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Abstract. In the present paper we study the asymptotic expan-
sion of the multiple eigenvalues and eigenfunctions for boundary value
problems in a domain with a small hole. We prove the bifurcation of
these eigenvalues under certain conditions.

1. Introduction and main results

The purpose of this article is to study asymptotic formula of multiple

eigenvalues and eigenfunctions for boundary value problems in a domain

with a small hole. Let Ω be a bounded domain with smooth boundary in

R
3 and {0} ∈ Ω. Let B1 be the unit ball in R

3. We consider the following

problem :

∆u(x, ε) + λ(ε)u(x, ε) = 0, in Ωε = Ω\εB1(1)

u(x, ε)
∣∣
∂Ωε

= 0.(2)

All the eigenvalues of (1)-(2) may be put in non-decreasing order 0 <

λ1(ε) < λ2(ε) ≤ λ3(ε) · · · . The first eigenvalue is always simple (see [1]).

The eigenvalue from λ2(ε) may be multiple. We shall study the behavior of
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the functions λn(ε) when ε → 0(n ≥ 2). The problem (1)-(2) is connected

closely with following one in the limit case :

∆u(x) + λu(x) = 0, in Ω(3)

u(x)
∣∣
∂Ω

= 0.(4)

All the eigenvalues of (3)-(4) may be also put in non-decreasing order

0 < λ1 < λ2 ≤ λ3 . . . . It is well-known that lim
ε→0

λj(ε) = λj (see[2]). Let

λj be a simple eigenvalue. In the work [2], [3] Ozawa S. obtained the

statement :

λj(ε) = λj + 4πu2
j (0)ε + Cjε

2 + 0(ε5/2) (ε → 0)

where uj(x) is the normed eigenfunction corresponding to λj and where Cj

is a constant explicitly calculated.

We shall find a full asymptotic formula of λj(ε) in a form λj(ε) =
∞∑
i=0

λ<i>
j εi and corresponding eigenfunctions uj(x, ε) in a form :

uj(x, ε) =
∞∑
k=0

(
mkj(x) + nkj(ξ)

)
εk

where ξ = xε−1. The functions mkj(x) and nkj(ξ) have asymptotic expan-

sions

mkj(x) =
N∑
i=0

m<i>
kj (θ).|X|i + m̃<N>

kj (x)(5)

nkj(ξ) =
N∑
i=1

n<i>
kj (θ).|ξ|−i + ñ<N>

kj (ξ)(6)

where
∣∣∣Dα

x m̃
<N>
kj (x)

∣∣∣ ≤ CN,k,α,j |x|−N+1−|α|

|Dα
ξ ñ

<N>
kj (ξ)| ≤ CN,k,α,j |ξ|−N−1−|α|

θ = (θ1, θ2) denotes coordinates on S2 and m<i>
kj (θ), n<i>

kj (θ) are

smooth functions on S2. In the paper [4] Mazia V.G., Nazarov S.A.,
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B.A.Plamenevskii found a full asymptotic formula for simple eigenvalues.

Let λj be a simple eigenvalue of the problem (3)-(4). Then we have the

following expansion for λj(ε) :

λj(ε) = λj + 4πu2
j (0)ε + λ<2>

j ε2 + . . . + λ<M>
j εM + 0(εM+1)

where M is any positive integer number. In the article [5] the author ob-

tained the

Theorem. Let λj be a double eigenvalue of (3)-(4). It corresponds two

orthonormal eigenfunctions uj(x), uj+1(x). Assume that u2
j (0) + u2

j+1(0) >

0, then we have a formula for the eigenvalues λj(ε) ≤ λj+1(ε) (respectively)

λj+k(ε) =
M∑
i=0

λ<i>
j+k ε

i + 0(εM+1) k = 0, 1.

Furthemore λ<0>
j = λ<0>

j+1 = λj , λ
<1>
j = 0, λ<1>

j+1 = 4π
(
u2
j (0) + u2

j+1(0)
)
.

Remark. It is easy to see that the sum (u2
j (0) + u2

j+1(0)) is invariant

under any orthogonal transformations in the plane (uj , uj+1).

Corollary. Assume that (u2
j (0)+u2

j+1(0)) > 0. Then the eigenvalues

λj(ε), λj+1(ε) are simple and different as ε → 0.

In the present paper the author continue the studies in [2]-[5]. We shall

consider the case when λj is a double or triple eigenvalues. Let λj be a

double and uj(0) = uj+1(0) = 0. We expand uj(x), uj+1(x) in series :

uj+k(x) = u<1>
j+k (θ)r + u<2>

j+k (θ)r2 + . . . + u<M>
j+k (θ)rM + 0(rM+1) (r → 0)

where k = 0, 1 and r = |x|.
One can write the Laplace operator in the spherical coordinates

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆S2



570 Nguyen Minh Tri

where-∆S2 is the Laplace - Beltrami operator on sphere. Since the func-

tions uj(x), uj+1(x) are the eigenfunctions, it follows that u<1>
j (θ), u<1>

j+1 (θ)

satisfy the equations (see [6]) :

∆S2u<1>
j+k (θ) + 2u<1>

j+k (θ) = 0 (k = 0, 1).

Therefore we have the indentities

u<1>
j+k (θ) = a<1>

j+k A1(θ) + a<2>
j+k A2(θ) + a<3>

j+k A3(θ) (k = 0, 1),

where A1(θ), A2(θ), A3(θ) denote orthonormal eigenfunctions of ∆S2 with

the eigenvalue 2.

Theorem 1. Let λj be a double eigenvalue and uj(0) = uj+1(0) = 0.

Assume that

Tj :=

∣∣∣∣∣
3∑

i=1

[a
(i)
j ]2 −

3∑
i=1

[a
(i)
j+1]

2

∣∣∣∣∣ +

∣∣∣∣∣
3∑

i=1

a
(i)
j a

(i)
j+1

∣∣∣∣∣ �= 0.

Then we have the expansions for λj(ε) ≤ λj+1(ε) (resp.)

(7) λj+k(ε) = λj +λ<3>
j+k ε

3 +λ<4>
j+k ε

4 + · · ·+λ<M>
j+k εM +0(εM+1) (ε → 0)

where k = 0, 1 and λ<3>
j < λ<3>

j+1 .

Corollary 1. Assume that uj(0) = uj+1(0) = 0, Tj �= 0, then λj(ε),

λj+1(ε) are simple and different as ε → 0.

Remark. The condition Tj �= 0 is equivalent to the following condi-

tion : the matrix
((

u<1>
j (θ), u<1>

j (θ)
)
L2(∂B1)

(
u<1>
j (θ), u<1>

j+1 (θ)
)
L2(∂B1)(

u<1>
j (θ), u<1>

j+1 (θ)
)
L2(∂B1)

(
u<1>
j+1 (θ), u<1>

j+1 (θ)
)
L2(∂B1)

)
=: M

has two different eigenvalues. In the future it is easy to see that 3−1λ<3>
j ,

3−1λ<3>
j+1 are the eigenvalues of the matrix M .

Now let λj are a triple eigenvalue of the problems (3)-(4). It corre-

sponds three orthonormal functions uj(x), uj+1(x), uj+2(x). Assume that
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u2
j (0) + u2

j+1(0) + u2
j+2(0) �= 0. Then we can always choose 3 functions

u∗j (x), u∗j+1(x), u∗j+2(x) in the plane (uj(x), uj+1(x), uj+2(x)) such that

u∗j+k(x) = u∗<1>

j+k (θ)|x| + u∗<2>

j+k (θ)|x|2 + · · · + u
∗<M>

j+k (θ)|x|M + 0(|x|M+1)

(
u∗j+i(x), u∗j+k(x)

)
L2(Ω)

= δik (i, k = 0, 1, 2), u∗j (0) = u∗j+1(0) = 0

u∗2j+2(0) = u2
j (0) + u2

j+1(0) + u2
j+2(0).

Theorem 2. Let λj be a triple eigenvalue of (3)-(4). Assume that

u∗j+2(0) �= 0 and the matrix

((
u∗<1>
j (θ), u∗<1>

j (θ)
)
L2(∂B1)

(
u∗<1>
j (θ), u∗<1>

j+1 (θ)
)
L2(∂B1)(

u∗<1>
j (θ), u∗<1>

j+1 (θ)
)
L2(∂B1)

(
u∗<1>
j+1 (θ), u∗<1>

j+1 (θ)
)
L2(∂B1)

)
=: M∗

has two different eigenvalues. Then we have the asymptotic formula for

λj(ε) ≤ λj+1(ε) ≤ λj+2(ε)

λj+k(ε) = λj + λ<3>
j+k ε

3 + λ<4>
j+k ε

4 + · · · + λ<M>
j+k εM + 0(εM+1) (ε → 0)

λj+2(ε) = λj + 4π[u∗j+2(0)]2ε + λ<2>
j+2 ε2 + · · · + λ<M>

j+2 εM + 0(εM+1)

(ε → 0)

where k = 0, 1, and λ<3>
j < λ<3>

j+1 .

Corollary 2. If u∗j+2(0) �= 0 and the matrix M∗ has two different

eigenvalues, then the eigenvalues λj(ε), λj+1(ε), λj+2(ε) are simple and dif-

ferent when ε → 0.

2. A process of finding the full asymptotic formula

of the eigenvalues and the eigenfunctions A.

The case of double eigenvalues :

Put λj+k(ε) from (7) into (1) and (2) :

[(∆ + λj + λ<1>
j ε + λ<2>

j ε2 + λ<3>
j ε3 + 0(ε4)][(ujo + vjo) + ε(uj1 + vj1)+

+ε2(uj2 + vj2) + ε3(uj3 + vj3) + ε4(uj4 + vj4) + 0(ε5)] = 0 in Ωε(8)
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[(ujo + vjo) + ε(uj1 + vj1) + ε2(uj2 + vj2) + · · · + 0(ε5)]
∣∣
∂Ωε

= 0(9)

[(∆ + λj + λ<1>
j+1 ε + λ<2>

j+1 ε2 + λ<3>
j+1 ε3 + 0(ε4)][(pjo + qjo) + ε(pj1 + qj1)+

+ε2(pj2 + qj2) + ε3(pj3 + qj3) + ε4(pj4 + qj4) + 0(ε5)] = 0 in Ωε(10)

[(pjo + qjo) + ε(pj1 + qj1) + ε2(pj2 + qj2) + · · · + 0(ε5)]
∣∣
∂Ωε

= 0(11)

where

uj(x, ε) = [(ujo + vjo) + ε(uj1 + vj1) + ε2(uj2 + vj2) + . . . ]

uj+1(X, ε) = [(pj0 + qj0) + ε(pj1 + qj1) + ε2(pj2 + qj2) + . . . ]

denote eigenfunctions corresponding to λj(ε), λj+1(ε). Functions uj0(x),

uj1(x), . . . , pj0(x), pj1(x), . . . are defined in Ω and they keep an asymp-

totic expansion as the functions mkj(x) from (5). Functions vj0(ξ), vj1(ξ),

qj0(ξ), qj1(ξ), . . . are defined in R
3\B1 and they keep an asymptotic

expansions as the function nkj(ξ) from (6). In the following we shall

write u0(x), u1(x), . . . , p0(x), p1(x), . . . , v0(ξ), v1(ξ), . . . , q0(ξ), q1(ξ), . . . for

uj0(x), uj1(x), . . . , pj0(x), pj1(x), . . . , vj0(ξ), vj1(ξ), . . . , qj0(ξ), qj1(ξ), . . . .

Comparing the coefficients in the identical orders of ε in (8)-(11) one ob-

tain :

ε0

{
∆u0(x) + λju0(x) = 0, in Ω

u0(x)|∂Ω = 0

ε0

{
∆p0(x) + λjp0(x) = 0, in Ω

p0(x)|∂Ω = 0.

Hence u0(x) = a1
0uj(x) + a2

0uj+1(x), p0(x) = b10uj(x) + b20uj+1(x). Since

∆ξ = ε2∆x then

ε−2




∆v0(ξ) = 0, in R
3\B1

v0(ξ)|∂B1
= 0

lim
|ξ|→∞

v0(ξ) = 0

ε−2




∆q0(ξ) = 0, in R
3\B1

q0(ξ)|∂B1
= 0

lim
|ξ|→∞

q0(ξ) = 0.

Therefore v0(ξ) = q0(ξ) = 0 and

∆u1(x) + λju1(x) + λ<1>
j u0(x) = 0, in Ω(12)

u1(X)|∂Ω = 0(13)
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∆p1(x) + λjp1(x) + λ<1>
j+1 p0(x) = 0, in Ω(14)

p1(x)|∂Ω = 0.(15)

For the solvability of the problems (12)-(15) we have λ<1>
j = λ<1>

j+1 = 0.

Hence u1(x) = a1
1uj(x) + a2

1uj+1(x) and p1(x) = b11uj(x) + b21uj+1(x). As-

sume that under some conditions the eigenvalues λj(ε) < λj+1(ε) for suf-

ficiently small ε. In the process of finding the asymptotic formula that

condition will be clear. If it happens, then we have u0
⊥p0, i.e. if u0 =

a1
0uj + a2

0uj+1, so p0 = −a2
0uj + a1

0uj+1. Hence one can choose u1(x) =

c1p0(x) and p1(x) = d1u0(x). Suppose the functions u1(x) and p1(x) are

found. Then the functions v1(ξ), q1(ξ) satisfy :

ε−1




∆v1(ξ) = 0, in R
3\B1

v1(ξ)|∂B1
= −(grad u0(0), ξ) =: −A1(θ)

lim
|ξ|→∞

v1(ξ) = 0

ε−1




∆q1(ξ) = 0, in R
3\B1

q1(ξ)|∂B1
= −(grad p0(0), ξ) =: −A2(θ)

lim
|ξ|→∞

q1(ξ) = 0.

If v1(ξ), q1(ξ) are found we can find u2(x) and p2(x) from

∆u2(x) + λju2(x) + λ<2>
j u0(x) = 0, in Ω(16)

u2(x)|∂Ω = 0(17)

∆p2(x) + λjp2(x) + λ<2>
j+1 p0(x) = 0, in Ω(18)

p2(x)|∂Ω = 0.(19)

From the solvability of (16)-(19) we deduce that λ<2>
j = λ<2>

j+1 = 0. There-

fore one can choose u2(x) = c2p0(x), p2(x) = d2u0(x). The functions v2(ξ)

and q2(ξ) satisfy :




∆v2(ξ) = 0, in R
3\B1

v2(ξ)|∂B1
= −c1A2(θ) −B1(θ),

lim
|ξ|→∞

v2(ξ) = 0




∆q2(ξ) = 0, in R
3\B1

q2(ξ)|∂B1
= −d1A1(θ) −B2(θ)

lim
|ξ|→∞

q2(ξ) = 0,
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where B1(θ) =
3∑

ik=1

∂2u0(0)
∂xi∂xk

ξiξk

∣∣∣∣
∂B1

, B2(θ) =
3∑

ik=1

∂2p0(0)
∂xi∂xk

ξiξk

∣∣∣∣
∂B1

.

Note that ∆s2B1(θ)+6B1(θ) = 0 and ∆s2B2(θ)+6B2(θ) = 0. It follows

that

v2(ξ) = −c1A2(θ)|ξ|−2 −B1(θ)|ξ|−3, q2(ξ) = −d1A1(θ)|ξ|−2 −B2(θ)|ξ|−3.

Then u3(x), p3(x) satisfy :

∆{u3 −A1(θ)|x|−2} + λj{u3 −A1(θ)|x|−2} + λ<3>
j u0 = 0(20)

{u3 −A1(θ)|x|−2}
∣∣
∂Ω

= 0(21)

∆{p3 −A2(θ)|x|−2} + λj{p3 −A2(θ)|x|−2} + λ
(3)
j+1p0 = 0(22)

{p3 −A2(θ)|x|−2}
∣∣
∂Ω

= 0.(23)

For solvability of (20)-(23) we have

λ<3>
j = 3

∫
∂B1

A2
1(θ)dθ, λ<3>

j+1 = 3

∫
∂B1

A2
2(θ)dθ.

Note that A1(θ) = a1
0u

<1>
j (θ) + a2

0u
<1>
j+1 (θ) and

A2(θ) = −a2
0u

<1>
j (θ) + a1

0u
<1>
j+1 (θ).

Multiplying (20) by uj(x), uj+1(x) and integrating over Ωε then turning

ε → 0 one obtain :

(M −
λ<3>
j

3
I)

(
a1

0

a2
0

)
= 0(see the definition of M in the introduction).

It means that 3−1λ<3>
j is the eigenvalue of the matrix M and (a1

0, a
2
0) is

its eigenvector. By analogy we can prove 3−1λ<3>
j+1 is also eigenvalue of

M . Therefore if M has two different eigenvalues then λ<3>
j , λ<3>

j+1 and

(a1
0, a

2
0) are defined uniquely. So we found λ<3>

j , λ<3>
j+1 , u0(x)p0(x), v0(ξ),
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q0(ξ), v1(ξ), q1(ξ). Continuing this procedure we can find λ<4>
j , λ<4>

j+1 , u1(x),

p1(x), v2(ξ), q2(ξ).

A step of induction : Assume that λ<n+3>
j , λ<n+3>

j+1 , un(x), pn(x),

vn+1(ξ), qn+1(ξ) are defined. We show how to find the functions λ<n+4>
j ,

λ<n+4>
j+1 , un+1(x), pn+1(x), vn+2(ξ), qn+2(ξ). In previous steps we have al-

ready known the equations for un+1(x), pn+1(x) and found the condition

for their solvability. However, the solutions are defined non-uniquely. Writ-

ing once again these equations :




∆un+1 +
n+1∑
i=0

λ<i>
j un+1−i +

n∑
i=0

λ<i>
j v<1>

n−i (θ)|x|−1+

n−1∑
i=0

λ<i>
j v<2>

n−1−i(θ)|x|−2 = 0

{un+1 +
n+1∑
i=1

v<i>
n+1−i(θ)|x|−i}

∣∣∣∣
∂Ω

= 0




∆pn+1 +
n+1∑
i=0

λ<i>
j+1 pn+1−i +

n∑
i=0

λ<i>
j+1 q

<1>
n−i (θ)|x|−1+

n−1∑
i=0

λ<i>
j+1 q

<2>
n−1−i(θ)|x|−2 = 0

{pn+1 +
n+1∑
i=1

q<i>
n+1−i(θ)|x|−i}

∣∣∣∣
∂Ω

= 0.

Suppose that Un+1(x), Pn+1(x) are the solutions of the above problem such

that ∫
Ω

Un+1u0dx =

∫
Ω

Un+1p0dx =

∫
Ω

Pn+1u0dx =

∫
Ω

Pn+1p0dx = 0

A general solution must be found in a form :

un+1 = Un+1 + cn+1p0, pn+1 = Pn+1 + dn+1u0.

By analogy we should find un+2(x), pn+2(x), un+3(x), pn+3(x) in form :

un+2 = Un+2 + cn+2p0, pn+2 = Pn+2 + dn+2u0.

un+3 = Un+3 + cn+3p0, pn+3 = Pn+3 + dn+3u0.
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Then vn+2(ξ), qn+2(ξ) satisfy :




∆vn+2(ξ) +
n∑

i=0
λ<i>
j ṽ<2>

n−i (ξ) = 0

{vn+2(θ) + u<n+2>
0 (θ) + · · · + u<0>

n+2 (θ)}
∣∣
∂B1

= 0

lim
|ξ|→∞

vn+2(ξ) = 0




∆qn+2(ξ) +
n∑

i=0
λ<i>
j+1 q̃

<2>
n−i (ξ) = 0

{qn+2(θ) + p<n+2>
0 (θ) + · · · + p<0>

n+2 (θ)}
∣∣
∂B1

= 0

lim
|ξ|→∞

qn+2(ξ) = 0.

Therefore vn+2 = Vn+2−cn+1A2(θ)|ξ|−2, qn+2 = Qn+2−dn+1A1(θ)|ξ|−2. We

denote by Vn+2(ξ) and Qn+2(ξ) the solutions of the following problems :




∆Vn+2(ξ) +
n∑

i=0
λ<i>
j ṽ<2>

n−i (ξ) = 0

{Vn+2(θ) + En+2(θ)}|∂B1
= 0

lim
|ξ|→∞

Vn+2(ξ) = 0




∆Qn+2(ξ) +
n∑

i=0
λ<i>
j+1 q̃

<2>
n−i (ξ) = 0

{Qn+2(θ) + Fn+2(θ)}|∂B1
= 0

lim
|ξ|→∞

Qn+2(ξ) = 0,

where the functions

En+2(θ) = u<n+2>
0 (θ) + · · · + u<2>

n (θ) + U<1>
n+1 (θ) + U<0>

n+2 (θ)

Fn+2(θ) = p<n+2>
0 (θ) + · · · + p<2>

n (θ) + P<1>
n+1 (θ) + P<0>

n+2 (θ)

are already defined from previous steps.

By analogy we should find vn+3(ξ), qn+3(ξ) in a form

vn+3(ξ) = Vn+3(ξ) − cn+2A2(θ)|ξ|−2 − cn+1B2(θ)|ξ|−3,

qn+3(ξ) = Qn+3(ξ) − dn+2A1(θ)|ξ|−2 − dn+1B1(θ)|ξ|−3.
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Finally we write equations for un+4(x), pn+4(x) :




∆un+4 +
n+4∑
i=0

λ<i>
j un+4−i +

n+3∑
i=0

λ<i>
j v<1>

n−i+3(θ)|x|−1+

n+2∑
i=0

λ<i>
j v<2>

n−i+2(θ)|x|−2 = 0

{un+4 +
n+4∑
i=1

v<i>
n+4−i(θ)|x|−i}

∣∣∣∣
∂Ω

= 0




∆pn+4 +
n+4∑
i=0

λ<i>
j+1 pn+4−i +

n+3∑
i=0

λ<i>
j+1 q

<1>
n−i+3(θ)|x|−1+

n+2∑
i=0

λ<i>
j+1 q

<2>
n−i+2(θ)|x|−2 = 0

{pn+4 +
n+4∑
i=1

q<i>
n+4−i(θ)|x|−i}

∣∣∣∣
∂Ω

= 0.

Note that λ<0>
j = λ<0>

j+1 = λj , λ
<1>
j = λ<1>

j+1 = λ<2>
j = λ<2>

j+1 = 0. So we

have :

∆{un+4(x) − cn+1A2(θ)|x|−2} + λj{un+4(x) − cn+1A2(θ)|x|−2}
+ λ<3>

j {Un+1(x) + cn+1p0(x)} + λ<n+4>
j u0(x) = Gn(x)(24)

{un+4(x) − cn+1A2(θ)|x|−2}
∣∣
∂Ω

= Hn(x)(25)

where the functions Gn(x), Hn(x) are defined from previous steps. Mul-

tiplying (24) by u0(x), p0(x) and integrating over Ωε as ε → 0 we obtain

immediately cn+1 and λ<n+4>
j . By analogy one can find dn+1 and λ<n+4>

j+1 .

Our procedure is ended.

B. The case of a triple eigenvalue

We are interested only in the case of a bifurcation, i.e. λj(ε) ≤ λj+1(ε) ≤
λj+2(ε) when ε is sufficiently small.

Suppose :

λj+k(ε) = λj + λ<1>
j+k ε

1 + λ<2>
j+k ε

2 + · · · + λ<M>
j+k εM + 0(εM+1) (k = 0, 1, 2)
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and

uj(x, ε) = [(u0 + v0) + ε(u1 + v1) + ε2(u2 + v2) + . . . ]

uj+1(x, ε) = [(p0 + q0) + ε(p1 + q1) + ε2(p2 + q2) + . . . ]

uj+2(x, ε) = [(r0 + s0) + ε(r1 + s1) + ε2(r2 + s2) + . . . ].

Putting uj(x, ε), uj+1(x, ε), uj+2(x, ε), λj(ε), λj+1(ε), λj+2(ε) into (1), (2)

and comparing the coefficient in the identical order of ε we obtain the

quations for u0(x), p0(x), r0(x) as the equations for u0(x), p0(x) in the case

of double eigenvalues.

Therefore :

u0(x) = a1
0u

∗
j (x) + a2

0u
∗
j+1(x) + a3

0u
∗
j+2(x)

p0(x) = b10u
∗
j (x) + b20u

∗
j+1(x) + b30u

∗
j+2(x)

r0(x) = c10u
∗
j (x) + c20u

∗
j+1(x) + c30u

∗
j+2(x)

(see the definition of uj , uj+1, uj+2 in the introduction). Since we are only

interested in the case of a bifurcation, it follows that the functions u0, p0, r0

must be orthogonal. Then we have

v0(ξ) = −u0(0)|ξ|−1, q0(ξ) = −p0(0)|ξ|−1, s0(ξ) = −r0(0)|ξ|−1.

Now we write the equations for u1(x), p1(x), r1(x)

{
∆u1(x) + λju1(x) + λ<1>

j u0(x) − λju0(0)|x|−1 = 0 in Ω

u1(x)|∂Ω = u0(0)|x|−1
∣∣
∂Ω

. . . .

From the conditions of their solvability and the conditions λj(ε) <

λj+1(ε) < λj+2(ε) when ε is sufficiently small. We have

λ<1>
j = λ<1>

j+1 = 0, λ<1>
j+2 = 4π{u∗j+2(0)}2, c10 = c20 = a3

0 = b30 = 0, c30 = 1.

So the function r0(x) is defined. Suppose provisionally the function u0(x),

p0(x) are also defined. We show how to find λ<2>
j+2 , s1(ξ), r1(x). Note
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the problems for r1(x) are sovable. However the solution is defined non-

uniquely. Suppose that R1(x) is a solution such that
∫
Ω

R1u0dx =∫
Ω

R1p0dx =
∫
Ω

R1r0dx = 0. A general solution r1(x) may be written as

follows : r1(x) = R1(x) + a1u0(x) + b1p0(x). Assume that a1, b1 are found.

Then s1(ξ) satisfies :




∆s1(ξ) = 0, in R
3\B1

s1(ξ)|∂B1
= −R1(0) − r<1>

0 (θ)

lim
|ξ|→∞

s1(ξ) = 0.

Therefore s1(ξ) = −R1(0)|ξ|−1− r<1>
0 (θ)|ξ|−2. We obtain the equations for

r2(x)

∆r2 − λjR1(0)|x|−1 + λjr2 + λ<1>
j+2 (R1 + a1u0 + b1p0)+

λ<2>
j+2 r0 = 0(26)

{r2(x) −R1(0)|x|−1}
∣∣
∂Ω

= 0.(27)

Multiplying (26) by u0(x), p0(x), r0(x) and intergrating over Ωε when

ε → 0 one deduce that λ<2>
j+2 = 0, a1 = b1 = 0. So we found r1(x), s1(ξ),

λ<2>
j+2 . By induction, as in the case of double eigenvalues, we can find all

rn(x), sn(ξ), λ<n+2>
j+2 . Now, under some conditions, we show how to find

u0(x) and p0(x). In the first step we had :

u0(x) = a1
0u

∗
j (x) + a2

0u
∗
j+1(x), p0(x) = b10u

∗
j (x) + b20u

∗
j+1(x),

λ<1>
j = λ<1>

j+1 = 0.

Since : u0(0) = p0(0) = 0 it follows v0(ξ) = q0(ξ) = 0. From the equations

for u1(x), p1(x) we can find them in a form :

u1(x) = c1p0(x) + d1r0(x), p1(x) = e1u0(x) + f1r0(x).

Suppose that c1, d1, e1, f1 are known. Then, from the equations for v1(ξ),

q1(ξ) we obtain immediately :

v1(ξ) = −d1|ξ|−1 − u<1>
0 (θ)|ξ|−2, q1(ξ) = −f1|ξ|−1 − p<1>

0 (θ)|ξ|−2.
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Therefore the functions p2(x), u2(x) satisfy :

{
∆(u2 − d1|x|−1) + λj(u2 − d1|x|−1) + λ<2>

j u0(x) = 0

(u2 − d1|x|−1)
∣∣
∂Ω

= 0

{
∆(p2 − f1|x|−1) + λj(p2 − f1|x|−1) + λ<2>

j+1 p0(x) = 0

(p2 − f1|x|−1)
∣∣
∂Ω

= 0.

From the conditions for solvability of this equation we deduce :

λ<2>
j = λ<2>

j+1 = 0, d1 = f1 = 0,

p2(x) = P2(x) + e2u0(x) + f2r0(x), u2(x) = U2(x) + c2p0(x) + d2r0(x),

where P2(x), U2(x) denote the solutions such that :

∫
Ω

U2u0dx =

∫
Ω

U2p0dx =

∫
Ω

U2r0dx =

∫
Ω

P2u0dx =

∫
Ω

P2p0dx =

∫
Ω

P2r0dx = 0.

From the equations for v2(ξ), q2(ξ) we have :

v2(ξ) = −U2(0)|ξ|−1 − d2r0(0)|ξ|−1 − c1p
<1>
0 (θ)|ξ|−2 − u<2>

0 (θ)|ξ|−3

q2(ξ) = −p2(0)|ξ|−1 − f2r0(0)|ξ|−1 − e1u
<1>
0 (θ)|ξ|−2 − p<2>

0 (θ)|ξ|−3.

Finally we write the equations for u3(x), p3(x)




∆u3 + λju3 + λ<3>
j u0 − λj(U2(0)|x|−1 + d2r0(0)|x|−1+

u<1>
0 (θ)|x|−2 = 0

(u3 − U2(0)|x|−1 − d2r0(0)|x|−1 − u<1>
0 (θ)|x|−2)

∣∣
∂Ω

= 0




∆p3 + λjp3 + λ<3>
j+1 p0 − λj(P2(0)|x|−1 + f2r0(0)|x|−1+

p<1>
0 (θ)|x|−2) = 0

(p3 − P2(0)|x|−1 − f2r0(0)|x|−1 − p<1>
0 (θ)|x|−2)

∣∣
∂Ω

= 0.
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From these conditions we have :

λ<3>
j = 3

∫
∂B1

|u<1>
0 (θ)|2dθ, λ<3>

j+1 = 3

∫
∂B1

|P<1>
0 (θ)|2dθ

d2 = [r0(0)]−1U2(0), f2 = [r0(0)]−1P2(0).

As in the case of double eigenvalues we conclude that 3−1λ<3>
j and 3−1λ<3>

j+1

are the eigenvalues of the matrix M∗ (see the definition in the introduction)

and the vector (a1
0, a

2
0) is its eigenvector. So we found λ<3>

j , λ<3>
j+1 , u0(x),

p0(x), v0(ξ), q0(ξ), v1(ξ), q1(ξ).

A step of induction : Suppose that λ<n+3>
j , λ<n+3>

j+1 , un(x), pn(x),

vn+1(ξ), qn+1(ξ) are found. We shall find λ<n+4>
j , λ<n+4>

j+1 , un+1(x),

pn+1(x), vn+2(ξ), qn+2(ξ) as follows. In previous steps we have known the

equations for un+1(x), pn+1(x) and found the conditions for their solv-

ability. However, the solutions are defined non-uniquely. Assume that

Un+1(x), Pn+1(x) are the solutions such that

∫
Ω

Un+1u0dx =

∫
Ω

Un+1p0dx =

∫
Ω

Un+1r0dx = 0

∫
Ω

Pn+1u0dx =

∫
Ω

Pn+1p0dx =

∫
Ω

Pn+1r0dx = 0.

The functions un+1(x), pn+1(x) may be found in a form :

un+1 = cn+1p0 + dn+1r0 + Un+1, pn+1 = en+1u0 + fn+1r0 + Pn+1.

By analogy we have :

un+2 = cn+2p0 + dn+2r0 + Un+2, pn+2 = en+2u0 + fn+2r0 + Pn+2

un+3 = cn+3p0 + dn+3r0 + Un+3, pn+3 = en+3u0 + fn+3r0 + Pn+3.

From the equations for vn+2(ξ), qn+2(ξ) we claim that :

vn+2(ξ) = Vn+2(ξ) − dn+1A3(θ)|ξ|−2 − dn+2r0(0)|ξ|−1 − cn+1A2(θ)|ξ|−2
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qn+2(ξ) = Qn+2(ξ) − fn+1A3(θ)|ξ|−2 − fn+2r0(0)|ξ|−1 − en+1A1(θ)|ξ|−2,

where A1(θ) = u<1>
0 (θ), A2(θ) = p<1>

0 (θ), A3(θ) = r<1>
0 (θ) and Vn+2(ξ),

Qn+2(ξ) are defined by the equations as in the case of double eigenvalues.

By analogy we have

vn+3(ξ) = Vn+3(ξ) − [dn+1{B3(θ) − 6−1λjr0(0)} + cn+1B2(θ)]|ξ|−3

−{cn+2A2(θ) + dn+2A3(θ)}|ξ|−2 − {dn+3r0(0) + 6−1dn+1λjr0(0)}|ξ|−1

qn+3(ξ) = Qn+3(ξ) − [fn+1{B3(θ) − 6−1λjr0(0)} + en+1B1(θ)]|ξ|−3

−{en+2A1(θ) + fn+2A3(θ)}|ξ|−2 − {fn+3r0(0) + 6−1fn+1λjr0(0)}|ξ|−1,

where the functions B1(θ) = u<2>
0 (θ), B2(θ) = p<2>

0 (θ), B3(θ) = r<2>
0 (θ),

Vn+3(ξ), Qn+3(ξ), dn+1, dn+2, fn+1, fn+2 are defined.

Finally, we write the equations for un+4(x), pn+4(x) :

∆ūn+4(x) + λj ūn+4(x) + λ<n+4>
j u0 + λ<3>

j (Un+1 + cn+1p0+

dn+1r0) = Gn+4(x)(28)

ūn+4|∂Ω = Hn+4(x)(29)

∆p̄n+4(x) + λj p̄n+4(x) + λ<n+4>
j+1 p0 + λ<3>

j+1 (Pn+1 + en+1u0+

fn+1r0) = In+4(x)(30)

p̄n+4|∂Ω = Kn+4(x)(31)

where ūn+4(x) := (un+4 − dn+3r0(0)|x|−1 − cn+1A2(θ)|x|−2)

and p̄n+4(x) := (pn+4 − fn+3r0(0)|x|−1 − en+1A1(θ)|x|−2).
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From the coditions for solvability of (28) - (31) we have :

cn+1 = (λ<3>
j − λ<3>

j+1 )−1[

∫
Ω

Gn+4p0dx +

∫
∂Ω

Hn+4
∂p0

∂n
ds]

en+1 = (λ<3>
j − λ<3>

j+1 )−1[

∫
Ω

In+4u0dx +

∫
∂Ω

Kn+4
∂u0

∂n
ds]

λ<n+4>
j − [

∫
Ω

Gn+4p0dx +

∫
∂Ω

Hn+4
∂p0

∂n
ds− λ<3>

j cn+1]

λ<n+4>
j+1 = −[

∫
Ω

In+4u0dx +

∫
∂Ω

Kn+4
∂u0

∂n
ds− λ<3>

j+1 en+1]

dn+3 = (4πr2
0(0))−1[

∫
Ω

Gn+4r0dx +

∫
∂Ω

Hn+4
∂r0

∂n
ds− λ<3>

j dn+1]

fn+3 = (4πr2
0(0))−1[

∫
Ω

In+4r0dx +

∫
∂Ω

Kn+4
∂r0

∂n
ds− λ<3>

j+1 fn+1]

Our procedure is ended.

3. Proof

We shall prove our results only in the case of double eigenvalues. The

case of triple eigenvalues may be proved similarly. Suppose

αN (x, ε) =
N∑
i=0

εi(ui(x) + vi(xε
−1)), βN (x, ε) =

N∑
i=0

εi(pi(x) + qi(xε
−1))

λ
(N)
j (ε) =

N∑
i=0

λ
(i)
j εi, λ

(N)
j+1(ε) =

N∑
i=0

λ
(i)
i+1ε

i.
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We have

∆αN (x, ε) + λ<N>
j (ε)αN (x, ε) =

N∑
i=0

εi[∆ui +
i−1∑
p=0

λ<p>
j ui−p−1 +

i−2∑
p=0

λ<p>
j

|x|−1v<1>
i−p−2(θ)

+
i−3∑
p=0

λ<p>
j |x|−2v<2>

i−p−3(θ)] +
N∑
i=0

εi−2[∆ξvi(ξ) +
i−3∑
p=0

λ<p>
j ṽ<2>

i−p−3(ξ)]

+ ε
N−1∑
i=0

εiλ<i>
j [

N∑
p=N−i

εpup +
N∑

p=N−i−2

εpṽ<2>
p (xε−1)

+

N∑
p=N−i−1

εp+1|x|−1v<1>
p (θ) +

N∑
p=N−i−2

εp+2|x|−2v<2>
p (θ)].

Obviously

|∆αN (x, ε) + λ<N>
j (ε)αN (x, ε)| = 0(εN+1|x|−2) = 0(εN−1) (x ∈ Ωε)

αN |∂Ωε
= 0(εN+1).

By analogy we can see :

|∆βN (x, ε) + λ<N>
j+1 (ε)βN (x, ε)| = 0(εN+1|x|−2) = 0(εN−1) (x ∈ Ωε)

βN |∂Ωε
= 0(εN+1).

Suppose that α∗
N (x, ε) = gN (ε)[αN (x, ε) − Γ1(x)

N∑
i=0

εiṽ
(N−i)
i (xε−1) −

Γ2(xε
−1)

N∑
i=0

εiũ
(N−i)
i (x)],

β∗
N (x, ε) = kN (ε)[βN (x, ε) − Γ1(x)

N∑
i=0

εiṽ
(N−i)
i (xε−1)

−Γ2(xε
−1)

N∑
i=0

εiũ
(N−i)
i (x)]
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where Γ1(x) ∈ C∞(R3),Γ1(x) ≡ 1 in a neighborhood of ∂Ω and Γ1(x) = 0

in a neighborhood of {0} and Γ2(x) ∈ C∞
0 (R3),Γ2(x) ≡ 1 in a neighborhood

of B̄1. The constants gN (ε), kN (ε) are chosen such that

‖α∗
N (x, ε)‖L2(Ωε) = ‖β∗

N (x, ε)‖L2(Ωε) = 1.

It is easy to see

{
∆α∗

N (x, ε) + λ<N>
j (ε)α∗

N (x, ε) = LN (x, ε) in Ωε

α∗
N (x, ε)|∂Ωε

= 0

{
∆β∗

N (x, ε) + λ<N>
j+1 (ε)β∗

N (x, ε) = MN (x, ε) in Ωε

β∗
N (x, ε)|∂Ωε

= 0.

Expand α∗
N (x, ε) and β∗

N (x, ε) in the series of orthonormal eigenfunctions

u1(x, ε), u2(x, ε), . . . in Ωε one have :

α∗
N (x, ε) =

∞∑
i=1

αi(ε)ui(x, ε) where
∞∑
i=1

α2
i (ε) = 1

β∗
N (x, ε) =

∞∑
i=1

βi(ε)ui(x, ε) where
∞∑
i=1

β2
i (ε) = 1.

We claim that

∆α∗
N (x, ε) = −

∞∑
i=1

λi(ε)αi(ε)ui(x, ε) = −λ<N>
j (ε)

∞∑
i=1

αi(ε)ui(x, ε)+

LN (x, ε).

Obviously |DαLN (x, ε)|
∣∣
Ωε

= 0(εN+1|x|−|α|).

Therefore |λ<N>
j (ε) − λj(ε)| ∼ |λ<N>

j+1 (ε) − λ<N>
j+1 (ε)| = 0(εN−1).

Since we have known lim
ε→0

λj(ε) = λj (j = 1, . . .∞) it follows that

‖α∗
N (x, ε) − uj(x, ε)‖L2(Ωε) ∼ ‖β∗

N (x, ε) − uj+1(x, ε)‖L2(Ωε) = 0(εN−1).
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We have also :

∆{α∗
N (x, ε) − uj(x, ε)} + λj(ε){α∗

N (x, ε) − uj(x, ε)} =

LN (x, ε) − {λ<N>
j (ε) − λj(ε)}α∗

N (x, ε) in Ωε,

|Dα{α∗
N (x, ε) − uj(x, ε)}|

∣∣
∂Ωε

= 0(εN−1−|α|) for |α| � N − 1,

∆{β∗
N (x, ε) − uj+1(x, ε)} + λj+1(ε){β∗

N (x, ε) − uj+1(x, ε)} =

MN (x, ε) − {λ<N>
j+1 (ε) − λj+1(ε)}β∗

N (x, ε) in Ωε,

|Dα{β∗
N (x, ε) − uj+1(x, ε)}|

∣∣
∂Ωε

= 0(εN−1−|α|) for |α| � N − 1.

From a priori estimates for elliptic boundary value problems we conclude

that :

max
X∈Ωε

|Dα{α∗
N (x, ε) − uj(x, ε)}| ≤ CεN−1|x|−|α|

max
X∈Ωε

|Dα{β∗
N (x, ε) − uj+1(x, ε)}| ≤ CεN−1|x|−|α|

which completes the proof.

4. The final remark

The author of this note think we can study a bifurcations of any eigen-

values by our method under some conditions (for a bifurcation). These

conditions are necessary because the bifurcation may be not occured when

Ω is the ball (in general, when Ω is a domain with some symmetries).
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