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Bifurcation from flat-layered solutions to reaction

diffusion systems in two space dimensions

By Masaharu Taniguchi

Abstract. Bifurcation from equilibrium solutions to reaction dif-
fusion systems is considered in a two-dimensional domain. This solution
has an internal transition layer that forms a flat interface. If the length
of the interface in the tangential direction is small enough, the equilib-
rium solution is stable, but it is unstable if the length is larger than some
critical value. In this paper, it is shown that bifurcation occurs at this
critical length. We construct the bifurcating solutions and discuss their
stability. Numerical results suggest that the bifurcation is subcritical.

1. Introduction

Formation of spatial patterns in various two-phase systems is largely

governed by what is going on around the interface between the phases. Be-

cause of this, it is important to study the property of interfaces. In this

paper, we deal with two-phase systems in the framework of reaction diffu-

sion equations, in which the interfaces appear to have an internal structure.

Such an internal structure, though confined in a very thin region, plays an

important role in determining the property of the interface.

To be more precise, we study the following system of nonlinear partial

differential equations of parabolic type:

(1.1a)
τut = ε∆u +

1

ε
f(u, v)

vt = D∆v + g(u, v)
in Ω(	), t > 0,
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340 Masaharu Taniguchi

with the Neumann boundary conditions

(1.1b)
∂u

∂ν
= 0 =

∂v

∂ν
on ∂Ω(	), t > 0.

The assumptions on f and g will be given at the end of this section. Both

D and τ are some positive constants, while ε > 0 is a small parameter.

Here ∆ is the Laplace operator ∂2/∂x2 + ∂2/∂y2, and ∂/∂ν denotes the

outward normal derivative on ∂Ω(	). The domain Ω(	) is a rectangle in the

x-y plane:

(1.2) Ω(	) = (0, 1)× (0, 	),

where 	 > 0 is an arbitrary given number. The general theory of semilinear

parabolic equations shows that for every bounded u0(x) and v0(x), the

solution to (1.1) under the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω(	)

is unique and exists globally in time (see Henry [6], Smoller [16]). We

study the bifurcation of equilibrium solutions from the flat-layered solution

defined below.

If D, τ satisfy the assumptions as in Theorem 2.1 in §2, and if ε is

sufficiently small, there exists a nontrivial equilibrium solution (ū(x), v̄(x))

to

(1.3)
ετut = ε2uxx + f(u, v), vt = Dvxx + g(u, v) in I, t > 0,

ux = 0 = vx on ∂I, t > 0,

where I = (0, 1). This solution has an internal transition layer as in Fig. 1.

The construction is given in Nishiura and Fujii [10] via the singular per-

turbation method (see also Fife [4], Ito [7], Mimura, Tabata and Hosono

[9], and Sakamoto [13]). The stability of (ū, v̄) is proved by studying the

linearized eigenvalue problem in [10]; see also Nishiura and Mimura [11].

By setting

(1.4)
ū(x, y) = ū(x)

v̄(x, y) = v̄(x)
for all x ∈ (0, 1), y ∈ (0, 	),
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Fig. 1. The graph of (ū, v̄).

we get an equilibrium solution to (1.1). This solution has an internal tran-

sition layer that forms a flat interface in Ω(�). The smaller we take ε, the

sharper the layer becomes. There exists some critical length �c(ε) where

the solution (1.4) changes stability. This phenomenon was first observed

by Ohta, Mimura and Kobayashi [12] for a prototype model in which f is

a discontinuous piecewise linear function of a simple form. Analysis of the

full model (1.1) was done by Nishiura and myself [17]. More precisely, we

have the following:

Theorem ([17], Stability criterion for flat-layered solutions). There

exists ε1 = ε1(f, g,D, τ) such that, for any ε ∈ (0, ε1), the equilibrium

solution (ū, v̄) is asymptotically stable if � < �c(ε), and unstable if � > �c(ε).

Here �c(ε) is some positive-valued function of ε with

(1.5) lim
ε↓0

ε−1/2�c(ε) = πζ̂0(0)−1/2 > 0,

where ζ̂0(0) > 0 is given in (2.9).

From the point of view of the bifurcation theory (see [5] for instance),

one may suspect that bifurcation occurs at � = �c(ε), where the flat-layered

solution (ū, v̄) becomes unstable. To show that this is truly the case, one
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needs to further analyze the linearized eigenvalue problems at 	 = 	c(ε).

However the analysis of the linearized problems is rather complicated, es-

pecially in two or more space dimensions rather than in one space dimen-

sion. In the linearized eigenvalue problems of one space dimension, the

eigenfunctions have useful limiting forms as ε ↓ 0. This fact is essential for

showing the occurrence of a bifurcation in [11] or [8] for small ε > 0. In two

or more space dimensional linearized problems, we generally cannot extract

useful information from the limiting forms of the eigenfunctions. limiting

forms as ε ↓ 0. In this paper, we shall apply the general theory of Crandall

and Rabinowitz ([2], [3]) to the present problem to prove the occurrence

of a bifurcation. For this purpose, one needs to study the eigenfunctions

associated with the zero eigenvalue in the linearized problems. These eigen-

functions turn out to have no useful limiting forms as ε ↓ 0. Therefore we

must study precisely the forms of these eigenfunctions for small but positive

ε.

Our main results are the following:

Theorem 1.1. Assume that ε > 0 is sufficiently small for f , g, D and

τ . Then there exists an open interval I = (s1, s2) containing 0 such that, for

every s ∈ I \{0}, a bifurcating solution (ũ(s), ṽ(s)) to (1.1) exists when 	 =

	(s). Here (ũ(s), ṽ(s)) is given by (4.10) and satisfies (ũ(0), ṽ(0)) = (ū, v̄),

and 	(s) is some real-valued smooth function in I with 	(0) = 	c(ε). There

exist no equilibrium solutions to (1.1) other than (ū, v̄) and {(ũ(s), ṽ(s)); s ∈
I} near 	 = 	c(ε), (u, v) = (ū, v̄) in an appropriate function space to be

specified in Proposition 4.1.

For more details, see Proposition 4.1 in §4. The bifurcation equation,

which we shall write as G(s, 	) = 0, is also given in §4 by (4.14). G(s, 	)

is a real-valued function defined in some neighborhood of (0, 	c(ε)), and is

smooth with respect to s and 	. Using Gsss(0, 	c(ε)) given by (4.24), we

have the following:

Corollary 1.1. If Gsss(0, 	c(ε)) > 0, the bifurcating solution (ũ(s),

ṽ(s)) is stable, and 	(s) > 	c(ε) for every s ∈ I\{0} (supercritical bifur-

cation, see Fig. 2. (a)). And if Gsss(0, 	c(ε)) < 0, the bifurcating solution

(ũ(s), ṽ(s)) is unstable, and 	(s) < 	c(ε) for every s ∈ I\{0} (subcritical

bifurcation, see Fig. 2. (b)).

Remark 1.1. The right-hand side of (4.24) contains the eigenfunc-
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Fig. 2

tions W1 and W ∗
1 given by (3.1) and (3.20), respectively. We see that the

terms of (3.2) and (3.21) that contain κ(ε) (= π/�c(ε)) vanish in the limit

of ε ↓ 0 by using Lemma 2.3 and (2.34). Hence one needs to further study

(4.24) for small but positive ε. The direction of the bifurcation is yet to be

determined.

Let ε ∈ (0, ε1) be arbitrarily fixed, and � be slightly larger than �c(ε).

Then (ū, v̄) is an unstable equilibrium solution, and in view of Remark 3.2,

the linearized eigenvalue problem (2.16) has a unique positive eigenvalue,

and the corresponding wavelength of the associated eigenfunction is �. All

other eigenvalues of (2.16) have negative real parts.

Figure 3 shows the evolution of randomly perturbed flat interfaces for

the data

(1.6)
f(u, v) = u2(3

2 − u) − 1
2uv, g(u, v) = 3

4uv − 1
10v − 2

5v
2,

D = 0.4, τ = 1, ε = 0.0075.

The interfaces are described in terms of the contour lines of u−h0(v), where

h0 is to be defined later in this section.

In Fig. 3. (b), the interface changes its shape largely as it evolves. From



344 Masaharu Taniguchi

Fig. 3. The evolution of perturbed interfaces from originally flat ones: (a)
� = 0.43; (b) � = 0.45.

(1.5), we have

�c(ε) = πζ̂0(0)−1/2ε1/2 + o(ε1/2),

for which the principal term is numerically calculated to be 0.35 in [17], but

the residual term is not estimated. Figure 3 suggests that

0.43 < �c(ε) < 0.45

for (1.6). Moreover one may speculate from Fig. 3 that the bifurcation in
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Theorem 1.1 is subcritical. A picture similar to Fig. 3 has been obtained

in [12], where the function g is varied rather than the length parameter.

This paper is organized as follows. §2 is a preliminary section, in which

we define notations used in subsequent sections and summarize known re-

sults. In §3 we study the zero eigenvalue and the associated eigenspace

when � = �c(ε). In §4 we give the proof of Theorem 1.1 and Corollary 1.1.

Now we state the standing assumptions for f and g throughout this

paper.

(A1) f , g are smooth functions of u, v defined on some open set O in R
2.

(A2) The nullcline {(u, v) ∈ O; f(u, v) = 0} is S-shaped and consists of

three curves defined by

C0 = {(h0(v), v); v ∈ (v, v)},
C− = {(h−(v), v); v > v},
C+ = {(h+(v), v); v < v}.

Here h0(v), h−(v), h+(v) are continuous functions with h−(v) <

h0(v) < h+(v) for any v ∈ (v, v).

(A3) Let J(v)
def
=

∫ h+(v)
h−(v) f(s, v) ds, then there exists a unique v∗ ∈ (v, v)

such that J(v∗) = 0, J ′(v∗) < 0.

Fig. 4
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(A4) The nullcline of g intersects transversally with that of f . Let the

intersection point on Ci, if it exists, be denoted by Pi = (hi(vi), vi),

for i = −, 0,+. Then we assume that v− < v∗ < v+.

(A5)

(a) fu < 0 on R− ∪R+, where R± are defined by

R− = {(h−(v), v); v− < v ≤ v∗}, R+ = {(h+(v), v); v∗ ≤ v < v+};

(b) g|R− < 0 < g|R+ ;

(c) (fugv − fvgu)|R−∪R+ > 0, gv|R−∪R+ ≤ 0.

It should be noted that, in order to satisfy (A1)∼(A5), it is not necessary

to assume that f and g intersect in the way shown in Fig. 4.

2. Preliminaries

We first summarize known results for the existence and stability of the

one-dimensional equilibrium solutions to (1.3) with a single layer.

Theorem 2.1 ([10], [11]). Assume that f, g satisfy (A1) ∼ (A5).

Then for each sufficiently large D (say D > D∗), there exists τ∗ > 0

such that, for any fixed τ ∈ (τ∗,∞), (1.3) has a stable equilibrium solu-

tion (ū(x), v̄(x)) for any ε ∈ (0, ε0), where ε0 = ε0(f, g,D, τ) > 0. The set

{(ū(x), v̄(x)); ε ∈ (0, ε0)} is bounded in C(Ī)×C2(Ī). Moreover there exists

x∗ ∈ I and a monotone decreasing function V ∈ C1(Ī) such that

(2.1)
ū→ U in C([0, x∗ − σ] ∪ [x∗ + σ, 1]),

v̄ → V in C1(Ī),

as ε ↓ 0, where σ is an arbitrary positive number and

(2.2) U(x)
def
=

{
h+(V (x)) if x ∈ [0, x∗],

h−(V (x)) if x ∈ (x∗, 1].

Proof. See Theorem 1.1 in [10] for the existence of (ū(x), v̄(x)) (see

also [4], [7], [9] and [13]). For the stability, see [11] and [10]. �
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Remark 2.1. One can choose the constant D∗ in Theorem 2.1 in such

a way that the function V (x) does not exist if D < D∗. For more details,

see Proposition 1.1 in [10]. An explicit expression of τ∗ is given by (2.31).

For the subsequent discussions, it is useful to know the spectral behavior

of the following Sturm-Liouville problem:

(2.3) L(ε)φ = ζφ in I, φx = 0 at x = 0, 1,

where L(ε) is a self-adjoint operator defined by

(2.4) L(ε)
def
= ε2 d2

dx2
+ fu(ū(x), v̄(x)).

Let {φi(ε)}i≥0 be the complete orthonormal system in L2(I) consisting of

the eigenfunctions of L(ε), and let {ζi(ε)}i≥0 be the associated eigenvalues.

The eigenvalues {ζi(ε)}i≥0 are all real and simple (ζ0(ε) > ζ1(ε) > ζ2(ε) >

· · · ).
Lemma 2.1 ([10; Lemmas 1.4, 2.3]).

(1) There exists ζ∗ = ζ∗(f, g) > 0 such that

(2.5) ζi(ε) < −ζ∗ < 0 < ζ0(ε) (i = 1, 2, 3, · · · )
holds for any ε ∈ (0, ε0), where ε0 is the same as in Theorem 2.1.

Moreover ζ̂0(ε)
def
= ε−1ζ0(ε) converges to ζ̂0(0) > 0 as ε ↓ 0. Here

ζ̂0(0) is given by (2.9b).

(2) Let h1, h2 be defined by

h1(x, ε)
def
= −ε−

1
2 fv(ū(x), v̄(x))φ0(x, ε),(2.6a)

h2(x, ε)
def
= ε−

1
2 gu(ū(x), v̄(x))φ0(x, ε).(2.6b)

Then they satisfy

(2.7) hi(x, ε) −→
ε↓0

c∗i δ(x− x∗) in (H1(I))′,

where δ(x− x∗) is Dirac’s δ-function at x∗, and

(2.8) c∗1
def
= −γJ ′(v∗), c∗2

def
= γ{g(h+(v∗), v∗)− g(h−(v∗), v∗)}.

Here (H1(I))′ denotes the dual space of H1(I), and γ is a positive

constant given by (2.9a).
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Remark 2.2. In [10], γ and ζ̂0(0) in Lemma 2.1 are explicitly given

as follows. Let Φ(ξ) be a monotone increasing function in C∞(R) defined

as the unique solution to

Φξξ(ξ) + f(Φ(ξ), v∗) = 0, Φ(0) = h0(v
∗), Φ(±∞) = h±(v∗).

Then

γ
def
= ‖dΦ/dξ‖−1

L2(I)
,(2.9a)

ζ̂0(0)
def
= −γ2J ′(v∗)D−1

∫ x∗

0
g(U(x), V (x))dx > 0.(2.9b)

Let us now go back to the two-dimensional problem (1.1). We set

(2.10)
u(x, y, t) = û(x, η, t) + ū(x)

v(x, y, t) = v̂(x, η, t) + v̄(x)

for x ∈ (0, 1), y ∈ (0, 	), where η = 	−1y. From the definition of (ū, v̄),

(2.11) ε2ūxx + f(ū, v̄) = 0, Dv̄xx + g(ū, v̄) = 0.

Substituting (2.10) into (1.1), and using (2.11), we obtain

(2.12)

ετ ût = ε2

(
∂2

∂x2
+ 	−2 ∂2

∂η2

)

û− f(ū, v̄) + f(û + ū, v̂ + v̄),

v̂t = D

(
∂2

∂x2
+ 	−2 ∂2

∂η2

)

v̂ − g(ū, v̄) + g(û + ū, v̂ + v̄).

From now on, we denote η, û(x, η, t), v̂(x, η, t) by the letters y, u(x, y, t),

v(x, y, t), respectively. We denote the square domain (0, 1)2 by Ω. Then

(2.12) is written as

(2.13)

∂

∂t

(
u

v

)

= F(	,

(
u

v

)

) in Ω, t > 0,

∂u

∂ν
= 0 =

∂v

∂ν
on ∂Ω, t > 0,
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where ∂/∂ν denotes the outward normal derivative on ∂Ω. Here

F(	,

(
u

v

)

)
def
=

(
τ̂{ε2( ∂2

∂x2 + 	−2 ∂2

∂y2 )u + f(u + ū, v + v̄)− f(ū, v̄)}
D( ∂2

∂x2 + 	−2 ∂2

∂y2 )v + g(u + ū, v + v̄)− g(ū, v̄)

)

,

where τ̂ denotes (ετ)−1. We put

(2.14) Y = L2(Ω)× L2(Ω), X = D ×D,

where D denotes the domain of the associated Laplace operator ∆ in L2(Ω)

under the Neumann boundary conditions. It holds that D ⊂ H2(Ω). F is

a smooth mapping from R+ ×X to Y.

The flat-layered equilibrium solution (1.4) now corresponds to the solu-

tion (u, v) ≡ (0, 0) to the time-independent equation

(2.15) F(	,

(
u

v

)

) =

(
0

0

)

in Ω,
∂u

∂ν
= 0 =

∂v

∂ν
on ∂Ω.

We consider the linearized eigenvalue problem of (2.13) at (u, v) ≡ (0, 0) :

(2.16) λ

(
w

z

)

= L(	)

(
w

z

)

in Ω,
∂w

∂ν
= 0 =

∂z

∂ν
on ∂Ω,

where

(2.17) L(	)
def
= F(u

v

) (	,

(
0

0

)

).

The linear operator L(	) is expressed in the form

L(	) =

(
τ̂{ε2( ∂2

∂x2 + 	−2 ∂2

∂y2 ) + fu} τ̂ fv

gu D{ ∂2

∂x2 + 	−2 ∂2

∂y2 }+ gv

)

.

Here we denote fu(ū, v̄) by fu and so on. This abbreviation will be used

hereafter.

It is convenient to use a complete orthonormal system {Ym}∞m=0 in L2(I).

Here

Ym(y)
def
=

{
1 for m = 0,
√

2 cos(mπy) for m > 0.
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For (w, z) in (2.16), we put

(2.18)

(
wm

zm

)

= Pm

(
w

z

)

,

where

(2.19) Pm

(
w

z

)
def
=

(∫ 1
0 w(x, y)Ym(y)dy,
∫ 1
0 z(x, y)Ym(y)dy,

)

.

Then (w, z) is expanded as follows.

(2.20) w(x, y) =
∞∑

m=0

wm(x)Ym(y), z(x, y) =
∞∑

m=0

zm(x)Ym(y)

in L2(Ω). This decomposes (2.16) into countably many eigenvalue problems

in I = (0, 1):

(2.21)
λ

(
wm

zm

)

= Lm(	)

(
wm

zm

)

in I,

dwm

dx
= 0 =

dzm
dx

at x = 0, 1,

where

Lm(	)
def
=

(
τ̂{ε2( d2

dx2 − m2π2

�2
) + fu} τ̂ fv

gu D( d2

dx2 − m2π2

�2
) + gv

)

.

Remark 2.3. If (2.21) has an eigenvalue λ ∈ C and an eigenfunction

(wm(x), zm(x)), then (wm(x)Ym(y), wm(x)Ym(x)) satisfies (2.16) with the

same λ. Conversely, if (2.16) has an eigenvalue λ ∈ C and an eigenfunction

(w, z), then (wm(x), zm(x)) given by (2.18) satisfies (2.21) with the same λ

for any m ∈ N̄. Moreover (wm(x), zm(x)) is non-trivial for some m ∈ N̄.

We put

(2.22) κ =
mπ

	
.

Though κ takes only discrete values for any fixed 	 > 0, it is often useful

for computational purposes to treat κ like a continuous variable in [0,∞).
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Lemma 2.2 ([17; Proposition 3.1]). There exists λ∗ = λ∗(f, g,D) > 0,

and a positive function δ̄(ε), with δ̄(ε) → 0 as ε ↓ 0, such that, if λ ∈ C

with Reλ ≥ −λ∗ is an eigenvalue of (2.21) for some m ∈ N̄, then it holds

that

(2.23) |ε2κ2 + ετλ| < δ̄(ε),

where κ is as in (2.22).

It suffices to study only those eigenvalues of (2.21) or (2.16) that have

non-negative real parts, because the other ones have nothing to do with the

stability properties of the equilibrium solution. In particular, it suffices to

deal with the eigenvalues in

Cλ∗
def
= {λ ∈ C; Reλ ≥ −λ∗}.

Then Lemma 2.2 allows us to assume (2.23), and also assume λ∗ < ζ∗/2
without loss of generality, where ζ∗ is as in Lemma 2.1. It should be noted

that δ̄(ε) is independent of (κ, λ). From (2.5) and (2.23), it holds that for

small ε

(2.24) |ζi(ε)− ε2κ2 − ετλ| ≥ ζ∗/2 > 0 (i = 1, 2, . . . ),

which guarantees the existence and boundedness of (2.25) below.

In what follows, we state some basic facts about the eigenvalue problem

(2.21). Let E be the projection in L2(I) onto the subspace span{φi(ε)}i≥1.

We introduce operators from L2(I) to L2(I) as follows:

(2.25)

P (ε, κ, λ)
def
= (L(ε)− ε2κ2 − ετλ)−1{E(−fv · )},

Q(ε, κ, λ)
def
= (L(ε)− ε2κ2 − ετλ)−1{E(gu · )},

R(ε, κ, λ)
def
= −gv − guP (ε, κ, λ),

S(ε, κ, λ)
def
= −gv + fvQ(ε, κ, λ),

when ε > 0. And when ε = 0, we set

P (0, κ, λ)
def
= − fv/fu|u=U(x),v=V (x) ,(2.26a)

Q(0, κ, λ)
def
= gu/fu|u=U(x),v=V (x) ,(2.26b)

R(0, κ, λ)
def
= (fugv − fvgu)/(−fu)|u=U(x),v=V (x) ,(2.26c)

S(0, κ, λ)
def
= (fugv − fvgu)/(−fu)|u=U(x),v=V (x) .(2.26d)
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Note that the right-hand sides of (2.26) are independent of (κ, λ), and that

those of (2.26c), (2.26d) are a strictly positive function on I, by virtue of

(2.2) and (A5) in §1. Next we define bilinear forms on H1(I) as follows:

B(ε, κ, λ)(z1, z2)
def
= D

(
z1
x, z

2
x

)

L2(I)
+
((

R + Dκ2 + λ
)
z1, z2

)

L2(I)
,

B∗(ε, κ, λ)(z1, z2)
def
= D

(
z1
x, z

2
x

)

L2(I)
+
((

S + Dκ2 + λ
)
z1, z2

)

L2(I)
,

for z1, z2 ∈ H1(I). Here we denote R(ε, κ, λ), S(ε, κ, λ) by R, S, respec-

tively. We also define operators from H1(I) to (H1(I))′ by

T (ε, κ, λ)z
def
= −Dzxx + (R(ε, κ, λ) + Dκ2 + λ)z,

T ∗(ε, κ, λ)z
def
= −Dzxx + (S(ε, κ, λ) + Dκ2 + λ)z,

for z ∈ H1(I). By applying the Lax-Milgram theorem, we have the follow-

ing:

Lemma 2.3. There exist ε∗ = ε∗(f, g,D) > 0, δ∗ = δ∗(f, g,D) > 0

(0 < δ∗ < ζ∗/2) such that (1) ∼ (5) hold true for any ε ∈ [0, ε∗), κ ∈ [0,∞)

and λ ∈ Cλ∗ that satisfy

(2.27) |ε2κ2 + ετλ| < δ∗.

(1) P (ε, κ, λ), Q(ε, κ, λ), R(ε, κ, λ), S(ε, κ, λ) are uniformly bounded

linear operators in L2(I) for (ε, κ, λ).

(2) B(ε, κ, λ), B∗(ε, κ, λ) are bounded and coercive bilinear forms on

H1(I).

(3) T (ε, κ, λ), T ∗(ε, κ, λ) have the inverses K(ε, κ, λ), K∗(ε, κ, λ) that

are uniformly bounded linear operators from (H1(I))′ to H1(I) for

(ε, κ, λ), respectively.

(4) If (2.23) is assumed in addition, then

K(ε, κ, λ)→ K(0, κ, λ)

K∗(ε, κ, λ)→ K(0, κ, λ)
in B((H1(I))′, H1(I)),
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as ε ↓ 0. The convergence is uniform for (κ, λ) on any compact

subset of [0,∞) × Cλ∗. Here B((H1(I))′, H1(I)) denotes the space

of bounded linear operators from (H1(I))′ to H1(I).

(5) There exists M1 = M1(f, g,D) > 0 such that, for any κ > 0,

‖K(ε, κ, λ)‖B((H1(I))′,L∞(I)) < M1 · κ−1/2,(2.28a)

‖K∗(ε, κ, λ)‖B((H1(I))′,L∞(I)) < M1 · κ−1/2,(2.28b)

|(K(ε, κ, λ)2h2(ε), h1(ε))L2(I)| < M1 · κ−5/2.(2.29)

Proof. We have (1) from Theorem 2.1 and (2.24). The proof of (2),

(3) and (4) can be carried out by the same argument as in Lemma 3.1 in

[10]. For the proof of (2.28a), (2.29), see Lemmas 4.3, 4.4 and 4.5 in [17].

The proof of (2.28b) can be done just as in the proof of Lemmas 4.3, 4.4 in

[17]. �

We consider a Sturm-Liouville operator T0
def
= T (0, 0, 0) subject to the

Neumann boundary condition. Let {γn}∞n=0 and {ψn}∞n=0 be the eigenvalues

of T0 and the complete orthonormal system consisting of the associated

eigenfunctions, respectively. It follows from the general theory of Sturm-

Liouville problems (see [1]) that {ψn} is bounded in C(Ī), that γn = O(n2)

(as n ↑ ∞), and that

(2.30) K(0, κ, λ)δ(x− x∗) =
∞∑

n=0

ψn(x∗)ψn(x)

γn + Dκ2 + λ
in C(Ī).

An explicit expression of the quantity τ∗ in Theorem 2.1 can now be given

by

(2.31) τ∗
def
= c∗1c

∗
2‖K(0, 0,−λ∗)δ(x− x∗)‖2L2(I) =

∞∑

n=0

c∗1c
∗
2|ψn(x∗)|2

(γn − λ∗)2
.

The second equality of (2.31) follows from (2.30). Our standing hypothesis

for τ is

(2.32) τ∗ < τ.

The following proposition is fundamental in regard to the eigenvalue

problem (2.21). Let ε1 = ε1(f, g,D, τ) be sufficiently small, then we have

the following:
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Proposition 2.1 ([17]). Under the same assumptions on D and τ

as in Theorem 2.1, assertions (1), (2) and (3) below hold true for any fixed

ε ∈ (0, ε1):

(1) Every eigenvalue λ ∈ Cλ∗ of (2.21) is a real number in (−λ∗,M2),

where M2 = M2(f, g,D) > 0 is independent of ε, m and 	.

(2) There exist κ(ε), κ(ε) (0 < 2κ(ε) < κ(ε) <∞) such that (2.21) has

a non-negative eigenvalue if and only if

(2.33) κ
def
=

mπ

	
∈ [κ(ε), κ(ε)].

Moreover the following limits exist:

(2.34) κ(0)
def
= lim

ε↓0
κ(ε) ∈ (0,∞), lim

ε↓0
εκ(ε)2 = ζ̂0(0).

(3) For each κ satisfying (2.33), the problem (2.21) has a unique eigen-

value that lies in Cλ∗. This eigenvalue, denoted by λ̃(ε, κ), is simple,

and the associated eigenfunction is given by

(2.35)

(
wm(x)

zm(x)

)

=

(
ε−

1
2 φ0(ε) + (PK)(ε, κ, λ)h2(ε)

K(ε, κ, λ)h2(ε),

)

.

Furthermore the real-valued function κ �→ λ̃(ε, κ) satisfies

(i) λ̃(ε, · ) ∈ C∞[κ(ε), κ(ε)];

(ii) λ̃(ε, κ(ε)) = 0 = λ̃(ε, κ(ε));

(iii) λ̃(ε, κ) > 0 for any κ ∈ (κ(ε), κ(ε)).

Proof. See Theorem 4.1, Proposition 4.1 and Lemma 3.2 in [17] for

the proof. �

Remark 2.4. The critical length 	c(ε) mentioned in §1 is given by

(2.36) 	c(ε) = πκ(ε)−1.

In fact, if 	 < 	c(ε), then there does not exist a positive integer m satisfying

(2.33). Therefore all the eigenvalues of (2.16) have negative real parts.

Proposition 2.1, in particular, tells us that it suffices to consider only

real eigenvalues of (2.21) or (2.16) as far as the stability of the flat-layered

equilibrium solution is concerned.
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3. The simplicity of the zero eigenvalue when 	 = 	c(ε)

In this section we show that the largest eigenvalue of (2.16) is zero

if 	 = 	c(ε); moreover zero is an algebraically simple eigenvalue of this

linearized eigenvalue problem. This fact is necessary for using the methods

of Crandall and Rabinowitz ([2], [3]) in §4.

We can easily check the geometric simplicity of zero and the fact that all

other eigenvalues are negative (if 	 = 	c(ε)), but we must go further on. The

following proposition shows that the algebraic and geometric multiplicities

of a non-negative eigenvalue coincide with each other.

Proposition 3.1. Suppose that D and τ satisfy the assumptions as

in Theorem 2.1, and that ε is sufficiently small. For arbitrary 	 > 0 and an

arbitrary non-negative eigenvalue λ of (2.16), it holds that

N (λ− L(	)) = N ((λ− L(	))2),

where N denotes the null space.

We prove this proposition later in this section. Proposition 3.1 will be

used to prove Corollary 3.1 below, the main concern of this section, but it

also has another important implication concerning the dynamical behavior

of interfaces: namely, if we add a small perturbation to the equilibrium state

(that is, the flat-layered solution), this perturbation will grow in proportion

to exp(λt) for some non-negative eigenvalue λ, and never will it grow in

proportion to t exp(λt), t2 exp(λt), · · · . This fact is particularly important

when λ is the largest eigenvalue (say λmax) of the linearized eigenvalue

problem (2.16). Because if the given small perturbation is a random one,

it will grow in proposition to exp(λmax t).

Corollary 3.1. When 	 = 	c(ε), zero is an eigenvalue of (2.16) with

N (L(	c(ε))) = span{W1}. Here W1 is defined by

(3.1) W1
def
=

(
w1(x)Y1(y)

z1(x)Y1(y)

)

,

where

(3.2)

(
w1(x)

z1(x)

)

=

(
ε−

1
2 φ0(ε) + (PK)(ε, κ(ε), 0)h2(ε)

K(ε, κ(ε), 0)h2(ε),

)

.
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The range R(L(	c(ε))) is a closed subspace with codimension 1 and

(3.3) W1 /∈ R(L(	c(ε))).

All other eigenvalues have strictly negative real parts.

In order to show the assertions stated above, we make some prepara-

tions. Let us introduce the adjoint operators

L∗(	)
def
=

(
τ̂{ε2( ∂2

∂x2 + 	−2 ∂2

∂y2 ) + fu} gu

τ̂ fv D( ∂2

∂x2 + 	−2 ∂2

∂y2 ) + gv

)

,

L∗
m(	)

def
=

(
τ̂(ε2 d2

dx2 + fu − ε2m2π2

�2
) gu

τ̂ fv D d2

dx2 + gv −Dm2π2

�2

)

of L(	), Lm(	), respectively.

Remark 3.1. Remark 2.3 remains valid if we replace L(	) by L∗(	),
and Lm(	) by L∗

m(	).

If λ is a real eigenvalue of Lm(	), it is also an eigenvalue of L∗
m(	), and

we can express the associated eigenfunction as follows.

Lemma 3.1. For any fixed ε ∈ (0, ε1), λ ∈ [0,∞) is an eigenvalue of

L∗
m(	) if and only if λ = λ̃(ε, κ) with κ = mπ/	. The associated eigenfunc-

tion is given by

(3.4)

(
w∗
m(x)

z∗m(x)

)

=

(
−ετ{ε− 1

2 φ0(ε) + (QK∗)(ε, κ, λ)h1(ε)}
K∗(ε, κ, λ)h1(ε)

)

.

Proof. The proof can be carried out in just the same way as in

Lemma 3.2 of [17] if we replace the singular dispersion relation

(3.5) ζ̂0(ε)− εκ2 − τλ− (K(ε, κ, λ)h2(ε), h1(ε))L2(I) = 0

thereof by

(3.6) ζ̂0(ε)− εκ2 − τλ− (K∗(ε, κ, λ)h1(ε), h2(ε))L2(I) = 0.

It should be noted that (3.5) is equivalent to λ = λ̃(ε, κ) (see Proposition

4.3 in [17]). It suffices to show the equivalence of (3.5) and (3.6). Since λ

is a real number, we have

(3.7) (K(ε, κ, λ)h2, h1)L2(I) = (K∗(ε, κ, λ)h1, h2)L2(I)

for any h1, h2 ∈ L2(I). The equivalence follows immediately. �
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Proof of Proposition 3.1. Let (w̃, z̃) ∈ X satisfy

(3.8) (λ− L(	))2
(

w̃

z̃

)

=

(
0

0

)

.

We will show that (w̃, z̃) belongs to N (λ−L(	)). By applying Pm on both

sides and using PmL(	) = Lm(	)Pm, we obtain for each m ∈ N̄

(3.9) (λ− Lm(	))2Pm

(
w̃

z̃

)

=

(
0

0

)

.

From this equality and Proposition 2.1, we find

(3.10) (λ− Lm(	))Pm

(
w̃

z̃

)

= cm

(
wm(x)

zm(x)

)

with some cm ∈ R. Here (wm, zm) is given by (2.35). Since Lm(	) has

compact resolvent, R(λ−Lm(	)) is a closed subspace, and the closed range

theorem is available. Then we have

(3.11) R(λ− Lm(	)) = N (λ− L∗
m(	))⊥.

From (3.10) and (3.11), we see that the right-hand side of (3.10) belongs to

N (λ− L∗
m(	))⊥.

It suffices to show

(3.12) 0 "=
((

w∗
m

z∗m

)

,

(
wm

zm

))

L2(I)×L2(I)
for any m ∈ N̄.

Here (w∗
m, z∗m) is as in (3.4). In fact, we see from (3.12) and (3.10) that

cm = 0, and that

(3.13) Pm(λ− L(	))

(
w̃

z̃

)

=

(
0

0

)

,

for any m ∈ N̄. This means that (w̃, z̃) belongs to N (λ− L(	)).

Let us show (3.12). The right-hand side of (3.12) is equal to

(wm, w∗
m)L2(I) + (zm, z∗m)L2(I).
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From (2.35), (3.4) and Lemma 2.3,

(3.14) (wm, w∗
m)L2(I) = −τ{1 + O(ε

1
2 )} as ε ↓ 0.

The convergence of the second term is uniform with respect to (κ, λ), where

κ = mπ/	. On the other hand, since

(zm, z∗m)L2(I) = (K(ε, κ, λ)h2(ε),K
∗(ε, κ, λ)h1(ε))L2(I),

we obtain

(3.15) (zm, z∗m)L2(I) ≤ τ∗ for any m ∈ N̄.

Indeed, if not, we have {(ε̄n, κn)} such that ε̄n → 0 as n ↑ ∞, and

(3.16) (K(ε̄n, κn, λn)h2(ε̄n),K∗(ε̄n, κn, λn)h1(ε̄n))L2(I) > τ∗.

In the case where κn ↑ ∞, we have a contradiction from (2.28). In the

case where {κn} is bounded, we can assume without loss of generality that

κn → κ0 and λn → λ0. Recall that {λn} remains bounded by virtue of

Proposition 2.1. Here κ0 ≥ 0 and λ0 ≥ −λ∗. Then the left-hand side of

(3.16) converges to
∞∑

n=0

c∗1c
∗
2|ψn(x∗)|2

(γn + Dκ2
0 + λ0)2

.

This fact combined with (3.16) contradicts (2.31). Thus we find that (3.15)

holds. Combining (3.14) and (3.15), and using τ∗ < τ , we obtain (3.12) for

small ε > 0. We have completed the proof of Proposition 3.1. �

Proof of Corollary 3.1. From (2.36) and κ(ε) > 0, we have

(3.17)
mπ

	c(ε)

∣
∣
∣
∣
m=1

= κ(ε),
mπ

	c(ε)

∣
∣
∣
∣
m�=1

/∈ [κ(ε), κ(ε)].

From (3.17) and Proposition 2.1, zero is the largest real eigenvalue of (2.21)

when m = 1, and when m "= 1 any real eigenvalue of (2.21) is negative.

Hence (2.16) has zero as the largest real eigenvalue with N (L(	c(ε))) =
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span{W1}. From Proposition 2.1, all other eigenvalues have negative real

parts.

Since L(	c(ε)) has compact resolvent, R(	c(ε), ε) is a closed subspace

with

(3.18) R(L(	c(ε))) = N (L∗(	c(ε)))
⊥,

by virtue of the closed range theorem. From Lemma 3.1 and (3.18), the

codimension of R(L(	c(ε))) is one. It remains to prove (3.3). Using (3.12)

with m = 1, we have

(3.19) 0 "=
((

w∗
1(x)Y1(y)

z∗1(x)Y1(y)

)

,

(
w1(x)Y1(y)

z1(x)Y1(y)

))

Y
.

This, together with (3.18), implies (3.3). The proof of Corollary 3.1 is

completed. �

Remark 3.2. Let 	 be slightly larger than 	c(ε), then from (3.17) and

the property of λ̃(ε, · ), it holds that

λ̃
(

ε,
mπ

	

)∣
∣
∣
m=1

> 0, λ̃
(

ε,
mπ

	

)∣
∣
∣
m�=1

< 0.

From Proposition 2.1 and Remark 2.3, (2.16) has a unique positive eigen-

value with the associated eigenfunction (w1Y1, z1Y1), and all other eigen-

values have negative real parts. Here (w1, z1) is the same as in (2.35) when

m = 1.

Remark 3.3 When 	 = 	c(ε), we get N (L∗(	c(ε))) = span{W ∗
1 } from

(3.17), Proposition 2.1, Lemma 3.1 and Remark 3.1. Here W ∗
1 is defined by

(3.20) W ∗
1

def
=

(
w∗

1(x)Y1(y)

z∗1(x)Y1(y)

)

,

where

(3.21)

(
w∗

1(x)

z∗1(x)

)

=

(
−ετ{ε− 1

2 φ0(ε) + (QK∗)(ε, κ(ε), 0)h1(ε)}
K∗(ε, κ(ε), 0)h1(ε)

)

.
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4. Bifurcation of equilibrium solutions with a non-flat layer

In this section we apply the theorems of Crandall and Rabinowitz to

(2.15), and prove the theorem in §1.

Lemma 4.1. Suppose ε is sufficiently small. Then

(4.1) F
�
(
u
v

)(	c(ε),

(
0

0

)

)W1 /∈ R(L(	c(ε))).

Here W1 is as in (3.1).

Proof. From the definition of F , we have

(4.2) F
�
(
u
v

)(	c(ε),

(
0

0

)

) = −2	c(ε)
−3

( ε
τ

∂2

∂y2 0

0 D ∂2

∂y2

)

and thus

(4.3) (the left-hand side of (4.1)) = 2π2	c(ε)
−3

( ε
τ w1Y1

Dz1Y1

)

.

Because we have (3.18), it suffices to show

(4.4)

((
w∗

1Y1

z∗1Y1

)

,

( ε
τ w1Y1

Dz1Y1

))

Y
"= 0,

where (w∗
1, z

∗
1) is the same as in (3.21). The left-hand side of (4.4) is equal

to

(4.5)
ε

τ
(w1, w

∗
1)L2(I) + D(z1, z

∗
1)L2(I).

From (3.14), the first term of (4.5) is equal to −ε{1 + O(ε
1
2 )}. From (3.2)

and (3.21), the second term of (4.5) is equal to

(4.6)
D(K(ε, κ(ε), 0)h2(ε),K

∗(ε, κ(ε), 0)h1(ε))L2(I)

= D(K(ε, κ(ε), 0)2h2(ε), h1(ε))L2(I).

Using (2.29) and (2.34), we have

|(the right-hand side of (4.6))| = O(ε
5
4 ).

Then we find

(4.7)

((
w∗

1Y1

z∗1Y1

)

,

( ε
τ w1Y1

Dz1Y1

))

Y

= −ε{1 + O(ε
1
4 )} < 0.

This completes the proof. �
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Remark 4.1 A subtler calculation shows that the right-hand side of

(4.6) is O(ε
3
2 ). For details, the reader can refer to §4 of [17].

Combining Corollary 3.1 and Lemma 4.1, we see that the hypotheses of

Theorem 1.7 of [2] and Theorem 1.16 of [3] are satisfied (see also Theorem

4.2 of [15]). By applying Theorem 1.7 of [2], we obtain the result below,

from which Theorem 1.1 follows at once.

Proposition 4.1. Let X and Y be the real Banach spaces as in

(2.14). Let X2 be the orthogonal complement of X1 = N (L(	c(ε))) in X
with respect to the inner product of L2(Ω) × L2(Ω). Then there exist an

open interval I = (s1, s2) containing 0 and smooth functions

	(s) : I → R,

(ϕ(s), ψ(s)) : I → X2,

with 	(0) = 	c(ε), (ϕ(0), ψ(0)) = (0, 0) such that

(4.8)

(
u(s)

v(s)

)
def
= sW1 + s

(
ϕ(s)

ψ(s)

)

,

satisfies

(4.9) F(	(s),

(
u(s)

v(s)

)

) =

(
0

0

)

.

Here W1 is given by (3.1). Moreover F−1({0}) consists precisely of

{

(	,

(
0

0

)

)

}

∪
{

(	(s),

(
u(s)

v(s)

)

); s ∈ I
}

in some neighborhood of 	 = 	c(ε) and (u, v) ≡ (0, 0) in X .

Proof of Theorem 1.1. By setting

(4.10)

(
ũ(x, y, s)

ṽ(x, y, s)

)

=

(
ū(x)

v̄(x)

)

+ s

(
w1(x)Y1(y/	)

z1(x)Y1(y/	)

)

+ s

(
ϕ(x, y/	, s)

ψ(x, y/	, s)

)

,
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we have Theorem 1.1 immediately from Proposition 4.1. �

The bifurcation equation can be obtained by the method of Ljapunov

and Schmidt. We decompose Y as

Y = Y1 ⊕ Y2,

where

Y1
def
= R(L(	c(ε))),

Y2
def
= (the orthogonal complement of Y1 in Y).

From (3.18) and Remark 3.3, Y2 is equal to N (L∗(	c(ε))) = span {W ∗
1 } ,

where W ∗
1 is given by (3.20). Let P1, P2 be the projections onto Y1, Y2,

respectively. Equation (2.15) can be split into

P1F(	,

(
u

v

)

) =

(
0

0

)

,(4.11a)

P2F(	,

(
u

v

)

) =

(
0

0

)

.(4.11b)

We define a mapping F1 from a neighborhood of (	c(ε), 0, 0) in R×X1×X2

to Y1 by

F1(	, x1, x2)
def
= P1F(	, x1 + x2).

Then

(F1)x2(	c(ε), 0, 0) = P1F(uv)
(	c(ε),

(
0

0

)

)

is a bijective mapping from X2 onto Y1. By applying the usual implicit

function theorem, we find a unique x2 = χ2(	, x1) that satisfies

(4.12) P1F(	, sW1 + χ2(	, sW1)) = 0

in some neighborhood of (s, 	) = (0, 	c(ε)). We put x1 = sW1, where W1

is as in (3.1). Here χ2 is a smooth mapping from some neighborhood of

(	c(ε), 0) in R+ ×X1 into X2. Since

F(	,

(
0

0

)

) ≡
(

0

0

)

for 	 > 0,



Bifurcation from flat-layered solutions 363

we see from the uniqueness of χ2 that

(4.13) χ2(	, 0) ≡ 0.

Substituting x2 = χ2(	, x1) into (4.11b), we obtain

(4.14) G(s, 	) = 0,

where

(4.15) G(s, 	)
def
= (W ∗

1 ,F(	, sW1 + χ2(	, sW1)))Y .

Here W1 and W ∗
1 are given by (3.1) and (3.20), respectively. In some

neighborhood of the bifurcation point

(	,

(
u

v

)

) = (	c(ε),

(
0

0

)

),

the solutions to (2.15) are in one-to-one correspondence with the solutions

to a single scalar equation (4.15). Equation (4.15) is called the bifurcation

equation. From (4.13), we obtain

(4.16) G(0, 	) ≡ 0.

We have

(4.17) s

(
ϕ(s)

ψ(s)

)

= χ2

(

	(s), s

(
w1Y1

z1Y1

))

.

We make a remark on the bifurcation given in Proposition 4.1 from the

point of view of the classification in Sattinger[14]. Putting

(4.18) r

(
u(x, y)

v(x, y)

)
def
=

(
u(x, 1− y)

v(x, 1− y)

)

,

we have

(4.19) F(	, r

(
u(x, y)

v(x, y)

)

) = rF(	,

(
u(x, y)

v(x, y)

)

).

Using this fact we have two solutions
(

u(s)

v(s)

)

, r

(
u(s)

v(s)

)

of (2.15) for the same 	 = 	(s). These two solutions are really distinct be-

cause X1-components differ for s "= 0. Thus the bifurcation is supercritical

or subcritical if 	(n)(0) "= 0 for some n ≥ 1.
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Proof of Corollary 1.1. We have seen that either of

(4.20) (	(s), r

(
u(s)

v(s)

)

), (	(−s),

(
u(−s)

v(−s)

)

)

satisfies (2.15). Both of these have the same X1-component

−s

(
w1Y1

z1Y1

)

.

Because {

(	(s),

(
u(s)

v(s)

)

); s ∈ I
}

can be parameterized by the X1-component, the fact stated above implies

that

	(−s) = 	(s),

r

(
u(s)

v(s)

)

=

(
u(−s)

v(−s)

)

,

which immediately leads to

(4.21) 	s(0) = 0.

From now on, we denote χ2(	, sW1) by χ2(	, s) for simplicity. Differentiating

(4.12) twice by s and putting s = 0, we have

(χ2)s(	c(ε), 0) = 0,(4.22)

(χ2)ss(	c(ε), 0) = −L(	c(ε))
−1P1(d

2F)(W1,W1),(4.23)

where

(d2F)(W1,W1)
def
=

∂

∂t1

∂

∂t2
F(	c(ε), t1W1 + t2W1)

∣
∣
∣
∣
t1=t2=0

.

Differentiating (4.15) three times by s, and using (4.22) and (4.23) , we

obtain

(4.24) Gsss(0, 	c(ε)) =
(
W ∗

1 , (d3F)(W1,W1,W1)

−3(d2F)(W1,L(	c(ε))
−1P1(d

2F)(W1,W1))
)

Y .
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Here W1 and W ∗
1 are given by (3.1) and (3.20), respectively. We have

(d3F)(W1,W1,W1)

def
=

∂

∂t1

∂

∂t2

∂

∂t3
F(	c(ε), t1W1 + t2W1 + t3W1)

∣
∣
∣
∣
t1=t2=t3=0

.

In the following, we assume that the right-hand side of (4.24) is not 0.

Let us differentiate

G(s, 	(s)) = 0,

three times by s, and put s = 0. Then using (4.16) and (4.21), we obtain

(4.25) Gsss(0, 	(0)) + 3Gs�(0, 	(0))	ss(0) = 0.

If

(4.26) Gs�(0, 	(0)) < 0,

then the desired result follows from Theorem 1.16 of [3]. We differentiate

(4.15) by s, then by 	, and put s = 0. Then using (4.13), (3.18) and (4.22),

we get

Gs�(0, 	(0)) = −2	c(ε)
−3

((
w∗

1Y1

z∗1Y1

)

,

( ε
τ

∂2

∂y2 (w1Y1)

D ∂2

∂y2 (z1Y1)

))

Y

= 2	c(ε)
−3

((
w∗

1Y1

z∗1Y1

)

,

( ε
τ (w1Y1)

D(z1Y1)

))

Y
.

Combining this equality and (4.7), we obtain (4.26). We have thus com-

pleted the proof of Corollary 1.1. �
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