi: \widetilde{S} \rightarrow \mathbf{P}^{1}$ be the \mathbf{P}^{1} - fibration with S_{0} as a singular fiber. Then $\widetilde{\Sigma}$ and the (-3)-curve B are contained in the same singular fiber of φ, say S_{1}. By the minimality of $-C .\left(K_{\widetilde{S}}+D^{*}\right)$ and by noting that C has multiplicity 3 in S_{0} and the summation of the multiplicities of (-1)-curves in S_{1} is at least 3 (cf. [4, Lemma 1.6]), every (-1)-curve F in S_{1}, especially $\widetilde{\Sigma}$, satisfies $-F .\left(K_{\widetilde{S}}+D^{*}\right)=-C .\left(K_{\widetilde{S}}+D^{*}\right)$. So, every singular fiber of the previous fibration ψ defined by $\left|2 \widetilde{\Sigma}+\widetilde{H}_{21}+\widetilde{H}_{22}\right|$ has one of two types in Lemma 6.11 of Part I. However, S_{1}^{\prime} above contains a curve H_{11} with $H_{11}^{2} \leq-4$. We reach a contradiction.

This proves Claim(3).

Let

$$
S_{0}:=3 \widetilde{C}+2 \widetilde{H}_{1}+\widetilde{H}_{12}+\widetilde{H}_{2}
$$

and let $\varphi: \widetilde{T} \rightarrow \mathbf{P}^{1}$ be the \mathbf{P}^{1}-fibration with S_{0} as a singular fiber. $\widetilde{H}_{21}, \widetilde{H}_{22}$ (resp. \widetilde{H}_{11}) is a cross-section (resp. 2-section). Denote by S_{1} the singular fiber containing $\widetilde{\Sigma}$. Let

$$
S_{i}(i=0,1, \cdots, r)
$$

be all singular fibers of φ. By Claim(3), every singular fiber $S_{i}(i \geq 1)$ consists of only (-1) or (-2)-curves. So, S_{i} has one of two types in Lemma 6.11 of Part \mathbf{I}.

Claim(4). Suppose that S_{k} has the first type in Lemma 6.11 of Part I for some $k \geq 1$. Then Case(4-1) of Theorem 1.1 occurs.

Suppose S_{1} has the first type in Lemma 6.11 of Part I. Namely, $\widetilde{\Sigma}$ is the unique (-1)-curve in S_{1}. Then the 2 -section \widetilde{H}_{11} meets two multiplicity-one or one multiplicity-two irreducible component(s) other than $\widetilde{\Sigma}$ in S_{1}. This implies that $\widetilde{\Delta}_{1}$ is a fork (cf. Lemma 1.1 (4) of Part I), a contradiction to Claim(1). So, S_{1} consists of two (-1)-curves $\widetilde{\Sigma}, E$ and several (-2)-curves.

Suppose that S_{k} has the first type in Lemma 6.11 of Part I for some $k \geq 2$, say $k=2$. Namely, there is a unique (-1)-curve F in S_{2}. Since $\widetilde{H}_{2 j} \cdot S_{2}=1(j=1,2)$, there are two (-2)-curves $G_{j}(j=1,2)$ such that $F \cdot G_{j}=1, \widetilde{H}_{2 j} \cdot G_{j}=\widetilde{H}_{11} \cdot F=1$ and

$$
S_{2}=2 F+G_{1}+G_{2}
$$

Now we have (cf. Claim(1)) :

$$
\widetilde{\Delta}_{2}=G_{1}+\widetilde{H}_{21}+\widetilde{H}_{2}+\widetilde{H}_{22}+G_{2}
$$

We have also $\widetilde{D}^{*} \geq 1 / 5 G_{1}+2 / 5 \widetilde{H}_{21}+3 / 5 \widetilde{H}_{2}+2 / 5 \widetilde{H}_{22}+1 / 5 G_{2}$.
If H is an irreducible component of $\widetilde{\Delta}_{1}-\widetilde{H}_{1}$ adjacent to \widetilde{H}_{12}, then H is a cross-section and $H \cdot G_{j}=1$ for $j=1$ or 2 . This leads to $\widetilde{\Delta}_{1}=\widetilde{\Delta}_{2}$, a contradiction. So, \widetilde{H}_{12} is a tip of $\widetilde{\Delta}_{1}$.

If H is an irreducible component of $\widetilde{\Delta}_{1}-\widetilde{H}_{1}$ adjacent to \widetilde{H}_{11}, then $\widetilde{D}^{*} \geq 3 / 11 H+6 / 11 \widetilde{H}_{11}+4 / 11 \widetilde{H}_{1}+2 / 11 \widetilde{H}_{12}$. This leads to $0<-\widetilde{\Sigma} .\left(K_{\widetilde{T}}+\right.$
$\left.D^{*}\right) \leq 1-\widetilde{\Sigma} .\left(3 / 11 H+2 / 5 \widetilde{H}_{21}+2 / 5 \widetilde{H}_{22}\right)=1-3 / 11-2 / 5-2 / 5<0$, a contradiction. So, \widetilde{H}_{11} is tip of \widetilde{H}_{1}.

Therefore,

$$
\widetilde{\Delta}_{1}=\widetilde{H}_{1}+\widetilde{H}_{11}+\widetilde{H}_{12} .
$$

In particular, $\widetilde{\Sigma}$ meets only $\widetilde{H}_{2 j}(j=1,2)$ in \widetilde{D} (cf. Lemma 1.6 and Claim(3)). So,

$$
S_{1}=\widetilde{\Sigma}+E
$$

with $\widetilde{\Sigma} \cdot E=1$ and $\widetilde{H}_{11} \cdot E=2$.
If $\widetilde{H}_{11}^{2} \leq-4$, then $D^{*}>1 / 2 \widetilde{H}_{11}$ and $0<-E .\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-$ E. $1 / 2 \widetilde{H}_{11}=0$, a contradiction. So, $\widetilde{H}_{11}^{2}=-3$.

For every $i \geq 3$, since \widetilde{H}_{21} meets a (-1)-curve of multiplicity one in S_{i}, the fiber S_{i} has the second type in Lemma 6.11 of part \mathbf{I}. Since $\widetilde{D}-\left(\widetilde{H}_{21}+\right.$ $\left.\widetilde{H}_{22}+\widetilde{H}_{11}\right)$ are contained in singular fibers of φ and since $\rho(T)=1$, we see that $r=3$ and

$$
S_{i}(i=0,1,2,3)
$$

are all singular fibers of φ (cf. [4, Lemma $1.5(1)])$. Let $E_{j}(j=1,2)$ be the two (-1)-curves in S_{3}.

Let $\tau: \widetilde{T} \rightarrow \Sigma_{2}$ be the smooth blowing-down of curves in singular fibers such that $\tau\left(\widetilde{H}_{21}\right)^{2}=-2$. Then $\tau\left(\widetilde{H}_{22}\right) \sim \tau\left(\widetilde{H}_{21}\right)+2 \tau\left(S_{0}\right)$ and $\tau\left(\widetilde{H}_{11}\right) \sim$ $2 \tau\left(\widetilde{H}_{21}\right)+4 \tau\left(S_{0}\right)$. In particular, $\tau\left(\widetilde{H}_{22}\right)^{2}=2$ and $\tau\left(\widetilde{H}_{11}\right)^{2}=8$. So we may assume that $\widetilde{H}_{2 j} \cdot E_{j}=\widetilde{H}_{11} \cdot E_{j}=1(j=1,2)$. Moreover,

$$
S_{3}=E_{1}+G_{3}+G_{4}+E_{2}
$$

where $G_{3}+G_{4}$ is a connected component of \widetilde{D} with two (-2)-curves (cf. Lemma 1.1 (4) of Part I) and with $E_{j} \cdot G_{j+2}=1$.

Now $\widetilde{H}_{11}^{2}=-3$, and

$$
\widetilde{\Delta}_{1}, \widetilde{\Delta}_{2}, G_{3}+G_{4}
$$

are all connected components of \widetilde{D} (cf. Lemma 1.1, (4) of Part I). To show that Case(4-1) of Theorem 1.1 occurs, it suffices to show that $\sigma=i d$. Let $\sigma_{2}: \widetilde{S}_{1} \rightarrow \widetilde{T}$ be the blowing-up of the point $P_{2}:=\widetilde{C} \cap \widetilde{H}_{2}$ and let $L:=\sigma_{2}^{-1}\left(P_{2}\right)$. Suppose to the contrary that $\sigma \neq i d$. Then by the hypothesis in Corollary 1.7, there is a smooth blowing-down $\sigma_{1}: \widetilde{S} \rightarrow \widetilde{S}_{1}$ such that $\sigma=$ $\sigma_{2} \cdot \sigma_{1}$. Now applying Lemma 1.4 , we get $-L .\left(K_{\tilde{S}_{1}}+M^{*}\right)>0$, where $M^{*}=$
$1 / 2 \sigma_{2}^{\prime} \widetilde{H}_{11}+1 / 2 \sigma_{2}^{\prime} \widetilde{H}_{1}+1 / 4 \sigma_{2}^{\prime} \widetilde{H}_{12}+1 / 4 \sigma_{2}^{\prime} \widetilde{C}+1 / 4 \sigma_{2}^{\prime} G_{1}+2 / 4 \sigma_{2}^{\prime} \widetilde{H}_{21}+3 / 4 \sigma_{2}^{\prime} \widetilde{H}_{2}+$ $2 / 4 \sigma_{2}^{\prime} \widetilde{H}_{22}+1 / 4 \sigma_{2}^{\prime} G_{2}$. This leads to $-L .\left(K_{\widetilde{S}_{1}}+M^{*}\right)=1-L \cdot\left(1 / 4 \sigma_{2}^{\prime} \widetilde{C}+\right.$ $\left.3 / 4 \sigma_{2}^{\prime} \widetilde{H}_{2}\right)=0$. We reach a contradiction. So, $\sigma=i d$ and Case(4-1) of Theorem 1.1 occurs.

This proves Claim(4).
In view of Claim(4), we may assume that each singular fiber $S_{i}(i=$ $1, \cdots, r)$ has the second type in Lemma 6.11 of Part \mathbf{I}. Then the number of singular fibers containing two (-1)-curves is one less than the number of sectional-components of \widetilde{D} because $\rho(T)=1$. So, $r=2$ and S_{0}, S_{1}, S_{2} are all singular fibers if \widetilde{H}_{12} is a tip of $\widetilde{\Delta}_{1}$, or $r=3$ and $S_{0}, S_{1}, S_{2}, S_{3}$ are all singular fibers otherwise. Let

$$
\mu: \widetilde{T} \rightarrow \Sigma_{2}
$$

be the smooth blowing-down of curves in singular fibers of φ such that $\mu\left(\widetilde{H}_{21}\right)^{2}=-2$. Write $\mu\left(\widetilde{H}_{i j}\right)=\bar{H}_{i j}, \mu\left(S_{i}\right)=\bar{S}_{i}$, etc. Then $\bar{H}_{22} \sim \bar{H}_{21}+2 \bar{S}_{0}$ and $\bar{H}_{11} \sim 2 \bar{H}_{21}+4 \bar{S}_{0}$. In particular, $\bar{H}_{22}^{2}=2, \bar{H}_{11}^{2}=8, \bar{H}_{22} \cdot \bar{H}_{11}=4$.

Claim(5). Suppose that \widetilde{H}_{11} is not a tip. Then Case(4-2) of Theorem 1.1 occurs.

One can see that \widetilde{H}_{11} is a (-3)-curve, as in the proof of Claim (4) above. Note that $r \geq 2$ and we can write

$$
S_{1}=\widetilde{\Sigma}+\sum_{i=1}^{s} G_{i}+E
$$

such that $E^{2}=-1, G_{i}^{2}=-2, \widetilde{H}_{11} \cdot G_{1}=\widetilde{\Sigma} \cdot G_{1}=G_{j} \cdot G_{j+1}=G_{s} \cdot E=1$ ($j=1, \cdots, s-1$) (cf. Lemma 1.6), and

$$
S_{2}=E_{1}+\sum_{i=s+1}^{s+t} G_{i}+E_{2}
$$

such that $E_{i}^{2}=-1, G_{j}^{2}=-2, E_{1} \cdot G_{s+1}=G_{j} \cdot G_{j+1}=G_{s+t} \cdot E_{2}=1(j \leq$ $s+t-1)$. Note that $\widetilde{H}_{11} \cdot E=1$ for $\widetilde{H}_{11} \cdot S_{1}=2$ and $\widetilde{H}_{11} \cdot G_{1}=1$.

Note that $\widetilde{D}^{*} \geq 2 / 11 \widetilde{H}_{12}+4 / 11 \widetilde{H}_{1}+6 / 11 \widetilde{H}_{11}+3 / 11 G_{1}$. If F. $\widetilde{H}_{11} \geq 2$ for some (-1)-curve F, then $0<-F .\left(K_{\widetilde{T}}+D^{*}\right) \leq 1-6 / 11 F . \widetilde{H}_{11} \leq 1-2$. $(6 / 11)<0$, a contradiction. So, $F . \widetilde{H}_{11} \leq 1$ for every (-1)-curve F and the equality holds if F is in $S_{i}(i \geq 2)$ because $\widetilde{H}_{11} \cdot S_{i}=2$ (cf. (2) of Claim(1)).

Case(5.1) \widetilde{H}_{12} is a tip of $\widetilde{\Delta}_{1}$, while $\widetilde{H}_{2 j}$ is not a tip of $\widetilde{\Delta}_{2}$ for $j=1$ or 2 , say $j=1$. Then $r=2$. We may assume $\widetilde{H}_{21} \cdot G_{s+1}=1$. Since $\bar{H}_{22}^{2}=2$, one gets $\widetilde{H}_{22} \cdot E_{2}=1$ and $t=4$. This leads to $\widetilde{D}^{*} \geq 1 / 10 G_{s+4}+2 / 10 G_{s+3}+$ $3 / 10 G_{s+2}+4 / 10 G_{s+1}+5 / 10 \widetilde{H}_{21}+6 / 10 \widetilde{H}_{2}+3 / 10 \widetilde{H}_{22}$ and $0<-\widetilde{\Sigma} .\left(K_{\widetilde{T}}+\right.$ $\left.D^{*}\right) \leq 1-\widetilde{\Sigma} .\left(5 / 10 \widetilde{H}_{21}+3 / 10 \widetilde{H}_{22}+3 / 11 G_{1}\right)=1-5 / 10-3 / 10-3 / 11<0$, a contradiction. So, Case(5.1) is impossible.

Case(5.2). \widetilde{H}_{12} is a tip of $\widetilde{\Delta}_{1}$ and both \widetilde{H}_{21} and \widetilde{H}_{22} are tips of $\widetilde{\Delta}_{2}$. Then $r=2$, i.e.,

$$
S_{i}(i=0,1,2)
$$

are all singular fibers of φ, and

$$
\widetilde{\Delta}_{1}=\widetilde{H}_{12}+\widetilde{H}_{1}+\widetilde{H}_{11}+\sum_{i=1}^{s} G_{i}, \quad \widetilde{\Delta}_{2}=\widetilde{H}_{21}+\widetilde{H}_{2}+\widetilde{H}_{22}
$$

because $\widetilde{\Delta}_{i}$'s are linear chains. Moreover,

$$
\widetilde{\Delta}_{1}, \quad \widetilde{\Delta}_{2}, \quad \sum_{i=s+1}^{s+t} G_{i}
$$

are all connected components of \widetilde{D} (cf. Lemma 1.1 (4) of Part I). We shall show that Case(4-2) of Theorem 1.1 occurs. We may assume that $\widetilde{H}_{21} \cdot E_{1}=$ 1. By the same reasoning as in the previous case, we have $\widetilde{H}_{22} \cdot E_{2}=1$ and $t=3$. Then $8=\bar{H}_{11}^{2}=\widetilde{H}_{11}^{2}+2+(s+4)+4$. Hence $s=-\widetilde{H}_{11}^{2}-2$. If $s \geq 2$, then $\widetilde{H}_{11}^{2} \leq-4$ and $\widetilde{D}^{*} \geq 1 / 4 \widetilde{H}_{12}+2 / 4 \widetilde{H}_{1}+3 / 4 \widetilde{H}_{11}+2 / 4 G_{1}+1 / 4 G_{2}$. This leads to $0<-\widetilde{C} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-\widetilde{C} \cdot\left(1 / 2 \widetilde{H}_{1}+1 / 2 \widetilde{H}_{2}\right)=0$, a contradiction. So, $s=1, \widetilde{H}_{11}^{2}=-3$.

Now $s=1, t=3, \widetilde{H}_{11}^{2}=-3$. To show that Case(4-2) of Theorem 1.1 occurs, it is sufficient to show that $\sigma=i d$. Let $\sigma_{2}: \widetilde{S}_{1} \rightarrow \widetilde{T}$ be the blowingup of the point $P_{2}:=\widetilde{C} \cap \widetilde{H}_{2}$ and let $L:=\sigma_{2}^{-1}\left(P_{2}\right)$. Suppose to the contrary
that $\sigma \neq i d$. Then by the hypothesis in Corollary 1.7, there is a smooth blowing-down $\sigma_{1}: \widetilde{S} \rightarrow \widetilde{S}_{1}$ such that $\sigma=\sigma_{2} \cdot \sigma_{1}$. Applying Lemma 1.4, we get $-L .\left(K_{\widetilde{S}_{1}}+M^{*}\right)>0$, where $M^{*}=1 / 3 \sigma_{2}^{\prime} G_{1}+2 / 3 \sigma_{2}^{\prime} \widetilde{H}_{11}+2 / 3 \sigma_{2}^{\prime} \widetilde{H}_{1}+$ $1 / 3 \sigma_{2}^{\prime} \widetilde{H}_{12}+1 / 3 \sigma_{2}^{\prime} \widetilde{C}+1 / 3 \sigma_{2}^{\prime} \widetilde{H}_{21}+2 / 3 \sigma_{2}^{\prime} \widetilde{H}_{2}+1 / 3 \sigma_{2}^{\prime} \widetilde{H}_{22}$. Hence $0<-L .\left(K_{\widetilde{S}_{1}}+\right.$ $\left.M^{*}\right)=1-L .\left(1 / 3 \sigma_{2}^{\prime} \widetilde{C}+2 / 3 \sigma_{2}^{\prime} \widetilde{H}_{2}\right)=0$. We reach a contradiction. Therefore, $\sigma=i d$ and Case(4-2) of Theorem 1.1 occurs.

Case(5.3). \widetilde{H}_{12} is not a tip of $\widetilde{\Delta}_{1}$. Let H be the irreducible component of $\widetilde{D}-\widetilde{H}_{1}$ adjacent to \widetilde{H}_{12}. Then $\widetilde{D}^{*} \geq 1 / 7 H+2 / 7 \widetilde{H}_{12}+3 / 7 \widetilde{H}_{1}+4 / 7 \widetilde{H}_{11}+$ $2 / 7 G_{1}$. Note that H is a cross-section and $H \cdot \widetilde{\Sigma}=H \cdot\left(K_{\widetilde{T}}+\widetilde{H}_{12}\right)=1$ (cf. Lemma 1.6).

If $\widetilde{H}_{2 j}$ is not a tip of $\widetilde{\Delta}_{2}$ for $j=1$ or 2 , say $j=1$, then $\widetilde{D}^{*} \geq 4 / 11 \widetilde{H}_{21}+$ $6 / 11 \widetilde{H}_{2}+3 / 11 \widetilde{H}_{22}$, and this leads to $0<-\widetilde{\Sigma} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-\widetilde{\Sigma} \cdot\left(4 / 11 \widetilde{H}_{21}+\right.$ $\left.3 / 11 \widetilde{H}_{22}+1 / 7 H+2 / 7 G_{1}\right)=1-4 / 11-3 / 11-1 / 7-2 / 7<0$, a contradiction. So, $\widetilde{H}_{2 j}$'s are tips of $\widetilde{\Delta}_{2}$ and hence $\widetilde{\Delta}_{2}=\widetilde{H}_{21}+\widetilde{H}_{2}+\widetilde{H}_{22}$.

If G_{1} or H is not a tip of $\widetilde{\Delta}_{1}$ (resp. if $\widetilde{H}_{11}^{2} \leqq-4$), then $\widetilde{D}^{*} \geq 3 / 19 H+$ $6 / 19 \widetilde{H}_{12}+9 / 19 \widetilde{H}_{1}+12 / 19 \widetilde{H}_{11}+8 / 19 G_{1}$ or $\widetilde{D}^{*} \geq 4 / 17 \underset{\sim}{H}+6 / 17 \widetilde{H}_{12}+$ $8 / 17 \widetilde{H}_{1}+10 / 17 \widetilde{H}_{11}+5 / 17 G_{1}$ (resp. $\widetilde{D}^{*} \geq 2 / 11 H+4 / 11 \widetilde{H}_{12}+6 / 11 \widetilde{H}_{1}+$ $\left.8 / 11 \widetilde{H}_{11}+4 / 11 G_{1}\right)$ and hence $-\widetilde{\Sigma} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-\widetilde{\Sigma} \cdot\left(3 / 19 H+8 / 19 G_{1}+\right.$ $\left.1 / 4 \widetilde{H}_{21}+1 / 4 \widetilde{H}_{22}\right)=1-3 / 19-8 / 19-1 / 4-1 / 4<0$, or $\leq 1-\widetilde{\Sigma} \cdot(4 / 17 H+$ $\left.5 / 17 G_{1}+1 / 4 \widetilde{H}_{21}+1 / 4 \widetilde{H}_{22}\right)=1-4 / 17-5 / 17-1 / 4-1 / 4<0$ (resp. $\leq 1-\widetilde{\Sigma} \cdot\left(2 / 11 H+4 / 11 G_{1}+1 / 4 \widetilde{H}_{21}+1 / 4 \widetilde{H}_{22}\right)=1-2 / 11-4 / 11-1 / 4-$ $1 / 4<0)$. We reach a contradiction in any of the cases. So, $s=1, \widetilde{\Delta}_{1}=$ $H+\widetilde{H}_{12}+\widetilde{H}_{1}+\widetilde{H}_{11}+G_{1}, \widetilde{H}_{11}^{2}=-3$.

Note that $r=3$. Let E_{1}, E_{2} (resp. E_{3}, E_{4}) be the (-1)-curves in S_{2} (resp. S_{3}). Let $t_{i}+2$ be the number of irreducible components of S_{i}. We may assume that $\widetilde{H}_{21} \cdot E_{j}=1$ for $j=1$ and 3 . Note that $8=\bar{H}_{11}^{2}=$ $\widetilde{H}_{11}^{2}+2+(1+4)+\left(t_{1}+1\right)+\left(t_{2}+1\right)$. So, $t_{1}+t_{2}=2$. Now $\bar{H}_{22}^{2}=2$ implies that $\widetilde{H}_{22} \cdot E_{j}=1$ for $j=2,4$. But then it is impossible that $\bar{H}^{2}=\bar{H} \cdot \bar{H}_{22}=2$. So, Case(5-3) is impossible.

This proves Claim(5).

In view of Claim(5), we may assume that

$$
\widetilde{H}_{11} \text { is a tip of } \widetilde{\Delta}_{1}
$$

Thus,

$$
S_{1}=\widetilde{\Sigma}+E
$$

where E is a (-1)-curve such that $E \cdot \widetilde{\Sigma}=1$ and $E \cdot \widetilde{H}_{11}=S_{1} \cdot \widetilde{H}_{11}=2(\mathrm{cf}$. Lemma 1.6 (5)). If $\widetilde{H}_{11}^{2} \leq-4$, then $\widetilde{D}^{*} \geq 1 / 2 \widetilde{H}_{11}$ and $0<-E .\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq$ $1-E .1 / 2 \widetilde{H}_{11}=0$, a contradiction. So,

$$
\widetilde{H}_{11}^{2}=-3
$$

Claim(6). Suppose that \widetilde{H}_{12} is a tip. Then Case(4-3) of Theorem 1.1 occurs.

In this case, we have $r=2$, i.e.,

$$
S_{i}(i=0,1,2)
$$

are all singular fibers of φ and

$$
\widetilde{\Delta}_{1}=\widetilde{H}_{1}+\widetilde{H}_{11}+\widetilde{H}_{12}
$$

Hence $\widetilde{\Sigma}$ meets only $\widetilde{H}_{2 j}(j=1,2)$ in \widetilde{D} (cf. Lemma 1.6 (5) and Claim(3)).
Write

$$
S_{2}=E_{1}+\sum_{i=1}^{t} G_{i}+E_{2}
$$

such that $E_{1} \cdot G_{1}=G_{i} \cdot G_{i+1}=G_{t} \cdot E_{2}=1(i=1, \cdots, t-1)$. We may assume that $\widetilde{H}_{2 j}$ does not meet $\sum_{i} G_{i}$ for $j=1$ or 2 , say $j=1$. We may assume also that $\widetilde{H}_{21} \cdot E_{1}=1$. Then $\bar{H}_{22}^{2}=2$ implies that either $t=3$ and $\widetilde{H}_{22} . E_{2}=1$, or $t=4$ and $\widetilde{H}_{22} \cdot G_{4}=1$. Since $\bar{H}_{11}^{2}=8$, we must have $t=4$ and $\widetilde{H}_{11} \cdot E_{j}=1$ for $j=1$ and 2 . Now $\widetilde{H}_{11}^{2}=-3$,

$$
\widetilde{\Delta}_{2}=\widetilde{H}_{21}+\widetilde{H}_{2}+\widetilde{H}_{22}+G_{4}+G_{3}+G_{2}+G_{1}, \quad \text { and }
$$

$\widetilde{\Delta}_{1}, \quad \widetilde{\Delta}_{2}$
are all connected components of \widetilde{D} (cf. Lemma 1.1 (4) of Part I).
To prove that Case(4-3) of Theorem 1.1 occurs, it is sufficent to show that $\sigma=i d$. Let $\sigma_{2}: \widetilde{S}_{1} \rightarrow \widetilde{T}$ be the blowing-up of the point $P_{2}:=\widetilde{C} \cap \widetilde{H}_{2}$
and set $L:=\sigma_{2}^{-1}\left(P_{2}\right)$. Suppose to the contrary that $\sigma \neq i d$. Then by the hypothesis in Corollary 1.7, there is a smooth blowing-down $\sigma_{1}: \widetilde{S} \rightarrow \widetilde{S}_{1}$ such that $\sigma=\sigma_{2} \cdot \sigma_{1}$. Applying Lemma 1.4, we get $-L .\left(K_{\tilde{S}_{1}}+M^{*}\right)>$ 0 , where $M^{*}=1 / 2 \sigma_{2}^{\prime} \widetilde{H}_{11}+1 / 2 \sigma_{2}^{\prime} \widetilde{H}_{1}+1 / 4 \sigma_{2}^{\prime} \widetilde{H}_{12}+1 / 4 \sigma_{2}^{\prime} \widetilde{C}+1 / 8 \sigma_{2}^{\prime} G_{1}+$ $2 / 8 \sigma_{2}^{\prime} G_{2}+3 / 8 \sigma_{2}^{\prime} G_{3}+4 / 8 \sigma_{2}^{\prime} G_{4}+5 / 8 \sigma_{2}^{\prime} \widetilde{H}_{22}+6 / 8 \sigma_{2}^{\prime} \widetilde{H}_{2}+3 / 8 \sigma_{2}^{\prime} \widetilde{H}_{21}$. This leads to $-L .\left(K_{\widetilde{S}_{1}}+M^{*}\right)=1-L \cdot\left(1 / 4 \sigma_{2}^{\prime} \widetilde{C}+3 / 4 \sigma_{2}^{\prime} \widetilde{H}_{2}\right)=0$, a contradiction. Therefore $\sigma=i d$ and Case(4-3) of Theorem 1.1 occurs.

This proves Claim(6).
Claim(7). Suppose that \widetilde{H}_{12} is not a tip. Then either Theorem 1.1 (3) occurs or Case(4-4) of Theorem 1.1 occurs.

Then $r=3$, i.e.,

$$
S_{i}(i=0,1,2,3)
$$

are all singular fibers of φ. Write

$$
\begin{aligned}
& S_{2}=E_{1}+\sum_{i=1}^{t_{1}} G_{i}+E_{2}, \\
& S_{3}=E_{3}+\sum_{i=t_{1}+1}^{t_{1}+t_{2}} G_{i}+E_{4}
\end{aligned}
$$

such that $E_{j}^{2}=-1, G_{i}^{2}=-2, E_{1} \cdot G_{1}=G_{t_{1}} \cdot E_{2}=E_{3} \cdot G_{t_{1}+1}=G_{t_{1}+t_{2}} \cdot E_{4}=$ $G_{i} \cdot G_{i+1}=1$.

Let H be an irreducible component of $\widetilde{\Delta}_{1}-\widetilde{H}_{1}$ adjacent to \widetilde{H}_{12}. If H is not a tip of $\widetilde{\Delta}_{1}$ then the intersection matrix of $\widetilde{C}+\widetilde{\Delta}_{1}$ and hence that of $C+T_{2}+\Delta_{1}$ have a positive eigenvalue. So Theorem 1.1 (3) occurs. Thus we may assume that H is a tip of $\widetilde{\Delta}_{1}$. Hence $\widetilde{\Sigma} \cdot H=1$ and

$$
\widetilde{\Delta}_{1}=\widetilde{H}_{1}+\widetilde{H}_{11}+\widetilde{H}_{12}+H .
$$

Note that

$$
\widetilde{D}^{*}=1 / 9 H+2 / 9 \widetilde{H}_{12}+3 / 9 \widetilde{H}_{1}+4 / 9 \widetilde{H}_{11}+(\text { other terms }) .
$$

Now one may assume that $E_{j} \cdot H=1$ for $j=2,4$. Let $\varepsilon: \widetilde{T} \rightarrow \Sigma_{2}$ be the smooth blowing-down of curves in the singular fibers of φ such that $\varepsilon(H)^{2}=-2$. Then $\varepsilon\left(H_{2 j}\right)^{2}=2(j=1,2)$ and $\varepsilon\left(H_{11}\right)^{2}=8$.

If $\widetilde{H}_{11} \cdot E_{i}=2$ for $i=1$ or 3 , say $i=1$, then $S_{2}=E_{1}+E_{2}, S_{3}=E_{3}+E_{4}$ and $\widetilde{H}_{11} . E_{k}=1$ for $k=3$ and 4 because $\varepsilon\left(H_{11}\right)^{2}=8$. But then $\varepsilon\left(H_{2 j}\right)^{2} \leq$ $-2+3(j=1,2)$, a contradiction. If $\widetilde{H}_{11} \cdot E_{i}=2$ for $i=2$ or 4 , then $-E_{i} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-E_{i} \cdot\left(1 / 9 H+4 / 9 \widetilde{H}_{11}\right)=1-1 / 9-(4 / 9) \times 2=0$, a contradiction. So, $\widetilde{H}_{11} \cdot E_{j}=1$ for $j=1,2,3$ and 4 . Now $\varepsilon\left(H_{11}\right)^{2}=8$ implies that $t_{1}+t_{2}=3$.

If $\widetilde{H}_{2 j}$ is not a tip of $\widetilde{\Delta}_{2}$ for both $j=1$ and 2 , then one may assume that $\left(t_{1}, t_{2}\right)=(1,2)$ and $\widetilde{H}_{21} \cdot G_{1}=1$. Then it is impossible that $\varepsilon\left(H_{21}\right)^{2}=2$. So, one may assume that \widetilde{H}_{21} is a tip of $\widetilde{\Delta}_{2}$.

Since $\varepsilon\left(H_{21}\right)^{2}=2$, one may assume that $\left(t_{1}, t_{2}\right)=(1,2)$ and $\widetilde{H}_{21} \cdot E_{j}=1$ for $j=2$ and 3 . Now $\varepsilon\left(H_{22}\right) \cdot \varepsilon\left(H_{21}\right)=2$ implies that $\widetilde{H}_{22} \cdot E_{1}=\widetilde{H}_{22} \cdot G_{3}=1$. So,

$$
\widetilde{\Delta}_{2}=\widetilde{H}_{21}+\widetilde{H}_{2}+\widetilde{H}_{22}+G_{3}+G_{2}
$$

and

$$
\widetilde{\Delta}_{1}, \quad \widetilde{\Delta}_{2}, \quad G_{1}
$$

are all connected components of \widetilde{D} (cf. Lemma 1.1 (4), Part I).
Now $\left(t_{1}, t_{2}\right)=(1,2)$ and $\widetilde{H}_{11}^{2}=-3$. To prove that Case $(4-4)$ takes place, we have only to show that $\sigma=i d$. Let $\sigma_{2}: \widetilde{S}_{1} \rightarrow \widetilde{T}$ be the blowing-up of the point $\widetilde{C} \cap \widetilde{H}_{2}$ and set $L:=\sigma_{2}^{-1}\left(P_{2}\right)$. Suppose to the contrary that $\sigma \neq i d$. Then by the hypothesis in Corollary 1.7, there is a smooth blowing-down $\sigma_{1}: \widetilde{S} \rightarrow \widetilde{S}_{1}$ such that $\sigma=\sigma_{2} \cdot \sigma_{1}$. Applying Lemma 1.4, we get $-L .\left(K_{\widetilde{S}_{1}}+\right.$ $\left.M^{*}\right)>0$, where $M^{*}=2 / 9 \sigma_{2}^{\prime} H+4 / 9 \sigma_{2}^{\prime} \widetilde{H}_{12}+6 / 9 \sigma_{2}^{\prime} \widetilde{H}_{1}+5 / 9 \sigma_{2}^{\prime} \widetilde{H}_{11}+3 / 9 \sigma_{2}^{\prime} \widetilde{C}+$ $+4 / 11 \sigma_{2}^{\prime} \widetilde{H}_{21}+8 / 11 \sigma_{2}^{\prime} \widetilde{H}_{2}+6 / 11 \sigma_{2}^{\prime} \widetilde{H}_{22}+4 / 11 \sigma_{2}^{\prime} G_{3}+2 / 11 \sigma_{2}^{\prime} G_{2}$. This leads to $-L .\left(K_{\widetilde{S}_{1}}+M^{*}\right)=1-L .\left(1 / 3 \sigma_{2}^{\prime} \widetilde{C}+8 / 11 \sigma_{2}^{\prime} \widetilde{H}_{2}\right)=1-1 / 3-8 / 11<0$, a contradiction. Therefore, $\sigma=i d$ and Case(4-4) of Theorem 1.1 occurs.

This proves Claim(7) and also Lemma 1.10.
LEmma 1.11. Suppose that the case (2) in Lemma 1.8 occurs with $\left(\widetilde{J}_{a}^{2}, \widetilde{J}_{b}^{2}\right)=(-2,-3)$ or $(-2,-4)$ but the case in Corollary 1.7 does not occur. Then Theorem 1.1, (3) or (5) occurs.

Proof. By the hypothesis, $J_{a}=H_{a}$ and we may assume that $\widetilde{H}_{a 1}^{2} \leq$

Claim(1). It is impossible that $\widetilde{J}_{b}^{2}=-4$.
We consider the case $\widetilde{J}_{b}^{2}=-4$. Since the case in Corollary 1.7 does not occur, we have $\sigma \neq i d$. Let $\tau_{i}: \widetilde{S}_{i} \rightarrow \widetilde{T}$ be the blowing-up of the point $P_{i}:=\widetilde{C} \cap \widetilde{J}_{i}$. Let $E_{i}:=\tau_{i}^{-1}\left(P_{i}\right)$. Then for $t=a$ or b, there is a smooth blowing-down $\sigma_{t}: \widetilde{S} \rightarrow \widetilde{S}_{t}$ such that $\sigma=\tau_{t} \cdot \sigma_{t}$. Now we apply Lemma 1.4. In particular, we have $-E_{t} \cdot\left(K_{\widetilde{S}_{t}}+M^{*}\right)>0$.

Case $t=a$. Then $M^{*} \geq 8 / 13 \tau_{a}^{\prime} \widetilde{H}_{a}+7 / 13 \tau_{a}^{\prime} \widetilde{H}_{a 1}+4 / 13 \tau_{a}^{\prime} \widetilde{H}_{a 2}+2 / 5 \tau_{a}^{\prime} \widetilde{C}+$ $4 / 5 \tau_{a}^{\prime} \widetilde{J}_{b}$. This leads to $0<-E_{a} .\left(K_{\widetilde{S}_{t}}+M^{*}\right) \leq 1-E_{a} \cdot\left(8 / 13 \tau_{a}^{\prime} \widetilde{H}_{a}+2 / 5 \tau_{a}^{\prime} \widetilde{C}\right)=$ $1-8 / 13-2 / 5<0$, a contradiction. So this case is impossible.

Case $t=b$. Then $M^{*} \geq 1 / 4 \tau_{b}^{\prime} \widetilde{C}+1 / 2 \tau_{b}^{\prime} \widetilde{H}_{a}+1 / 2 \tau_{b}^{\prime} \widetilde{H}_{a 1}+1 / 4 \tau_{b}^{\prime} \widetilde{H}_{a 2}+$ $3 / 4 \tau_{b}^{\prime} \widetilde{J}_{b}$. This leads to $0<-E_{b} .\left(K_{\widetilde{S}_{t}}+M^{*}\right) \leq 1-E_{b} .\left(1 / 4 \tau_{b}^{\prime} \widetilde{C}+3 / 4 \tau_{b}^{\prime} \widetilde{J}_{b}\right)=0$, a contradiction. So this case is also impossible.

This proves Claim(1).
Therefore, $\widetilde{J}_{b}^{2}=-3$.
$\operatorname{CLAIM}(2) . \quad \widetilde{\Delta}_{a}$ is a linear chain and the connected component of $\widetilde{\Delta}_{a}-\widetilde{H}_{a}$ containing $\widetilde{H}_{a 2}$ is a (-2)-chain.

Since it is impossible that $\widetilde{\Delta}_{b}$ is a linear chain with \widetilde{J}_{b} as a tip (cf. the hypopthesis $(*)$ after Lemma 1.3), we have $\widetilde{D}^{*} \geq 1 / 2 \widetilde{J}_{b}$. We shall also show that if Claim $(\underset{\sim}{2})$ is false then $\widetilde{D}^{*} \geq 1 / 2 \widetilde{H}_{a}$.

In fact, if $\widetilde{\Delta}_{a}$ is a fork, such that either \widetilde{H}_{a} is the central component or $\widetilde{H}_{a 2}$ and the central componet are contained in the same connected component of $\widetilde{\Delta}_{a}-\widetilde{H}_{a}$, then $\widetilde{D}^{*} \geq 1 / 2 \widetilde{H}_{a 1}+1 / 2 \widetilde{H}_{a}+1 / 4 \widetilde{H}_{a 2}$. If $\widetilde{\Delta}_{a}$ is a fork such that $\widetilde{H}_{a 1}$ and the central componet are contained in the same connected component of $\widetilde{\Delta}_{a}-\widetilde{H}_{a}$, then $\widetilde{D}^{*} \geq 1 / 4 \widetilde{H}_{a 2}+2 / 4 \widetilde{H}_{a}+3 / 4 \widetilde{H}_{a 1}$. If $\widetilde{\Delta}_{a}$ is a linear chain but the connected component of $\widetilde{\Delta}_{a}-\widetilde{H}_{a}$ containing $\widetilde{H}_{a 2}$ is not a (-2)-chain, then $\widetilde{D}^{*} \geq 1 / 2 \widetilde{H}_{a 1}+1 / 2 \widetilde{H}_{a}+1 / 2 \widetilde{H}_{a 2}$.

Now suppose Claim(2) is false. Then we have $\widetilde{D}^{*} \geq 1 / 2 \widetilde{H}_{a}$ by the above arguments. This leads to $0<-\widetilde{C} \cdot\left(K_{\widetilde{T}}+\widetilde{D}^{*}\right) \leq 1-\widetilde{C} \cdot\left(1 / 2 \widetilde{H}_{a}+1 / 2 \widetilde{J}_{b}\right)=0$, a contradiction. So Claim(2) is true.

Thus, $\widetilde{H}_{a 2}^{2}=-2$. If \widetilde{J}_{b} is a tip of $\widetilde{\Delta}_{b}$, i.e., if $J_{b} \neq H_{b}$, then Theorem 1.1 (3) occurs. Indeed, $\widetilde{C}+\widetilde{J}_{b}+\widetilde{H}_{a}+\widetilde{H}_{a 2}$ is a support of a singular fiber of a \mathbf{P}^{1}-fibration; hence the intersection matrices of $\widetilde{C}+\widetilde{J}_{b}+\widetilde{\Delta}_{a}$ and $C+T_{b}+\Delta_{a}$ have a positive eigenvalue.

Therefore, we may assume that $J_{b}=H_{b}$. Since the case in Corollary 1.7 does not occur, there are two smooth blowing-downs $\sigma_{1}: \widetilde{S} \rightarrow \widetilde{S}_{1}, \sigma_{2}$: $\widetilde{S}_{1} \rightarrow \widetilde{T}$ such that $\sigma=\sigma_{2} \cdot \sigma_{1}$ and that :
(1) $\sigma_{1}\left(T_{a}+C+T_{b}\right)=T_{a}^{\prime}+E+T_{b}^{\prime}$ where E is a (-1)-curve and $T_{i}^{\prime} \leq \sigma_{1}\left(T_{i}\right)$,
(2) $T_{a}^{\prime}+\sigma_{1}\left(H_{a}\right)=\sum_{i=1}^{s} L_{i}, E . L_{1}=L_{i} \cdot L_{i+1}=1(i=1, \cdots, s-1 ; s \geq$ 1), $L_{s}=\sigma_{1}\left(H_{a}\right), L_{1}^{2}=-t-1 \leq-3, L_{j}^{2}=-2(j>1)$,
(3) $T_{b}^{\prime}+\sigma_{1}\left(H_{b}\right)=\sum_{i=1}^{t} M_{i}, E \cdot M_{1}=M_{i} \cdot M_{i+1}=1(i=1, \cdots, t-1 ; t \geq$ 2), $M_{t}=\sigma_{1}\left(H_{b}\right), M_{j}^{2}=-2(j<t), M_{t}^{2}=-s-2 \leq-3$, and
(4) σ_{1} does not factorize through the blowing-up of the point $P_{a}:=$ $E \cap L_{1}$.

In particular, we see that $\sigma_{1}\left(\Delta_{b}\right)$ is a fork and hence $\widetilde{\Delta}_{b}$ is a linear chain. Now we apply Lemma 1.4. In particular, we have $-E .\left(K_{\widetilde{S}_{1}}+M^{*}\right)>0$.
$\operatorname{Claim}(3) . \quad \sigma_{1}=i d$. Hence $a=2, b=1, C=E, D_{1}=M_{1}, D_{2}=$ $L_{1}, D_{2}^{2}=-t-1 \leq-3, H_{21}^{2} \leq-3$ and $T_{1}=\sum_{i=1}^{t-1} M_{i}$ is a (-2)-twig.

Let $\tau_{2}: \widetilde{X} \rightarrow \widetilde{S}_{1}$ be the blowing-up of the point $P_{b}:=E \cap M_{1}$ and set $F:=\tau_{2}^{-1}\left(P_{b}\right)$. Suppose that Claim(3) is false. Then by the definition of σ_{1} (cf. the above condition(4)), there is a smooth blowing-down $\tau_{1}: \widetilde{S} \rightarrow \widetilde{X}$ such that $\sigma_{1}=\tau_{2} \cdot \tau_{1}$. Now we apply Lemma 1.4. In particular, we have $-F .\left(K_{\tilde{X}}+N^{*}\right)>0$, where $N=D$ if $\tau_{1}=i d$ and $N=\tau_{1}(D)-F$ otherwise.

Since $\tau_{1}\left(C+\Delta_{1}+\Delta_{2}\right)-F$ can be contractible to quotient singularities (cf. Lemma 1.4), we have $s=1$ or 2 , and if $s=2$ then $t=2, \widetilde{H}_{a 1}^{2}=-3$ and $\tau_{1}\left(\Delta_{a}\right)=\tau_{2}^{\prime}\left(E+\sum_{i} L_{i}\right)+\tau_{1}\left(H_{a 1}+H_{a 2}\right)$.

Suppose $s=1$. Then $N^{*} \geq(3 t-2) /(6 t-2) \tau_{2}^{\prime} E+2(3 t-2) /(6 t-$ 2) $\tau_{1}\left(H_{a}\right)+(4 t-2) /(6 t-2) \tau_{1}\left(H_{a 1}\right)+(3 t-2) /(6 t-2) \tau_{1}\left(H_{a 2}\right)+\sum_{i}(t+$ i) $/(2 t+1) \tau_{2}^{\prime}\left(M_{i}\right)+t /(2 t+1) \tau_{1}\left(H_{b 1}\right)+t /(2 t+1) \tau_{1}\left(H_{b 2}\right)$. This leads to

$$
\begin{gathered}
0<-F \cdot\left(K_{\tilde{X}}+N^{*}\right) \leq 1-F \cdot\left((3 t-2) /(6 t-2) \tau_{2}^{\prime} E+(t+1) /(2 t+1) \tau_{2}^{\prime} M_{1}\right)= \\
1-(3 t-2) /(6 t-2)-(t+1) /(2 t+1)=(-t+2) /(6 t-2)(2 t+1) \leq 0
\end{gathered}
$$

because $t \geq 2$. We reach a contradiction.
Suppose that $s=2$. Then $N^{*} \geq 9 / 23 \tau_{2}^{\prime} E+18 / 23 \tau_{2}^{\prime}\left(L_{1}\right)+22 / 23 \tau_{1}\left(H_{a}\right)+$ $15 / 23 \tau_{1}\left(H_{a 1}\right)+11 / 23 \tau_{1}\left(H_{a 2}\right)+10 / 16 \tau_{2}^{\prime}\left(M_{1}\right)+14 / 16 \tau_{1}\left(H_{b}\right)+7 / 16 \tau_{1}\left(H_{b 1}\right)+$ $7 / 16 \tau_{1}\left(H_{b 2}\right)$. This leads to
$0<-F .\left(K_{\tilde{X}}+N^{*}\right) \leq 1-F .\left(9 / 23 \tau_{2}^{\prime} E+10 / 16 \tau_{2}^{\prime} M_{1}\right)=1-9 / 23-10 / 16<0$.
We reach a contradiction.
So Claim(3) is true.
$\operatorname{Claim}(4) . \quad s=1$. Hence Δ_{2} is a linear chain, $H_{2}=D_{2}$ and $H_{1}^{2}=$ $-s-2=-3$.

Suppose $s \geq 3$. Then $s=3, t=2, H_{21}^{2}=-3, D_{2}=L_{1}, H_{2}=L_{3}, D_{1}=$ $M_{1}, H_{1}=M_{2}, H_{2}=L_{3}, \Delta_{2}=D_{2}+L_{2}+H_{2}+H_{21}+H_{22}$ because Δ_{2} is contractible to a quotient singularity. So, we have $D^{*} \geq 3 / 7 D_{1}+6 / 7 H_{1}+$ $3 / 7 H_{11}+3 / 7 H_{12}+10 / 17 D_{2}+13 / 17 L_{2}+16 / 17 H_{2}+11 / 17 H_{21}+8 / 17 H_{22}$. This leads to $0<-C .\left(K_{\widetilde{S}}+D^{*}\right) \leq 1-C .\left(3 / 7 D_{1}+10 / 17 D_{2}\right)=1-3 / 7-10 / 17<0$, a contradiction.

Suppose $s=2$. Then $D_{2}=L_{1}, H_{2}=L_{2}, D^{*} \geq \sum_{i} 2 i /(2 t+1) M_{i}+t /(2 t+$ 1) $H_{11}+t /(2 t+1) H_{12}+(7 t-5) /(7 t+1) D_{2}+4(2 t-1) /(7 t+1) H_{2}+(5 t-$ 1) $/(7 t+1) H_{21}+2(2 t-1) /(7 t+1) H_{22}$. This leads to $0<-C .\left(K_{\widetilde{S}}+D^{*}\right) \leq$ $1-C .\left(2 /(2 t+1) D_{1}+(7 t-5) /(7 t+1) D_{2}\right)=1-2 /(2 t+1)-(7 t-5) /(7 t+1)=$ $(4-2 t) /(2 t+1)(7 t+1) \leq 0$, because $t \geq 2$. We reach a contradiction.

This proves Claim(4).
$\operatorname{Claim}(5) . \quad t=2,3$. Hence $D_{2}^{2}=-t-1=-3,-4$.
Note that $D^{*} \geq \sum_{i} i /(t+1) M_{i}+t / 2(t+1) H_{11}+t / 2(t+1) H_{12}+(6 t-$ 4) $/(6 t+1) D_{2}+(4 t-1) /(6 t+1) H_{21}+(3 t-2) /(6 t+1) H_{22}$, where $D_{2}=L_{1}$. So, $0<-C \cdot\left(K_{\widetilde{S}}+D^{*}\right) \leq 1-C \cdot\left(1 /(t+1) D_{1}+(6 t-4) /(6 t+1) D_{2}\right)=$ $1-1 /(t+1)-(6 t-4) /(6 t+1)=(4-t) /(t+1)(6 t+1)$. Hence $t \leq 3$. This proves Claim(5).

Claim(6). Theorem 1.1 (5) occurs.
Consider first the case $D_{2}^{2}=-t-1=-3$. Then $D_{1}=M_{1}, H_{1}=$ $M_{2}, D_{2}=H_{2}, D^{*} \geq 1 / 3 D_{1}+2 / 3 H_{1}+1 / 3 H_{11}+1 / 3 H_{12}+7 / 13 H_{21}+8 / 13 D_{2}+$
$4 / 13 H_{22}$. If H_{21} is not a tip (resp. H_{22} is not a tip, or $H_{21}^{2} \leq-4$), then $D^{*} \geq 2 / 3 H_{21}+2 / 3 D_{2}+1 / 3 H_{22}$ (resp. $D^{*} \geq 5 / 9 H_{21}+6 / 9 D_{2}+4 / 9 H_{22}$, or $\left.D^{*} \geq 2 / 3 H_{21}+2 / 3 D_{2}+1 / 3 H_{22}\right)$. Any of the three cases leads to $0<-C \cdot\left(K_{\widetilde{S}}+D^{*}\right) \leq 1-C \cdot\left(1 / 3 D_{1}+2 / 3 D_{2}\right)=0$, a contradiction. Thus, $\Delta_{2}=D_{2}+H_{21}+H_{22}$ and $H_{21}^{2}=-3$. So, Δ_{2} is as described in Figure 5 or 6 .

Let $T_{1}^{\prime}, T_{1}^{\prime \prime}$ be twigs of Δ_{1} containing H_{11}, H_{12}, respectively. If both T_{1}^{\prime} and $T_{1}^{\prime \prime}$ have more than one irreducible components (resp. T_{1}^{\prime} or $T_{1}^{\prime \prime}$, say T_{1}^{\prime} has more than two irreducible components), then $D^{*} \geq 3 / 7 D_{1}+6 / 7 H_{1}+$ $4 / 7 H_{11}+4 / 7 H_{12}$ (resp. $D^{*} \geq 2 / 5 D_{1}+4 / 5 H_{1}+3 / 5 H_{11}+2 / 5 H_{12}$). Any of the two cases leads to $0<-C \cdot\left(K_{\widetilde{S}}+D^{*}\right) \leq 1-C \cdot\left(2 / 5 D_{1}+8 / 13 D_{2}\right)=$ $1-2 / 5-8 / 13<0$, a contradiction.

To show that $C+\Delta_{1}+\Delta_{2}$ is as described in Figure 5 or 6 , it remains to show that $\Delta_{1}-H_{1}$ consists of only (-2)-curves. Indeed, if $H_{1 j}^{2} \leq-3$ for $j=1$ or 2 , say $j=1$, then $D^{*} \geq 2 / 5 D_{1}+4 / 5 H_{1}+3 / 5 H_{11}+2 / 5 H_{12}$ and a contradiction is derived as in the above paragraph. Note that $H:=$ $\Delta_{1}-\left(D_{1}+H_{1}+H_{11}+H_{12}\right)$ is zero or a single curve. It remains to show that $H^{2}=-2$ if $H \neq 0$. Indeed, suppose $H^{2} \leq-3$ and suppose, without loss of generality, $H \leq T_{1}^{\prime}$. Then $D^{*} \geq 3 / 7 D_{1}+6 / 7 H_{1}+4 / 7 H+5 / 7 H_{11}+3 / 7 H_{12}$, and we reach again a contradiction as in the above paragraph.

We have proved that $C+\Delta_{1}+\Delta_{2}$ is as described in Figure 5 if $D_{2}^{2}=-3$.
Now we consider the case $D_{2}^{2}=-4$. Let $\gamma_{1}: \widetilde{S} \rightarrow \widetilde{X}$ be the blowing-down of C. Let $\gamma_{2}: \widetilde{X} \rightarrow \widetilde{T}$ be the smooth blowing-down such that $\sigma=\gamma_{2} \cdot \gamma_{1}$. Now we apply Lemma 1.4. In particular, we have $-F .\left(K_{\tilde{X}}+N^{*}\right)>0$ where $F=\gamma_{1}\left(D_{1}\right)$ is a (-1)-curve and $N=\gamma_{1}(D)-F$.

Now F meets a (-2)-curve $\gamma\left(M_{2}\right)$ and a (-3 -curve $\gamma\left(D_{2}\right)$. By making use of the latter inequality for F and by the arguments for the case $D_{2}^{2}=-3$, we can also prove that $\gamma\left(\Delta_{1}-D_{1}\right), \gamma\left(\Delta_{2}\right)$ have the same weighted dual graphs as Δ_{1}, Δ_{2}, respectively in Figure 5 . To verify that $C+\Delta_{1}+\Delta_{2}$ is as described in Figure 6, it remains to show that $H:=\Delta_{1}-\left(D_{1}+M_{2}+\right.$ $\left.H_{1}+H_{11}+H_{12}\right)=0$. Suppose $H \neq 0$, say H is adjacent to H_{11}. Then $D^{*} \geq 2 / 7 D_{1}+4 / 7 M_{2}+6 / 7 H_{1}+2 / 7 H+4 / 7 H_{11}+3 / 7 H_{12}+11 / 19 H_{21}+$ $14 / 19 D_{2}+7 / 19 H_{21}$. This leads to $0<-C \cdot\left(K_{\widetilde{S}}+D^{*}\right) \leq 1-C \cdot\left(2 / 7 D_{1}+\right.$ $\left.14 / 19 D_{2}\right)=1-2 / 7-14 / 19<0$, a contradiction.

This proves Claim(6) and hence Lemma 1.11.

Lemma 1.12. In the Case (3) of Theorem 1.1, $\pi_{1}\left(S^{o}\right)$ is finite.
Proof. The argument in this case is similar to the proof of Lemma 6.24 at the end of Part \mathbf{I}. We can assume that the intersection matrix of $C+T_{1}+\Delta_{2}$ has a positive eigenvalue. Let $T_{1}=B_{1}+L_{2}+\cdots+L_{r}$ be the twig. If U is a nice tubular neighborhood of $C+T_{1}+\Delta_{2}$, then it is easy to see that $U-D$ has $N-D$ as a strong deformation retract, where N is a tubular neighborhood of $C+\Delta_{2}$. Now the rest of the argument is exactly as in the proof of Lemma 6.24 in Part \mathbf{I}.

Lemma 1.13. Suppose that Theorem 1.1 (4) occurs. Then $\pi_{1}\left(S^{o}\right)$ is finite.

Proof. We will use the description of $C+\Delta_{1}+\Delta_{2}$ in Figure 1, 2,3 or 4. As before, the intersection matrix of $C+\Delta_{1}+\Delta_{2}$ has a positive eigenvalue and by Lemma 1.10 of Part \mathbf{I} we have a surjection $\pi_{1}\left(U-\Delta_{1}-\Delta_{2}\right) \rightarrow \pi_{1}\left(S^{o}\right)$, where U is a small neighborhhod of $C \cup \Delta_{1} \cup \Delta_{2}$. We will use the presentation of $\pi_{1}\left(U-\Delta_{1}-\Delta_{2}\right)$ given by Mumford in [3].

Case (4-1). Then $\pi_{1}(\partial U)$ is given by generators $e_{0}, e_{1}, e_{11}, e_{12}, e_{2}, e_{21}, e_{22}$, g_{1}, g_{2} corresponding to $C, H_{1}, H_{11}, H_{12}, H_{2}, H_{21}, H_{22}, G_{1}, G_{2}$ respectively and the following relations (cf. Figure 1) :

$$
\begin{gathered}
1=e_{11}^{-3} e_{1}=e_{12}^{-2} e_{1}=e_{11} e_{12} e_{1}^{-2} e_{0}=e_{1} e_{0}^{-1} e_{2} \\
=e_{0} e_{2}^{-3} e_{21} e_{22}=g_{1} e_{21}^{-2} e_{2}=g_{1}^{-2} e_{21}=g_{2} e_{22}^{-2} e_{2}=g_{2}^{-2} e_{22}
\end{gathered}
$$

Now $\pi_{1}(U-D)$ is obtained by putting $e_{0}=1$ in the relations above. Hence in $\pi_{1}(U-D)$, we have

$$
\begin{gathered}
e_{1}=e_{12}^{2}, e_{2}=e_{1}^{-1}=e_{12}^{-2}, e_{11}=e_{1}^{2} e_{12}^{-1}=e_{12}^{3}, e_{22}=g_{2}^{2} \\
e_{21}=e_{2}^{3} e_{22}^{-1}=e_{12}^{-6} g_{2}^{-2}, g_{1}=e_{2}^{-1} e_{21}^{2}=e_{12}^{2}\left(e_{12}^{-6} g_{2}^{-2}\right)^{2} \\
e_{12}^{2}=e_{1}=e_{11}^{3}=e_{12}^{9}, e_{12}^{7}=1 \\
e_{12}^{2}=e_{2}^{-1}=g_{2} e_{22}^{-2}=g_{2}^{-3}, e_{12}=e_{12}^{-6}=g_{2}^{9}
\end{gathered}
$$

Here 7 is the absolute value of the determinant of the intersection matrix of Δ_{1}. The above relation shows that all the generators of $\pi_{1}(U-D)$ can
be expressed in terms of g_{2} and $g_{2}^{63}=e_{12}^{7}=1$. Hence $\pi_{1}(U-D)$ is a finite cyclic group generated by g_{2}. Thus $\pi_{1}\left(S^{\circ}\right)$ is a finite cyclic group in this case.

Case (4-2). We argue exactly as above. The determinant of $\Delta_{1}= \pm 11$ and $\pi_{1}(U-D)$ is generated by e_{21} (corresponding to H_{21}) (cf. Figure 2). Again $\pi_{1}(U-D)$ is a finite cyclic group.

Case (4-3). Then the determinant of $\Delta_{1}= \pm 7$ (cf. Figure 3). In this case $\pi_{1}(U-D)$ is a finite group generated by g_{1} (corresponding to G_{1}).

In the above cases, the crucial fact used was the linearity of Δ_{1}, Δ_{2}.
Case (4-4). Then the determinants of Δ_{1}, Δ_{2} are $\pm 9, \pm 14$ respectively (both non-primes) (cf. Figure 4). In this case we use the (-1)-curve E in the singular fiber S_{1}. Now $E+\Delta_{1}$ supports a divisor with a positive self-intersection. E intersects only the curve H_{11} from $\Delta_{1}\left(E \cdot H_{11}=2\right)$ which is a tip of the linear chain Δ_{1}. Now the argument used for the case $|K+C+D| \neq \phi$ in Part I, using Lemma 1.14 in Part I, proves that $\pi_{1}\left(S^{o}\right)$ is a finite group.

This proves Lemma 1.13.
Lemma 1.14. Suppose that Theorem 1.1 (5) occurs. Then $\pi_{1}\left(S^{o}\right)$ is finite.

Proof. In Case (5-5) of Theorem 1.1, the determinant of $\Delta_{2}= \pm 13$ and Δ_{2} is linear (whether $H=\phi$ or $\neq \phi$). In Case (5-6) of Theorem 1.1, the determinant of $\Delta_{2}= \pm 19$ and Δ_{2} is linear (cf. Figures 5, 6).

If U is a tubular neighborhood of $C \cup \Delta_{1} \cup \Delta_{2}$, then using Mumford's presentation we see that $\pi_{1}(U-D)$ is a homomorphic image of $\pi_{1}\left(U_{1}-\Delta_{1}\right)$, where U_{1} is a small tubular neighborhood of Δ_{1}. Since Δ_{1} defines a quotient singular point, we deduce the finiteness of $\pi_{1}\left(S^{o}\right)$. Lemma 1.14 is proved.

Thus we have proved Theorem 1.1 and also the Main Theorem.
Remark. By $[6,7,8]$, we see that our main theorem is still true with the ampleness of the anti-canonical divisor $-K_{S}$ replaced by the weaker nef and bigness, but it is not true any more if either one replaces the ampleness
of $-K_{S}$ by that the anti-Kodaira dimension equals two, or one lets S have worse \log canonical singularities.

References

[1] Fujiki, A., Kobayashi, R. and S. Lu, On the Fundamental group of Certain Open normal Surfaces, Saitama Math. J. 11 (1993), 15-20.
[2] Gurjar, R. V. and D.-Q. Zhang, π_{1} of Smooth Points of a Log Del Pezzo Surface is Finite : I, J. Math. Sci. Univ. Tokyo 1 (1994), 137-180.
[3] Mumford, D., The topology of normal singularities of an algebraic surface, Publ. Math. I.H.E.S. no. 9 (1961), 5-22.
[4] Zhang, D.-Q., Logarithmic del Pezzo surfaces of rank one with contractible boundries, Osaka J. Math. 25 (1988), 461-497.
[5] Gurjar, R. V. and D.-Q. Zhang, On the fundamental groups of some open rational surfaces, Preprint 1994.
[6] Zhang, D.-Q., Algebraic surfaces with nef and big anti-canonical divisor, Math. Proc. Camb. Phil. Soc. 117 (1995), 161-163.
[7] Zhang, D.-Q., Normal algebraic surfaces of anti-Kodaira dimension one or two, Intern. J. Math. 6 (1995), 329-336.
[8] Zhang, D.-Q., Algebraic surfaces with log canonical singularities and the fundamental groups of their smooth parts, to appear.
(Received May 13, 1994)
(Revised July 29, 1994)
R. V. Gurjar

School of Mathematics
Tata Institute of Fundamental Research Bombay 400005
INDIA
e-mail: gurjar@tifrvax.tifr.res.in
D.-Q. Zhang

Department of Mathematics
National University of Singapore
SINGAPORE
e-mail: matzdq@math.nus.sg

[^0]: 1991 Mathematics Subject Classification. Primary 14J45; Secondary 14E20, 14J17, 14J26.

