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The dynamics of a degenerate

reaction diffusion equation

By Sigurd B. Angenent and Donald G. Aronson

Abstract. We consider the initial-boundary value problem for a
degenerate reaction diffusion equation consisting of the porous medium
operator plus a nonlinear reaction term. The structure of the set of
equilibria depends on the length of the spatial domain. There are two
critical lengths 0<L0<L1 such that the equation possesses one equilib-
rium if L∈(0,L0), three equilibria for L∈(L0,L1] or two plus a one or more
parameter family of equilibria when L>L1.

Using a topological argument we show existence of connecting orbits
joining the unstable equilibrium with the two stable equilibria for L∈
(L0,L1], when there are three equilibria. By showing that the principle of
linearized stability can sometimes be applied with succes to degenerate
parabolic equations, these connections are found to be unique for L0<

L<L1.
We also investigate the nature of the connecting orbits at the crit-

ical value L1 of the length L, i.e. just before the unstable equilibrium
bifurcates into a continuum of equilibria.

1. Introduction

In this paper we continue the investigation of the dynamics of

∂u

∂t
=

∂2um

∂x2
+ f(u) (−L < x < L, t ≥ 0),(1.1)

u(±L, t) = 0, u(x, 0) = u0(x)

with 1 < m < ∞, f(u) = u(1 − u)(u − a) for some 0 < a < 1, which was

begun by Aronson, Crandall & Peletier [ACP], and extended by Langlais
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& Phillips [LP]. Here we investigate the existence of heteroclinic orbits

connecting the unstable and stable equilibria which were found in [ACP].

The weak solutions of this initial value problem define a semiflow {φt :

t ≥ 0} on the space X = {u ∈ L∞(Ω) : 0 ≤ u ≤ 1}, which is gradient-like

with respect to the functional

(1.2) E(u) =

∫
Ω

{
1/2((u

m)x)
2 − F (u)

}
dx, F (u) =

∫ u

0
f(s)dsm.

The dynamics of (1.1) with m = 1 has been studied extensively (see [He,

BF1, BF2]), in the sense that the equilibria and the complete orbits con-

necting them have been classified. It has been found that, for 0 < a < 1/2,

there is a critical value L∗ > 0 such that the zero solution is the only equi-

librium of (1.1) when 0 < L < L∗; in this case all solutions converge to the

zero solution as t → ∞. If a ≥ 1/2 then the same situation occurs for any

value of L > 0. However, if a < 1/2 and L > L∗, then there exist exactly

two solutions, apart from the zero solution, which we denote by p and q.

These solutions are ordered, and we assume that 0 < p < q. It then turns

out that q is asymptotically stable, while p is a hyperbolic fixed point for

the semiflow. There are only two connecting orbits, one from p to q, and

one from p to the zero solution [He].

The proof of these statements concerning the nondegenerate case m = 1

relies heavily on the fact that for m = 1 the PDE is a semilinear heat

equation, which allows one to use standard linearization techniques [He] to

study the solutions of (1.1) near its equilibria.

In the present paper we try to prove similar statements about the de-

generate equation. The initial value problem and the set of equilibria

have been studied by Aronson, Crandall and Peletier. They found that,

just as in the semilinear case, (1.1) generates a semiflow for which (1.2)

is a Lyapunov function, so that one can try to describe the dynamics

in terms of the equilibria and their connecting orbits. They also found

that the zero solution is again the only equilibrium if a is too large, i.e.

if a ≥ (m + 1)/(m + 3), and that this solution attracts all orbits in this

case. Similarly, if a < (m+1)/(m+3) there turns out to be a critical value

L0 = L0(m, a) such that the zero solution is a global attractor if L < L0.

Persuing the analogy with the semilinear case, one would expect two

positive equilibria for L > L0(m, a), but because of the nonlinear degener-

acy of equation (1.1) the situation turns out to be more complicated. There
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is a second threshold L1(m, a) > L0(m, a) such that (1.1) does indeed have

exactly two nonzero equilibria if L0 < L < L1, which are again ordered,

and which we denote by 0 < p(L, ·) < q(L, ·). The complications which

arise when L > L1(m, a) are caused by the fact that

p∗(x) =

{
p(L1, x) for |x| ≤ L1,

0 for x ∈ [−L,−L1) ∪ (L1, L]

is a nonnegative compactly supported solution to

(pm)xx + f(p) = 0, x ∈ R

If L > L1, then any of the translates pξ(x) = p∗(x − ξ) with |ξ| ≤ L − L1

is an equilibrium of (1.1). Thus for L > L1 the set of equilibria contains

a whole interval. In fact, when L > 2L1 one can take two translates of p∗
whose supports are disjoint subsets of [−L,L], and the sum of these two

functions will again be a steady state of (1.1). Throughout this paper we

assume that

(1.3) 0 < a <
m + 1

m + 3
.

Our main results are about connecting orbits, i.e. weak solutions to (1.1)

which are bounded, nonconstant, and defined for all t ∈ R.

1.1. Main Result. If

L0(a,m) < L ≤ L1(a,m)

there exists a connecting orbit from p to q and also a connecting orbit from

p to the zero solution. In case

L0(a,m) < L < L1(a,m)

both of these connecting orbits are unique.

To prove this theorem we use the abstract theory of quasilinear initial

value problems of parabolic type (see [Am, An1, Lu] and also the appendix.)
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This theory allows us to show that sufficiently regular weak solutions that

are close to one of the equilibria p or q can be described by a linearization

procedure.

We begin by defining a “very weak solution” of (1.1) on QT = [−L,L]×
[0, T ] to be a bounded measurable function u(x, t) which satisfies

(1.4)

∫ T

0

∫ L

−L
{σtu + σxxu

m + f(u)σ}dx dt = −
∫ L

−L
σ(x, 0)u0(x) dx

for any test function σ ∈ C∞(QT ) which vanishes on {±L} × [0, T ] and on

[−L,L]× {T}.
This definition is weaker than the one given in [ACP]: there a weak so-

lution was defined to be a bounded measurable function which also satisfies

u ∈ C([0, T ];L1(Ω)). We will prove:

1.2. Theorem. The initial value problem has exactly one “very weak

solution” for each u0 ∈ X. Moreover, it defines a continuous semiflow

φt : X → X with respect to the weak-star topology on X.

This theorem implies that our “very weak solutions” actually coincide

with the weak solutions of [ACP].

The fact that the semiflow generated by (1.1) is continuous with respect

to the weak-star topology on X may be seen as a manifestation of the

smoothing effect of the diffusion equation. It turns out to be a useful fact,

since X is a compact metrizable space in this topology. Thus one can

directly apply Conley’s theory [Co] without any further modifications. The

continuity with respect to the weak star topology also immediately gives the

existence part of the main theorem for all values of L ∈ (L0(m, a), L1(m, a)].

However we are unable to prove uniqueness without the restriction L <

L1(m, a). This is essentially because the linearization of (1.1) at p(L1, ·) has

continuous spectrum intersecting the imaginary axis, while our uniqueness

proof requires hyperbolicity of the equilibrium p(L, ·).
In section 7 we show that for some parameter values (a,m) one can

regard (1.1) as a perturbation of the semilinear case where m = 1. For

the critical situation with L = L1(m, a) this implies that even though the

linearization of the semiflow near the fixed point p∗ is not hyperbolic, for

small values of m > 1 it does have a separate positive eigenvalue, to which
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one can associate a one dimensional “fast unstable manifold.” The two so-

lutions u±(x, t) of (1.1) corresponding to this fast unstable manifold have

a “waiting time at infinity.” We refer to section 7 for a more precise state-

ment.

The maximal invariant set

Given the semiflow φt on X, one can define

A =
⋂
t>0

φt(X),

which is an invariant set for the semiflow. It turns out to be the largest

invariant set in X (i.e. it contains all others), and it has the property that

any u0 ∈ A lies on a complete orbit {u(t)}t∈R. Conversely, any complete

orbit lies in A. We refer the reader to [Ha], where similar maximal invariant

sets are defined for a variety of dissipative systems, and for our system (1.1)

in particular [Ha, p.154].

If we had a backward uniqueness theorem for weak solutions, then the

semiflow restricted to A would be a flow, a one parameter group of home-

omorphisms of A.

Intuitively, one expects A to be a contractible set, but we have no proof

of this. However, we can show that A is topologically trivial in the following

sense.

1.3. Lemma. All Cech cohomology groups Ȟn(A) of A vanish.

Proof. Let Xt be the set φt(X). Then the map φt : Xt → Xt is

homotopic to the identity map on Xt, while it also factors as φt|Xt = φt◦jt,
where jt : Xt → X is the inclusion map. Since X is a closed convex

subset of a (topological) vectorspace, it is contractible, and hence all its

cohomology groups vanish. This forces the map φt|Xt to induce the zero

map on cohomology, but since it is homotopic to the identity map this can

only happen if all cohomology groups of Xt vanish.

The sets Xt decrease to A, so since taking Cech cohomology groups

is compatible with taking direct limits, we find that Ȟk(A) =

limt→∞ Ȟk(Xt) = (0), as claimed. �

It is easy to see that E(u) defined by (1.2) is a formal Lyapunoff function,

but it is not so easy to prove this rigorously. For the one dimensional
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case ACP showed that this function really is a Lyapunoff function for the

semiflow φt. Thus we have the following result.

1.4. Gradient Flow Theorem ([ACP]). The function E(u) is

strictly decreasing on orbits of φt, except at equilibrium states, where it

must be constant.

Any complete orbit {u(t)}t∈R ⊂ A has ω- and α- limit sets, both of

which consist of equilibrium states for the semiflow φt.

Langlais and Phillips [LP] showed in a somewhat more general setting

that the second part of this theorem is still true if the domain Ω is an

open subset of Rn (n ≥ 1), even though it is not clear whether E(u) is a

Lyapunoff function or not.

The Equilibria

Denote the set of equilibria in X by E . The following description of E
was given in [ACP]. An equilibrium is a function ϕ : [−L,L] → [0, 1] which

satisfies

(1.5) (ϕm)xx + g(ϕ)ϕ = 0

in the sense of distributions, and which vanishes at x = ±L. Here and

throughout this paper g(u) = (1− u)(u− a).

If ϕ ∈ E then ϕm is actually C2 on the closed interval [−L,L], while

ϕ is even a smooth solution of (1.5) on the set {x : ϕ(x) > 0}. If ϕ has

an interior zero, i.e. ϕ(x) = 0 at some x0 ∈ (−L,L), then positivity of ϕ

implies that (ϕm)x(x0) = 0.

Equation (1.5) can be integrated by putting v = mϕm−1ϕx: one has

(1.6) 1/2v
2 + ϕm+1Gm(ϕ) = 1/2A

2

where

(1.7) Gm(u) = u−m−1

∫ u

0
msmg(s)ds = − m

m + 3
u2 +

m(1 + a)

m + 2
u− am

m + 1

is again a quadratic polynomial.
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Since (um+1Gm(u))′ = umg(u) = um(1 − u)(u − a) the function

um+1Gm(u) has a local minimum at u = a, and a local maximum at u = 1.

If m > 1 and

0 < a <
m + 1

m + 3

then the local maximum Gm(1) is positive. Let α1(m, a) ∈ (0, 1) be the

unique root of Gm(α) = 0.

For α1(m, a) < α < 1, the solutions ϕ(α, x) of

(ϕm)xx + g(ϕ)ϕ = 0, ϕ(0) = α,ϕ′(0) = 0,

are then decreasing for x > 0, and become zero at some x > 0, say at

x = L = L(m,α). One has

L(m,α) =

∫ α

0

dum

v
=

1√
2

∫ α

0

mum−1du√
αm+1Gm(α)− um+1Gm(u)

.

It was shown in [ACP] that L(m,α) as a function of α, has a unique mini-

mum in [α(m, a), 1). We denote this minimum by L0. It was also observed

in [ACP] that L1 = L(m,α1(m, a)) > L0 is finite,

L1 = m

∫ α1(m,a)

0
(−2Gm(u))−1/2 u(m−3)/2du,

while limα↑1 L(m,α) = ∞.

For L < L0 there is only one equilibrium, the zero solution; in this case

all solutions of (1.1) decay to zero.

There are exactly three equilibria when L ∈ (L0, L1); they are the zero

solution, and two other solutions, p(x) and q(x), which are ordered as 0 <

p(x) < q(x). At L = L0 the two positive solutions coincide: p(x) ≡ q(x).

For L0 < L < L1 both solutions p and q have nonzero flux at the

boundary, but as L ↑ L1, the flux at the boundary of the middle solution p

tends to zero. By definition, the flux of a solution u(x, t) of (1.1) is (um)x.

The solution q can be continued for all parameter values L; both q and

the zero solution are asymptotically stable for all L (see [LP]).
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Connecting orbits

Fix some value L > L0, and let N0 and Nq be the basins of attraction of

0 and q respectively. Put K = A \ (N0 ∪Nq). Since A is connected, K will

always be nonempty; in fact, we know that it contains all equilibria except

0 and q. The connectedness of A also implies that the points 0 ∈ A and

q ∈ A are not isolated in A, so that N0 \ {0} and Nq \ {q} are not empty.

Let Γ0 ⊂ Nq \ {q} be an orbit of the semiflow. Then its alpha-limit

set consists of equilibria, none of which are attractors, so that α(Γq) ⊂ K.

Thus we have shown:

1.5. Theorem. If L > L0, then X \ {0, q} contains an isolated in-

variant set for the semiflow φt, and there exist connecting orbits from this

set to 0 and to q.

If L0 < L ≤ L1, then K = {p}, so that we have established the existence

of connecting orbits from p to 0 and to q. One of the main results in this

paper is the uniqueness of these connecting orbits for L < L1, as well as a

more precise description of there asymptotic behaviour at the boundary of

Ω, and at t = ±∞.

Acknowledgement . The first author is supported by NSF, in the way of a

PYI grant, grant number DMS-9058492. The second author (DGA) is also

supported by NSF, through grant number DMS-9207713.

2. The Weak Semiflow

Throughout this section we assume that f : [0, 1] → [0, 1] is Lipschitz

continuous with |f(u)− f(v)| ≤ Mf |u− v|.

Uniqueness of the very weak solution

Existence of a weak solution was already shown in [ACP], so we only

have to prove that the very weak solution (as defined above) is unique, and

depends continuously on the initial value u0. Our proof is only a small

variation on the proof in [ACP].

Assume that u, v ∈ L∞(QT ) are two different solutions with initial val-

ues u0 and v0. Then for any test function σ ∈ C∞(QT ) which vanishes on
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∂Ω × [0, T ] and on Ω× {T} we have

∫
Ω
(u0(x)− v0(x))σ(x, 0) dx

= −
∫ ∫

QT

[(u− v)(σt + aσxx) + (f(u)− f(v))σ] dx dt

where

0 ≤ a(x, t) ≡ um − vm

u− v
∈ L∞(QT ).

As in [ACP] we choose a sequence an ∈ C∞(QT ) which satisfies

an ≥
1

n
,

and

‖an − a√
an

‖L2(QT ) ↓ 0.

Let χ ∈ C∞(QT ) be any given test function, and let σn ∈ C∞(QT ) be

the solution of

(2.1)

{
σt + anσxx = χ(x, t) (x ∈ Ω, 0 ≤ t < T )

σ(x, T ) = 0 for |x| < L, and σ(±L, t) = 0 for 0 < t < T

The solution χn then satisfies

(2.2) −1

2

d

dt

∫
Ω
|σn,x|2 dx +

∫
Ω
(
√
anσn,xx)

2 dx = −
∫

Ω
σn,xχn,x dx

which implies that

− d

dt

(
‖σn,x‖L2(Ω)

)
≤ ‖χx(·, t)‖L2(Ω),

and, by integrating (2.2)

∫ T

0

∫
Ω
(
√
anσn,xx)

2 dx dt ≤ Const.
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This means that the σn are bounded in L∞([0, T ];H1(Ω)), and because of

(2.1), also in H1([0, T ];L2(Ω)).

We can therefore extract a subsequence, which we shall again denote by

σn, which converges in L∞([0, T ];H1(Ω)) (in the weak-star topology), as

well as in H1([0, T ];L2(Ω)) (weakly).

By the same argument as in [ACP, lemma 10] one now shows that the

limit σ of this subsequence satisfies:∫
Ω
(u0(x)− v0(x))σ(x, 0) dx

= −
∫ ∫

QT

[(u− v)χ(x, t) + (f(u)− f(v))σ] dx dt

(2.3)

If we assume that 0 ≤ χ ≤ e−λt, then, by the maximum principle, all

approximating solutions σn, and hence their limit σ, will satisfy

0 ≤ −σ ≤
∫ T

t
e−λτdτ ≤ 1

λ
e−λt.

Using this inequality, and taking all terms with σ in (2.3) to one side, and

the term with χ on the other, we get:∫ ∫
QT

(u− v)χdx dt ≤

≤
∫

Ω
(u0(x)− v0(x))+ (−σ(x, 0)) dx+

+

∫ ∫
QT

|f(u)− f(v)|(−σ) dx dt

≤ 1

λ

{
‖(u0 − v0)

+‖L1(Ω) +
Mf

λ

∫ ∫
QT

e−λt|u− v| dx dt

}
,

where Mf = sup0≤s≤1 |f ′(s)|.
This holds for all χ ∈ C∞(QT ) which vanish on ∂QT , and satisfy

0 ≤ χ ≤ e−λt. Let χ converge in measure to e−λtχ{u>v}, with χ{u>v}
the characteristic function of the set where u > v. Then one finds:

‖e−λt(u− v)+‖L1(QT ) ≤
1

λ
‖(u0 − v0)

+‖L1(Ω) +
Mf

λ
‖e−λt(u− v)‖L1(QT )
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Exchange u and v, and add the corresponding inequality to get:

‖e−λt(u− v)‖L1(QT ) ≤
1

λ
‖u0 − v0‖L1(Ω) +

2Mf

λ
‖e−λt(u− v)‖L1(QT )

Hence, if λ > 2Mf , then

‖e−λt(u− v)‖L1(QT ) ≤
1

λ− 2Mf
‖u0 − v0‖L1(Ω)

which implies the uniqueness of the very weak solution.

Continuous dependence of the weak solution on the initial data

To prove the continuous dependence of solutions on initial data, we first

have to derive some a priori estimates for an arbitrary weak solution.

Define η(s) = sm and

ζ(u) =

∫ u

0

√
η′(s) ds =

2
√
m

m + 1
u

m+1
2 .

Then we have the following.

2.1. Lemma. If u ∈ L∞(QT ) is a weak solution of (1.1) with 0 ≤ u ≤
1, then ∫ T

0

∫ L

−L
(ζ(u)x)

2 dx dt ≤ c,

∫ L

−L
(η(u)x)

2 dx ≤ c

t
,

and ∫ T

δ

∫ L

−L
(ζ(u)t)

2 dx dt ≤ c

δ
,

where c is some constant which only depends on m,L, T and f .
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Proof. In [ACP] the weak solutions were constructed by replacing

η(u) = um with a smooth ηε(u) (e.g. (u+ ε)m), whose derivative is bounded

away from zero for u ≥ 0. The modified problem is no longer degenerate,

and therefore has a global solution, uε, the limit of which is the weak solution

of (1.1).

Assuming, for the moment, that η′(u) ≥ ε, one easily obtains

1/2

∫ L

−L
u(T, x)2 dx +

∫ T

0

∫ L

−L
(ζ(u)x)

2 dx dt = 1/2

∫ L

−L
u(0, x)2 dx

+

∫ T

0

∫ L

−L
f(u)u dx dt,

(just multiply the equation with u and integrate), and also

E(u(·, T )) +

∫ T

δ

∫ L

−L
ζ(u)2t dx dt = E(u(·, δ))

where

E(u(·, τ)) =

[∫ L

−L
(1/2η(u)2x − Fη(u)) dx

]
t=τ

and

Fη(u) =

∫ u

0
f(s)η′(s) ds.

The first identity implies that ζ(u)x ∈ L2(QT ), with

‖ζ(u)x‖2
L2

≤ L + 2LT sup{uf(u)|0 ≤ u ≤ 1}.

The second identity tells us that for solutions to nondegenerate equations

the quantity E(u(·, t)) is nonincreasing in time.

Since η(u)2x = η′(u)2u2
x ≤ mη′(u)u2

x = mζ(u)2x, we already know that
1
2η(u)2x − Fη(u) is integrable on QT , with

∫ T

0

∫ L

−L

{
1/2η(u)2x − Fη(u)

}
dx dt ≤ c.

Since E(u(·, t)) is nonincreasing, this implies

∫ δ

0
E(u(·, t)) dt ≥ δE(u(·, δ)),
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so that E(u(·, δ)) ≤ c/δ, which implies the second inequality of the lemma

(for the nondegenerate case).

The second identity also implies that ζ(u)t ∈ L2([δ, T ] × (−L,L)) and

‖ζ(u)t‖2
L2

≤ E(u(·, δ)) ≤ c/δ.

Therefore the inequalities in the lemma hold if the equation is nondegen-

erate; to get them for η(u) = um one puts η(u) = (u+ ε)m, f(u) = f(u+ ε),

as in [ACP], and lets ε ↓ 0. �

To complete the proof of the theorem we turn to the proof of continu-

ity of the semiflow, with respect to the weak-star topology. Since X is a

complete metrisable space, we only have to verify sequential continuity.

Let u0n ∈ X be a weak-star convergent sequence with limit u0, and

let un ∈ L∞(Q) be the corresponding weak solutions. Since the un are

bounded in L∞(Q), we may assume that they have a weak-star convergent

subsequence, which, by an abuse of notation, we shall again denote by un.

The integral estimates of the previous lemma imply that the un are

precompact in L2([δ, T ] × (−L,L)) (with respect to the norm topology),

for any δ, T > 0. This allows us to pass to another subsequence which

converges almost everywhere on QT to some function u∞ ∈ L∞(Q).

Using the dominated convergence theorem one verifies that u∞ is again

a weak solution of (1.1), with initial value u0. Since this solution is unique,

we have shown that any convergent subsequence of the un’s has u∞ as its

limit, in L∞(Q) and in L2([δ, T ] × (−L,L)), for any δ, T > 0. This implies

that the entire sequence un converges to u∞.

We have shown that

X̂ = {u ∈ L∞(Q)|u is a weak solution of (1.1)}

is a weak-star closed subset of L∞(Q), and that the map u0 ∈ X →
u(t;u0) ∈ X̂ is continuous.

Since X̂ is a closed subset of the unit ball of L∞(Q), it is weak-star

compact, and therefore the continuous, one-to-one map which sends the

initial value u0 to the corresponding weak solution u(t;u0) in X̂ is a home-

omorphism.

On L∞(Q) we have the translation semigroup, Φt (t ≥ 0), defined by

(Φtu)(s, x) = u(t + s, x) (t, s ≥ 0, x ∈ Ω).
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It is continuous with respect to the weak-star topology, and it maps weak

solutions to weak solutions; i.e. it leaves X̂ invariant. The semiflow Φt|X̂
and the semiflow φt on X are conjugate by the homeomorphism u0 �→
u(·;u0), so that continuity of Φt implies continuity of φt. �

3. The Flux of Strictly Positive Solutions

The quantity

Φ(x, t) = −∂um

∂x
is called the flux of the solution u(x, t).

We shall call a function u ∈ X strictly positive if it satisfies

1. u(x) > 0 for all x ∈ (−L,L).

2. There is an ε > 0 such that

u(x)m ≥ ε cos
(πx

2L

)
, −L < x < L.

We define P ⊂ X to be the set of all strictly positive states.

3.1. Strict Positivity Lemma. P is positively invariant under the

semiflow.

Proof. Let U(x) be a smooth function on the interval [−L,L], for

which η(U)xx = 0 holds on [−L,−L/2]∪[L/2, L], for which U(±L) = 0, and

which is positive in the interior of the interval. Define k1 = sup0≤u≤1 |g(u)|,
and

k2 = sup
−L<x<L

−(Um)xx
U

and observe that both are finite constants.

Then consider v(x, t) = ε(t)U(x), for some function ε(t). One has

vt − (vm)xx − f(v) ≤ {ε′(t) + k2ε(t)
m + k1ε(t)}U(x),

so that v will be a subsolution if ε(t) satisfies

ε′(t) + k2ε(t)
m + k1ε(t) = 0.

If one chooses ε(0) > 0 small enough, then v(x, 0) will be less than u(x, 0),

and by the comparison principle one has v(x, t) ≤ u(x, t) for all time. �

The main results of this section are the following.
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3.2. Continuous Flux Theorem. If the nonlinearity f(u) in the

initial value problem is a C1 function, and u ∈ C(QT ) is a weak solution,

which is strictly positive for all 0 < t ≤ T , then the flux −(um)x is uniformly

continuous on Ω × [τ, T ] for any τ > 0.

3.3. Monotone Convergence Theorem. Let un be a decreasing

sequence of strictly positive solutions which satisfy

δ ≤ un(x, t)
m

cos(πx/2L)
≤ δ−1.

Then un converges to a strictly positive solution U of (1.1), and in fact

un(x, t)
m

cos(πx/2L)
−→ U(x, t)m

cos(πx/2L)

uniformly on (−L,L)× [τ, T ], for any 0 < τ < T . In particular, the bound-

ary fluxes Φ±,n(t) of the un converge uniformly on [τ, T ] to the boundary

fluxes Φ±(t) of the limit solution U .

The proof of these theorems will be given in several steps. We begin

with a lemma which tells us that the flux at the boundary points is always

finite.

3.4. Lemma. There is a constant 0 < C < ∞ such that any weak

solution u of (1.1) satisfies

u(x, t)m ≤
(
C

t

) m
m−1

cos
πx

2L
, |x| < L, 0 < t < 1.

Proof. The function w(x, t) = u(x, t)m is a continuous function;

wherever it is positive it is also a smooth solution of

(3.1) wt = mw1−1/mwxx + mg(w1−1/m)w.

Since 0 ≤ w ≤ 1 there is a c < ∞ such that |mg(w1−1/m)| ≤ c.



486 Sigurd B. Angenent and Donald G. Aronson

Let θ(x) be the solution of the ODE

θ′′(x) + θ(x)1/m = 0, θ(0) = 1, θ′(0) = 0.

It is not hard to verify that there is an x0 > 0 such that θ is defined and

positive for |x| < x0, while θ(x0) = 0; moreover, θ is a C2 function on

[−x0, x0] with θ′(x0) �= 0, and, in particular, there is a constant such that

(3.2) c ≤ θ(x)

cos(πx/2x0)
≤ 1

c
, |x| < x0.

Now consider for small positive ε the function

Wε(x, t) = A(t)θ

(
x

L + ε
x0

)
,

where A(t) is to be determined.

Substitution in (3.1) shows that Wε is a supersolution of (3.1) if

A′(t) ≥ −m

(
x0

L + ε

)2

A(t)2−1/m + mcA(t).

this inequality is satisfied for 0 < t ≤ 1 by A(t) = (C/t)m/(m−1), if one

chooses the constant C large enough – in fact, one can choose C independent

of ε.

With this choice of A(t) we therefore find that Wε is a supersolution of

(3.1) on [−L,L]× (0, 1]. Since Wε is strictly positive on the edges {±L} ×
(0, 1], and since w is a smooth solution of (3.1) wherever w > 0, we can

apply the maximum principle. The conclusion is that w ≤ Wε for all ε > 0,

and hence that w ≤ W0 on (−L,L) × (0, 1]. The lemma now follows from

(3.2). �

We shall need some estimates which are similar to the “Aronson–

Benilan” estimates for solutions of the porous medium equation.
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3.5. AB-Estimates. Assume 0 ≤ u(x, t) ≤ 1 is a weak solution of

(1.1). Then

(3.3) (um)t ≥ −A

t
um, (x, t) ∈ QT

and,

(3.4) (um)xx ≥ −A

t
u, (x, t) ∈ QT .

in which A is some constant depending only on T .

Proof. Consider v(x, t) = u(x, t)m, and w = vt. Then v is a solution

of

vt = mv1−1/mvxx + h(v)

where h(v) = mg(v1/m)v, while w satisfies

(3.5) wt = mv1−1/mwxx +
m− 1

m

w2

v
+
[
mh′(v)− (m− 1)h(v)

]
w,

Since h(v) = mvg(v1/m) is a C1 function of v, the coefficient of w in the

last term is bounded.

It turns out that w∗(x, t) = −A
t v(x, t) satisfies

w∗
t −mv1−1/mw∗

xx +
m− 1

m

(w∗)2

v
+
[
mh′(v)− (m− 1)h(v)

]
w∗ ≥

≥ Av

t2

(
1 + Cf t−

m− 1

m
A

)
,

in which Cf is a constant that only depends on nonlinearity f . Hence if A

is chosen large enough, w∗ is a subsolution. This would imply that w ≥ w∗

on QT , if we could apply the maximum principle. Since we don’t know any

a priori bound for w = (um)t near the boundary we must use a slightly

more involved argument.

Choose a sequence of smooth functions u0,ε on [−L,L] which converge

to u(x, 0), and which satisfy ε ≤ u0,ε ≤ 1. Let uε ∈ L∞(QT ) be the solution

of

ut = (um)xx + f(u), u(±L, t) ≡ ε.
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Then the uε are smooth, and the previous arguments show that for A =

A(f, T ) large enough, the uε satisfy (umε )t ≥ −Aumε /t; that they also satisfy

(3.4) can be shown by using ut = (um)xx + f(u). Now we let ε ↓ 0, and we

obtain the same inequalities in the sense of distributions for u. �

By combining this with lemma 3.4 we get:

3.6. Corollary. If u is a weak solution of (1.1) then

(um)t ≥ −
(
A

t

)2+ 1
m−1

cos(πx/2L),

(um)xx ≥ −
(
A

t

)1+ 1
m−1

(cos(πx/2L))1/m .

Let u(x, t) be a weak solution to (1.1), which is strictly positive. Then

since the PDE is nondegenerate at positive values of u, our solution will

be C∞ in the interior of QT . In particular (um)x is a continuous function,

away from the boundary. The AB–estimates which we have just proved

imply that the two limits

Φ± ≡ ∓ lim
x→±L

(u(·, t)m)x

exist for any t > 0. By lemma 3.4 these limits are also finite.

3.7. Continuity of the Flux at the Boundary. The functions

Φ±(t) are continuous on (0, T ].

This theorem implies that the flux is in fact continuous on [−L,L] ×
(0, T ], i.e. theorem 3.2. Indeed, if we fix some 0 < τ < T , then the AB–

estimates imply that there is a C > 0 such that (um)xx ≥ −C for τ ≤ t ≤ T .

Hence r(x, t) = (um)x + Cx is a monotone function of x, for each fixed t ∈
[τ, T ]. Continuity of Φ±(t) implies that limn→∞ r(x, tn) = r(x, t) pointwise,

if tn → t. By Helly’s selection lemma the monotonicity of the r(·, tn) and

the continuity of their limit r(·, t) implies that r(x, tn) → r(x, t) uniformly
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in x ∈ [−L,L]. This implies that r is continuous on [−L,L] × [τ, T ]; since

τ was arbitrary, continuity on [−L,L]× (0, T ] follows.

We turn to the continuity of Φ±. Since the functions

Φx(t) ≡ π

2L

v(x, t)

cos(πx/2L)

are uniformly bounded for 0 < t < T , and since they converge pointwise to

Φ±(t) as x → ±L, the AB-estimate for vt implies that Φ±(t) is of bounded

variation on [τ, T ] for any τ > 0, and that

(3.6) Φ′
±(t) ≥ −

(
A

t

)2+ 1
m−1

holds in the sense of distributions. From this one-sided bound we conclude

the following:
lim inf
t↓t0

Φ−(t) ≥ Φ−(t0),

lim sup
t↑t0

Φ−(t) ≤ Φ−(t0).

From here on we shall ignore the right hand boundary, and only consider

the left hand boundary. By symmetry this is no restriction.

3.8. Lemma. lim supt↓t0 Φ−(t) ≤ Φ−(t0)

Proof. Since the function g(u) is bounded for 0 ≤ u ≤ 1, the function

v̄ = eC(t−t0)(x+L) is a supersolution for (3.1), if C is chosen large enough.

Let δ > 0 be given; then for small enough ε > 0 one has

v(x, t0) ≤ (Φ−(t0) + δ)(x + L) (0 ≤ x + L ≤ ε)

and

v(x, t0) ≤ eC(t−t0)(Φ−(t0) + δ)ε, (0 ≤ t− t0 ≤ ε)

by continuity of v.

The maximum principle then implies that v ≤ v̄ for 0 ≤ x + L ≤ ε and

0 ≤ t− t0 ≤ ε, and hence

Φ−(t) = vx(−L, t) ≤ eC(t−t0)(Φ−(t0) + δ)
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so that lim supt↓t0 Φ−(t) ≤ Φ−(t0) + δ. Since δ was arbitrary, this proves

the lemma. �

To prove the continuity of Φ−(t) at t0 we therefore still have to show

that

lim inf
t↑t0

Φ−(t) ≤ Φ−(t0).

To this end we consider the rescaled functions

Vλ(ξ, τ) = λ−1v(λξ − L, t0 + λ
m+1
m τ).

They are solutions of

(3.7) Vτ = V 1−1/mVξξ + λ1/mh(λV ),

where h(v) = vg(v1/m). Our estimates for v imply the following for the Vλ:

(i) Vλ,ξ is uniformly bounded,

(ii) The Vλ (with 0 ≤ λ ≤ 1) are equicontinuous functions (since v is

continuous),

(iii) There is a δ > 0 such that for 0 < ξ < L/λ, and for all (relevant) τ

one has

δξ ≤ Vλ(ξ, τ) ≤ δ−1ξ.

It follows from these bounds that any sequence λn ↓ 0 has a subsequence

λni for which the corresponding Vλ’s converge uniformly on compact sets

in Q− = {(ξ, τ) : ξ ≥ 0, τ ≤ 0}. Moreover, each Vλ is bounded away from

zero on Qa,− = {(ξ, τ) : a ≤ ξ ≤ a−1, τ ≤ 0}, by (iii), so that its derivatives

Vτ , Vξξ will be uniformly Hölder continuous on each Qa,−. The limit V0 of

the convergent subsequence of the Vλ’s will therefore satisfy

(3.8) Vτ = V
m−1
m Vξξ (ξ > 0, τ < 0)

as well as (i), (ii) and (iii).

By definition of Φ−(t0) one has

V0(ξ, 0) = lim
λ↓0

Vλ(ξ, 0) = Φ−(t0)ξ.
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Finally, the AB-estimates imply that

Vλ,τ ≥ −
(

A

t0 + λ1+1/mτ

)2+ 1
m−1

sin

(
πλ

2L
ξ

)
,

which in the limit λ ↓ 0 means that V0,τ ≥ 0 on Q−, i.e. that V0 is a

subsolution, and also that V0(ξ, τ) ≤ Φ−(t0)ξ holds everywhere on Q−.

But V1(ξ, τ) = Φ−(t0)ξ is a solution of (3.7), so that the strong maximum

principle forces

V0(ξ, τ) ≡ Φ−(t0)ξ.

Thus any subsequence Vλj which converges on {ξ ≥ 0, τ ≤ 0} must have the

time independent and linear function V1 as a limit, so that we have proved:

lim
λ↓0

Vλ(ξ, τ) = Φ−(t0)ξ, uniformly on compact subsets of Q−.

What we want is convergence of the derivative (i.e. the flux) on the

boundary. To get this we introduce the following two parameter family of

functions:

wa,b(ξ) = aξ + bξ1+1/m,

and we define

Wa,b,c(ξ, τ) = wa,b(ξ + cτ).

These functions are supposed to give us “travelling subsolutions,” which we

will place under one of the Vλ’s; when the sharp edge of such a subsolution

hits the boundary it will give us a lower estimate for the derivative of Vλ,

and hence for vx at the boundary.)

A straightforward, but tedious calculation shows that

−Wτ + W
m−1
m Wξξ + λ1/mh(λW ) ≥

m + 1

m2
ab− ac− m + 1

m
bcξ̄1/m + λ1/mh(λW ),

where we have written ξ̄ for ξ + cτ .

Given a, b > 0 we can choose c > 0 so small that Wa,b,c is a subsolution

for (3.1) on 0 ≤ ξ ≤ 1, for small enough λ > 0 (here we use that h(v) is

bounded).
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Now let any 0 < a < Φ−(t0) be given. Choose b > 0 so small that

(3.9) wa,b(ξ) ≤
a + Φ−(t0)

2
ξ (0 < ξ < 1)

holds, and choose c so small that Wa,b,c is a subsolution for (3.1), whenever

λ ≤ λ(a, b, c).

We have shown that the Vλ converge uniformly on {0 ≤ ξ ≤ 2,−2
c ≤

τ ≤ 0} to Φ−(t0)ξ, as λ ↓ 0. Hence we can choose λ so small that

(3.10) |Vλ(ξ, τ)− Φ−(t0)ξ| ≤
Φ−(t0) + a

2

for all ξ ∈ [0, 2] and all τ ∈ [−2
c , 0].

Consider the strip

Sτ0 =
{
(ξ, τ) : τ0 − c−1 ≤ τ ≤ τ0, 0 < ξ + c(τ − τ0) ≤ 1

}
,

where −1/c ≤ τ0 ≤ 0. Then we have just verified that W0 = Wa,b,c is a

subsolution for (3.6) on this strip Sτ0 , and the conditions (3.8,9) imply that

W0 ≤ Vλ on the parabolic boundary of the strip Sτ0 . By the maximum

principle we therefore get W0 ≤ Vλ on all of the strip, and in particular

Vλ(ξ, τ) ≥ aξ + bξ1+1/m for ξ ∈ [0, 1] and −1/c ≤ τ ≤ 0. After rescaling

this then implies that Φ−(t) = vx(−L, t) ≥ a for all t ≤ t0 sufficiently close

to t0.

Since a was any number less than Φ−(t0), this completes the argument

which shows that Φ−(t) is continuous. �

Proof of the Monotone convergence theorem

Let ε > 0 and 0 < τ < T be given. Away from the edges {±L} × (0, T ]

the un are classical solutions of a nondegenerate parabolic equation, so they

surely converge uniformly on any region of the form [−x0, x0]× [τ, T ], with

0 < x0 < L. Hence we consider regions of the form [x0, L]× [τ, T ].

Since the flux (Um)x is continuous on [0, L]×[τ, T ], there is an x0 ∈ (0, L)

such that

(3.11) |U(x, t)m − Φ(t)(L− x)| < ε

4
(L− x),
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for τ ≤ t ≤ T and x0 ≤ x ≤ L.

Moreover, the AB-estimates imply that (umn )xx ≥ −C1 on [−L,L]×[τ, T ]

for some constant C1. We assume that x0 has been chosen so close to L

that L− x0 < ε/2C1.

Finally, the uniform convergence of the un to U in the interior implies

that there is an nε such that

(un(x0, t))
m ≤ U(x0, t)

m +
ε

4
(L− x0)

for τ ≤ t ≤ T , n ≥ nε.

Now, let x0 < x < L, τ < t < T , then (umn )xx ≥ −C1 implies

un(x, t)
m ≤ un(x0, t)

m L− x

L− x0
+

C1

2
(L− x)(x− x0)

≤ un(x0, t)
m L− x

L− x0
+

ε

4
(L− x)

≤ U(x0, t)
m L− x

L− x0
+

ε

2
(L− x)

≤
(
Φ(t) + 3/4ε

)
(L− x) (by (3.11) at x0)

≤ U(x, t)m + ε(L− x) (by (3.11))

holds for n ≥ nε.

Combined with the uniform convergence on [0, x0] × [τ, T ], this implies

that

lim
n→∞

sup
[0,L]×[τ,T ]

∣∣∣∣ (umn )

L− x
− Um

L− x

∣∣∣∣ ≤ ε

for any ε > 0, which, in turn, implies the montone convergence theorem. �

4. Further Regularity of the Flux

Let ϕ(x) be an equilibrium state for our semiflow. We introduce a new

independent variable, y, defined by

(4.1) y(x) =

∫ x

0

dξ

ϕ(ξ)(m−1)/2
.
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Derivatives with respect to x and y are related via

(4.2)
∂

∂y
= ϕ(x)

m−1
2

∂

∂x
.

As x varies from −L to +L, the range of this new variable will be an interval

(−Yϕ, Yϕ), where Yϕ may be infinite, as happens if one chooses ϕ = p and

L = L1. However, we shall assume in this section that ϕ is strictly positive,

in which case

(4.3) Yϕ =

∫ L

0

dξ

ϕ(ξ)(m−1)/2

is finite.

The coordinate transformation x �→ y is everywhere smooth, except at

the ends of the interval (−L,L). Assuming that (ϕm)′(L) = −A, with

A > 0, the following lemma tells us how x, y and ϕm are related near the

end point x = L.

4.1. xy-Conversion Lemma. Writing ξ = L−x and η = Yϕ−y, we

have

ϕm = Aξ
(
1 + ξ1+1/mB1(ξ

1/m, ξ1+1/m)
)

η = c1ξ
m+1
2m

(
1 + ξ1+1/mB2(ξ

1/m, ξ1+1/m)
)

ξ = c2η
2m
m+1

(
1 + η2B3(η

2/(m+1), η2)
)

ϕ = c3η
2

m+1

(
1 + η2B4(η

2/(m+1), η2)
)

where c1, c2, c3 are constants, and B1, . . . , B4 are smooth functions on a

neighborhood of the origin in R2.

Proof. Once the first relation is established, the others follow by

direct computation.

To prove the first relation, we recall that (ϕm)xx = −g(ϕ)ϕ; using

(ϕm)x(L) = −A, we therefore get

ϕm(L− ξ) = Aξ −
∫ ξ

0
(ξ − ξ′)g(ϕ(L− ξ′))ϕ(L− ξ′)dξ′.



Degenerate reaction diffusion equation 495

Putting ϕm(L− ξ) = Aξ(1 + α(ξ)), and substituting ξ′ = σξ, we find

α(ξ) = −A1−1/mξ1+1/m

·
∫ 1

0
(1− σ)g

(
(Aσξ)1/m(1 + α(σξ))1/m

)
σ1/m(1 + α(σξ))1/mdσ.

We now regard ξ as a small parameter, and consider βξ(t) = α(ξt). Then

βξ ∈ C([0, 1]) satisfies:

βξ = −ξ1+1/mT(ξ1/m, βξ),

where T : R× C([0, 1]) → C([0, 1]) is defined by

T(λ, β)(t) = A1−1/mt1+1/m

·
∫ 1

0
(1− σ)σ1/mg

(
λ(Aσt)1/m(1 + β(σt))1/m

)
(1 + β(σt))1/mdσ.

Clearly T is a smooth Fréchet differentiable map: if the function g(u) were

Ck, then T would be Ck too – in our situation g is a polynomial.

By the implicit function theorem, the fixed point equation β =

−µT(λ, β) has a unique solution for small enough λ and µ, and this solution

will depend smoothly on the parameters λ and µ. Choosing λ = ξ1/m and

µ = ξ1+1/m, we find that βξ is a smooth C([0, 1]) valued function of ξ1/m

and ξ1+1/m. Using that βξ satisfies the fixed point equation, we even find

that ξ−1−1/mβξ = −T(ξ1/m, βξ) is a smooth function of ξ1/m and ξ1+1/m.

Hence βξ(1) = ξ1+1/mB(ξ), where B(ξ) is a smooth function of ξ1/m

and ξ1+1/m; this is what is claimed in the first identity of the lemma. �

If u(x, t) is a weak solution of (1.1), then

v(y, t) =

(
u(x(y), t)

ϕ(x(y))

)m

satisfies

(4.4) vt = mv1−1/m

{
∂2v

∂y
+ P (y)

∂v

∂y

}
+ h(v, y),
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where

P (y) =
3m + 1

2

ϕy
ϕ

,

and h is given by

h(v, y) = m
[
g
(
ϕv1/m

)
v − g(ϕ)v2−1/m

]
, ϕ = ϕ(y).

The condition of strict positivity of the previous section is equivalent with

δ ≤ v(y, t) ≤ δ−1, |y| < Yϕ, 0 < t < T,

for some δ > 0. Hence if u is strictly positive, and if one only looks at the

highest order terms, (4.4) is a nondegenerate parabolic PDE. However, the

first order term, P (y)vy, turns out to be singular at y = ±Yϕ. Using the

xy-Conversion Lemma we can determine the exact nature of the singularity

of P (y):

(4.5) P (y) =
3m + 1

m + 1

1

η
+ ηB5(η

2/m+1, η2)

where η = y − Yϕ or η = y + Yϕ, and B5 is again a smooth function near

the origin of R2.

If we augment (4.5) with Neumann boundary conditions,

(4.6) vy(±Yϕ, t) = 0,

then it is shown in the appendix that we obtain a well posed initial value

problem.

4.2. The Smooth Subflow. The equations (4.4,6) generate an an-

alytic local semiflow Φt on

Oα =
{
v ∈ hα ([−Yϕ, Yϕ]) : δ ≤ v ≤ δ−1, for some δ > 0

}
for each 0 < α < 1.

The main result of this section will be that this local semiflow is in fact

global.
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4.3. Regularity of Strictly Positive Solutions. Let u(x, t) be

a strictly positive solution of (1.1), and let v(y, t) be the associated solution

of (4.4).

Then v(·, t) ∈ h2,α([−Yϕ, Yϕ]) for all t > 0, and v(·, t) satisfies the

Neumann boundary conditions (4.6). In particular, v(·, t) constitutes an

orbit of the smooth subflow Φ, and any orbit of this subflow exists for all

t > 0.

The proof of this theorem will proceed along the following lines: First

we establish some interior estimates for arbitrary positive solutions of (4.5)

which allow us to verify that any such solution comes from a weak solution

of our original PDE (1.1). We then obtain an a priori estimate for the L2

norm of vy, which only uses the continuity of the flux that was established

in the previous section.

4.4. Interior vy Bound. If v(y, t) is a solution of (4.6) on −Yϕ <

y < Yϕ, 0 < t < T , which satisfies δ ≤ v ≤ δ−1 for some δ > 0, then∣∣∣∣∂v∂y
∣∣∣∣ ≤ C max

(
1

|y ± Yϕ|
,

1√
T

)
.

Here C is a constant which does not depend on v.

Proof. Given −Yϕ < y0 < Yϕ, 0 < t0 < T , we choose ε = min(1, |y0±
Yϕ|,

√
t0), and consider

vε(y, t) = v(y0 + εy, t0, ε
2t).

Then vε satisfies

∂vε

∂t
= (vε)1−1/m

{
∂2vε

∂y2
+ εP (y0 + εy)

∂vε

∂y

}
+ ε2h(y0 + εy, vε).

We have chosen ε so that vε is defined for |y| < 1,−1 < t < 0. From (4.5) one

deduces that both coefficients εP (y0 + εy) and ε2h(y0 + εy, vε) are bounded

on |y| < 2/3, −1 < t < 0, independently of ε > 0, i.e. independently of

y0, t0.

Classical interior estimates for quasilinear parabolic PDE now imply

that vεy(0, 0) is bounded by some constant that does not depend on (y0, t0).

After rescaling this leads to the desired estimate for vy. �
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4.5. Back–Substitution Lemma. Let v be a solution of (4.4) which

is continuous on (−Yϕ, Yϕ) × [0, T ], and which is bounded by δ ≤ v ≤ δ−1

for some δ > 0. Then u(x, t) = ϕ(x)v(y(x), t)1/m is a weak solution of (1.1)

on QT .

Proof. Since v is smooth, u is a smooth solution of the PDE in (1.1),

on the interior of QT . All we have to worry about is that the boundary

terms which arise when we try to verify that u is indeed a weak solution

vanish.

From

(um)x = ϕ(x)−(m−1)/2 (ϕmv)y = ϕ(x)(m+1)/2

(
vy + m

ϕy
ϕ

v

)
,

the interior estimate for vy, and (4.5) one finds that

|(um)x| ≤
C√
t
.

With this estimate one can justify all partial integrations that are necessary

to show that u satisfies (1.4) for arbitrary test functions. �

4.6. H1-Estimate. Let v(y, t) be a smooth solution of (4.4,6) defined

for 0 < t < T with δ ≤ v ≤ δ−1. Assume it satisfies

(4.7)
∣∣∣v(y, t)1−1/m − v(±Yϕ, t)

1−1/m
∣∣∣ ≤ ε, for | ± Yϕ − y| ≤ ε, 0 < t < T.

Then there is an εδ > 0 such that if ε < εδ one has

∫ Yϕ

−Yϕ
(vy(y, t))

2 dy ≤ A

t2
, (0 < t < T ),

for some A = A(δ, ε, T ) < ∞.



Degenerate reaction diffusion equation 499

Proof. Let X(t) =
∫ Yϕ
−Yϕ v2

ydy. Then integration by parts results in

dX

dt
= −2

∫ Yϕ

−Yϕ
vtvyydy

= −2m

∫ Yϕ

−Yϕ
v1−1/m

(
(vyy)

2 + P (y)vyvyy
)
dy − 2

∫ Yϕ

−Yϕ
vyyh(y, v)dy

The second integral may be estimated directly: It follows from the AB-

estimates that vyy(y, t) ≥ −C
t for some C > 0. Since vy vanishes at the

endpoints of the interval (−Yϕ, Yϕ), this implies that

(4.8)

∫ Yϕ

−Yϕ
|vyy(y, t)| dy ≤

2CYϕ
t

.

Hence ∣∣∣∣∣
∫ Yϕ

−Yϕ
vyyh(y, v)dy

∣∣∣∣∣ ≤ C

t
,

for some C < ∞.

To estimate the first integral, we split it into three parts:

−2m

∫ Yϕ

−Yϕ
v1−1/m

(
(v2
yy + P (y)vyvyy

)
dy =

∫ −Yϕ+ε

−Yϕ
+

∫ Yϕ−ε

−Yϕ+ε
+

∫ Yϕ

Yϕ−ε
= I1 + I2 + I3.

The middle term satisfies

(4.9) |I2| ≤ −λ

∫ Yϕ−ε

−Yϕ+ε
(vyy)

2dy + C

∫ Yϕ

−Yϕ
(vy)

2dy

for some small λ > 0 and some finite C < ∞. From here on λ and C will

denote generic small and large constants, respectively.

To estimate I1 we use the hypothesis (4.7) to obtain

|I3| ≤ 2v(Yϕ, t)
1−1/m

∫ Yϕ

Yϕ−ε

(
v2
yy + P (y)vyvyy

)
dy

+ 2ε

∫ Yϕ

Yϕ−ε

(
v2
yy + |P (y)vyvyy|

)
dy.
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It follows from (4.5) that for 0 < Yϕ − y < ε

P (y) ≤ C

y − Yϕ
< 0, P ′(y) ≤ −C

(y − Yϕ)2
≤ −CP (y)2 < 0,

provided ε has been chosen small enough.

Hence we have

−
∫ Yϕ

Yϕ−ε
P (y)vyvyydy = 1/2P (Yϕ − ε)vy(Yϕ − ε, t)2 + 1/2

∫ Yϕ

Yϕ−ε
P ′(y)v2

ydy

≤ −C

∫ Yϕ

Yϕ−ε
(P (y)vy)

2 dy.

Using Cauchy-Schwarz we therefore find

∫ Yϕ

Yϕ−ε
P (y)vyvyydy ≥ 0

and ∫ Yϕ

Yϕ−ε
(P (y)vy)

2 dy ≤ C

∫ Yϕ

Yϕ−ε
(vyy)

2 dy.

Using these two inequalities we find that I3 satisfies

|I3| ≤ −λ

∫ Yϕ

Yϕ−ε
(vyy)

2dy + C

∫ Yϕ

−Yϕ
(vy)

2dy.

By the same arguments one finds that I1 satisfies a similar bound, and

hence we find
dX

dt
≤ −λ

∫ Yϕ

−Yϕ
(vyy)

2 dy + C1X +
C2

t

Denoting by ‖ · ‖p the Lp(−Yϕ, Yϕ)-norm we note that

‖vy‖2 ≤ ‖vy‖1/2
1 · ‖vy‖1/2

∞

≤ C‖v‖1/4
1 · ‖vyy‖1/4

1 · ‖vyy‖1/2
2

≤ C

t1/4
‖vyy‖1/2

2
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which yields −‖vyy‖2
2 ≤ −λt‖vy‖4

2, and thus

dX

dt
≤ −λ′tX2 + C1X +

C2

t
.

Direct substitution shows that X̄(t) = At−2 is a supersolution for this

equation if A is chosen large enough. Therefore X(t) ≤ A/t2 holds for

some large A, as claimed. �

Proof of theorem 4.3

Let v0 ∈ Oα be given, and consider the maximal solution v(y, t) of

(4.4,6) which is provided by the smooth semiflow Φt on Oα. Assume that v

exists for 0 ≤ t < T ; then we shall now show by contradiction that T = ∞.

Suppose that T is finite. Since solutions of the smooth semiflow all

become singular at the same time, i.e. independent of α, we may assume

that 0 < α < 1/2.

Let u(x, t) be the weak solution of (1.1), corresponding to v(y, t). The

strict positivity lemma 3.1 applied to u implies that δ ≤ v ≤ δ−1, for some

small δ > 0. The continuous flux theorem then tells us that v is uniformly

continuous on [−Yϕ, Yϕ]× [τ, T ) for any τ > 0.Hence our H1 bound applies,

and, using the compact embedding of H1 into hα for 0 < α < 1/2, we see

that {v(·, t) : τ < t < T} is precompact in Oα. Thus it cannot be a maximal

orbit of the semiflow Φt. �
Next, let u(x, t) be any strictly positive weak solution of (1.1), and define

v(y, t) = (u(x, t)/ϕ(x))m. We shall show that v(·, t) ∈ Oα for any small

t > 0, and, in view of what we have just derived, that {v(·, t) : τ < t < ∞}
is an orbit of the smooth semiflow.

Let t0 > 0 be given. Then v(y, t0/3) = (u(x, t0/3)/ϕ(x))m is continuous,

by the continuous flux theorem again. Choose a decreasing sequence vn ∈
Oα with vn ↓ v(·, t0/3), and let vn(y, t) be the corresponding solutions to

(4.4,6) with vn(y, t0/3) = vn(y).

The monotone convergence theorem 3.3 now implies that vn(y, t) con-

verges uniformly to v(y, t) on [−Yϕ, Yϕ] × [2/3t0, 2t0]. The continuity con-

dition (4.7) therefore applies to all vn’s, if one chooses ε small enough, and

we get a uniform H1-bound for the vn:∫ Yϕ

−Yϕ
(vn,y)

2 dy ≤ C

t− 2/3t0
, 2/3t0 < t < 2t0
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with C independent of n.

The conclusion we draw from this is that the limit v(·, t0) of the vn(·, t0)
must belong to H1, and hence to Oα, as claimed. �

5. Strict Positivity of the Connecting Orbits

We still assume that L < L1. Let u(t, x) (−∞ < t < ∞, |x| ≤ L) be a

weak solution of (1.1) which connects p(x) either to q(x) or to 0.

Then we have p(x) = limt→−∞ u(t, x) uniformly in |x| ≤ L.

5.1. Theorem. u(t, ·) ∈ P for all t ∈ R. If one defines v =(
u(t,x(y))
p(x(y))

)m
then

lim
t→−∞

v(t, y) = 1 in hα([−Y, Y ]).

Proof. We already know that u(x, t) tends to p(x) uniformly, so for

every x there is a tx > −∞ with u(tx, x) > 0. Since the support of u(t, ·)
does not shrink we conclude that u(t, x) > 0 for all x ∈ (−L,L). We must

therefore show that (um)x(±L, t) �= 0.

Let us consider x = −L, the argument for x + L being similar. Let

A = (pm)x(−L), so that p(x)m = (A + o(1))(x + L). Consider

W (x, t) = w(x + t),

where

w(ξ) = aξ + bξ1+1/m.

Then

Wt −W 1−1/mWxx − h(W ) =

= w′ − w1−1/mw′′ − h(w)

= a +
m + 1

m
bξ1+1/m − b

(
a + bξ1/m

)1−1/m m + 1

m2

− h(aξ + bξ1+1/m)

where ξ = x + t.
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Using |h(v)| ≤ Cv we find

Wt −W 1−1/mWxx − h(W ) ≤

≤ a +
m + 1

m
bξ1+1/m −

(
m + 1

m2
b− Cξ

)(
a + bξ1/m

)
.

Choose 0 < a < A and b = 2m2/(m + 1). Then there is a ξ0 > 0 such that

Wt −W 1−1/mWxx − h(W ) ≤ 0

for 0 < ξ < ξ0.

Since p(x)m = (A+o(1))(x+L), we can arrange by choosing ξ0 smaller,

if necessary, that 2ξ0 < L and

(
a + bξ

1/m
0

)
ξ0 < p(−L + ξ0)

m.

Then p(x) >
(
a + bξ

1/m
0

)
ξ0 for ξ0 ≤ x + L ≤ 2ξ0. Since u(x, t) → p(x)

uniformly as t → −∞, there is some t0 ∈ R such that

u(x, t) >
(
a + bξ

1/m
0

)
ξ0

for ξ0 ≤ x + L ≤ 2ξ0 and −∞ < t < t0.

We claim that (um)x(−L, t) ≥ a for any t ≤ t0.

Indeed, let t1 < t0 be given and consider

W (x, t) = w(x + L + t− t1)

on

Ω = {(x, t) : −ξ0 ≤ t− t1 ≤ 0, 0 ≤ x + L + t− t1 ≤ ξ0} .

We have just shown that W is a subsolution of Wt = W 1−1/mWxx + h(W )

on Ω while um is a solution of this equation. Furthermore our construction

is such that W ≤ um on the parabolic boundary of Ω. By the maximum

principle we therefore find that W ≤ um on Ω̄. In particular we find

(5.1) u(x, t1)
m ≥ a(x + L) + b(x + L)1+1/m,
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whence umx (−L, t1) ≥ a, as claimed.

So far we have shown u(·, t) ∈ P for every t ∈ R. Using (5.1) we can

derive a uniform lower bound of the form

(
u(x, t)

p(x)

)m
≥ 1− δ, −∞ < t < tδ,

for any δ > 0.

One can also derive a similar uniform upper bound,

(
u(x, t)

p(x)

)m
≤ 1 + δ, −∞ < t < tδ,

by constructing traveling wave supersolution of the form W (x, t) = aξ +

bξ1+1/m, with ξ = x− t, and a > A, b = −2m2a1/m/(m + 1), and applying

the analogous argument.

The upper and lower bounds together imply that (u/p)m converges uni-

formly to 1 as t → −∞. The H1 estimate 4.6 then implies that v =

(u/p)m → 1 in Oα for any 0 < α < 1/2.

Hence the orbit u(·, t) of the weak semiflow lies on the unstable manifold

W u(p) of p in the smooth subflow. �

6. Linearization

We again assume that L0 < L < L1 and put ϕ(x) = p(L, x); we define

y, Oα as in section 4.

Then v ≡ 1 is an equilibrium of the smooth subflow on Oα.

6.1. Theorem. v ≡ 1 is a hyperbolic fixed point of
{
Φt|Oα

}
t≥0

with

a one dimensional unstable manifold.

This theorem combined with theorem 5.1 directly imply the Main The-

orem. For if u(x, t) is a connecting orbit from p(L, x) to either 0 or to

q(L, x), then by theorem 5.1 it must lie on the unstable manifold through

p(L, x) of the semiflow {Φt}; by the theorem we are about to prove there

are exactly two such orbits, one increasing and one decreasing.
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Proof. The linearized equation at v = 1 is obtained by substituting

v = 1 + εw(y, t) in equation (4.1) and discarding all terms involving ε2 and

higher powers of ε. The result is

1

m

∂w

∂t
= wyy + P (y)wy + Q(y)w,

∂w

∂y
(±Yϕ, t) = 0,

where

P (y) =
3m + 1

2

ϕy
ϕ

,(6.1)

mQ(y) = hv(y, 1) = (m− 3)ϕ2 − (m− 2)ϕ + (m− 1)a.(6.2)

The associated eigenvalue problem is

λ

m
ψ = ψ′′ + P (y)ψ′ + Q(y)ψ,

ψ′(±Yϕ) = 0.

It follows from the Sturm-Liouville theory that this eigenvalue problem has

a sequence of eigenvalues λ0 > λ1 > · · · where each eigenvalue is simple, and

the eigenfunction corresponding to λn has exactly n zeroes in the interval

(−Yϕ, Yϕ).

Since P (y) is odd and Q(y) is even in y, the ψ2n are even functions of

y, and the ψ2n+1 are odd.

What we must show is that λ0 > 0 > λ1.

We shall first show that λ1 < 0. To do this we consider

(6.3) v(ξ; y) =

(
p(x(y) + ξ)

p(x(y))

)m
.

Each v(ξ; ·) is a solution of

mv1−1/m
{
v′′ + P (y)v′

}
+ h(v, y) = 0,

so that

(6.4) ψ∗(y) = −
(
∂v

∂ξ

)
ξ=0

= −m
p′(x(y))

p(x(y))
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satisfies

(6.5) ψ′′
∗ + P (y)ψ′

∗ + Q(y)ψ∗ = 0

on the interval −Y < y < Y . Moreover, ψ∗(y) > 0 on (0, Y ), and since

p(±L) = 0, ψ∗ is unbounded at y = ±L, so that ψ∗ is not one of the ψn.

Let ψ1(y) be the eigenfunction corresponding to λ1, and assume that

ψ1(y) > 0 for 0 < y ≤ Y . If λ1 were nonnegative then ψ1 would be a subso-

lution of (6.5). Define c0 = sup {c ≥ 0 : cψ1 ≤ ψ∗ on (0, Y )}. Then c0ψ1 ≤
ψ∗, and either c0ψ1(y) = ψ∗(y) for some y ∈ (0, Y ), or c0ψ

′
1(0) = ψ′

∗(0).

Since ψ∗ cannot be a multiple of ψ1 both conditions lead to a contradiction:

the first with the strong maximum principle, the second with the boundary

point lemma. Hence we have shown that λ1 < 0.

To show that λ0 > 0 we recall that the middle solution p(L, x) depends

on the length L of the interval, and vary this length parameter L, i.e. we

consider

ψ†(y) =

(
∂

∂ξ

)
ξ=0

(
p(L + ξ, x(y))

p(L, x(y))

)m
.

The analysis in [ACP] implies that ψ† has a zero in the interval 0 < y < Y .

Since ψ†(y) is an even function it therefore has at least two zeroes in the

interval (−Y, Y ). Moreover, it is easily seen that ψ† satisfies (6.5).

By the Sturmian oscillation theorem every solution of the eigenvalue

equation λ
mψ = ψ′′+P (y)ψ′+Q(y)ψ with λ ≤ 0 must have at least one zero.

Since the first eigenfunction ψ0 has no zeroes we may therefore conclude

that λ0 > 0, as announced. �

7. The critical case

Transformation and Smooth Semiflow

Our study of the connecting orbits in the case L0 < L < L1 was based

on the fact that by performing the transformations (4.1–3) and considering

v = (u/ϕ)m, the degenerate PDE (1.1) is transformed to a nondegenerate

initial value problem (4.4, 6) whose associated local semiflow is smooth and

hence can be linearized. In this section we assume L = L1(m, a), we put

ϕ = p∗ and apply the same transformation (4.1–3), and investigate the

resulting initial value problem.
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A fundamental difference with the precritical case L0 < L < L1 immedi-

ately appears when one computes the range (−Yϕ, Yϕ) of the new coordinate

y: it turns out that p∗(x) ∼ C|x ± L1|2/(m−1) at x = ±L1, so that the in-

tegral defining Yϕ diverges, i.e. the y-variable assumes all real values. The

analog of the xy-conversion lemma says that

(7.1) y =

{ −C log |L1 − x|+ · · · for x ↑ L1,

C log |L1 + x|+ · · · for x ↓ −L1,

in which · · · stands for lower order terms.

If u(x, t) is a weak solution of (1.1) with u(x, t) > 0 everywhere, then

v = (u/ϕ)m is again a solution of the quasilinear PDE (4.4)

(4.4′) vt = mv1−1/m

{
∂2v

∂y2
+ P (y)

∂v

∂y

}
+ h(v, y), y ∈ R.

Unlike in the precritical case the coefficients turn out not to be singular

as y → ±Yϕ. In fact, both P (y) and h(y, v) are C∞ in both y, v, as long

as v > 0, with all derivatives uniformly bounded in regions of the form

δ ≤ v ≤ δ−1, δ > 0, i.e.

(7.2)
∣∣∣P (n)(y)

∣∣∣+
∣∣∣∣ ∂n+lh

∂vn∂yl

∣∣∣∣ ≤ C(δ, n, l), δ ≤ v ≤ δ−1, y ∈ R.

Moreover, P (y) and h(y, v) have definite limits as y → ±∞. One way to

see this is by observing that one can explicitly compute ϕ as a function of

y. Indeed, by (1.6) and (4.2) we have

(7.3) (ϕy)
2 +

2

m
ϕ2Gm(ϕ) = 0,

(the constant A in (1.6) must vanish.) One can separate variables in this

first order ODE which after integration leads to

(7.4) ϕ(y) =

(
k1(m, a) + k2(m, a) cosh

√
2a

m + 1
y

)−1

for certain positive coefficients kj(m, a). The derivative estimates for P and

h are now easily verified.
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The nice behaviour of ϕ at y = ±∞ implies that the Cauchy problem

(4.4′) is well posed, and has a short time solution {v(y, t) : 0 < t < T} for

any continuous initial value v(y, 0) which is uniformly bounded and uni-

formly bounded away from zero. A straightforward application of theorem

8.6 in the appendix gives that (4.4′) generates a smooth local semiflow Φt

on

Oα =
{
v ∈ hα(R) : ∃δ>0δ ≤ v ≤ δ−1

}
.

It follows from well known interior estimates for quasilinear parabolic equa-

tions that any solution v(y, t) of the Cauchy problem (4.4′) with

δ ≤ v(y, t) ≤ δ−1, y ∈ R, 0 < t < T,

is smooth and has derivative estimates of the form

(7.5)

∣∣∣∣∂nv∂yn

∣∣∣∣ ≤ C(n, δ, T )t−n/2.

We leave to the reader the task of using these estimates to prove a “back-

substitution lemma,” i.e. of showing that any bounded solution of the

Cauchy problem (4.4′) generates a weak solution to (1.1) by u(x, t) =

p∗(x)v(y(x), t)1/m.

The local semiflow Φt is truly local, since any orbit of Φt corresponds to

a solution to (4.4′), and hence to a weak solution of (1.1) whose flux on the

boundary vanishes, i.e. for which (um)x = 0 at x = ±L1. This condition is

not preserved by the weak semiflow φt. One could, for instance, consider an

orbit u(t) = φt(u0) whose initial value u0 satisfies p∗ < u0 < q(L1, ·), and

for which v0 = (u0/ϕ)m belongs to Oα. Then for a short time the orbit u(t)

will be given by the weak solution generated by the smooth local semiflow

Φt on Oα, but as t → ∞ the orbit must converge to q(L1, ·); in particular

the flux at the boundary of u(t) must be positive for large enough t. Hence

Φt(v0) does not exist for all t > 0.

Linearization at the equilibrium

As in the precritical case of the previous sections the transformation v =

(u/ϕ)m sends the equilibrium p∗ = ϕ of the semiflow φt to the equilibrium

v∗(y) ≡ 1 of the smooth local semiflow Φt. We can therefore linearize again

and hope either to find that v∗ ≡ 1 is hyperbolic, or else to understand
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at least something about the equilibrium v∗ ≡ 1 by constructing invariant

manifolds.

The linearization at v∗ ≡ 1 of the local semiflow is a one parameter

analytic semigroup dΦt(v∗) = emAt, whose generator is mA, where A is

given by

A =

(
∂

∂y

)2

+ P (y)
∂

∂y
+ Q(y), domA = h2,α(R).

Here

P (y) =
3m + 1

2

ϕy
ϕ

= ±
√
− 2

m
Gm(ϕ)(7.6)

mQ(y) = hv(y, 1) = (m− 3)ϕ2 − (m− 2)ϕ + (m− 1)a,

ϕ = ϕ(y)
(7.7)

are the same as in (6.1,2).

The coefficients P and Q have limits at y = ∞ given by

P (∞) = −3m + 1

2

√
2a

m + 1
, Q(∞) =

m− 1

m
a.

The limits at y = −∞ are determined by the fact that P is an odd function

and Q is an even function.

Since our operator is defined on an unbounded interval we cannot expect

the spectrum to consist of pure point spectrum. In the example on p.140

of [He81] Dan Henry computes the essential spectrum, Eσ(A), of operators

such as A, i.e. the set of λ ∈ C for which λ−A : h2,α → hα is not a Fredholm

operator of index zero. This portion of the spectrum is of interest to us,

since it basically is the part of the spectrum with which we do not know

what to do. The remainder, C \ Eσ(A), consists of eigenvalues of finite

multiplicity, or of points in the resolvent set of A.

Henry considers operators on Lp(R) rather than on the little Hölder

space hα we use here, but all his arguments can be carried over to the

little Hölder spaces. His conclusion for our operator A is that its essential

spectrum occupies a parabolic region given by

!λ ≤ a
m− 1

m
−
("λ

k

)2

, k2 =
a(3m + 1)2

2(m + 1)
.
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Thus we see that the spectrum of A intersects the imaginary axis rather

drastically, and that the fixed point v∗ ≡ 1 is not hyperbolic. In fact, we

cannot even expect there to be a finite dimensional centre manifold: the

conclusion must be that analogies with finite dimensional ODE theory do

not seem to shed much light on the nature of Φt near v∗.

A fast unstable manifold

Having determined the essential spectrum of A we now consider its point

spectrum.

If we put µ(y) =
∫ y
0 P (η)dη, then A is symmetric with respect to the

inner product

〈u, v〉µ =

∫
R
eµ(y)u(y)v(y)dy.

Indeed, since µ(y) = P (∞)|y|+O(1) at y = ±∞, and P (∞) < 0, eµ decays

exponentially at ±∞, and one easily computes that for any u, v ∈ h2,α(R)

one has

〈u,Av〉µ =

∫
R
eµ(y)

{
−u′v′ +Qu(y)v(y)

}
dy.

Hence all eigenvalues of A are real, and if there are any eigenvalues they

form a countable sequence

λ0 > λ1 > · · · ≥ a
m− 1

m

which is either finite, or else accumulates at am−1
m (see fig. 7.1).

Fig. 7.1. The possible spectrum of A.
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If the operator A does indeed have at least one eigenvalue, then the

eigenfunction ϕ0 corresponding to the largest eigenvalue λ0 must be posi-

tive, and λ0 must be a simple eigenvalue. We can then apply the invariant

manifold theorem, and conclude the existence of a one dimensional fast un-

stable manifold through v∗ ≡ 1. Thus there exist two orbits w±(y, t) ∈ Oα

of Φt, which are defined for all t ≤ 0, and have the following asymptotics

as t → −∞

(7.8) w±(y, t) = 1± e(λ0+o(1))tϕ0(y) + · · · , (t → −∞)

i.e.
w±(y, t)− 1

‖w±(y, t)− 1‖hα
→ ϕ0 in hα(R) as t → −∞.

The corresponding solutions u±(x, t) to (1.1) are then solutions which exist

for all t ≤ 0. Using the weak semiflow we can extend them to t > 0 in a

unique way. The resulting solutions will have zero flux at the boundaries

x = ±L1 for t ≤ 0, but as we mentioned before this situation need not

persist. As t → +∞ u+(x, t) will converge to q(L1, x), so that it will

become strictly positive, while u−(x, t) will converge to 0.

There are many other ways of extending the solution u+ to positive

times. We mention one extension whose conjectured existence formed a

part of the original motivation for the present work.

Since the solution u+ has no flux at the boundaries ±L1, it can be

extended to a solution of the Cauchy Problem for (1.1), simply by defining

u+(x, t) ≡ 0 for |x| ≥ L1, t ≤ 0. The Cauchy problem for (1.1) is well-posed

so that we can also extend u+(x, t) for t > 0 by defining u+ for t > 0 to be

the unique weak solution of the Cauchy problem with initial data u+(x, 0)

for |x| ≤ L1, and 0 for |x| ≥ L1. This way we obtain a solution u+(x, t)

of the Cauchy problem, defined for all time, whose free boundaries remain

fixed at x = ±L1 for an infinite time period. Such a solution has been

called a solution with a waiting time at infinity, and our discussion shows

that such a solution exists if the operator A has at least one eigenvalue

outside of its essential spectrum.

Whether or not A has isolated eigenvalues turns out to depend on the

values of the parameters a and m. Based on numerical calculations we

conjecture that there is a monotone concave function m∗(a) defined for

0 ≤ a ≤ 1/2, with m∗(0) = 2, m∗(1/2) = 1 such that A has one isolated
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Fig. 7.2. The parameter domain (a,m).

eigenvalue for 1 < m < m∗(a) and no isolated eigenvalues otherwise (see fig

7.2). We can only prove the following.

7.1. Theorem. If m ≥ 2 then A has no isolated eigenvalues. For

any a ∈ (0, 1/2) there is an m0(a) > 1 such that A does have an isolated

eigenvalue for 1 < m < m0(a).

Proof. Let m ≥ 2. Then we claim that mQ(y) ≤ mQ(∞). Indeed,

from (7.7) and ϕ(∞) = 0 it follows that for 2 ≤ m ≤ 3 one has mQ <

a(m − 1) wherever ϕ(y) > 0, i.e. everywhere, while for m > 3 one has

mQ(y) < a(m− 1) wherever 0 < ϕ(y) < m−2
m−3 . Since 0 < ϕ(y) < 1 for all y,

this last condition is also fulfilled for all y.

Any eigenvalue λ must be real, and outside the essential spectrum, so if

there is an eigenvalue with corresponding eigenfunction ψ(y), then we must

have λ > am−1
m = Q(∞). An analysis of the differential equation

(7.9) ψ′′(y) + P (y)ψ′(y) + (Q(y) − λ)ψ(y) = 0, y ∈ R,

satisfied by any eigenfunction ψ shows that ψ(y) must decay exponentially

at y = ±∞. In particular at some y0 one must have ψ(y0) = ± supR |ψ(y)|,
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and one may assume that ψ(y0) > 0. At y0 one then also has ψ′′ ≤ 0 and

Q(y0)−λ < 0. Upon substitution in (7.9) this yields a contradiction. Hence

there can be no eigenvalues if m ≥ 2.

We turn to the existence part of the theorem.

The starting point of our argument is the observation that the operator

A can actually be defined for all (a,m) with m > 0 and 0 < a < m+1
m+3 ,

instead of just for m > 1. Indeed, the coefficients of A depend only on

ϕ(y), and the explicit form (7.4) is defined for all m > 1 and 0 < a < m+1
m+3 .

When m = 1, the essential spectrum of the operator A occupies the

parabolic region 4a!λ + ("λ)2 ≤ 0. In particular, it is contained in the

closed left half plane.

We consider the function ψ∗ introduced in (6.1,2),

ψ∗(y) = −m
ϕx
ϕ

= −mϕ(y)−
m−1

2
ϕy
ϕ

.

By (6.3) ψ∗ satisfies the eigenvalue equation (7.9) with λ = 0. Since ϕ(y)

vanishes at ±∞, ψ∗ is unbounded for m > 1, but when m = 1 we simply

get ψ∗(y) = −ϕy/ϕ, so that in this case ψ∗ is bounded, and converges to a

finite positive limit as y →∞.

For any λ > −P (∞)2/4 the eigenvalue equation has a unique solution

Ψ(λ, y) with

Ψ(λ, y) = (1 + o(1))eγy, (y →∞),

γ = γ(λ) = −P (∞)/2 −
√

P (∞)2/4 + λ

For λ = 0 we have γ = 0, so Ψ(λ, y) must be a multiple of ψ∗. Since the

graph of ϕ is bell shaped we have Ψ(0, y) > 0 for y > 0, Ψ(0, 0) = 0 and

Ψy(0, 0) > 0.

When λ > supR Q(y), the asymptotics at y = ∞ imply Ψ(λ, y) > 0

and Ψy(λ, y) < 0 for large y. Since Ψ satisfies (7.9) Ψ must be decreasing

for all y ∈ R. For if there were some y0 with Ψy(λ, y0) ≥ 0, then there

would also be a largest y1 with the same property; at this y1 one then

would have Ψy = 0, and, since Ψ is decreasing on (y1,∞), one would also

have Ψ(λ, y1) > 0; substitution in (7.9) shows that this would lead to a

contradiction.
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Thus we find that for λ = 0 we have Ψy(λ, 0) > 0, while for large λ

the opposite inequality holds. There must then be some λ0 > 0 for which

Ψy(λ0, 0) = 0. The coefficients P and Q are odd and even, respectively, so

Ψy(λ0, 0) = 0 implies that Ψ(λ0, y) is an even solution of (7.9), and hence

is an eigenfunction of A, with m = 1.

To complete the proof we simply observe that this isolated eigenvalue

λ0 persists under small perturbations of the operator A, and thus that A

also has an isolated eigenvalue for m close to 1. �

8. Appendix

Smooth Local Semiflows

Recall that a local semiflow on a topological space O is a continuous

map Φ : D → O defined on an open subset D ⊂ O × [0,∞) which satisfies

lsf1 O × {0} ⊂ D and Φ(x, 0) ≡ x;

lsf2 if (x, t) ∈ D then (x, s) ∈ D for all s ∈ [0, t);

lsf3 if (x, t) ∈ D and (Φ(x, t), s) ∈ D then (x, t+s) ∈ D and Φ(x, t+s) =

Φ(Φ(x, t), s).

The domain of a local semiflow can always be represented as

D = {(x, t) : 0 ≤ t < T (x)}

where T : O → (0,∞] is a lower semi continuous function. One calls T (x)

the life-span of the orbit starting at x. When Φ is generated by the initial

value problem associated with some PDE then one says that a solution

x(t) = Φ(x0, t) “blows up in finite time” if T (x0) < ∞. This can only occur

if the orbit γ(x0) = {Φ(x0, t) : 0 ≤ t < T (x0)} is not precompact in O.

For a local semiflow Φ : D → O we define Dt = {x ∈ O : T (x) > t} and

Φt : Dt → O, with Φt(x) = Φ(x, t).

Assuming that O is an open subset of a Banach space E (or, more

generally, a Banach manifold modelled on E), we shall say that a local

semiflow Φ : D → O is Ck smooth if

sm1 each Φt : Dt → O is k times continuously Fréchet differentiable;

sm2 the derivatives djΦt(x) ∈ Lj(E,E) are strongly continuous in (x, t) ∈
D.
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Here Lj(E,E) is the space of j-linear mappings from E×· · ·×E to E, and

strong continuity means that the map

D × E × · · · ×E → E

(x, t, ξ1, . . . , ξj) �→ djΦt(x) · (ξ1, . . . , ξj)

is continuous.

The first condition already implies that djΦt(x) depends continuously

on x (even with respect to the norm topology on Lj(E,E)), so the second

condition is mainly an assumption about the way the derivatives djΦt(x)

depend on time.

Stable and Unstable Manifolds

Let x0 ∈ O be a fixed point of the smooth local semiflow Φ : D → O,

and consider the local stable and unstable manifolds of x0 associated with

some neighbourhood U ⊂ O of x0:

W s(x0,U) = {x ∈ U : Φ(x, t) ∈ U for all t ≥ 0}
W u(x0,U) = {x ∈ U : x = x̂(0) for some orbit x̂ : (−∞, 0] → U}

Here x̂ : (−∞, 0] → O is by definition an orbit if Φ(x̂(t), s) = x̂(t + s) for

all t ≤ 0, 0 ≤ s ≤ −t.

The smooth semigroup properties of Φ imply that {dΦt(x0) : t ≥ 0} is a

strongly continuous semigroup on E. By the Hille-Yosida theorem it may

be written as etA = limn→∞(1 − tA/n)−n for some (possibly unbounded)

operator A on E.

Recall that the fixed point if called hyperbolic if the spectrum of dΦt(x0)

is disjoint from the unit circle for any t > 0. If x0 is hyperbolic, then there

exists a splitting E = Es ⊕ Eu which is invariant under dΦt(x0), and for

which one has

‖dΦt(x0)ξ‖ ≤ Me−δt‖ξ‖, ξ ∈ Es,

‖dΦt(x0)ξ‖ ≥ meδt‖ξ‖, ξ ∈ Eu,

for all t > 0 and certain constants m,M, δ > 0.

If the semigroup {dΦt(x0) : t ≥ 0} happens to analytic, then x0 is hy-

perbolic if and only if the spectrum of the generator A is disjoint from the

imaginary axis.
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8.1. Invariant Manifold Theorem. If x0 is a hyperbolic fixed

point, then the local stable and unstable manifolds in a small enough neigh-

bourhood U of x0 are smooth submanifolds of E near x0. Their tangent

spaces are given by

Tx0W
s(x0,U) = Es, Tx0W

u(x0,U) = Eu.

This follows immediately from the usual stable and unstable manifold

theorem (see [HPS]; [Ch] gives a particularly transparent account) once one

realizes that the stable manifold of the semiflow coincides with that of its

time-t0 map Φt0 .

Maximal regularity classes

Let E1 ⊂ E0 be Banach spaces, as above, and let A : E1 → E0 be

any bounded operator. One can regard such an operator as an unbounded

operator in E0, with domain E1. The simplest typical example which the

reader should keep in mind is:

8.2. Example. E0 = C(R/Z), E1 = C2(R/Z) and A = a(x)(d/dx)2,

for some continuous periodic function a(x).

Write E for the pair of Banach spaces (E1, E0). We define Hol(E) to be

the set of all such linear operators which generate a holomorphic semigroup

on E0 (in the example one has A ∈ Hol(E) iff the function a(x) is strictly

positive). It turns out that Hol(E) is an open subset of L(E1, E0), the set

of linear operators from E1 to E0, equipped with the norm topology.

If A ∈ L(E1, E0), then it is known that A ∈ Hol(E) if and only if there

exist constants M,C < ∞ such that

(i) the resolvent of A, R(λ,A) = (λ − A)−1 : E0 → E1 exists for all

λ ∈ C with !(λ) ≥ M ,

(ii) for all x ∈ E0, and all λ with !(λ) ≥ M one has ‖R(λ,A)x‖E1 ≤
C‖x‖E0.

Let 0 < ρ ≤ 1 be given. For any given A ∈ Hol(E) we may consider the

inhomogeneous linear initial value problem

(8.1)

{
u′(t) = Au(t) + f(t) (0 < t ≤ T )

u(0) = 0.
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If this initial value problem has a solution u ∈ C0((0, T ];E1)∩C1((0, T ];E0)

for any f ∈ C((0, T ];E0) with

lim
t↓0

t1−ρ‖f(t)‖E0 = 0,

and if the solution satisfies

lim
t↓0

t1−ρ{‖u(t)‖E1 + ‖u′(t)‖E0} = 0,

then we say that the operator A belongs to the maximal regularity class

MRρ(E).

In general the solution to the inhomogeneous equation is given by the

variation of constants formula, i.e., by

u(t) =

∫ t

0
e(t−s)Af(s) ds.

If one tries to estimate the E1 norm of this solution, then one encounters

the following integral:

Au(t) =

∫ t

0
Ae(t−s)Af(s) ds.

(The E1 norm of x is essentially equivalent to ‖Ax‖E0 .) If one tries to

estimate the E0 norm of the above integral, using only the boundedness of

f(t), then one runs into trouble since the best possible bound for AetA is

‖AetA‖E0→E0 ≤
C

t
(0 < t ≤ T ).

In fact Baillon [Ba] has shown that the constant C can never be chosen

smaller than 1/e, unless E1 = E0, which never occurs for differential oper-

ators.

Thus, if A ∈ Hol(E) then one does not expect the solution u(t) to be a

continuous E1 valued function, if one only knows that f is continuous with

values in E0. In the example this means that one does not know whether

uxx(·, t) ∈ C(R/Z) or not, if u is the solution to the inhomogeneous heat

equation ut = a(x)uxx + f(x, t), where f is some continuous function.

In [DaPG] G. DaPrato and P. Grisvard observed that there is a large

class of Banach pairs E = (E1, E0) for which MR1(E) is nonempty; in

[An1] their construction was generalized to the case 0 < ρ < 1, in a very

straightforward way. The precise result is the following:
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8.3. Theorem Let A ∈ Hol(E) be given. For any 0 < σ < 1 define

Eσ to be the continuous interpolation space between E1 and E0 of exponent

σ, (E1, E0)σ. Let E1+σ be the space {x ∈ E1|Ax ∈ Eσ}. Then the operator

A
∣∣
E1+σ : E1+σ → Eσ

belongs to MRρ(E) for any ρ ∈ (0, 1].

In what follows we shall only have to know what the “continuous inter-

polation space of exponent σ” is for a few examples. In general it can be

described as the closure of E1 in the perhaps more familiar real interpolation

space (see [BL]) (E1, E0)σ,∞.

The examples which will be relevant for our purposes are the following.

Recall that the little Hölder space of exponent µ ∈ (0, 1) is defined by

hµ([0, 1]) = Closure of C∞([0, 1]) in Cµ([0, 1]),

while the space h2,µ([0, 1]) is defined to consist of those u ∈ hµ for which u′

and u′′ also belong to hµ([0, 1]).

Another, more direct description of hµ is as follows: u ∈ hµ([0, 1]) iff

lim
ε↓0

sup
|t−s|≤ε

ε−µ|u(t)− u(s)| = 0.

The norms on hµ and h2,µ are the usual Hölder norms.

If one now defines E0 = hµ([0, 1]), and E1 = {u ∈ h2,µ|u′(0) = u′(1) =

0}, then the continuous interpolation spaces of the pair E are given by the

following lemma, at least when µ + 2σ is not an integer.

8.4. Lemma. If µ + 2σ < 1 then Eσ = hµ+2σ([0, 1]).

If 1 < µ + 2σ < 2 then Eσ = {u ∈ h1,µ+2σ−1([0, 1])|u′(0) = u′(1) = 0}.
If µ + 2σ > 2 then Eσ = {u ∈ h2,µ+2σ−2([0, 1])|u′(0) = u′(1) = 0}.

See [DaPG] for a proof.

The operators which we shall encounter are second order differential

operators of the form

(8.2) A = a(x)

{(
d

dx

)2

+
b(x)

x(1− x)

(
d

dx

)}
,
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where a(x) and b(x) belong to hµ([0, 1]) and a(x) is strictly positive.

Using the DaPrato-Grisvard construction, and the characterization of

Eσ of the previous lemma, the following was proved in [An2].

8.5. Lemma. If b(0) > −1 and b(1) > −1, then A belongs to the

maximal regularity class MRρ(E) for any 0 < ρ ≤ 1.

Quasilinear initial value problems

Let (E1, E0) be a Banach couple, and let O ⊂ Eθ be an open subset of

the interpolation space of exponent θ. Fix some 0 < θ < σ < 1, and define

Oσ = O ∩ Eσ. Then we consider initial value problems of the type

(8.3)
ut = A(u)u + f(u)

u(0) = u0,

where

(i) A : O → L(E1, E0) is a Ck smooth mapping,

(ii) A(x) ∈ MRσ(E) for every x ∈ Oσ,

(iii) f : O → E0 is a Ck smooth mapping.

We shall look for solutions u ∈ Yθ,T , where Yθ,T consists of those u ∈
C1((0, T ];E0) ∩ C0((0, T ];E1) which satisfy

lim
t↓0

t1−θ{‖u(t)‖E1 + ‖u′(t)‖E0} = 0.

Equipped with the norm

[u]θ = sup
0<t≤T

t1−θ{‖u(t)‖E1 + ‖u′(t)‖E0}

Yθ,T becomes a Banach space.

The following theorem gives the main local existence and uniqueness

theorem for (8.3). Its proof is given in [An1], and essentially involves noth-

ing more complicated than a Picard iteration.

8.6. Theorem. For any u0 ∈ Oσ there is a T = T (u0) > 0 such that

(8.3) has a unique solution u ∈ Yθ,T .
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For 0 < t ≤ T the solution is a Ck function with values in E1, and one

actually has the following estimate:

‖u(j)(t)‖E1 ≤
C

tj+1−θ (j = 0, 1, 2, . . . , k).

For any u1 ∈ Oσ near u0, in the Eσ topology, (8.3) will also have a

solution in Yθ,T , with the same T = T (u0). This solution depends Ck on

its initial value u1.

.

In other words, (8.3) generates a local Ck smooth semiflow on Oσ.

Quasilinear equations with regular singular coefficients

We have seen that the degenerate parabolic PDE’s in this paper can

sometimes be transformed to the following kind of problem.

(8.4)




ut = a(x, u)

{
uxx +

b(x, u)

x(1− x)
ux

}
+ f(x, u),

(0 < x < 1, 0 < t ≤ T ),

ux(0, t) = ux(1, t) = 0, (0 < t ≤ T ),

u(x, 0) = u0(x).

Here we assume that the functions a, b and f are defined on {(x, u) : 0 ≤
x ≤ 1, umin < u < umax}, and that they satisfy the following conditions on

this domain.

[1] For all s ∈ R the functions g(x, s), gu(x, s) and guu(x, s) are little

Hölder continuous functions of x, of exponent θ ∈ (0, 1). Here g

stands for either a, b or f .

[2] (uniform parabolicity) δ ≤ a(x) ≤ δ−1 for some δ > 0.

[3] For any s ∈ R one has b(0, s) > −1 and b(1, s) > −1.

Define the spaces Ej as in the previous section, let O be the set of u ∈ Eθ

for which umin < u(x) < umax for x ∈ [0, 1], and define the operators A(u),

and the map f : O → E0 as follows:

A(u) = a(x, u(x))

{(
d

dx

)2

+
b(x, u(x))

x(1− x)

(
d

dx

)}
,
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and

f(u)(x) = f(x, u(x)).

We use the same symbol f to denote the function of two real variables, and

its corresponding substitution operator and hope that the reader will not

find this abuse of notation too confusing.

It follows from our assumption [1] that f : O → E0 is in fact C1 Fréchet

differentiable, and using the results that were quoted in the previous section,

one shows that A : O → L(E1, E0) is a C1 mapping with values in MRρ(E),

for any 0 < ρ ≤ 1. Thus we may apply the local existence theorem to

conclude that (8.4) generates a C1 local semiflow on Oσ for any σ ∈ (θ, 1).

In view of the description of the continuous interpolation spaces which we

have, this gives us the following local existence and uniqueness theorem for

(8.4).

8.7. Theorem. If a, b and f satisfy [1, 2, 3], and if θ < µ < 1, then

the initial value problem (8.4) generates a C1 local semiflow on

Oµ = {u ∈ hµ|umin < u < umax}.

If u0 ∈ Oµ, then the maximal solution u(x, t) of (8.1) provided by the local

semiflow is smooth, in the sense that for any t > 0 the functions u(·, t) and

ut(·, t) lie in h2,θ([0, 1]).

The second part of this statement follows from the estimates on ‖u(j)‖E1

which the abstract existence theorem provides, for j = 0, 1.
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