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Abstract

We study hyperkahler manifolds of type Aso, which are noncompact real 4-
dimensional manifolds of infinite topological type. Anderson-Kronheimer-LeBrun
[1] and Goto [8] have constructed these hyperkihler manifolds whose metrics are
complete and depend on the choice of parameters. We observe how the Riemannian
metrics and the complex structures which are induced from hyperkéhler structures
depend on the choice of parameters. In particular,  we focus on the asymptotic
behavior of these hyperkihler metrics. By taking an appropriate parameter, we
show that there exists a complete hyperkahler manifold of type Ao, whose volume
growth is r* for each 3 < a < 4.

1 Introduction

A hyperkéhler manifold is a Riemannian manifold (X, g) of real dimen-
sion 4n who has three integrable complex structures Iy, I3, I3 with relations
I?2 =12 =1} = 11,13 = —1 and each (g, I;) satisfies Kéhler condition. Then
the holonomy group of ¢ is a subgroup of Sp(n) and g is Ricci-flat. If we
take y = (y1,v2,¥3) € S* C R® and put I, := y1]1 + yolo + y3l3, then I, is
also a complex structure and (g, I,) is Kéhler manifold. Thus all hyperkéhler
manifolds have complex structures parametrized by the elements of S2.

There are some systematic constructions of hyperkdhler manifolds, and
Gibbons-Hawking ansatz is one of them. In this construction, we can con-
struct a 4-dimensional hyperkéhler manifold from a finite subset of R3. It
is known that all of ALE spaces of type A are constructed by Gibbons-
Hawking ansatz. Moreover Anderson, Kronheimer and LeBrun constructed
hyperkihler manifolds of type A from a countably infinite subset of R3
by Gibbons-Hawking ansatz [1]. The hyperkahler manifolds of type A, are



4-dimensional noncompact complete hyperkéahler manifolds of infinite topo-
logical type. Here infinite topological type means that the homology groups
are infinitely generated. The same metrics were constructed due to Goto in
[8] using hyperkahler quotinet method.

In this paper we study the differential geometric properties of hyperkéhler
manifold of type A. First of all, we compute the period maps of hyperkihler
manifold of type A,. The authors of [1] showed that the second homology
group of each hyperkahler manifold of type A, is infinitely generated. In
this paper we study these generators more precisely. We show that each of
generators is represented by the holomorphic curve with respect to a certain
complex structure, and its volume with respect to the hyperkéahler metric
gives the minimum value in its homology class. Then we can also compute
the period maps of the hyperkahler structure by integrating Kahler forms on
the holomorphic curves. For the study of topology and the period maps, we
apply the method for studying toric hyperkéahler varieties argued in [2][18].

It is difficult to see the difference of local property between a hyperkéhler
manifolds of type A, and an ALE space of type A; which are constructed in
the same way. As expected, we show that each hyperkahler manifold of type
Ao can be approximated locally by a sequence of ALE space {(Xk, gx)}x,
where (Xk, gx) is an ALE space of type A.

On the other hand, the main purpose of this paper is to show that the
asymptotic behavior of the hyperkéhler manifolds of type A, is different
from that of type Ag. To observe the asymptotic behavior of hyperkahler
metric, we study the volume growth. The notion of the volume growth is
considered for a Riemannian manifold (X,g). We denote by V,(po,r) the
volume of the ball By(po,7) C X of radius r centered at py € X. Then we
say that the volume growth of ¢ is f(r) if the condition

0 < liminf Voo, ) < limsup YM < 4o00.

r—too  f(r) r—too - f(7)
holds for some py € X. From Bishop-Gromov comparison theorem [4][10],
the above condition is independent of py € X if g has the nonnegative Ricci
curvature.

In 4-dimension, for instance, the volume growth of Euclidean space R*
is r* and the volume growth of R3 x S with the flat metric is 73. These
are trivial examples and there are also nontrivial examples such as ALE
hyperkahler metrics [5][6][19] whose volume growth is 7, and multi-Taub-
NUT metrics [24][20][15] whose volume growth is 73. Thus there are several
known examples of Ricci-flat metrics whose volume growth is ™ where n is
integer.

In this paper we will show that the volume growth of the hyperkahler
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manifolds of type A is less than ¢ and more than r3.
Each of the metrics in [1] is constructed from an element of

(ImH)Y == {\ = An)nen € (ImH)Y;. Z < +oo},

1
= 14 Al

where H is quaternion and I'mH is its imaginary part. We denote by (X, g»)
the hyperkahler metric of type A, constructed from A = (A\,)new € (ImH)Y.
The purpose of this paper is studying the asymptotic behavior of V, (po, )
for some py € X, and observe how the volume growth of g, depends on the
choice of A\. The main result is described as follows.

Theorem 1.1. For each A € (ImH) and po € X, the function V,, (po,)
satisfies

0 < lim inf —m—l < lim sup Vo, (Iio, r) < 400,
r—+oo r27571(r2) T Tl e 12771 (r2)
where the function 7y : R>g — Rxq is defined by
R2
R):=)
nR) =D 5 Al
neN
for R > 0. Moreover, we have
lim Vgx(li(br) —0, lim ‘/QA(Z;O’T) =4+
r—-+00 T T—-+00 T

Applying Theorem 1.1 to some A € (ImH)Y, we can find hyperkahler
manifolds whose volume growth is given as follows.

Theorem 1.2. (1) Take o € R arbitrarily to be 3 < o < 4. Then there is a
complete hyperkdhler manifold (X, g\) which satisfies

0 < liminf M < limsup Var (po,7)

r—-oc0 re r—400 T

< 400

(2) There is a complete hyperkihler manifold (X, gn) which satisfies

hm %A(po’r) :0 hm V;,,\(po,r)

T—-+00 r4 T—-+00 re

=400

for any o < 4.



Next we denote by gg\s) the Taub-NUT deformation of gy where s > 0 is

the parameter of deformations. Then the volume growth of g§8> is given by
the following.

Theorem 1.3. Let A € (ImH)Y and s > 0. Then the volume growth of

hyperkdhler metric g&s) satisfies

V (o, ) 2
lim —2 _ S

T—+00 r3 B 3\/5 .

From Theorem 1.2, we can take a sequence {A\*) € (ImH)} }rez., such
that the volume growth of g, is r3+%. Then we consider what will hap-
pen if k goes to +oo. Although the limit A(*) may exists for some se-

quence {A®}iez_,, the sum >, m}—f@ always diverges to infinity and

we cannot construct the complete hyperkahler metric from A\(*). Then we
take p® € (ImH)Y such that p — A (k — +oo) for each n € N
with the volume growth of g,&) unchanged. If we consider the “limit” of
{(X ), 9pt0)) }rezso, We obtain an incomplete hyperkahler metric. Moreover,
if we take A(*) to satisfy a certain condition, the above incomplete metric is
isometric to the universal cover of Ooguri-Vafa metric constructed in [21].

This paper consists of 3 chapters. Chapter I consists of Sections 2-3, in
which we construct hyperkahler manifolds of type A, and study their basic
geometric properties. In Section 2, we review the construction of hyperkahler
manifolds of type A.. Although there are two constructions by Gibbons-
Hawking ansatz and hyperkéhler quotient method, we adopt the latter way
along [8] since the argument in Section 4 is based on Goto’s construction.
Then we obtain the hyperkéahler manifold (X}, g») as a hyperkahler quotient,
and there is a hyperkahler moment map py : X — I'mH with respect to an
Sl-action on X preserving the hyperkéhler structure.

In Section 3, we study the homology group of X, and the period maps
of hyperkéhler structures. The homology group of X are evaluated by con-
structing the deformation retracts of X, along [2][8]. The period maps of
toric hyperkahler varieties are computed in [18], and we can also compute in
the case of type A, in the same way.

We study the volume growth of hyperkahler manifolds of type A, in Chap-
ter II which consists of Sections 4-8. For the proof we need the upper and
lower estimate of the function V, (po,r), which are discussed in Sections 4
and 5, respectively. In Section 4 the upper estimate of Vi, (po,r) will be
obtained as follows. Using the S'-action and the hyperkihler moment map
iy, we can reduce the information of metric gy to a positive valued harmonic
function with discrete poles on I'mH. Then the function Vj, (po,r) can be
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described by using this harmonic function and we can compute explicitly the
upper estimate of V, (po, 7). :

Next we discuss the lower estimate Vi, (po,r) in Section 5. If we try to
estimate similarly to the way in Section 4, the estimate obtained in this way
is weaker than what we expect. Accordingly we need to modify the way to
estimate. In Section 5 we take an open subset of By, (po,7) which is conve-
nient to estimate its volume, and obtain the lower estimate of V;, (po, 7).

From two types of estimates obtained in Sections 4 and 5, we prove The-
orem 1.1 in Section 6.

We compute the volume growth of some examples concretely in Section 7,
and obtain Theorem 1.2. Section 8 is devoted to studying the volume growth
of the Taub-NUT deformations of (X}, g»)-

In Chapter III, we will consider the sequences of hyperkahler quotients
and their limit. In Section 9, we show that each hyperkahler manifold of
type Ay is approximated by the sequence of ALE spaces. More precisely,
for each bounded open subset U of (X}, g,) there exists a sequence of ALE
spaces (X, gx) of type A and bounded open subsets U, C X} diffeomorphic
to U, and gx|y, converge to g|y for & — +oo with respect to the C%norm
on @ T*U. To consider the limit of {gx|y, }, we construct an S'-equivariant
diffeomorphism from Uy to U.

On the other hand, in Section 10 we consider a sequence of hyperkihler
manifold of type A, using method in Section 9. If we take a sequence appro-
priately, an incomplete hyperkéhler metric is constructed by considering the
limit. In some special cases, these incomplete hyperkahler metrics are iso-
metric to the universal cover of Ooguri-Vafa metric [21]. Moreover we show
that there is a transitive Z-action on this manifold preserving the metric and
obtain hyperkéhler metrics on the neighborhood of a singular fiber of the
elliptic surface with singular fiber of type I, (b = 1,2, -) as a quotient space
in Section 11.

The metrics constructed in Section 11 can be constructed also by Gibbons-
Hawking ansatz. In Section 12 we construct them using Gibbons-Hawking
ansatz along [21][11].

Acknowledgment. The author would like to thank Professor Hiroshi Konno
for several advice on this paper. In particular, the essential idea of Section
12 was obtained from the conversation with him.



Chapter |

Constructions and geometric properties
of hyperkahler manifolds of type Ao

2 Hyperkahler manifolds of type A,

In this section, we review the construction of hyperkéhler manifolds of
type A along [8]. Although they can be constructed by Gibbons-Hawking
ansatz [1], we need hyperkéhler quotient construction in [8] for arguments in
Section 4. Before the construction, we start with some basic definitions.

Definition 2.1. Let (X, g) be a Riemannian manifold of dimension 4n and
I, I, I3 be complex structures on X. Then (X, g, 1, I5, I3) is a hyperkahler
manifold if (I1, I, I3) satisfies the relations I? = I2 = I? = [, [,]3 = —1 and
each fundamental 2-form w; := g(I;-,-) is closed for ¢ = 1,2, 3.

Let H=R® R: ® Rj @ Rk = C® Cj be quaternion and ImH = Ri &
Rj & Rk be its Imaginary part. Then an I'mH-valued 2-form w = w; +
Jws + kws € Q*(X) ® ImH are constructed from the hyperkéhler structure
(9,11, I, I3). Conversely, (g, I1, I, I3) is reconstructed from w. Hence we call
w the hyperkahler structure on X instead of (g, I1, Iz, I3).

Next we consider the Lie group actions on hyperkahler manifolds. Let a
Lie group G act on a manifold X. Then each element & of the Lie algebra g =
Lie(G) generates a vector field £* € X(X) defined by & := £|,_ozexp(t{) €
T,X forz e X.

Definition 2.2. Let n-dimensional torus 7" = (S*)™ act on a hyperkéhler
manifold (X,w) preserving.w. Then the C*® map p : X — ImH ® R”
is a hyperkahler moment map of T™-action if the following conditions are
satisfied; (i) p is T™-invariant, (ii) < du,(V),& >= w(&, Vi) € ImH for
all z € X and V € T, X. Here <,> is the standard inner product on
R™ =2 Lie(T™).

Next we review the construction of hyperkahler manifolds of type A.
Let I be an at most countable set. We will obtain the hyperkéahler manifolds
of type A, if we assume I is infinite, and obtain the ALE spaces of type A
if we assume #I = k 4+ 1. For a set S, we denote by ST the set of all maps



from I to S. We denote an element of z € S* by = = (2,,)ner. Then we have
a Hilbert space

M :={veH ||v|? < +oo},

where
. = 2. _
<u,v >p= Zunvn, lollf =< v,v >1
nel .
for u,v € H.
For each

AeHy:={AeHS Y (1+][A) 7" < +oo},

nel

we have the following Hilbert manifolds

My = A+MI={A+’U; ’UEMI},

Usr = {9 =(gn)ner € (1)} [I11 — g} < +o0},
i = {E= (Exoar € BY €3 < too),
GA = {g = (gn)nel S UA; ]___[gn = 1}7
nel
By = {§ = (n)ner € Up; Zgn = 0}7
nel

where

<En>a= ) (L+AP)enthn, €% =< &€ >a

nel

for £,m € CL. Here, 11 € (S*)! is the constant map (11), := 1. The conver-
gence of [ [ .y gn and 3 1 &, follows from the condition Y, ;(1+A,[*) 7! <
+00. Then G, is a Hilbert Lie group whose Lie algebra is g,. We can define
a right action of Gy on My by g := (Tngn)ner for z € My, g € Gy. Here
the product of z,, and g, is given by regarding S* as the subset of H by the
natural injections S' ¢ C C H.

Since M is a left H-module defined by hv := (hv,)ner for v € My and
h € H, My has a hyperkahler structure given by the left multiplication of
i,7,k and inner product <,>1 on Mj. We denote by I, Iy, I3 € End(M)
the complex structures induced by the left multiplication by 3, j, k, respec-
tively. Thus M, is an infinite dimensional hyperkédhler manifold and the



action of Gy on My preserves the hyperkahler structure. Then define a map
fip : My — ImH @ g}, by

< fia(x), € >:= Z(xnijn — AyiM,)¢, € ImH

nel

for x € My, £ € 5. If Iis a finite set, then fia is the hyperkdhler moment
map in the sense of Definition 2.2. If I is infinite, jiy is the hyperkahler
moment map with respect to the action of infinite dimensional torus G, on
My.

Since fi5 is Gy-invariant, then G acts on the inverse image fi,*(0). Hence
we obtain the quotient space fi,*(0)/Ga which is called hyperkahler quotient.
In general, there is no guarantee that fi;(0)/G, is a smooth manifold for
every A € Hf. For the smoothness of fi;'(0)/Ga we need the following
condition. ‘

Definition 2.3. An element A € H} is generic if A,iA, — AniA,, # 0 for all
distinct n,m € L

Proposition 2.4. Take A € Hf to be generic. Then G, acts on ji;'(0)
freely.

Proof. For each | €1, let ¢; € g, be defined by e; := (€;.,)ne1, where

. ={1 (n=1),
=90 (nl)

Since g, is generated by elements e; — e,,, then z € M), satisfies fix(z) =0
if and only if < ja(z),e; — e, >= 0 for all [,m € I. Hence the value of
TpiZ, — Anil\, is independent of n € I for z € 25t 0).

Assume that there is a pair of z € 1;'(0) and g € G, satisfies zg = . If
z, # 0 for any n € I, then g = 1. Therefore we may assume z, = 0 for some
s € I. Then we have x,i%, — ApiA, = —A,iA, for all n € I, which implies

Tpily, = Anil, — Ayil, #0

for n # s. Since z, = 0 if and only if x,iZ, = 0, we have z,, # 0 if n # s.
Thus we have shown g, = 1 if n # s, and also g should be 1 from the
condition [, .; 9, = 1. O

If I is a finite set, then fi;'(0)/G, is an ordinary hyperkihler quotient
and the smoothness of ji;,'(0)/G for each generic A € H} is ensured by [16].
If I is infinite, the smoothness of ji;'(0)/G} is ensured by the following.



Theorem 2.5 ([8]). If A € Hf is generic, then u;'(0)/Ga is a smooth
manifold of dimension 4, and the hyperkahler structure on M, induces a
hyperkéihler structure G on jix*(0)/Ga.

‘Remark 2.1. In [8], the above theorem is proved in the case of

_J ni (n20),
A"_{nk (n < 0).

But it is easy to show the theorem for the case of any generic A € HE.

Take A € Hf and (e),¢1 € (SH)! and put A’ = (Ane?n),er. Then there
is a canonical isomorphism of hyperkéhler structure between fi,*(0)/G, and
fir' (0)/Gy as follows. Define a map F : /i31(0) — f15}(0) by

F((xn)nel) = (xnewn)nel‘

Since F' is equivariant with respect to G, and Gy/-actions, we obtain F :
(51(0)/Ga — [3}(0)/Gar, which satisfies F*Gn = &. In this case we
have AniA, = ALiAl for all n € I. Conversely, if we take A, A’ € H]
to be (Apiln)ner = (ALiAL)ner, then there is (e?7),cr € (S1)! such that
A}, = Ane®. Thus i, (0)/G4 and f2,;(0) /G are isomorphic as hyperkéhler
manifolds if (AiA,)ner = (ALiA!)per. Then for each

A€ (ImH)y = {(Anilp)ner € (ImH)'; A € HY}
= {} e (ImH)} Z :

nel

= < 400} |
1+ |Ag] ’

we define the hyperkéhler manifold (X, w) by
Xy = 0,'(0)/Ga
= {x € My;2,iZ, — M, is independent of n € I}/Gj,
wy = (:‘)Av
where we take A € Hf to be A,iA, = A, for all n € I. Then this is well-

defined from the above argument. The condition for X, to be smooth is
written as follows.

Definition 2.6. An element A\ € (ImH){ is generic if A, — A, # 0 for all
distinct n,m € I.

Then Theorem 2.5 implies that (X, wy) is a smooth hyperkéhler manifold
for each generic A € (ImH)f. If I is infinite, then (X,,w,) is called the
hyperkahler manifold of type A. If I =k + 1 < 400, then (X,,w,) is an
ALE hyperkéhler manifold of type Ay [7]. ‘

We denote by gy the hyperkahler metric induced by wj.
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Theorem 2.7 ([8]). Let (X, gx) be as above. Then the Riemannian metric
g is complete.

We denote by [z] € fi,'(0)/G the equivalence class represented by z €
fi*(0). Fix m € T and put

(7] := [Tm9, (Tn)nen\m]

for x = (Tm, (Tn)ner\m) =€ 1,*(0) and g € S. This definition is independent
of the choice of m € I, and we have the action of S' on X,. Then the
hyperkéhler moment map p : Xy — ImH = R? is given by

pa([z]) == zpiZ, — N\, € ImH.

Note that the above definition is independent of the choice of n € I since z
is an element of fi,*(0).

If we put Stab([z]) = {g € S% [z]g = [z]} for [z] € X), then it is
obvious that Stab([z]) = {1} if and only if z,, # 0 for any n € I, otherwise
Stab([z]) = S*. Hence we have a principal S*-bundle p x; ¢ X3 — Y where

Xy = A{lz] € X); z,#0for all n € I},
Yy = ImH\{-)\;; n eI}

Definition 2.8. An S'-action on a 4-dimensional hyperkéhler manifold
(X,w) is tri-Hamiltonian if the action preserves w and there exists a hy-
perkéhler moment map u : X — ImIH with respect to this S!-action.

Theorem 2.9 ([6]). There exists a canonical one-to-one correspondence be-
tween the followings; (i) a hyperkahler manifold of real dimension 4 with free
tri-Hamiltonian S-action, (i) a principal S*-bundle u: X — Y where Y is
an open subset of R3, and an S*-connection T' on X and a positive valued
harmonic function ® on Y such that 2—‘1—\/1:—1 = p*(xd®). Here * is the Hodge
star operator with respect to the Euclidean metric on R3.

Here we see a sketch of the proof, and the details can be seen in [8].

Let (X, w) be a hyperkéhler manifold of dimension 4 with a free S'-action
preserving w, and p : X — I'mH be the hyperkéhler moment map. Then
(Y,®,T") is given by the followings. Let Y = u(X). Then the function
®:Y — R is defined by

1 .
O(u(z))

for z € X, where g is the hyperkahler metric and ¢ := /=1 € Lie(S"). For
each x € X, we denote by V, C Tz X the subspace spanned by &;. Then
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the S'-connection I' on X is defined by the horizontal distribution (Hy)zex
where H, C T, X is the orthogonal complement of V.

Conversely, let p = (g1, p2, 1u3) : X — Y C ImH be a principal S'-bundle
and (®,T) with 5 597 = M*(*d®) be given. Then the hyperkihler structure
w = (w1, ws,ws) E Q2(X) ® I'mH is defined by

wy = dpn A —= + W @duy A dus,

2\/_
T
2v/-1

r
2v/-1
The condition jr— = p*(*d®) corresponds to the closedness of w.

Theorem 2.9 gives the positive valued harmonic function ®, on Y, and
S'-connection I'y on X;. Then @, is given by

we = dug A —== + ' ®dpz A dys,

w3 = dug A == + 1" Odpy A dpss.

for ( € Y,.

Let (X,w) be a hyperkahler manifold satisfying the condition (i) of Theo-
rem 2.9, and (Y, ®, A) be what corresponds to (X,w) satisfying the condition
(ii). Denote by g the hyperkahler metric of w and let voly(B) be the volume
of a subset B C X.

Lemma 2.10. Let U C ImH be an open set. Then we have the following
formula

voly(u™1(U)) = W/CEU ®(¢)dC1d¢2dCs,

where ¢ = ({1, (2,(3) € ImH is the Cartesian coordinate.

Proof. 1t suffices to show the assertion for all open set U C Y.

First of all we suppose that the principal S!-bundle p : p=1(U) — U is
trivial. Then we can take a C* trivialization o : U — p~}(U) and define
C*® map t: p~*(U) — R/271 by t(c(¢)e?) := 6 for ( € U and 0 € R/2rI
and obtain a local coordinate (t, u1, pa, p3) on p=1(U). Since we may write
dt = —/—=1IT + 3% aydyt for some ay,ay,a3 € C°(u~(U)), the volume
form vol, is given by

O@ .

vol, = “2 (—v/=1)dp1 A dps A dpz AT
°®
= “2 dps A dps A dys A dt.
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Thus we have

voly(uw™ ' (U)) = / volg
wm(U)

. °dp
= ‘/m d dulf\duz/\du3/\dt
wiu) 2 |

- /C , 2(Q)dndcadcs

For a general U C Y, we take open sets Uy, Us,---,U,, C Y such that each
principal S*-bundle p~(U,) — U, is trivial and [[*, U, C U C [0, U..
Then we have ‘

vol,(p ' (U)) = Z UOlg(N_l(Ua))

= ZW/ ©(¢)d1d(2d(s

a=1 C€la

= ﬂ'»/;EU ®(¢)d¢1dC2d(s.

3 Geometry on (X),w))

3.1 Holomorphic curves

A complex manifold X of complex dimension 2n is a holomorphic symplectic
manifold if there is a holomorphic (2,0) form we € Q20 (X) which satisfies
a non-degenerate condition wg # 0.

Definition 3.1. Let (X, wc) be a holomorphic symplectic manifold of com-
plex dimension 2n. Then a complex submanifold L C X of complex dimen-
sion n is holomorphic Lagrangian submanifold of X if w¢|, = 0.

Let (X,w) be a hyperkdhler manifold of real dimension 4n. Take y €
ImH to be |y| = 1. Then ImH is decomposed into y-component and its
orthogonal complement. Then we denote by w, € Q%(X) the y-component
of w € N?(X) ® ImH. Let I, be the complex structure corresponding to the
Kéahler form w,.

For each n € SO(3) = SO(ImH) we write n; = ni, 7o = nj and 73 = nk.
Then n € SO(3) gives the orthogonal decomposition ImH = R @Rns GRns.
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Then the hyperkéhler structure w € Q*(X) ® ImH can be written as w =
MWy, + Nown, + N3wy, for every n € SO(3). Now we regard (X,I,,) as a
complex manifold. Then w,. := w,, + iwy,, is a holomorphic symplectic
structure on X.

Proposition 3.2. Let (X,w) be a 4-dimensional hyperkdhler manifold and
take n € SO(3). Then each holomorphic Lagrangian submanifold L C X
with respect to wy. gives the minimum volume in their homology class.

Proof. If we regard I,, as a complex structure on X, then the pair of a
Kahler form w,, and a holomorphic volume form wy, + iw,, determines the
Calabi-Yau structure on X. In this case the condition to be a holomorphic
Lagrangian submanifold with respect to wp. corresponds to the condition to
be a special Lagrangian submanifold with respect to the Calabi-Yau structure
(Wrgs Wy + twp,). The volume minimizing property of special Lagrangian
submanifolds [12] gives the assertion. ' O

In this section we put I = Z for convenience. From now on we fix any
generic A € (ImH)% and consider the hyperkihler manifold (Xy,wy) as con-
structed in Section 2. Next we are going to see that there are infinitely many
minimal submanifold in X by using the hyperkahler moment map .

Put

la,b] == {ta+(1—t)beImH, 0<t<1},
(a,b] == {ta+(1—t)beImH; 0<t<1},
[a,b) = {ta+ (1 —t)be ImH; 0 <t <1},
(a,b) = {ta+(1—t)beImH; 0<t<1}

for a,b € ImH.

Proposition 3.3. Take n,m € Z to be n # m and (—A,, —Apn) C Yy. If we
put y = |§::§:| then ' ([=An, =Am]) = CP! is a complex submanifold of
X with respect to I, and gives the minimum volume in its homology class.

Proof. Take n € SO(3) to be ni = y. If we write puyx = (a1, Kr2, 42 3)
according to the decomposition ImH = Rn; @ Rny @ Rns, then py 2 and py 3
are constant on ([~ An, —Am]). Hence we have du,\,a|H;1([_/\m_/\m]) =0 for
o = 2,3, which gives wxnc|,~1(_x,,-x.p) = 0- O
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3.2 Topology

The author of [8] has constructed the deformation retract of X, for one
A € (ImH)Z and evaluated its homology group. In the case of finite topo-
logical type of toric hyperkahler varieties, the deformation retracts are con-
structed in [2]. In this subsection we review the construction of the deforma-
tion retracts of X along [8][2].

If n,m € Z are taken to be (—\,,—\,) C Y, then the orientation of
253 ([=An, —Am]) can be determined as follows. By taking a smooth sec-
tion (—An, =Am) = 15 ((=An, =Am)) of uy, we have a coordinate (s,t) on
25 ((—An, —Am)) where t € R/277Z is the parameter of S'-action and a func-
tion s : uy ' ((=An, =Am)) — R is defined by

An +
s(p) =2 _M;(P)

for p € uy'((=An, —Am)). Thus the orientation of uy!([=An, —Am]) is by
ds A dt. Here we should remark that u;" ([, —Am)) and p3 ([=Am, —An))
are same as manifolds but have opposite orientations.

For n, m7l € Z, M;\l([_)‘m _)‘M]) U u;\—l([-)‘my _)\l]) and M;l([_)‘m _/\l])
determines the same homology class since the boundary of uy'(Anm;) is
given by ,U')Tl([_Am _/\m]) U H;l([_)‘ﬂw _>‘l]) U “;1([_)‘1? _)‘n])’ where

An,m,l = {_a)‘n_ﬂ)‘m—’)/)‘l € ImHa a+ﬂ+7: 1) 057/677 Z O}

For any n,m € Z we denote by C,, ,, the homology class determined by
25 ([=An, —=Am]). Then the above observation implies

Cn,m + Cm,l + C’l,n = Cn,m + Cm,n =0.

for n,m,l € Z.
If n,m,l,h € Z are taken to be n # h, n # m and | # h then the
intersection number C, ., - C;, is given by

_[1 (m=)
C’n,m’C’l,h—{o (m;él)

and Cp - Cpp = —2.

Proposition 3.4. By taking an appropriate bijection Z — 7, there ezists a
deformation retract of J,cz[—An, —Ans1] C X

Proof. Fix a generic A € (ImH)%. By taking an appropriate bijection Z —
Z, we may assume that A satisfies the following conditions without loss of

14



generality; (i) (—An, —Am) C Y3 for each n € Z, (ii) there is a deformation
retract

F:ImH x [0,1] — ImH

which satisfy F(-,0) = idmm, F(ImH, 1) =, cz[—An, —Ant1] and F((,1) =
¢ for ¢ € U,czl=M, —Ant1]- Then we have the horizontal lift £ : X, x

[0,1] — X of F by using the S'-connection Ay. The map F is deformation
retract what we expect. a

Corollary 3.5. For any generic A € (ImH)%, the second homology group
Hy(X\,Z) is generated by {Cypm; n,m € Z}.

Thus we obtain the followings.

Theorem 3.6. Let A € (ImH)% be generic. Then Hy(Xx,Z) is a free Z-
module generated by {Cp,m; n,m € Z} with relations

On,m + CVm,l + Cl,n =0
for all n,m,l € Z. Moreover the intersection form on Ha(X,,Z) is given by

_[1 (m=1
C’n,m'Cl,h—{O (m;él)

and Cp o Cpm = —2 for n,m, I, h € Z taken to be n # h, n # m and | # h.

3.3 Period maps

We denote by [wy] € H%(X),R) ® ImH the cohomology class of wy. In this
subsection we compute [w,], that is, compute the value of < [w], Cpm >:=
anm wy € ImH for all n,m € Z. In the case of finite topological type of

toric hyperkahler varieties, the period maps are computed in [18].

Theorem 3.7. Let A € (ImH)% be generic. Then the value bf < [wy], Com >
. are given by

< [‘*&]7 Cn,m >= >‘n - )‘m
for alln,m € Z.

Proof. Fix n,m € Z and take a smooth curve v : [0,1] — ImH such that
¥(0) = =X, ¥(1) = =\, and (s) € Y, for s € (0,1). Since the homology
class determined by p5'(v([0,1])) is Cpm, We have

< [wal, Crm >=/ wy.

w3y (v([0,1])

15



Now we use the local coordinate (t, px 1, a2, 2 3) as in the proof of Lemma
2.10. Then the local coordinate (s,t) on py'(v([0,1])) is given by (¢, a1 o
Y(s), a2 © Y(8), as © ¥(s)). Using this coordinate, wy is written as
| o= (s)ids Adt
2

for « = 1,2,3, where v(s) = (11(s),72(s),73(s)) € ImH = R3. Thus we
obtain

1
/ Wra = / fya( )=—ds A dt
w5 (v(0,1])) L(y([0,1]) 2m

= /27r ——dt/ v..(s8)ds

= + Yo (0)

which gives < [wa], Cnm >= An — - O
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Chapter |l

The volume growth of hyperkahler
manifolds of type Ay

4 The upper estimate of the volume growth

For a Riemannian manifold (X,g) and a point py € X, we denote by
Vg(po,r) the volume of a ball By(po,7) := {p € X; dy(po,p) < r} with
respect to the Riemannian distance dy. In this section, we will evaluate the
upper estimate of V;, (po, ) for the hyperkahler manifold (X}, g»). From now
on we are going to consider of type A, so we put

I=N={neZ n>0}

in Sections 4-8.  In Section 2, we supposed A € (ImH)Y to be generic for
the smoothness of (X}, gx). But the function Vi, (pg,7) is determined only
by the Riemannian measure vol,, and the Riemannian distance dg,. Even if
A € (ImH)Y is taken not to be generic, vol,, and d,, can be extended to Xy
naturally. Hence we take A € (ImH)Y not necessary to be generic from now
on.

Fix py € X\ to be ur(po) = —Xo. We may assume \g = 0 since the
hyperkahler quotient constructed from (A, — Ag)nen is isometric to (X, g»).
For each R > 0, put ~

R
o) =3
neN
and ¢,(0) := limg 0 @a(R).

Proposition 4.1. There ezists a constant Q) independent of X and R, which
satisfies

dgy (P, 2)* > Q-|ua(p)] - ex(lLa(p)))
for any p € X,.

Proof. Take A = (Ap)neny € HY to be AniA, = )\, for all n € N. We fix
z € fi,*(0) such that [z] = p. If we regard i;*(0) as the infinite dimensional
Riemannian submanifold of My, then the quotient map 2,'(0) — X, =
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fix'(0)/Gy is a Riemannian submersion and G acts on /iy (0) as an isomet-
ric. Then the horizontal lift of the geodesic from py to p has the same length
as dg, (po, p). Since the Riemannian distance between A and z’ € fi,*(0) is
larger than ||A — 2’||y, then we have

> i _ )
dgA(p07p) = UIEIgA ”A JIO'”N

If we put A = (an + Brnd)nen, T = (2, + wnj)neN and o = (¢),¢cn, then

1A = zollf =D (lan = 20€™|? + By — wae " [2).
neN

If 6, can be taken to give the minimum value of |ay, — 2,€%" |2 +| 3, — w,e ™ |2
for each n € N, then o satisfies |A — zo||j = inf,cq, ||A — 27||3.
Put f,(t) == |an — 2,€"* + |8, — wpe ™|%. Then we have

Fa(t) = [An] +1¢ + Anl = 2Re{(anZn + Bawn)e ™},
— 1 )
|t Zp + Brwn|® = SAlCH+ A+ < An (4 An >0 ),

where <, >gs is the standard inner products on ImH = R3. o
Suppose n # 0. If apZ, + Bown # 0, then we put eifr = 2nZntlban ¢

_ T lanfn‘i‘ﬂnwnl-
QnZn + Bpwn, = 0, we may put 0, := 0 since f,(t) is constant.
Let S :={n € N; a,z, + B,w, =0}. For each n € 5S¢, we have

2
|ozn—zne"9”|2+ lﬂn_wne—i9n|2 — |C| _
[Anl + 1€+ An| +2v/anZn + Bawn]
=

Hence -we deduce

Z |A, — z,e |2 < Z |An — | + Z % < +o0.

neN nes nese

Thus we obtain Y, oy [An[*|1 — €?|* < 400, which ensures the conver-
gence of IL,e o3 v

Since fo(t) is independent of ¢, we may put €% := II,em joye . Thus we
obtain o = (e¥"),cy which gives the minimum value of ||A — zo||y. For this
o, we have

“A - xU“IZ\I = Z(p‘nl + IC + )‘n| - \/5\/|)‘n”C + )\n|+ < An, G+ An >R3)

neN
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-y <7

2o [al + 1€+ Aal + V2/AIIC+ A+ < An, C+ An >
I¢|?
2 Zw-sm ea([<)-

Then the assertion is obtained by putting Q_ = 1. O

Put B := {¢ € ImH; |{| < R}. Next we discuss the upper estimate the
volume of py*(Bg).

Lemma 4.2. Put

Ni(R) :={n e N; |\,| < R},

W(R) =R+ Y R

neENx(R)C nl

for R > 0. Then we have

PeA(R) < Ya(R) < 20a(R).
Proof. Let

x
1+2’

p(x) == ¢(z) := min{1,z}

for x > 0. Then the inequalities

p(z) < q(z) < 2p(z)

hold for each x > 0. Therefore the assertion follows from

a® =) »im=a(ny)

O
Lemma 4.3. For o« > 1 and R > 0, we have py(aR) < apx(R) and
Ua(aR) < apa(R).

<P,\( )

Proof. Since is strictly decreasing for R, we have

or(aR) = 90/\0(40]%1%) aR < %\];R) aR = apy(R)

for « > 1 and R > 0. It follows from the same argument that ¥\(aR) <
atr(R). d
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Proposition 4.4. There is a constant P, > 0 independent of X\ and R such
that

volg, (115 (Br)) < Py R*px(R)
for all R > 0. |

Proof. From Lemma 2.10, the volume of u}'(Bg) is given by

voly, (' (Br)) = /CGB ®,(C)dCrdCadCs

™

1
/CEBR lC + )\ |dC1dC2dC3

neN

Let (r > 0,0) be the polar coordinate over ImH = R3, where © is a coordi-
nate on S? = 9B;. If n € N,(R), then the change of variables ¢’ = ¢ + A,
gives

1
/< 1 cdede < /C o] <,|d<1dc2d<3

eBg [C+ Anl
R+|n|
= A4m / rdr
0
= 27(R+ |\n|)* < 87R%.
If n € Nx(R)®, the mean value property of harmonic functions gives

4TR3 1

T d(1dC2d(3 RERNE

1
/CGBR |C+ >\ |

since 5 o ; is harmonic on Bg. Hence the upper estimate of volgA (13 H(Br))
is given by

2
R
voly, (1 (Br)) < 2nNi(R)- R+ 3 LR

neN,\(R)C| nl
< 2m?YA(R)R® < 4n’p5(R)R’.

Then we have the assertion by putting P, := 42 |

Let 0y c(R) := Cpr(R)R?, ,c(R) := Cpr(R)R for C > 0, and T)\_é :
R>o — R be the inverse function of 7, ¢.
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Proposition 4.5. Let Py and QQ_ be as in Proposition 4.1 and 4.4. Then
the inequality

Vor(po,7) < O p, 57',\_,65_ (r?)
holds for all 7 > 0.

Proof. It suffices to show that By, (po, /7o _(R)) C py*(Bg) for all R > 0.

Since each p € By, (po, \/Trq_ (R)) satisfies dy, (po, p)? < Tag_(R), then we
obtain 7y g_(Jua(p)|) < Tao_ (R) from Proposition 4.1. Therefore |uy(p)| < R
follows from the strictly increasingness of 7 g_. O

5 The lower estimate of the volume growth

In the previous section we obtained the upper estimate of V,, (po, ). The
purpose of this section is to obtain the inequality

Orp_ o 7_>\_,65+ (7’2) < Vou(Pos 1),

where P_, Q)4 > 0 are constants independent of A and r. By considering sim-
ilarly to Section 4, it seems to be enough to evaluate two types of inequalities

volg, (113" (Br))
dgy (Do, p)*

P_R*¢\(R), (1)
Q+lua(P)| - eallua(®)])- (2)

In general we cannot obtain the latter type of inequality. Therefore we are
going to evaluate two types of inequalities; one is a stronger inequality than
(1), and the other is weaker than (2). First of all we consider the former

2
<

- estimate.

Let U C S? be a measurable set and put
BR,U = {tc EIMH; 0<t<R, Ce U}

We denote by mg2 the measure induced from the Riemannian metric with
constant curvature over S? whose total measure is given by mg:(S?) = 4.
First of all we consider the lower estimate of vol,, (1" (Brv))-

Proposition 5.1. There is a constant C_ > 0 independent of A, R and
U C S?%, which satisfies

volg, (uy ' (Bry)) = C-ms:(U)R* - ox(R).
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Proof. From the triangle inequality, we have

volg, (3 '(Bry)) > ZT—Z/ d(1dC2d(s

neN CEBRU IC' + I)‘nl

r2
= drdmge
/re[OR] /OEU T+ |An | s

neN

4 SR T A

If n € N)(R), then

1 2 / I, 1o
redr > rdr = (log2 — =)R".
/re[O,R] r+ | An] refo,R) T+ R ( 2
If n € Ny(R)¢, then
1
/ ——r?dr = / ——1 r2dr
refo,®] T+ | Anl refo,R] T T |)\ |

= |\l { (m) +1og(1+|—f7|)}.

Since the inequality

1 1 1
log(l+2z)>z— 5562 + §x3 - Zx4

holds for > 0, then we have

fpmrrmrer = w5 () -1y )

1 R3
> =
T 12]A]

By taking % :=min{log2 — %, L} > 0, we have

2’ 12
volg, (115" (Bry)) > C-ms2(U)R? - A(R) 2 C_mg:(U)R? - pa(R).
O

Next we need the upper estimate of dg, (po,p). If we can calculate the
length of a piecewise smooth path from py to p, then the length is larger
than dg, (po,p). Here we take the path as follows.

Put ¢ = pa(p). If |¢] < 1, let 7, be the geodesic from py to p. If || > 1,
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let 6 : [1,|¢|) — ImH be defined by 6(t) := ¢& and take the horizontal lift

d: [1,[¢]] = Xy of § with respect to the connection I'y such that 5(I¢) = p.
If there exist some ¢ € [1, |C|] such that 6(t) = —\, for some n € N, then 4 is
not always smooth but continuous and piecewise smooth. Then we obtain a
path 7, by connecting the geodesic from p, to (1) and 6.

The length of v, is given by dg, (po,6(1)) + Ix(2r(p)) where I : ImH — R
is defined by

¢) = /1 4 s, (t%) dt

if [¢] > 1, and I5(¢) := 0if |¢| < 1. Thus we have dg, (po,p) < Lx + Ix(pr(p))
where Ly := SUPpe,~1(5,) doa (po,p) < +00.

Proposition 5.2. There is a constant C > 0 independent of A\ and R which
satisfies

/ 1(RO)dms: < 47/ Rpn ().
©€dB;

Proof. We may suppose R > 1, since the left hand side of the assertion is
equal to 0 if R < 1. The definition of [, gives

R
/ l)\(R@)dmgz < / / \/<I>,\(t@)dtdm52
©coB; ocoB, J1
o
J— 3)
ceBp\B: €]

where d( = d(1d(>d(s.
Take m € Zsq to be 2™ < R < 2™*1. Then the Cauchy-Schwarz inequality

gives
(3) = Z—/ @A(C)dc_i_/geB - \/‘I’A(Odc

1=0 C€B2l+1 \le |C|2 |C|2

m—1 9

r2drd©
Sof o =2 DA(Q)dC
=0 (r©)€Byut1\By T CEBy+1\By :

r2drd©
- / 1 / ®x(¢)dC.
(r©)€Br\Bym T ¢E€BR\Bym

From Proposition 4.4, the inequalities

/ ®,(¢)d¢ < / PA(Q)d¢ < &tQSD,\(t)
¢EB\By ¢eBy T

IN
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hold for any 0 < ' < ¢. Therefore the assertion follows from

P
(3) < v4 Z 21 21+1 +22(l+1)80x(2l+1)

+\/—\/———\/ R2p,(R)
< 23 VB VP + 2/ PR

< 2(3+v2)\/P;Rpx(R)
by putting C; = (332)2P,.

O

Since Ry (R) diverges to +00 for R — +00, there is a constant Ry > 0

which satisfies

4Ly -|-/ . l)\(R@)dmgz < 47/ 20+R(,D,\(R)
©es?

for all R > Ry. Now we put

Urr = {0 € S% Ly +1\(RO) < \/TRp»(R)}
for R, T > 0.

Lemma 5.3. There exists a sufficiently large Ry > 0 and we have

m52(UR’T) \\//__ \/%F

for R> Ry and T > 2C,.
Proof. The definition of Ug r and Proposition 4.1 give

/ (L + (RO))dmg» = / (Ly + 1r(RO))dmss
©es? ©cUr,

+/ (L)\ + ZA(R@))dmsz
QESZ\UR T

ms2(Urr)vV Q- Rpa(R)
(

+(4m — ms2(Urt)) vV TRPA(R).

By combining (4) and (5), the inequality

AT(VT — 1/2C1)\/RoA(R) < (VT — \/Q_)ms2(Ur1)v/Ror(R).

24
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is obtained for R > Ry. Since 2C, > Q_, we have

VT — /20,
mg2 (UR,T) > 477—\/——E—— Cf—
for T > 2C,. ‘ O

Lemma 5.4. For each R > 0 and T > 0, py' (Brup,) is a subset of

ng (p0> V TA,T(R))'

Proof. First of all we take p € p;"'(Bru,,) such that |ux(p)| > 1. Since

px(p)
[ea (o)

is an element of Ur 1, we have

; pa(p)
Ly + (1a(p)) < Ly + 1y (Rmi <p)|) < /TRpx(R).

from R > |ux(p)] > 1. Then we obtain dg, (po,p) < /TRpA(R) from
dg, (Po, ) < L + Ia(1a(p))-

If p € p3'(Brugy) is taken to be |ux(p)] < 1, then we have the same
conclusion as above since I (px(p)) = 0 in this case. O

Now we fix a constant @, to be @, > 2C, and put mq := 4%7——"2—_\/_ V2QC:“

and P_ :=myC_.

Proposition 5.5. Let P_,Q . > 0 be as above. Then we have

lim inf Vox (pf’lr) > > 0.
rooe Oy p 0Ty g, (1)

\ Proof. Let R > 0. From Lemma 5.4, we have

Vo (po, Q4 (R) > volg, (:uxl (BR,UR,Q+ )

Then Proposition 5.1 gives

_ ‘/.;]A(p(b TA,Q+(R)) 2> m52(UR,Q+)C—R2(p)\(R)
Z‘ moc_RZ(,DA(R) = 9)\,}:'_ (R)

for R > Ro. Thus we have the assertion by putting R = 75 é+ (r?). |
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6 The volume growth

In Sections 4 and 5, we estimate Vi, (po,r) from the above by Orp, ©
oy (13_ (r?) and from the bottom by 6y p_ o T, 22+ (r?). In this section we
show that the asymptotic behavior of the functions 6y p, o 755 (r%) and
Orp_ 0Ty, é2+ (r?) are equal up to constant, and prove the main results.

The asymptotic behavior of Vi, (p, r) is independent of the choice of p € X
from the next well-known fact.

~ Proposition 6.1. Let (X, g) be a connected Riemannian manifold of dimen-
sion n, whose Ricci curvature is nonnegative. Then we have

lim %(pla 7‘)

=1
T—+00 %(poa T)

for any po,p1 € X.

. . . e Volp1,r) - .
Proof. From the Bishop-Gromov comparison inequality % is nonincreas-

ing with respect to r. If we put ry := dy(po, p1), then we have

Volpr,m) . Vo(po,™ + 1o)
Vo(po,r) — Vg(o, )
" Vy(po,r +1o) (r +10)"
Vo(po,m)  (r+mo)™ ™
" Vy(po,7) (1 +10)"
Vo(po,r) 7™ "
(r+mo)"

= ——— 51 (r—+o).
rn

By considering the same argument after exchanging py and p;, we have the
assertion. |

We denote by C? the set of the nondecreasing continuous functions from
RZO to Rzo.

Definition 6.2. For fo, fi € C, we define fo(r) <, fi(r) if

. fi 0(7")
limsup S

Definition 6.3. For fy, fi € C2, we define fo(r) ~, fi(r) if fo(r) <, fi(r)
and fi(r) <, fo(r).

< 40
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For a Riemannian manifold (X,g) and a point py € X, the function
Vg(po, ) is an element of CY. If (X, g) satisfies the assumption of Proposition
6.1, then the equivalence class of V,(po, ) with respect to ~, is independent
of the choice of py € X. Therefore we denoted by V,(r) the equivalence class
of Vy(po, r). For example, if we write V,(r) <, r", then it implies that

lim sup < 400

r—-+00

%(po) T)
rn

for some (hence all) pp € X. ‘

The main purpose of this section is to look for the function in C? which
is equivalent to V, ().
Lemma 6.4. Let S;,5_,T,T_ > 0. Thenfg, o T)\_le_ and Oy s o T;’}Jr are
elements of CY and we have 055, o 75 1 (r?) 2, Oy s_ o T)\_le_‘_ (r?).
Proof. We may suppose T < T, without loss of generality. Since 77, and
Th7. are continuous, strictly increasing and satisfy 7\ r, (0) = 7ar_(0) =0,
then 7y :1p+ and 7, 7 are also the elements of C?. Hence the composite func-
tions 0y g, o T }_ and 0,5 o T qlq+ are also the elements of Cﬂ’r.

Next we show (i) Oy g o Tgh(rz) =r Ors, o Tar (r?) and (i) Ors, o
7',\_}_ (r?) X, 0ys_ o T/\‘Jl"+ (r?).
(i) From 7y 7, (R) > 77 (R) and strictly increasingness of 7y 1., then we
have 757, (r?) < 75 7_(r?). Hence we obtain

6)\73_ OT)\_,Ilw+(7“2) 9)\75_ OT/\_’%_(’IQ) i
6)\,5_'_ 07')\_’%1_(7'2) - 0>\,S+ OTA_,%«_(Tz) - S—i-.
(ii) Put Ry := 7,7, (r?). Then we have
r? = Ty Rypa(Ry) = T-R_px(R-).

Since ¢, is nondecreasing, it holds

T T T
R_pA\(R-) = T—J_FR+<P,\(R+) < T_J:RJAP/\ <T'J_CR+) (6)

Since the function Ry, (R) is strictly increasing with respect to R, the ex-
pression (6) gives R_ < ;—“_LRJF. Recall that @, satisfies ¢)(aR) < ap,(R)
for o > 1, which implies 0, g, (aR) < @0 s, (R). Thus we have

s, 0oz (1) Oys,(R-)

9)"5_ o 7'>\_,111+ (7‘2) - 9,\,5_ (R+) 9)\,5_ (R+) - T 9)\,5_ (R.,.)
T3S,
- @5
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O

Put 0 := 051, 7» := 7\ 1. Then the main result in this paper is described
as follows.

Theorem 6.5. For each A € (ImH)Y and p € X, the function V,, (p,r)
satisfies

Vor (25 7)

1%
0< liminfM < lim sup —5*— < +00.
r—too P27 H(r2) T i 7275 1(r2)

Proof. We have shown that
Orp_ © Ty, (17) 2r Voo (r) 2r O p, 07 (%)
in Sections 4 and 5, and
Orp_ o T)\_’é+(7"2) ~ Oz p, 0 Ty (17) = Oy 0751 (r?)
in Lemma 6.4. Thus we have the assertion from
O o1 (r?) = 71 (r?) - (73 (1)) = iy ().
O

Corollary 6.6. For \,\' € (ImH)Y, the condition Vo (1) =2p Vg,, (1) is equiv-
alent to pA(R) <gr px(R).

Proof. The condition Vy, (r) =, V,,,(r) is equivalent to 75 '(r?) =, 75,}(r?)
from Theorem 6.5. ,
If we assume 7’_1(7” ) -< 75 (r?) then there are constants ro > 0 and

C > 1 which satlsfy ( < C for all r > ro. Now we put r? := 7,(R) and
(r')2 := 73(R) for R 2 T ( 2. Since we have -
R=7,((r')) = 71(r*) < O (%),
then - ,
()7 < (O (%) < Cory (5 (r%) = O

is given by the monotonicity of 7. Thus we obtain WT(RR)) < C? for all
R > 7,,*(r2), which implies 7 (R) =g TA(R).

On the other hand, if we assume 7y (R) <g TA(R) then 7,1 (r?) =<, 7,'(r?)
- is obtained in the same way. Thus we have the assertion since the condition
Ta(R) =g TA(R) is equivalent to oy (R) <gr pr(R). O
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Lemma 6.7. For all A € (ImH)Y, we have

A () =

" Proof. From Lemma 4.2, it is enough to show limg_,,+ ¥s(R) = 400, which
follows directly from limpg ;o fNV)\(R) = +o0. O

Lemma 6.8. For all A € (ImH)Y, we have

lim (1)

Am =0.

Proof. For each ¢ > 0 there exists a sufficiently large n, € N such that
D nsne ﬁ < £. Hence we have

PA(R)
R - ZR+|/\|+ZR+|A|

n<ne
< Yo | N "
n<ng n>ne
< 2n. +1 € '
, - R 2
Then the inequality f*—l(%—R—) < ¢ holds for any R > %2”;—“), which implies
limp_, 4o f-*gl < e. The assertion follows by taking ¢ — 0. O

Corollary 6.9. For all A € (ImH)Y, we have

o Yo o Val)

r—too 4 r—+oo 13

= +00.
Proof. It suffices to show that

~1/,.2 ~1/.2
lim R (7“):07 lim 0y o1y (r?)

3 = +o00.
r—+00 r4 r—+00 r

We put R = 7, }(r?) and consider the limit of R — +00. Then we have

9)\ oT 1(7”2) _ 0)\(R . 1
= T(R)*  oa(R)’
and
9)\07')\ 1(’1“2) _ QA(R) _ R
73 T)\(R)% QOA(R)



Hence we obtain

lim
r—4-00 7“4

. OyoTH(r?) -
lim o7 (%)
T—+400 r3

from Lemmas 6.7 and 6.8.

O 07y ' (r?)

= lim =0,
R—+too 0x(R)

= lim R =400
R—+o00 SO}\(R) ’

O

The condition ) (R) <g ¢ (R) is rather difficult to check. But we can
describe the sufficient condition for ) (R) <g ¢ (R) easier as follows.

Proposition 6.10. Let A\, XN € (ImH)Y. Suppose that there are some a >
0 and Ry > 0 such that tNA(R) < §Nunv(R) for R > Ry, where a) :=
(@A) )nen. Then we have @)(R) <gr ox(R).

Proof. We may assume that |A\,| < [Apja] and |N,| < |A,,,| without loss
of generality since the hyperkahler metric g, depends only on the image of
the map n — A,. Then the condition §N,(R) < fN,x(R) is equivalent to
N)\(R) C Na,\/(R).

Take ng € N sufficiently large such that |A,,| > Ry. Then we have |a),| <
|An| for each n > ng from

Nx([An])) € Nax (|An])-

If n is an element of Ny(R)° N Nyn(R) for R > Ry, then we have

1 1 1 1
< o ™ 1 S .
Aal = RT|Aa| T alA
Thus we have
‘ R
UA(R) = tNA(R)+ ) DN
neNy(R)e """
R
SN P
neNA(R)*NN,_(R) " ™' neN_ (R '™
: R
< ANA(R) + (fNav (R) —NA(R) + D AN
» neN,yr(R)° n
= d}a)\’(R)
for R 2 RO From ’L/))J(R) ~R ’(/Ja)\/(R), we have ¢)\(R) jR 1/))\/(R) which is
equivalent to px(R) =g px(R). O
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7 Examples

In this section we evaluate Vj, (1) concretely for some A\ € (ImH)Y. Let
AR : R>p — Rsg be a continuous nondecreasing function which satisfies
I 1 +/\;(w) < 400 and put @x(R) = [ % ﬁ‘jf(x) Then @), is strictly
increasing and satisfies ¢, (R) ~g goA(R), Where A € (ImH)Y satisfies
[Anl = Xg(n). In this case it holds V,(r) ~, r?7; 1(r?) where 7, is de-
fined by )z (R) := Ry (R). Now we compute the volume growth of gy in
the following two cases.

1. Fix a > 1 and put Ag(z) = 2%, A\, = Ag(n)i. Then @), is given by

© Rz a1 [® dy
51 (R) = — R» ,
o3 (F) oy R+az° /0 1+ y>

1
1+y ) ~r R=,
which gives 7y, (R) ~g R”a and 7,1 (r?) ~, ra+1. Hence the volume growth
is given by '

where we put y = F‘ Since fo

Vor(r) = réa,
Thus we obtain the following result.

Theorem 7.1. Let o € (3,4). Then there is a hyperkahler manifold (Xy, g»)
whose volume growth is given by

IZNG ="

2. Fix a > 0 and put Ag(z) = e**, A\, = Ag(n)i. Then @), is given by

5 *  Rdz
on® = [ gre

By putting y = €®*, we have

*  Rdy
~ R) — _nay
90)\1&( ) » /1 ay(y n R)

- log(R + 1).
%

Hence we have ¢y, (R) = Llog(R + 1) and 7, (R) = ZRlog(R +1).

Proposition 7.2. Let A € (ImH)Y be as above. Then the volume growth of
g satisfies Vy, (r) ~2p 1

T logr"®
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2.—1/2 1 .
Proof. It is enough to see the behavior of TTAR—(TZ)O—g—T at r — +o0o. Put

R = 7 '(r?). Then we have r? = L1Rlog(R + 1) and logr = %(logR +
log log(R + 1) — log ). Thus we have

25, (1) log r a R(log R + loglog(R + 1) — log )

Clim ——A———— = i

r—lgloo r4 R—lf—rl-loo 2 Rlog(R+1)
. a
= 3

Thus we have the following theorem.

Theorem 7.3. There exists a hyperkdhler manifold (X, g)) whose volume
growth satisfies

hm V;?AAET) :O, hm V;?A(r) '—_+OO
r—too T r—+oo T¢

for any a < 4.

8 Taub-NUT deformations

We consider the volume growth of the Taub-NUT deformations of (X}, g»)
in this section.

First of all, we define the Taub-NUT deformations of hyperkahler mani-
folds with tri-Hamiltonian S*-actions. Let (X,w) be a hyperkéhler manifold
of dimension 4 with tri-Hamiltonian S'-action, and x : X — ImH be the
hyperkahler moment map. An action of R on H is defined by z — x + \/5—115
for z € H and ¢t € R by fixing a constant s > 0. This action preserves the -
standard hyperkahler structure on H and the hyperkéhler moment map is
given by \/_ -Im : H — ImH. Then we obtain the hyperkahler quotient
with respect to the action of R on X x H, that is, the quotient (x())~1(¢)/R
where ¢ is an element of ImH and p® : X x H — ImH is defined by
p) (z,y) := u(x)+2/5 Im(y). The hyperkahler structure on (1)~1(¢)/R
is independent of (.

For each ( € ImH we have an imbedding i, : X — (u®)71(¢) defined
by Tsc(z) == (z, %g(—u(x) + ()) which induces a diffeomorphism ¢, : X —
(1®)71(¢)/R. Then we have another hyperkéhler structure on X indepen-
dent of ¢ by the pull-back, which is called Taub-NUT deformation of w
denoted by w(®). If we denote by g the hyperkéhler metric of (X,w), then we
denote by g the hyperkihler metric of (X, w®).
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There is the pair of a harmonic function and an S'-connection (®,T") cor-
responding to the hyperkéahler structure w by Theorem 2.9. Then the corre-
sponding pair to w(® is given by (® + 3.

The S'-action on X also preserves w® and p : X — ImH is also the
hyperkéhler moment map with respect to w(®).

In this section we consider the Taub-NUT deformation of (Xy,wy), where
I = N, and evaluate the volume growth by considering the same argument
with Section 4, 5 and 6.

Lemma 8.1. Let (X, g) be as above and take po,p € X. We suppose that py
is a fized point by the S'-action. Then we have the inequality

S
Ay (po, p)? = dy(po, p)* + 7 |1(p) — (o) *

Proof. We apply the same argument as Proposition 4.1. Then the assertion
follows from

dg(S) (pO’p)z > %gIgnggH(ZS,C(pO) -t Zs,((p))2

= ity (e )+ 15 (o) — o) + =t

. 2, S _ 2 B
= inf (dylro,p)? + Jlualpo) = @) + =)

= dy(po,p)? + zlu(po) = u(p)l*,

where gy is the Euclidean metric on H and g X gg is the direct product
metric. a

Lemma 8.2. Let (X,g) be as above and B C ImH be a measurable set.
Then we have

s

UOlg(s) (:u—l(B)) = ’UOZQ(/J’_l(B)) + Z’mIm]HI(B)?

where mry,u s the Lebesque measure of ImH.

Proof. It follows directly from Lemma 2.10 and that w(® corresponds to
(@+4,1). O

For 5,C > 0 and )\ € (ImH)Y, put

‘5 23 s S
Oe(R) = CRI:(R) + “° R, 7{3(R) = CRea(R) + R



Proposition 8.3. For A € (ImH)Y and s > 0, we have

; Vggs)(po,r) - 82
1m su .
R W

Proof. From Lemma 8.1 and 8.2, we have
Vi (po,7) < 630p, 0 (13 )71 (r?)

for r > 0. Then it suffices to show |,
B o ()TN _ s
lim sup < .
r—400 7"3 3\/5

Put R = (7')(\22_)‘1(7'2). Then we have

ﬁzQJWAm+ZW2§§.
Therefore Lemma 6.8 gives
Q) (8) \—1(,.2 2 725 D3 9
. e, O (g )M () 8(PLR’pA(R) + Z2R%) 8w
lim sup 3 < lim sup 3 = )
r—+00 r R—+o0 \/-5 R3 3\/5

O

Next we consider the lower estimate of V:q(s) (r). We apply the same way
A

as Section 5. Put lf\s) : ImH — R as

@@V=1mﬁ%@éﬂ+iﬁ

on [¢| > 1, and lgs)(C) =0 on || < 1. Then the inequality d (po,p) <
. A

LY+ lf\s) (ea(p)) holds where py € X is taken as in Sections 4 and 5, and we

put L§\8) = Suppeu;\l(gl) dgg‘s) (pOap) ‘

Lemma 8.4. Let Cy > 0 be as in Proposition 5.2. Then we have

s 8R2
/@ 3 K (RO)dmss < d(y/rac, (B) +1/ 20,
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Proof. The assertion follows from

/ees2 (/1R m dt) dms < /(—)esz (/1R \/gdt) dms>

+ / l>\ (R@)dmsz
©cs?

[sR?
< Ar - 4y /Tac, (R).

Put ULy = {6 € $% LY +1{7(RO) < /mar(R) + /&)
Lemma 8.5. There is a constant Ry > 0 such that

ar(vT — 2C5)
VT

mee (Uss)) >

forany R> Ry and T > 2C,.

Proof. We consider the same argument as in Lemma 5.3. First of all we
remark that there exists sufficiently large Ry > 0 such that

s s R?
| @0+ RO dmsn < 4n(yfraac, (B) + /20
SIS}

for any R > Ry. Then We have

/ (LY + 19 (RO))dms: = / (LY + 19 (RO))dms:
©eS52? )

eRT

+ / (LY + 1 (RO))dmag:
0es:\US)

me Uk rra () + 2

(47_7”82 URT)) \/TAT \/7)

where the constant Q > ( is as in Proposition 4.1. Then an inequality
\/ Tao_ (R) + 2 > 4 /28 gives

\Y
o
IS

sR?
4

+(dm — me2 (USH))y/ Tar(R).

/ (LY + 1 (RO))dmg: > 4n
052

Thus we have the conclusion. O
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Lemma 8.6. For each R > 0 and T > 0, u,*(B

Bg;s) (po, Tar(R) + \/;—%;).

Proof. 1t is shown by the same argument as Lemma 5.4. O
Proposition 8.7. For each A € (ImH)Y and s > 0 we have
lim inf VQ&S) (fmr) > 8 )
r—+00 T 3\/5
Proof. For each sufficiently small ¢ > 0 there exists 7. > 0 such that
ms2(USsy,) > 4m(1 —€)

from Lemma 8.5. Since ‘P*}(%R) converges to 0, there exists R. > 0 such that
T.px(R) < €2R for any R > R.. Then it holds

i (5 (B, ) = Vo (o run @+ fF)
< Ve (Po, (e+ \/%) R) , (7)

for R > R.. On the other hand, we have the following inequality
mmgz2(U)
12

R’Uz({)T) is a subset of

volg;@ (13 (Bru)) > C_mg2(U)R? - pa(R) +

for U C ImH from Proposition 5.1. Thus we obtain

sR? (8)

(s)
S : s mmg2(U : .)
Vip (oo e+ \/;) R) 2 Coms(URR)R - oa(R) + =50 s Y
2
3
from (7) and (8). Hence substituting r = (¢ + 1/3)R gives
V;J(As) (po,T) o V;;s)(l’o, (e + \/%)R) S _1_772(1 —¢€)s

liminf 22— = liminf

rotoo 73 R—too (g4 4/2PR? T 3(e+./3)
for any sufficiently small € > 0. Therefore the conclusion follows by taking
the limit for € — 0. O

> (1—¢)sR?

From Proposition 8.3 and 8.7, we obtain the followings.

Theorem 8.8. Let A € (ImH)Y and s > 0. Then the volume growth of

hyperkahler metric gﬁ\s) s given by
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Chapter Il

The sequence of hyperkahler quotients

9 The approximations by ALE spaces

In this section we are going to show that each hyperkédhler manifold of type
A is approximated by the sequence of ALE spaces.

Let (X, g) be a Riemannian manifold. Then the norm || - ||, on A™T*X is
defined by giving the orthonormal basis {e® A« - -Ae™ }1 <) <...<i,, <dimX, Where
{e',--- %™ X} be the orthonormal basis of T; X. Then the norm |- ||(x,) on
O™(X) and Q™(X) ® ImH is given by

lellxg = sup o,
pEX .
18lcee = /181l gy + 182y + 1Bsl1Ex

for oo € Q™(X) and B = if;, + jf2 + kB3 € Q™(X) @ ImH. In this section we
give the proof of the following theorem.

Theorem 9.1. Let A € (ImH)Y be generic. Then there are ALE hyperkihler
manifolds (X,,w,) (n=1,2,--) of dimension 4, bounded open subsets U, C
X, and imbeddings fn, : U, — X, such that f,(U,) C far1(Uns1) for all
n=12,--- and |J, fn(U,) = X, which satisfy

lwn = fawnllzziimy, a0 = 0 (0= +00)
for any bounded open subset B C X,.

We fix a generic A € (ImH)Y. First of all we set ALE spaces (X,,ws)
and open subsets U,, C X,, as follows. :
We may take A € (ImH)Y to be |\,| < |Anya| for all n € N without
loss of generality. Then we set I(n) := {0,1,2,---,n} and (X,,w,) =
(X <n>,wy<n>) where A<"> € (I m]HI)E(") is defined by

ASP = ()\0, >\17 te y>‘n)

Put U, = {6320 (Bjrnss)), Where B := {¢ € ImH; |¢| < R}. Then it suffices
to construct f, : U, — X, satisfying the assertion of Theorem 9.1.
For the construction of f,, we prove some lemmas. Let v : H — ImH be
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the standard hyperkéahler moment map given by v(z) = ziz. For 6,7 € ImH,
we put

0,7] :={s0+(1—s)Tr€ImH; 0<s<1}.

We often identify ImH with Ri @ Ck and write 6 = 0gi — Ock for § € ImH,
Or € R, 6c € C. ‘

Lemma 9.2. Let 0,7 € ImH\{0}. Then the following conditions are equiv-
alent; (1) 0 ¢ [0,7], (2) for each x € v™(7), there is a unique y € v=(6)
which satisfies |y — z| = inf,e,-1(9) |2 — .

Proof. Fix z,w, a, 8 € C such that v(z + wj) = 7, v(a + Bj) = 6. If we put
(@) = l(a + Bi)e’ — 2+ wil® = Jae™ — 2* +[Be™" — w?
for t € R, then f'(t) = 2iIm{(az+Bw)e *}. Hence there is the unique point

in [0, 27) which takes the minimum value of f if and only if &z + fw # 0.
By putting 0 = 0gi — Ock, 7 = Tri — 7ck, we have

10| + 6 5 |0] —6r Oc
IO,/|2= >|/8| = aaﬂ:_7
2 2 2

S el SRC S s SR

|z|* = 5 , |wl* = 5 ,zw—2.

Since we obtain |@z + Sw|* = $(|6||7| + Or7r + Re(dcrc)), then the condition
az + pw # 0 is equivalent to 0 ¢ [6, 7]. O

If we take 6,7 € ImH\{0} to be 0 ¢ [0, 7], we can define ¢y, : v 1(7) —
v(6) by
[Yor(z) —x| = inf |y—z|

yev=1(9)

Lemma 9.3. Let 0,7 € ImH\{0} and 0 ¢ [0,7]. Then v, is given by

Yoz +wi) = 715;{(|e| +08)z + 66w + (6c2 + (6] — 6)w)f)

where 1 := \/|0]|7| + OrTr + Re(fcTc).
Proof. From the proof of Lemma 9.2, f(¢) is minimum at
i 0z + P
|az + pw|
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Then we have

Yor(z+wj) = (ae™ + fey) ;
az + Pw N az + Pw
|az + B |az + pw|™

From the proof of Lemma 9.2, |a|?, |8, af and |&az + (Bw| are dependent
only on 6, 7. Hence we obtain ¢y ,(z + wj) = 715;{(|9| +6r)z+ 0cw + (Ocz +
(16] — Or)w);} O

In the case of # = 7 = 0, we can also define 1, ¢ since both v~!(#) and
v~}(7) are consist of one element.

Next we define the map f,. Take A € HY and A<"> € HL™ to be
Anily = Dny A" = (Mg, Ay,- -, Ay)

for each n € N. Then we have identifications X, = ;'(0)/G, and X, =
Xa<n> = %5 (0)/Gp<n>. Now we take z € i3, (0) to satisfy

lpa<n> ([2])| = |z1iZ — M| < [Apal,

which is equivalent to taking [z] € U, = p32ns (Bja,,,)- Then we put y,(z) €
H as

— z (0<1<n),
yl(x) o { ¢C+>\l,>\l (Al) (n +1< l)a

where ¢ = py<n>([z]). Although the map 91y, is defined if and only if
=X ¢ [0,¢] from Lemma 9.2, the inequality |uy<n>([z])] < [Ani1| ensures
that —X\; ¢ [0,(] for all { > n+ 1. Thus y,(z) € H can be defined for all
T € fiyt.s(0) satisfying |ur<n> ([2])] < |Ansil-

Lemma 9.4. Let T € [iy2n-(0) satisfy |ua<n>([2])| < [Any1|. Then (yi(z))ien
is an element of ;' (0), and we have ux([(4:(%))ien]) = pa<n> ([2]).

Proof. 1t suffices to show that (y(z))ien € Mp and yi(z)iy(z) — N = ¢ =
pr<n>([z]) for any I € N. Let | > n+1 and take oy, 8; € C to be A; = oy + ;5.
If we put '

1 ;
7”12 = §(|C + )‘IH)‘ZH' <(+ AN >),

then y;(z) can be written as

w@) = 5o+ Al + Gt dadar+ (Ge + M)
+((¢c + M) + (|¢+ M| — G — \ir)Br)5}-
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From A;iA; = \;, we have

N+ A Nl = A A
|allz=—' ! 7 Z’Ra |/6l|2=—_| ! 3 l’R, az,@l=—;£-

Then the value of |y;(z) — Ay|? can be written as

2
— A2 = by M| —2r = <l .
lyz(-'E) l| |C+ l|+| ll &} |<+)\l|+|)\l|+2rl

Hence we obtain

(¢S] n 0o 9
S lul@) - A <3 fue) A+ 3 B < oo,
=0 =0

I=n+1 |)\l|

which implies (y())ien € Ma.

If 0 <1 < n, then y(z)iy(x) — N = 2Ty — A\ = (. If 1l > n+1, then
yi(z)iy(z) = z¢+ A, from the definition of ¢¢ 5, ,- Thus we have y;(z)iy,(z)—
A = for all [ € N, which implies px([(vi(z))ien]) = pa<n> ([2]). O

Now we can define open imbedding f, : U, — X, by fn([z]) := [(v1(2))ien]
due to Lemma 9.4. Then Lemma 9.4 says that uy o f, = py<n>. Moreover
the map f, is S'-equivariant which is easy to see from the definition. Since
the image of f, is given by u;'(Bjx,,,|), then we have

U fn(Un) = U ,Uz)_‘l(B|>\n+l|) = X)\,

neN neN

Thus we have finished setting the datas in Theorem 9.1. What we have to
do next is the estimate of the norm of fiwy — w,. From Theorem 2.9, the
hyperkéhler structures wy and w, are determined perfectly by (®,,I")) and
(P, ) := (Pr<n>, ['y<n>), respectively.

Next we are going to see that the norm of fwy — w, can be estimated
by the norm of ®, — ®, and fal'y — Iy, from the above. Since f, is an
S'-equivariant map, f;T', is also an S'-connection over uy<n> : U, N X} —
Bjz,.1| NYy. Then there exists a unique 1-form 7, € Q'(Bj,,,| NY)) which
satisfies frI'x — I'n, = pa<n>"7, for each n € N. Let U C I'mH be an open
subset and ¢ = ({1, (2, (3) € ImH = R3 be the Cartesian coordinate. Then
we define the norm || - ||y on C*°(U) and Q'(U) by

Ifllo = sup|f(=)] |
lally = 31615 Vi (7)? + ay(7)? + az(z)?

for f € C®(U) and a = a1d(; + and(e + azd(s € QH(U).

{
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Proposition 9.5. There exists a constant C' > 0 independent of n € N and
A € (ImH)Y which satisfies ’
)

Tn

D)

B, — D,
+H N

| frwy — wn“(f;l(BR),f;‘igx) S O(‘ Br

for any R > 0.

Proof. From the description of wy in the proof of Theorem 2.9, the orthonor-
mal basis of A2T™* X, with respect to gy is given by

{TaNdprg, Padipp Adune 1<a<3,1<b<c<3}).

Since we have

T
fawry = fn (dHA,l A —2A— + Ordprg A dux,3)

2v/—-1
1
= —'2\/__1(1”)\,1 /\ (F)\ + MK<TL>,)/TL) + (b)\d‘u,)\<n>,2 /\ d/_,L)\<n>,3’

1
wasn>1 = ———=—=dpx1 A\ + @ndpr<n> 2 A dpiy<n> 3,

2v/-1
then frwx1 — wx<n> is given by

1
f;w,\,l — Wx<n>1 = /J,)\<n>*{2\/:Td<1 A Yn + (CI))\ — (I)n)dCQ N d<3}

Thus we have
[ fawnt — wa<n> 1]l (uy cns ~1(Br).f102)

< el sl P

4P, 4P, D,
By estimating || fywxa —wa<n> all(u, <ns —1(Br).f2g,) fOr @ = 2,3 similarly to the
above, we obtain the assertion. O

2

Bp Br BR.

From Proposition 9.5, we need to evaluate v, € Q(B, ;N Y,). First of
all we write down the S'-connection I'y explicitly using coordinate z,, = 2, +
wy, for (zp)ner € fix*(0). Let I'y € QY(H\{0},V/—1R) be an S'-connection
on v|m oy : H\{0} — ImH\{0} defined by

v(z) = iz,
V—=1Im(zdz — wdw)
|2+ w

(FH) z+wj
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for £ = z4+wj € H. Then the pair (I'y, ®g) induces the Euclidean metric on
H = R* from the corresponding of Theorem 2.9, where the harmonic function
Py : ImH\{0} — R is given by ®g(h) == 7.

By using I'y, we can describe I'y explicitly as follows. Let d, : g, — M be
given by d € := & for z € M, and € € g,. Since M is a Hilbert space, we have
the adjoint operator d;, : M — u,. Then for each [z] € X, Tj;; X, is identified
with Kerd} N Ker(dfis),, which is a 4-dimensional subspace of M. Thus we
can regard (I'y)[; as an element of the dual space of Kerd: N Ker(dfiy),.

Then for all P = (P,)nez € Kerd: N Ker(djip)., we have
(TN (P) = Y (Ta)an (Po).
nel

Proposition 9.6. The form =, is given by

) = Z V=1Im{(¢GMc — {chr)dlc + CcAhirdir}
2(1¢ + Mlldl+ < €+ A, A >)[C+ A

I>n+1
for ¢ = (ri — (ck € ImH.

Proof. Let [z] € U, and take z;,w, € C to be z; = z;+w;j. Then I',, is given
by

Z\/ 1Im(zdz — widw,)

|21 + |wi|?
On the other hand, take p;, ¢ € C to be

u(z) =p+aqj.

Then f:T'y is given by

V—1Im(zdz — widw,) V=1Im(pidp — Gidq)
(a3 Z 2 2 Z 2 2 :
|21 + |wi] ey lpuf? +
Hence piy<n>*y is given by 35, 1) ﬁﬁgg‘j’; lzl—zwa)‘ Recall that p; and ¢
are written as

no= 2%!{(!( + Ai| + &+ Mr)y + e+ Ne)Bil,

q = ZLrl{(CC +Ac)a+ ([C+ M| = — Nr)Gi}
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Therefore we have

V=1Im(pidp, — qdg)
el + |l
V=1Im{(G&Mc — {chr)dc + (cArdir} }
4r|¢ + N

= /,1,)\<n>*{

for I > n + 1 which gives the assertion.
Now the Cartesian coordinate d(i, d(s, d(3 gives the identification
QI(BP\nHl) = COO(BIAn-Hl) ® R3'

Then 7, € C®(B)x,,,|) @ R? is also written as

B CX )\l
() = Z 2(1¢ + N+ < C+ AN )+ M

I>n+l

where X is the exterior product on R3.
The next proposition completes the proof of Theorem 9.1.

Proposition 9.7. Let A € (ImH)Y be generic. Then we have

Tn

o, =0

Br

= lim
Bgr n——+00

lim
n—-+00

H% - o,
D)

for any R > 0.
Proof. Define t; € [0,27) by
< C + )\ly)\l >= |< + }\ll‘AllCOStl

for { > n+ 1. Then we have

(¢ + ) x A
(@l < Y 2[C + M|2[A[costy

I>n+1
Z |C+)\l||)\l|sintl
2
o 2|¢ 4+ A2 N costy
1 tan%
2,5 1C+ X
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which gives
1 sup Disnr tan g /|¢+ A
2¢eBrn Dz 1/IC+ A
1 Zl>n+1 1/|C + >‘l|
— sup
2 (EBRr Zl =0 1/IC + )\l|
since 0 < tan < 1. On the other hand we have

_ > izni /1€ + A

= sup = )
Br  (¢eBgr Zl:O 1/|C + >‘l|

Thus it is enough to show that

lim sup Lizns 1/IC+ N =
n—teocey, Do 1/I¢ + Al

Tn

)

Br

H% - o,
@,

for any R > 0.
Now we put

1
L) = lzzn:—f—l ¢+ Nl
Swr = inf 5,(¢)>0
Then we have
| L) _T0)_ 1 1

Sn(C) +Tn(C) ~ nR  OnR lzzn;rl Al — |<|
If we take n € N sufficiently large such that |\, 1| > R, then

sup Y isne1 N+ Nl 1 1
¢ceBr e l/IC+N| T Snr ] |\l — R

Since S, (¢) < Sn/(( ) holds for n < n/, we have S,(R) < Sy/(R), which gives

1 1
lim E — E =0
'n/—>+oo n',R ISmt+l IAl| — n/—>-|-oo S’n,R ISntl |)\l| — R

by fixing n € N to be [Ap41| > R. a
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The Taub-NUT deformations of ALE spaces of type Ay are called multi-
Taub-NUT spaces. Then we can show the following theorem by the parallel
argument to the proof of Theorem 9.1.

Theorem 9.8. Let A\ € (ImH)Y be generic. Then there are multi- Taub-
NUT spaces (Xn,wn) (n = 1,2,---) of dimension 4, bounded open subsets
U, C X, and imbeddings f, : U, — X\ such that f,(U,) C fri1(Upy1) for
alln=1,2,--- and |, fn(Un) = X», which satisfy

leon = 2 g ey = O (1= +00)

for any bounded open subset B C X.

10 The limit of the sequence of hyperkihler
manifolds of type A

In Sections 10 and 11, we will construct hyperkéahler metrics on the elliptic
fibration f : X — B for some open subset B C C contains 0, whose singular
fiber f71(0) is Kodaira type I,. They will be constructed by considering the
“limit” of the hyperkéhler quotients of type A. In particular, the metric of
the case b = 1 is Ooguri-Vafa metric. We will construct a hyperkahler metric
on a manifold which is diffeomorphic to the manifold of type A, .in Section
10, and construct Z-action preserving the metrics in Section 11.

Let b be a positive integer and fix real numbers 0 < I, <l < -+ - <[y =1.
Then we define A € H% and A® A® ¢ HZ by

A [ VAEL  (a20),
e =VI0d + Lk (a<0),

A maz{|AS72, A} (n>0),
" maz{|ASIR, [ASO M (n < 0),

A0 . ] A (nl2p),
" AL (In| < p),

for p € Z>. It is easy to see that each A® € HZ is generic, then we have
the hyperkahler quotients X, := f,(,(0)/Gxw from Theorem 2.5. Then
Theorem 2.9 gives ‘

Y, = ImH\{-APAP: nc Z} = ImH\{-\Pi; n € Z},

1 1
Op(h) = > ——r,
p( ) 4neZ |h+)\%p)’bl

45



where A?) € R is defined by \Pi = APiAP. We denote by tp : X, — ImH
the hyperkihler moment map defined by 11,([z]) := zniZ, — APi and by Iy
the S'-connection on principal S'-bundle 1, : X} — Y, satisfying 2% =
py (%d®p).

Next we define the S'-equivariant maps ¥, , from an open dense subset of
X, to X, for p < g. We apply the method in Section 9. Put

Ly = {ti; t <%, A <y,

—p

X;? = p\#;l(Lp),

and define ¥, : X? — X, by
‘IIQ,P([x]) = [(wpq([x])—i-)\sf)i, ”p([w])_,_)\g’)i(xn))neZ]

for £ = (zp)nez € ﬁx;(O) and p < ¢. Then ¥, is injective S'-equivariant
map and satisfies W, (1, " (h)) = p; ' (h) for all h € ImH\L,. Moreover the
maps satisfies ¥, 0 VU, , = ¥, , for p < ¢ < r then we have a sequence of
open embeddings

Xjcx)cXxyc--cX)CX2,Cor

which defines a 4-dimensional manifold
Xoo = X)
p=0

and the natural open embeddings ¥, : X} — X.
From the S*-equivariance of ¥ ,, X, has an S'-action and an S'-invariant
Map fleo : Xoo — ImH induced from p, and the condition Wy, (u,*(h)) =

pgt(h).

Proposition 10.1. The map poo : Xoo — ImH is surjective. Moreover, S*
acts on pzl(h) freely if h is an element of Yoo := ImH\{—=\S4; n € Z},
trivially if h is an element of {—A,(fo)i; n € Z}.

Proof. Since we have U;io ImH\L, = ImH, pio : Xoo — ImH is surjective.
For all h € ImHH, there is a sufficiently large p such that A € ImH\L,. Then
pio () is included in XJ, so the S'-action on ug(h) is equivalent to the
S'-action on 4! (h). O

To construct the hyperkahler metric on X, next we consider the con-
vergence of {(T'p, @) }p=0.1,--
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First of all we deal with the convergence of I',. Since U, is S'-equivariant,
Uy I'q is an S'-connection on XJ. Then there is a unique 1-form Ty, €
Q'(ImH\Ly,, V—-1R) for p < ¢ which satisfies ¥ T'y — T, =y, on X0.
We are going to describe Iy, explicitly by using the Cartesian coordinate of
ImH = R3. For the description, we need some preparations.

For each p € ImH\{0}, define v, : H\v~([0,—p]) — H by 9,(z) =
Yu@)+ow(z) (). If p =0 we define ¢y := idy. Since ¥, is written as

Wy (2]) = (B0 _rys(Tn)nezl,

hence we need to describe ¢, Ty — 'y € Q' (H\v ([0, —p]), v/ —1R) for the
calculation of ¥, ,"I'; — I',. Now we put

V=1p(I¢ + A +ip| + ¢ + ADIm{(Cc + Ac)ddc}
Tl HFNFip[CHFANF <CHAFip, CHASHC+ A+ ipl|C+ N

(’Yp A)

for (,\ € ImH and p € R.

Lemma 10.2. Define vy : H — ImH by va(z) := v(z) — X for A € ImH.
Then we have

iy T — Tm = 12"y,
on H\v~1([0, —ip]) for p € R.

Proof. For z,w € C, we have

ol +wj) = ﬁ{(a +0)2+ (0 — pywi}

where we put r = /|0||7]+ < 0,7 >, o = |8 + |7], = v(z + wj) + ip,
T = v(z + wj) from Lemma 9.3 and 0c = 7¢. If we put a := %fz and
8= ‘I/J’ w, then we have

vV—1Im(ada — Bdp)
e+ 16>

*
Yip 'y =
Since we have

2
ada = ||2cr+pd(0\/—tp>+< +p> Zdz
2r

Gdf = |w|2a\/_§pd< _p)+("””> wdw




and 9\7—*-2—5 are real valued, we have

Thus we obtain

(i T — Tat) oy = ﬁ{(' |<"\/;rp> |0|)Iﬁ(2dz)

(o) o)

From the definition of 6§ and 7, we have g = 7 + p and 0¢c = 7¢, Whlch
imply that we can put

<O0,7>=|r]"+ prr, 0] = |7|* + 2072 + .
Then it follows that

V2r r?

Since we have —7g + |7| = 2|w|? and —7g — || = 2|2|?, we obtain

(T~ Tederwy = G5 { 2ulIm(zds) + 2P (i)

v —=1po
16]|7[r2

= (VA*/V)z-I-wj

{zwd(zw) — zwd(Zw)}

Proposition 10.3. Ty, € Q'(Y,,/—1R) is given by

g—1
Lop = E NCENOINCE

n=p
Proof. We have the assertion from Lemma 10.4. |

From the explicit description of I'y p, there is a limit

Fwp:= lim 'y, = E SNCINOINOE
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Proposition 10.4. There is a unique S*-connection T's, € QY X7, vV—1R)
whose restriction to X) N X2 is equal to Tp + p1,*Top for all p > 0

Proof. 1t suffices to show
Uop (Lg+ 1g" Too,g) = Ty + p1p Toop

on XN X7 for p < q. By the definition of 'y, we have 'y, = I, — T
Then we have

00,g°

Ugp (Ug+ ' Toog) = Tp+ l‘p*rq,p + ¥ g Toog
Iy + 1" (Doop — Dooyg) + 1p" Too,g
= I'p 4+ pp Toop.

O

Thus we have obtained the limit ', of {I';},>0. Next we consider the
limit of {®,},>0, but the sequence does not convergent. Then we consider
the sequence of 1-forms {d®,},>0 instead of {®,},>0. Then it is easy to see
that there is the limit

o= lim do,= -3 (¢ + A;:EQERA; ;e@cd@)

p—+00
neZ

which is closed 1-form over Y,,. Then there is a primitive function ® of «

given by
20= [a

for A\ € Y,,, where we take a C! curve ¢ : [0,1] — Y, to be ¢(0) = A
and c(1) = (. Since Y, is simply-connected, the definition of ®2 is not
independent of c.

Proposition 10.5. For all A € Yy, ®) is a harmonic function.
Proof. By definition, we have d®), = a = lim,_, o, d®,. Then we have
*d®), = lim *d®,

p——+00
. Fr, Fr
= lim =
p—too 2¢/—1  2+/—1

where Fr is the curvature of a connection I'. Since the curvature form Fp_
is closed, then @2 is harmonic. a
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Proposition 10.6. Fiz A € Y,, and compact subset K C C. Then there
is a constant a € R such that ®), + a is positive valued on pa'(K), where
pc : ImH = iR @ jC — jC is the orthogonal projection.

Proof. Define Z-action on ImH by ¢ — ¢ + il. Since @) is invariant under
this Z-action, we can regard ®) as a continuous function on Y, /Z.

If 0 ¢ K, then ®, is a continuous function on the compact set pz'(K)/Z.
In this case, there exists a € R which satisfies the assertion.

Let 0 € K. Since lim,__,insu; P5,(¢) = +oo, then 3, has a minimum
value on Y., /Z. Hence the proof is finished by putting

a=1+4| min & ()|
¢epgH(K)

d

Thus we obtain the pair (I'oo, ®2,) on X,,. Hence we have a hyperkéhler
structure on

X% = {p € Xoo; ®2(1too(P)) > 0 0T fio(p) € Yoo}

11 Z-action on Xoo

In this section we are going to construct a Z-action on X, preserving the
pair (I'yy, ®)), that is, the diffeomorphism § : X, — X, which satisfies
Hoo0§ = s and §* ', = 'y, where s : ImH — I'mH is defined by s({) := (+il.
From now on, we fix A € Y, and put ®,, := ®). If we put X2 :={p €
Xoo; Pool(too(p)) + > 0} for @ € R, then the pair (I'e, Poo + ) induces a
hyperkéhler structure w® = (wf, wg, wg) on X&. Let I, I¢, I$ be complex
structures corresponding to the Kahler forms w{, w§, wg, respectively.

Proposition 11.1. Let o, 3 € R. Then for each £ € /—1R and p € X3 N
X8 | we have

{Poo (oo (P) + OHTES = {Pos (oo () + BHIE;.-

Proof. The holomorphic symplectic form w@& € Q?(X2, C) with respect to I{*
is given by w@ := w§ + +/—1w§. From the non-degeneracy of wg, we have

TV XS ={veT,X ®C; 1wg =0}

for p € X& N X7, where ¢ is the interior product.
Fix £ € /—1R\{0} and put

OF 1= & — /—1I¢*, 08 = Ig€" — /—1I5¢
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which is the basis of T°°X%. Since we can write

W = {Too + V=1(too"@o0 + B)duir},

we can evaluate the basis d1,d; of T0X5 as

5 = @w+a81+(2+m)61
9y = 0%.
Then we have
Iﬁf* _ Ip( v 51+E )
' 414 (8- a)(@ + )Y
Iy
41+ (8 — a)(Poo + a)71)
b+
= Io‘
P +41 5

O
From the above proposition, we obtain a vector field V(¢§) € X(X.)
given by V() := (oo Poo + @)I{§* on X N X, since Xoo = U er X&-
Put £ = V=1, X% = X \ul(@iR) and et {exptV(§)}ter C Diff(X2¥)
be the 1-parameter group of transformations generated by V(£). Then a
curve &, : R — X given by ¢,(t) := exptV(€)(p) for each p € X% is the
horizontal lift of a curve c,(t) := poo(p) + t€ = Hoo(p) + it € ImH with
respect t0 e @ X2 — ImH\iR. Hence explV(§) € Diff (X**) satisfies
fioo 0 €XP IV (§) = 50 fio. |
Proposition 11.2. Let ¢ = i(;+j(;+k(x € ImH be a Cartesian coordinate
of ImH = iR @ jR ® kR. Then we have

exp IV (€) Too — [og = 2\/—_1%0*( 8692” dCx + %Z"" dg,)

where @ ((c) := fol D ((cj + t€)dt.
Proof. Put f, :=exptV(&). Since I'o(V(€)) = 0, we have

d * *
a‘t'(ft Foo)p = (ft EV(E)FOO)p
(fi" w(eydloo)p
= (ffwie) 2V —1ue" * dPu))p

— 2V7T( - 2 o) + 1) + o

S (hee(p) + )G )

o1



for p € XZ. Then we have the assertion by integrating from ¢ = 0 to
t=1. O

Since @, is harmonic, ¢ is a harmonic function on C* = C\{0}. Then
there is a multi-valued holomorphic function F' over C* whose real part is
Yoo- Let y be a holomorphic coordinate of C*. Then note that % is a single-
valued holomorphic function.

We denote the imaginary part of ' by ¢,. Let 6 be one of the value of 9,
at yo € C*. Then other values of 1, at yo are written as 6 + \/L_—lRes(O, dF)
for each n € Z, where

dF
Res(0,dF) ::/ —dy
wi=1 4Y

is the residue of dF" at the origin 0 € C. Now we define a gauge transforma-
tion o : XX — X by o(p) := pexp(—2v =1%o (oo c(p))). Then we need
~ to discuss the well-definedness of o since 1, is multi-valued.

There is a Z-action on Y, generated by s € Diff(Y,,) defined at the begin-
ning of this section. We denote by 7, : Yo, — Yoo /Z the quotient map. Recall
that *d®, is the first Chern form of principal S*-bundle po @ X2 — Yo
and invariant under the Z-action. Then there is a cohomology class © €
H%*(Y/Z,Z) such that 7,*© = [*42=], where [*%2=] is the cohomology class
determined by %2

Now we put _

S:={it+jyeiRdjC; teR, |y =1}/Z C Y,/Z

and denote its homology class by [S] € Hy(Yoo/Z,Z). Then the next propo-
sition ensures the well-definedness of o.

Proposition 11.3. Let <, >y, /z be the natural pairing
H*(Yyo/Z,7) x Hy(Yoo /Z,7) — .
Then we have
Res(0,dF) = V=17 < ©,[S] >y, /z€ V-17Z
Proof. Put y = y; + v/—1ys. Then we have

Res(0,dF) = /| g+ V)
yl=1
= \/___T | dd)oo

lyl=1

000 0¢¥co
= v-l (—L b+ — dyz)dy
lyl=1

dyo dy
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On the other hand, we have

*dP o
< @, [S] >V /2= / ,

' m

where S" := {it + jy € iR @ jC; 0 <t <, |y| =1}, since the push-forward
(7s)«([S"])[S] is equal to [S]. By using coordinate t, y1, y2 of Yo, we can show

‘ o o
*dP, = / _— + ——dy, | dy.
/S' |y|=1( dya v din y2) v

O

Thus we obtain two maps ¢;, 0 € Diff (X2¥). Then we define § € Diff(X2¥)
by § := ¢; 00 = 0 0 ¢;. By definition, we have 1o, 0 § = s 0 1, on X3,

Proposition 11.4. 5T, =T'w on XZ.

Proof. For any S!-connection I' over po : X2 — ImH\iR, we have o*T" =
I' = 2¢v/—1ps*dtY. By combining with Proposition 11.2; we have §*I'y, —
' =0. d

For each o € R, § is an isomorphism of hyperkéahler structure (Xg N
X2 w* = (wf,wg,wg)). Since § preserves hyperkéahler metric and the closure
of X2 N X is X2, we can extend 8 to the homeomorphism of X2 . Then the
extension of § is independent of a € R because there is some neighborhood
U, C X2NXE for each p € Xoo\ X2 and a, 8 € R such that the Riemannian
distance induced from hyperkéhler metric w® is equivalent to one induced
from w?. Thus we obtain a homeomorphism & : X, — X, which preserves
Riemannian distance induced from w® for all « € R.

Propositidn 11.5. The map $ is an isomorphism of the hyperkdhler struc-
ture w® for all a € R.

Proof. Let U C X be a sufficiently small neighborhood of p € X \X,
and put W:=UNXZ. Wefix @« € RtobeU C Xg. Since 5 preserves wg
on W, § is holomorphic on W with respect to the complex structure I3, and
continuous on U. Since U\W is codimension 2, then § is holomorphic on U
for any p € X5\ X2, which implies § : Xo, — Xo is a diffeomorphism.
Since we have §*w® — w® = 0 on X, the equality also holds on X. O
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12 Gibbons-Hawking ansatz

In the previous sections, we obtain the hyperkahler metrics over the elliptic
surface of type I, by considering the limit of hyperkahler quotients. But
these metrics also constructed by using Gibbons-Hawking ansatz as like the
construction of Ooguri-Vafa metrics in [21][11].

Let A* € (ImH)% and Yy, be as in Sections 10 and 11. Define a function
<i>go 1Y — R by

o1 1 1
(0 = 4; (|¢+Ago| 1T |>\g°|) e

for ( € Y, and ¢ € R. Then the series ), (IC+1—X°°I + ﬁ) converges for

any ¢ € Y, and ci>go is a harmonic function from the same argument in [11].
Thus we have a closed 2-form *d®¢, € Q2(Y,,, R) independent of ¢ € R.

Let a Z-action on ImH be as in Section 11. Since *d®,_ is invariant under
the Z-action, it determines the cohomology class [*d®S ] € H?(Yoo/Z,R).
Now put : ‘

Sn(rn) = {C € Yy; ‘C + AZOI = Tn}

and take 7, > 0 sufficiently small such that r, + rpy1 < [A° — A%, |. Then
each S,(r,) determines the homology class C, € Hy(Yy,Z) and let C, €
Hy(Ye/Z,Z) be the push forward of c, by the quotient map Yo, — Yoo/Z. -
Thus we have a basis {Cy,-+,Cy} of Hy(Ye/Z,Z) and let {e!,---, e’} C
H?(Yy/Z,Z) be its dual basis. Since the direct calculation gives

—1-/ *d@gozl
T Je,

by fixing an appropriate orientation on C’n, we have
. ) .
[=xdog] =€+ +¢ € H (Yo /Z,2).

Next we denote by u° : X — Y., /Z the principal S'-bundle whose Euler
class is given by e' + --- + e®. From the same argument in [11], there is a
C>-manifold X contains X as an open dense submanifold and p° extends to
Sl-fibration p : X — ImH/Z such that p|x = p°, w(X\X) = (ImH\Ys)/Z
and p|x\xX\X — (ImH\Yw)/Z is bijective. Let I' € Q'(X,v/—1IR) be an
S1-connection over u°: X — Y,,/Z and put

Voo(e) = {C€Ye; ®5(¢) > 0},
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Yoo(c) U{=AY; n e Z},

n

© :
(© = u'(Yuld)/D),
XO = 4 (Vuld)/D).

Then we have a pair of a positive valued harmonic function ®, on X(c)
and S'-connection I' on X such that % = u*(*dcﬁgo). Thus we obtain the
hyperkahler structure on X (c¢) from Theorem 2.9.

For each closed 1-form v € Q!(Ya,R), the pair (¢, T + u*y) also de-
termines hyperkéhler structure on X (c). From the same discussion in [11],
there exists a closed 1-form  such that the hyperkéhler structure extends to

X(c).
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