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Subtle statistical behavior in simple models for

random advection-diffusion

By David J. Horntrop∗ and Andrew J. Majda∗∗

Abstract. Simple models for advection-diffusion with a statisti-
cal velocity field are studied here. These models involve advection by
a time-independent random shear flow together with a constant mean
flow. Several new and surprisingly subtle phenomena are developed here
for the statistical behavior in these models. These new phenomena in-
clude: 1) mathematical criteria and examples with ill-posed evolution
equations for the second order correlations and the mean statistics;
2) explicit sensitive dependence of the large scale, long time renormal-
ization theory on parameters of the problem, such as the mean flow,
the infrared cut-off, and the molecular diffusivity, for both the second
order correlations and the mean statistics. This surprising sensitive de-
pendence is explained in a self-consistent fashion both through mathe-
matical theory and explicit examples.

1. Introduction

The advection-diffusion of a passive scalar by an incompressible velocity

field is described by the equation

(1.1)
∂T

∂t
+ (v · ∇)T = κ∆T

where the incompressible velocity field, v(x, t), satisfies div v = 0 and κ ≥ 0

is the coefficient of molecular diffusion. The problem in (1.1) is especially

important and difficult when the velocity field v involves a wide range of ex-

cited space and/or time scales and admits a statistical description. Practical

applications where these are the circumstances include predicting tempera-

ture profiles in high Reynolds number turbulence ([1], [2]), the tracking of

1991 Mathematics Subject Classification. 39, 60.
∗Research supported as a graduate research assistant by ARO DAAL03-92-G-0010

ARO ASSERTS number pending.
∗∗Research partially supported by grants NSF DMS-9001805 ONR N00014-89-J-

1044.P00003 ARO DAAL03-92-G-0010 DARPA N00014-92-J-1796.

23



24 David J. Horntrop and Andrew J. Majda

pollutants in the atmosphere ([3]), and the diffusion of tracers in hetero-

geneous porous media ([4]). Besides the practical interest in the equation

from (1.1), the statistical behavior of solutions with random velocity fields

is an important prototype problem for turbulence theories involving the

Navier-Stokes equations ([1], [2]) since the equation in (1.1) is statistically

nonlinear even though this equation is linear for a given realization. Statis-

tical quantities that are of physical interest include the mean concentration,

〈T 〉 , and the second order correlations, 〈T (x, t)T (x′, t′)〉 , which are related

directly to the relative diffusion of pairs of particles, the pair distance func-

tion (see Section 2 and Chapter 8 of [1]). Here and below, the bracket 〈Q〉 is

used to denote the statistical ensemble average of a quantity Q over suitable

random velocity statistics. These problems are especially subtle when there

are arbitrarily many spatial or temporal scales in the velocity field as typi-

cally occurs in the applications mentioned above. These issues have inspired

a large theoretical effort in the physics and applied mathematics commu-

nities involving physical space and Fourier space renormalization theories

which typically utilize partial summation of divergent perturbations series

according to various recipes (see the references in [1], [2], [5]).

In response to all of the above issues, Avellaneda and one of the present

authors have developed a mathematically rigorous theory for a class of mod-

els for (1.1) involving simple shear layers with many spatio-temporal scales

([6], [7], [8], [9]) which, despite their simplicity, capture a number of in-

teresting phenomena from the more complex problems. This work also

includes rigorous ([10]) and formal ([11]) extensions of this theory to more

general settings for (1.1) beyond these special models as well as the use of

these rigorous results in checking the behavior of various ad hoc physical

renormalization theories ([12]). In their simplest form, these models are the

special case of (1.1) given by

(1.2)

∂T

∂t
+ w

∂T

∂x
+ v(x)

∂T

∂y
= κ∆T

T |t=0 = T0(x, y).

Here the random shearing velocity v(x) is a stationary Gaussian random

field with zero mean, i.e. 〈v〉 = 0, and is completely characterized by the
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two point correlation function

(1.3)
R(x) = 〈v(x+ x′)v(x′)〉

=

∫
e2πixkE(k) dk

with E(k) the real-valued energy density satisfying E(−k) = E(k) (see

[13]). The constant w in (1.2) represents the effect of the large scale mean

flow.

Here the authors study several new phenomena in the simple mod-

els from (1.2). Next we give a brief summary of these results as well

as an introduction to the remainder of this paper. In Section 2 exact

closed evolution equations for the statistical quantities, 〈T 〉 (x, y, t) and

〈T (x+ x′, y + y′, t)T (x′, y′, t)〉 = P (x, y, t) are derived for the special case

with κ = 0. Then simple mathematical criteria involving the correlation

function, R(x), and the mean flow, w, are developed which yield necessary

and sufficient conditions for these formal evolution equations for the statis-

tics to yield a well-posed problem. At the end of Section 2, a family of

examples involving velocity fields, v(x), generated by the damped, stochas-

tically forced, harmonic oscillator are utilized to present concrete examples

where the equation for P (x, y, t) is ill-posed and the equation for 〈T 〉 (x, y, t)

is either well-posed or ill-posed. These results have practical interest for the

capability of Monte Carlo numerical methods for (1.1) to compute the sta-

tistical features of the special problem in (1.2); this is developed elsewhere

by the authors ([14]).

In Section 3 the statistical behavior of solutions of (1.2) with κ = 0

is studied for Gaussian random velocity fields with a correlation function

given by

(1.4) R(x) = V 2
∫ ∞

−∞
e2πixk|k|1−εψ∞(|k|) dk

where ε with −∞ < ε < 4 is a parameter, motivated by renormalization the-

ory in critical phenomena ([15]), that characterizes the statistical behavior

of the velocity at large scales ([5], [6], [7]). Here ψ∞(|k|) is a nonnega-

tive rapidly decreasing cut-off with ψ∞(0) = 1; a prototypical example is

ψ∞(|k|) = e−|k|. First we demonstrate the phenomena developed in Section 2

for the problem in (1.2) with the velocity statistics in (1.4). Then, following

references [6] and [7], we study the renormalization theory for (1.2), i.e. the
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universal large scale, long time behavior for the statistical quantities 〈T 〉
and P (x, y, t). We find remarkable behavior in the renormalization theory

for the mean statistics when w 	= 0 including trapping behavior for ε < 0,

sub-diffusive behavior for ε with 0 < ε < 1, and super-diffusive behavior

for ε with 1 < ε < 2. We compute the renormalization theory for the sec-

ond order correlations P (x, y, t) at large scales in the super-diffusive regime,

1 < ε < 4, including the subtle singular behavior which occurs in the limit

when the mean flow, w, satisfies w → 0.

In Section 4 we assess the effects of molecular diffusion, i.e. κ 	= 0, for

the equation in (1.2) with the velocity statistics in (1.4). For the case with

w 	= 0, we compute the mean square displacement, i.e. the second moment∫
R2 y2 〈T (x, y, t)〉 dy, and obtain diffusive scaling behavior for ε ≤ 1 and the

same super-diffusive scaling behavior for ε with 1 < ε < 2 as occurred in

Section 3 with κ = 0.

The renormalization theories from [6] and [7] also assume an infrared

cut-off, i.e. the statistical velocity field is characterized by

(1.5) Rδ
ε(x) = V 2

∫
|k|>δ

e2πikx|k|1−εψ∞(|k|)dk

for −∞ < ε < 4 where δ is a small parameter, δ → 0. We remark here that

the restricted integration in (1.5) is not essential for ε < 2 since the integral

converges in the limit δ → 0 and yields the correlation function in (1.4).

However, for ε with 2 < ε < 4, there is an infrared divergence of energy so

that

(1.6) Rδ
ε(0) → ∞ as δ → 0 for 2 < ε < 4

and this cut-off is essential. The interesting physical value, ε = 8
3 , corre-

sponding to the “Kolmogoroff spectrum” is in this region ([5], [6], [7]). The

large scale, long time renormalization theory for 〈T 〉 and P (x, y, t) devel-

oped in Sections 3 and 4 of this paper does not agree completely with the

renormalization theory with an infrared cut-off from [7] for w 	= 0, ε < 2.

The subtle mathematical differences are clarified in Section 5 in a consistent

fashion.

The special case of the models in (1.2) that is treated in this paper and

involves a time independent random velocity field is most appropriate as a

simple model for statistical behavior for tracers in porous media ([4]). In
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fact, the statistical mean square displacements for (1.2) were computed by

Matheron and de Marsily ([16]) in 1980 for some special cases to demon-

strate features of super-diffusion. By providing a rich family of explicit but

complex examples, all of the material developed in this paper has applica-

tions to the design of Monte Carlo methods (see [14], [17]) for computing

turbulent diffusion statistics—an important practical topic. The version of

the models in (1.2) which is most relevant for applications to turbulence in-

volves velocity fields with time dependent correlations ([5], [6], [7]). Recent

applications to the inertial range scaling theory and other non-Gaussian

statistics with amusing links with N-body quantum mechanics can be found

in references [18] and [19]. In fact, in this context with fixed correlations in

time, one of the authors has recently generalized the behavior of the models

in (1.2) to the important situation for (1.1) where the velocity fields are

incompressible, homogeneous, and isotropic with a general spatial energy

spectrum ([20]). We have intentionally written a lengthy introduction to

this paper in order to attempt to attract more mathematicians to the in-

teresting and subtle statistical questions regarding the mathematical theory

for (1.1).

2. Exact Formulas for the Mean and Second Order Statistics for

T (x, y, t)

We begin this section by deriving exact formulas for the evolution of

the mean statistics, 〈T 〉 (x, y, t), and the second order correlation statistics

P (x, y, t) = 〈T (x+ x′, y + y′, t)T (x′, y′, t)〉 for the equation in (1.2) under

the assumption that the simple shear velocity v(x) in (1.2) is a Gaussian

random field and κ = 0. Throughout this paper we use the convention

f(x) =

∫
e2πixξ f̂(ξ)dξ

where ̂ denotes the Fourier transform.

2A) The Mean Statistics

To derive an evolution equation for the mean statistics for (1.2), we

consider the transport equation

(2.1)

∂T

∂t
+ w

∂T

∂x
+ v(x)

∂T

∂y
= 0

T |t=0 = T0(x, y)
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where the initial value T0 belongs to C∞
0 (R2). In order to solve equation

(2.1), the Galilean change of variables, x̃ = x − wt, ỹ = y, t̃ = t, is made

yielding

(2.2)
∂T

∂t̃
+ v(x̃+ wt̃)

∂T

∂ỹ
= 0.

Dropping tildes in the notation and solving equation (2.2) using the method

of characteristics results in the formula

(2.3) T (x, y, t) = T0

(
x, y −

∫ t

0
v(x+ ws) ds

)
.

Now we look at 〈T 〉 and write T0 as a partial Fourier transform with respect

to y. Thus,

(2.4)
〈T 〉 =

〈∫ ∞

−∞
e2πiξye−2πiξ

∫ t

0
v(x+ws) dsT̂0(x, ξ) dξ

〉
=

∫ ∞

−∞
e2πiξy

〈
e−2πiξ

∫ t

0
v(x+ws) ds

〉
T̂0(x, ξ) dξ.

Since the integral of v is a Gaussian field, the expectation in (2.4) is merely

the characteristic function of a zero mean Gaussian random variable which

is well known to be e−
4π2ξ2

2
σ2

where σ2 is the variance of the Gaussian.

Since the variance σ2 in this case is given by σ2 =
∫ t
0

∫ t
0 R (|w(s− s′)|) ds′ds,

we obtain the following closed formula for the mean:

(2.5)
〈T 〉 =

∫ ∞

−∞
e2πiξye

− 4π2ξ2

2

〈(∫ t

0
v(x+ws) ds

)2
〉
T̂0(x, ξ) dξ

=

∫ ∞

−∞
e2πiξye−

4π2ξ2

2

∫ t

0

∫ t

0
R(|w(s−s′)|)ds′ds T̂0(x, ξ) dξ.

To develop an evolution equation for the mean, we take the time derivative

of (2.5) to yield

(2.6)

∂ 〈T 〉
∂t

=

∫ ∞

−∞
−4π2ξ2

2
∂
∂t

[∫ t
0

∫ t
0 R (|w(s− s′)|) ds′ds

]
×e2πiξye−

4π2ξ2

2

∫ t

0

∫ t

0
R(|w(s−s′)|)ds′ds T̂0(x, ξ) dξ.
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We recognize the right hand side of (2.6) as nothing else but D(t) ∂2〈T 〉
∂y2

where

(2.7)
D(t) =

1

2

∂

∂t

[∫ t

0

∫ t

0
R

(
|w(s− s′)|

)
ds′ds

]
=

∫ t

0
R (|w(s− t)|) ds.

Thus, we have obtained the general evolution equation for the mean statistics

〈T 〉 (x, y, t) given by

(2.8)
∂ 〈T 〉
∂t

= D(t)
∂2 〈T 〉
∂y2

with the “diffusion” coefficient D(t) computed from the velocity statistics

and the mean wind through the formula in (2.7).

2B) The Second Order Correlations

Under the assumption that the initial data, T0(x, y), for (2.1) is a sta-

tionary, zero mean Gaussian random field, it is not difficult to see that

the random variable T (x, y, t) is stationary for fixed t and thus, the sec-

ond order correlation function 〈T (x+ x′, y + y′, t)T (x′, y′, t)〉 = P (x, y, t) is

well-defined. Here through a slight abuse of notation, we continue to use the

expression, 〈·〉 , to denote ensemble average although in the derivation pre-

sented below, this is an iterated average over both the random initial data

and the velocity statistics. For Gaussian random initial data with smooth

realizations, we have the formula ([13])

(2.9) T0(x, y) =

∫
e2πi(xξ1+yξ2)T̂0(�ξ ) dW (ξ1) ⊗ dW (ξ2)

where T̂0(�ξ ) = T̂0( − �ξ ) is smooth and rapidly decreasing and dW (ξj) for

j = 1, 2 are formally two independent Gaussian white noises satisfying

〈dW (ξj)〉 = 0 and

(2.10)
〈
dW (ξj)dW (ξ′j)

〉
= δ(ξj + ξ′j) dξj dξ

′
j.

With the same Galilean change of variables as used earlier, the equation in
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(2.2) is solved by the method of characteristics to obtain

(2.11)

T (x, y, t) = T0

(
x, y −

∫ t

0
v(x+ ws) ds

)
=

∫ ∞

−∞
e2πi(ξ1x+ξ2y)e−2πiξ2

∫ t

0
v(x+ws)ds

× T̂0(�ξ ) dW (ξ1) ⊗ dW (ξ2)

Using the result from (2.11) in the expression for the product T (x′, y′, t)
T (x + x′, y + y′, t) and averaging over the initial conditions utilizing (2.10)

yields the formula

(2.12)
P (x, y, t) =

∫ ∞

−∞
e2πi(ξ1x+ξ2y)

×
〈
e2πiξ2

∫ t

0
[v(x′+ws)−v(x′+x+ws)]ds

〉 ∣∣∣T̂0(�ξ )
∣∣∣2 d�ξ.

The expression in brackets in (2.12) involves the characteristic function of

the Gaussian random variable,
∫ t
0 [v(x′ +ws)− v(x′ + x+ws)]ds associated

with a stationary random field; thus, we have the formula

(2.13) P (x, y, t) =

∫ ∞

−∞
e2πi(ξ1x+ξ2y)e

− 4π2ξ22
2

〈[∫ t

0
v(ws)−v(x+ws)ds

]2
〉

×
∣∣∣T̂0(�ξ )

∣∣∣2d�ξ.
In order to obtain an evolution equation for P (x, y, t), we take the time

derivative of (2.13) to yield

(2.14)

∂

∂t
P (x, y, t) =

∫ ∞

−∞
−4π2ξ2

2

2

∂

∂t

〈[∫ t

0
v(ws) − v(x+ ws)ds

]2
〉

× e2πi(ξ1x+ξ2y)e
− 4π2ξ22

2

〈[∫ t

0
v(ws)−v(x+ws)ds

]2
〉

×
∣∣∣T̂0(�ξ )

∣∣∣2d�ξ
= D(x, t)

∂2P

∂y2

where the “diffusion” coefficient D(x, t) is given by the formula

(2.15) D(x, t) =

∫ t

0
2R(|w(s̃− t)|)−R(|x+w(t− s̃)|)−R(|x+w(s̃− t)|) ds̃.
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The equation in (2.14) with D(x, t) the function of the velocity statistics in

(2.15) defines an explicit closed equation for the second order statistics for

(2.1) in the Galilean shifted reference frame.

Why do we use the notation P (x, y, t) for the second order correlation

function? The reason is that the second order correlations are essentially

the same quantity as Richardson’s celebrated pair distance function from

his pioneering work ([21]). Next we describe this quantity for the simple

shear layer models in (2.1). Consider two particles denoted by subscripts 1

and 2. Let particle 1 be located at (0, 0) at time t = 0 while particle 2 is

at (x0, y0) for t = 0. Denote the particle trajectories in the x-direction by

Xj(t) and in the y-direction by Yj(t) for j = 1, 2. For the simple shear layer

model in (2.1), Xj(t) = wt + Xj(0) and Yj(t) =
∫ t
0 v(Xj(s))ds + Yj(0). For

the particle trajectories, the pair distance function is defined as

(2.16)
P (x, y, t) = Prob{X2(t) −X1(t) = x, Y2(t) − Y1(t) = y |

X2(0) −X1(0) = x0, Y2(0) − Y1(0) = y0 }
where Prob denotes the probability density with respect to the random

velocity statistics and this probability is conditional on the initial separation

(x0, y0). It is an amusing elementary exercise for the reader to verify that

the quantity P (x, y, t) defined in (2.16) satisfies the same equations in (2.14)

and (2.15) with the initial condition

(2.17) P (x, y, t)|t=0 = δ(x− x0) ⊗ δ(y − y0)

depending on the initial separation distance.

2C) Well-Posed and Ill-Posed Evolution Equations for the Mean

and the Second Order Statistics

Both the mean statistics, 〈T 〉 (x, y, t), and the second order statistics,

P (x, y, t), satisfy simple second order equations with the form

(2.18)

∂U

∂t
= D(x, t)

∂2U

∂y2

U |t=0 = U0(x, y)

where D(x, t) is the function of the statistics and mean flow given in (2.7)

and (2.15) respectively. Clearly the initial value problem is ill-posed if and

only if there exists points (x0, t0) with t0 > 0 so that

(2.19) D(x0, t0) < 0.
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The equations in (2.8) and (2.14) always define a well-posed problem pro-

vided that the mean flow, w, vanishes. However, more subtle behavior

occurs in the case when the mean flow satisfies w 	= 0. We have the follow-

ing result which characterizes this behavior in the case with w 	= 0 in terms

of the statistical velocity correlation function.

Theorem: For the situation with w 	= 0 :

A) The evolution equation in (2.8) for the mean statistics 〈T 〉 (x, y, t) is

ill-posed if and only if the velocity correlation function R(x) from (1.3)

satisfies

(2.20)

∫ t0

0
R(s) ds < 0 for some t0 > 0.

B) The evolution equation in (2.14) for the second order statistics P (x, y,

t) = 〈T (x+ x′, y + y′, t)T (x′, y′, t)〉 or equivalently the pair distance

function in (2.16) is ill-posed for some range of initial separation dis-

tances x if and only if the velocity correlation function R(x) from (1.3)

has an interval in (0,+∞) where R(x) is monotone increasing.

This theorem has the following immediate consequence:

Corollary: If the velocity correlation function, R(x), is a monotone

decreasing function for 0 < x < +∞, then both of the evolution equations in

(2.8) and (2.14) are always well-posed. Furthermore, consider any random

velocity field with a smooth correlation function R(x) satisfying the mild

condition that limx→∞R(x) = 0. Then for w 	= 0, the evolution equation for

the mean statistics, 〈T 〉 , cannot be ill-posed unless the evolution equation

for the second order correlations, P (x, y, t), is ill-posed for some range of

initial separation distances.

We leave the proof of the Corollary as an elementary exercise for the

reader given the Theorem. Similarly, part A) of the Theorem is a direct

consequence of the formula in (2.7). We prove part B) by utilizing the

formula in (2.15) and the following elementary identities. First we change

variables in (2.15) to obtain

(2.21) D(x, t) =

∫ t

0
2R(|ws|) −R(|x+ ws|) −R(|x− ws|) ds.
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Looking at the formula in (2.21) as the sum of three integrals, it can be

rewritten by setting 1
w (x+ws) = s′ in the second integral and 1

w (ws−x) = s̃

in the third integral to get

(2.22)

D(x, t) =

∫ t

0
2R(|ws|) ds−

∫ x
w

+t

x
w

R(|ws′|) ds′

−
∫ t− x

w

− x
w

R(|w s̃|) ds̃

=

∫ x
w

0
R(|ws|) ds−

∫ t+ x
w

t
R(|ws|) ds

−
∫ 0

− x
w

R(|ws|) ds+

∫ t

t− x
w

R(|ws|) ds.

The second equality above is obtained by subtracting over common inte-

gration regions. Since R is even, cancellations in (2.22) yield the useful

formula

(2.23) D(x, t) =

∫ t

t− x
w

R(|ws|) ds−
∫ t+ x

w

t
R(|ws|) ds.

The identity in (2.23) expresses D(x, t) as the difference of two integrals of

the velocity correlation function over equal and adjacent intervals of arbi-

trary length and location as x and t vary for w 	= 0. Thus, from (2.23) the

only way in which the coefficient D(x, t) can remain non-negative for all

x and t is for the correlation function R(x) to be monotone decreasing on

[0,∞). This completes the proof of the Theorem.

Remark: In the situation with ill-posed evolution equations for either

the pair distance equation or the mean statistics, Monte Carlo simulation

of the respective statistical quantity by any accurate procedure necessarily

exhibits large fluctuations (see [14]).

2D) An Instructive Example—Velocity Statistics Generated by

the Stochastic Damped Harmonic Oscillator

We consider stationary Gaussian velocity fields v(x) which solve the

damped linear harmonic oscillator forced by Gaussian white noise (see pages

74–76 of [13]). The random field v(x) satisfies the stochastic O.D.E.

(2.24) d

(
dv

dx

)
+ 2αdv + ω2v dx = dW (x)
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where α with α > 0 is the damping constant, ω is the oscillation frequency,

and dW (x) is Gaussian white noise. There are three different regimes of

behavior for the velocity correlation function, R(x), depending on the ratio

of the oscillation frequency, ω, to the damping coefficient, α. This correlation

function is given explicitly in these three regions by the following ([13]):

(2.25)

A) For ω2 > α2 with β =
√
ω2 − α2

R(x) =
π

2αω2
e−2πα|x|

[
cos (2πβ|x|) +

α

β
sin (2πβ|x|)

]
B) For ω2 = α2

R(x) =
π

2α3
e−2πα|x| (1 + 2πα|x|)

C) For ω2 < α2 with β1 =
√
α2 − ω2

R(x) =
π

4αω2β1

×
[
(α+ β1) e

−2π(α−β1)|x| − (α− β1) e
−2π(α+β1)|x|

]
As a direct application of part B) of the Theorem, we claim the following

result:

(2.26)

For the stationary velocity statistics in (2.24), the

evolution equation for the second order statistics P (x, y, t)

is ill-posed for some times and separation distances

if and only if the oscillation frequency exceeds the

damping coefficient, i.e. ω2 > α2.

The proof is an explicit calculation utilizing the Theorem and (2.25).

Next, we seek to determine the range of ω and α where the evolution

equation for the mean statistics in (2.7) is an ill-posed equation. According

to the Corollary and (2.26), this set is necessarily contained within the set

where ω2 > α2. However, in general, we will see that the equation for the

mean statistics, 〈T 〉 , is well-posed unless the parameters ω and α satisfy

ω2 � α2. To quantify this statement, we calculate that for ω2 > α2, D(t)

in (2.7) is given explicitly by

(2.27)
D(t) =

1

2wω4

[
1 − e−2παwt cos (2πβwt)

+
(ω2 − 2α2)

2αβ
e−2παwt sin (2πβwt)

]
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where we recall that β =
√
ω2 − α2. This formula indicates that the only way

in which we can get instability for some interval of time in the evolution

equation for the mean statistics, 〈T 〉 , is provided that with ω2

α2 = c and

c ≥ 2, we have

(2.28)
e−τ cos

(√
c− 1 τ

)
− c− 2

2
√
c− 1

e−τ sin
(√

c− 1 τ
)
> 1,

for some τ > 0

where τ = 2παwt. The equation in non-dimensional form in (2.28) can be

solved numerically to determine c with the following results:

(2.29)

For ω2

α2 > 27.197, the evolution equation for the mean statistics,

〈T 〉 , always has a region of instability in time.

For ω2

α2 < 27.196, the evolution equation for the mean statistics,

〈T 〉 , is always well-posed in time.

Thus, the evolution equations for both of the statistical quantities, 〈T 〉 and

P (x, y, t), are ill-posed in some intervals of time for ω2

α2 > 27.197, but the

parameter region for instability for the pair distance statistics, ω2 > α2, is

significantly larger than that for the mean statistics.

3. Large Scale, Long Time Renormalization Theory for the Mean

and Second Order Statistics with κ = 0

Here we consider the statistical behavior of the quantity T which satisfies

the simple equation

(3.1)

∂T

∂t
+ w

∂T

∂x
+ v(x)

∂T

∂y
= 0

T |t=0 = T0(x, y)

where the steady velocity v(x) is a zero mean stationary Gaussian random

field with correlation function given by

(3.2)
〈v(x+ x′) v(x′)〉 = Rε(x)

= V 2
∫ ∞

−∞
e2πikx|k|1−εψ∞(|k|) dk

and ε is a parameter characterizing the statistical behavior of the velocity

at large scales. In the theory for the mean statistics, 〈T 〉 , for (3.1), the
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parameter ε ranges from −∞ < ε < 2; on the other hand, for the second

order statistics defined by the pair distance function, P (x, y, t), despite the

infinite behavior in (1.6) as δ → 0 for 2 < ε < 4, the behavior for P (x, y, t)

is finite for −∞ < ε < 4. The parameter ε measures the strength of the

infrared divergence; as ε increases, we expect to see “phase transitions” to

regimes of anomalous enhanced diffusion for both statistical quantities, 〈T 〉
and P, in the renormalized large scale, long time limit ([5], [6], [7]). First,

we develop this renormalization theory as well as more explicit examples of

the phenomena in Section 2 for the mean statistics with −∞ < ε < 2; then

we develop the theory for the second order statistics defined by P (x, y, t)

for the parameter range with −∞ < ε < 4.

3A) Renormalization Theory for the Mean Statistics

In (2.7) and (2.8) of Section 2, we have derived an evolution equation for

the mean statistics, 〈T 〉 , in a coordinate system moving with the constant

mean flow given by

(3.3)

∂ 〈T 〉
∂t

= D(t)
∂2 〈T 〉
∂y2

〈T 〉 |t=0 = T0(x, y)

where

(3.4) D(t) =

∫ t

0
R(ws) ds.

The most interesting functional of 〈T 〉 which measures the spreading of the

statistical cloud is the mean square displacement,
〈
Y 2(t)

〉
, in the y-direction

given by

(3.5)
〈
Y 2(t)

〉
=

∫
y2 〈T 〉 dy

where 〈T (y, t)〉 is the special solution of the equation in (3.3) with the point

source initial data,

〈T (y, t)〉 |t=0 = δ(0).

Thus, with (3.3), the mean square displacement,
〈
Y 2(t)

〉
, is given by

(3.6)
〈
Y 2(t)

〉
= 2

∫ t

0
D(s) ds.
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3A) 1. Mean Statistics with w = 0

In this special case the equations in (3.3) and (3.4) are extremely simple

and reduce to

(3.7)

∂ 〈T 〉
∂t

= tRε(0)
∂2 〈T 〉
∂y2

〈T (x, y, t)〉 |t=0 = T0(x, y)

with

(3.8) Rε(0) = V 2
∫ ∞

−∞
|k|1−εψ∞(|k|) dk.

We remark that Rε satisfies Rε(0) < ∞ for −∞ < ε < 2. The universal

large scale, long time behavior in this case is extremely easy to establish

and serves as a prototype for the more difficult calculations which follow

below. Consider the rescaling transformation

(3.9) x′ = λx, y′ = αy, t′ = ρ2t

where λ, α, ρ2 are scaling constants perhaps functionally related with λ, α,

ρ → 0 so that the primed coordinates correspond to large scales and long

times. Our use of the parameter ρ2 for time rescaling is motivated both by

an attempt to keep the notation somewhat consistent with references [6] and

[7] for comparison and also from the fact that a standard diffusion equation

is invariant under the special scaling group, x′ = αx, y′ = αy, t′ = α2t. To

develop the large time rescaling theory for (3.7), we consider

(3.10) T
Λ
(x, y, t) = (λα)−1 〈T 〉

(
x

λ
,
y

α
,
t

ρ2

)
where Λ = (λ, α, ρ2) under the assumption that

(3.11)

∫
R2

T0(x, y) = 1.

From (3.7)–(3.10) we calculate that T
Λ

satisfies the equation

(3.12)
∂T

Λ

∂t
=

α2

ρ4
tRε(0)

∂2T
Λ

∂y2
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with

(3.13) T
Λ|t=0 = (λα)−1T0

(
x

λ
,
y

α

)
.

Thus, with (3.11) as Λ → 0, T
Λ

converges to T , the universal scale invariant

solution of the diffusion equation

(3.14)
∂T

∂t
= tRε(0)

∂2T

∂y2

T |t=0 = δ(x) ⊗ δ(y)

provided that the scaling parameters are linked so that

(3.15) ρ = α
1
2 .

Clearly, the solution T from (3.14) is invariant under the transformation

group associated with the law in (3.15), i.e.

(3.16) x′ = λx, y′ = αy, t′ = αt

and yields the universal large scale, long time behavior for initial data sat-

isfying (3.11). There is no restriction on λ in (3.16) except that λ → 0.

We remark that other scaling behavior is possible. If instead we choose

ρ(α) = αθ with θ < 1
2 , then the scale invariant solution satisfies the trivial

equation

(3.17)
∂T

∂t
= 0

T |t=0 = δ(x) ⊗ δ(y).

Of course, the rescaling ρ(α) = αθ with θ < 1
2 corresponds to a shorter

renormalized time than the scaling ρ(α) = α
1
2 so that the trivial behavior

in (3.17) is a short time limit of the universal behavior in (3.14).

3A) 2. Mean Statistics with w 	= 0

Before computing the large scale, long time renormalization theory for

the mean statistics, we examine the nature of the diffusion equation in (3.3)

for the velocity statistics in (3.2) with the special ultraviolet cut-off

(3.18) ψ∞(|k|) = e−|k|.
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For this specific cut-off, the expression for D(t) in (3.4) utilizing (3.2) can

be calculated in closed form yielding the formulas

(3.19) D(t) =
V 2

|w|π
(
1 + 4π2w2t2

) ε
2
− 1

2 Γ(1 − ε) sin [(1 − ε) arctan(2π|wt|)]

for −∞ < ε < 2 and ε 	= 1 and

(3.20) D(t) =
V 2

|w|π arctan(2π|wt|)

for ε = 1. With these explicit formulas, we leave it to the reader to easily

verify that D(t) is negative for some interval of time if and only if ε < −1.

Thus,

(3.21)

for w 	= 0 and the special cut-off ψ∞ = e−|k|, the evolution

equation for the mean statistics is ill-posed for some interval

of time if and only if ε satisfies ε < −1.

It is also possible to calculate explicitly the mean square displacement for

any time for this special cut-off with ψ∞ = e−|k|. Recalling that ∂
∂t

〈
Y 2(t)

〉
=

2D(t), allows us to write the mean square displacement as follows

(3.22)

〈
Y 2(t)

〉
=

2V 2

|w|π

∫ t

0

∫ ∞

0
sin(2πkws)|k|−εψ∞(|k|) dk

=
V 2

w2π2

∫ ∞

0
[1 − cos(2πkwt)]|k|−1−εψ∞(|k|) dk

for ε < 2. Doing the integration in (3.22) analytically with ψ∞(|k|) = e−|k|

yields

(3.23)

〈
Y 2(t)

〉
=

V 2

w2π2

×
[
Γ(−ε) − Γ(−ε)(1 + 4π2w2t2)

ε
2 cos(ε arctan(2π|wt|) )

]
for ε < 2 and ε 	= 0, 1. For ε = 0, the calculation of (3.22) gives

(3.24)
〈
Y 2(t)

〉
=

V 2

2w2π2
log

(
1 + 4π2w2t2

)
;

while for ε = 1,

(3.25)
〈
Y 2(t)

〉
=

V 2

w2π2

[
2π|wt| arctan(2π|wt|) − 1

2
log

(
1 + 4π2w2t2

)]
.
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Next we develop the general large scale long time renormalization theory

for the mean statistics with w 	= 0. For simplicity in exposition, we assume

that the initial data T0(x, y) satisfies the requirement in (3.11). For w 	= 0,

the fact that the covariance function and the spectral density function are

a Fourier transform pair is used to simplify (3.4). Since

(3.26) R(x) = V 2
∫ ∞

−∞
cos(2πkx)|k|1−ε ψ∞(|k|) dk,

the equation in (3.4) for the “diffusion” coefficient in (3.3) becomes

(3.27)

D(t) = V 2
∫ t

0

∫ ∞

−∞
cos (2πkw(s− t)) |k|1−ε ψ∞(|k|) dk ds

= 2V 2
∫ ∞

0

∫ t

0
cos (2πkw(s− t)) ds |k|1−ε ψ∞(|k|) dk

=
V 2

|w|π

∫ ∞

0
sin(2πkwt)|k|−ε ψ∞(k) dk.

For large k, convergence of the formula in (3.27) is assured because of the

ultraviolet cut-off, ψ∞(|k|). For small k, the Taylor series of the sine term

is of order k making the final formula in (3.27) absolutely convergent for

ε < 2. With the rescaling transformation from (3.9), T
Λ

defined in (3.10)

satisfies the diffusion equation

(3.28)

∂T
Λ

∂t
=

α2

ρ2
D

(
t

ρ2

)
∂2T

Λ

∂y2

T
Λ|t=0 = (λα)−1T0

(
x

λ
,
y

α

)
.

Setting D̃ = α2

ρ2 D
(

t
ρ2

)
and utilizing (3.27), we obtain that

(3.29)
D̃ =

V 2

|w|π
α2

ρ2

∫ ∞

0
sin

(
2πkw

t

ρ2

)
|k|−ε ψ∞(k) dk

=
V 2

|w|π

(
α

ρε

)2 ∫ ∞

0
sin(2πkwt) |k|−ε ψ∞(ρ2k) dk.

The limiting behavior of D̃ as α, ρ → 0 depends strongly on the value of ε

with −∞ < ε < 2.

First consider the region with ε < 0; then for |wt| > 0, the standard

stationary phase integration by parts trick yields that the oscillatory integral

(3.30)

∫ ∞

0
sin(2πkwt) |k|−ε ψ∞(ρ2k) dk = O(1 + |wt|−L)
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for ε < 0, any L > 0, and any ρ → 0. Also for ε < 0,
(

α
ρε

)2
→ 0 provided

α and ρ tend to zero. Thus, the large scale diffusion coefficient satisfies

D̃ → 0 for any long time rescaling with ρ → 0 and T
Λ

converges to T which

satisfies the trivial equation from (3.17).

For ε with 0 < ε < 2, we have the convergent formula for t > 0 given by

(3.31)
lim
ρ→0

∫ ∞

0
sin(2πkwt) |k|−ε ψ∞(ρ2k) dk

= tε−1(2πw)ε−1 sin

(
π

2
(1 − ε)

)
Γ(1 − ε).

With the equation in (3.28) satisfied by T
Λ

with D̃ given in (3.29), the fact

in (3.31) implies that we need to pick the scaling law

(3.32) ρ = α
1
ε , 0 < ε < 2.

Then the scaled mean statistics T
Λ

converges to T for any t > 0 where T

satisfies

(3.33)
∂T

∂t
= Ĉε t

ε−1 ∂
2T

∂y2

T |t=0 = δ(x) ⊗ δ(y)

with

(3.34)

Ĉε(w) = 2V 2(2πw)ε−2 sin

(
π

2
(1 − ε)

)
Γ(1 − ε)

=
1

2
V 2πε− 3

2 wε−2 Γ
(
1 − ε

2

)
Γ

(
1
2 + ε

2

)
for 0 < ε < 2. Thus, with the hypothesis in (3.11) for the initial data,

the universal scale invariant behavior of the mean statistics is determined

by the scaling law in (3.32) and the Green’s function for (3.33) which is

readily calculated explicitly through time rescaled Gaussian kernels. Of

course the function T remains invariant under the transformation group in

(3.9) provided that ρ is determined from α through the renormalized scaling

law in (3.32).

The large scale, long time behavior of the mean square displacement,〈
Y 2(t)

〉
, is readily calculated from (3.33) yielding the formula

(3.35)
〈
Y 2(t)

〉
=

 0, ε < 0
2

ε
Ĉε(w)tε, 0 < ε < 2.
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For ordinary diffusion at large scales, we have
〈
Y 2(t)

〉
= D∗t. From (3.35)

we see that the effect on the mean statistics at large scales and long times of

the mean flow, w, together with the random velocity field, v(x), is universal

for a fixed ε but strongly depends on ε with

(3.36)
trapping for ε < 0 sub-diffusion for 0 < ε < 1 ordinary

diffusion for ε = 1 super-diffusion for 1 < ε < 2.

This behavior is summarized in the following table:

Table 3.1. Large Scale Renormalization Theory for Mean Statistics When w �= 0

Mean Square Qualitative
Parameter Scaling Law Displacement Behavior

ε < 0 arbitrary
〈
Y 2(t)

〉
∼ 0 trapping

0 < ε < 1 ρ = α
1
ε

〈
Y 2(t)

〉
∼ tε sub-diffusive

ε = 1 ρ = α
〈
Y 2(t)

〉
∼ t diffusive

1 < ε < 2 ρ = α
1
ε

〈
Y 2(t)

〉
∼ tε super-diffusive

The behavior of the large scale mean statistics is clearly a sensitive

function of whether w = 0 or w 	= 0. For w = 0, it follows from (3.14) that

the large scale mean square displacement satisfies

(3.37)
〈
Y 2(t)

〉
= 2Rε(0) t2, −∞ < ε < 2

i.e. “ballistic” scaling for any value of ε with ε < 2. On the other hand, for

any small value of w 	= 0, we have the subtle dependence on ε described in

Table 3.1. Thus, the large scale, long time behavior for the mean statistics

exhibits singular dependence on w for w near zero.

The interested reader can confirm the renormalization theory for w 	= 0

presented in (3.32) to (3.36) in the special case with ψ∞(|k|) = e−|k| by

explicitly evaluating the formulas in (3.19) and (3.23)–(3.25) in large time

asymptotic regimes. In particular, asymptotic evaluation of (3.24) at large

times yields the transition behavior
〈
Y 2(t)

〉 ∼= C log(t) for ε = 0. Such

logarithmic corrections are typical in crossing phase transition boundaries

in renormalization theory ([6], [15]).
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3B) Renormalization Theory for the Second Order Statistics

Here we consider the renormalization theory for the correlation function

P (x, y, t) = 〈T (x+ x′, y + y′, t)T (x′, y′, t)〉 or equivalently the pair distance

equation as described in (2.16). We begin with the simpler situation with

no mean flow, i.e. w = 0.

3B) 1. Second Order Statistics with w = 0

The equation for the correlation function P (x, y, t) derived in (2.14) for

the special case with w = 0 reduces to the evolution equation

∂P

∂t
= 2t (Rε(0) −Rε(x))

∂2P

∂y2
(3.38)

P |t=0 = 〈T0(x, y)T0(0, 0)〉(3.39)

in the case of Gaussian random initial data T0(x, y) as given in (2.9). This is

always a well-posed problem for any velocity statistics since Rε(0) ≥ Rε(x)

for 0 ≤ x < +∞. Next we follow ideas in references [5] and [18] to establish

the equation in (3.38) for ε with −∞ < ε < 4 despite the fact that Rε(0) is

formally infinite in the range 2 < ε < 4. The obvious strategy is first to use

the pair distance equation with the stationary Gaussian random velocity

field associated with the cut-off spectrum in (1.5) and then to pass to the

limit (see [18] for details). Thus, the corresponding correlation function

P δ(x, y, t) satisfies the equation

(3.40)
∂P δ

∂t
= 2t (Rδ

ε(0) −Rδ
ε(x))

∂2P δ

∂y2

P δ|t=0 = 〈T0(x, y)T0(0, 0)〉 .

We calculate that

(3.41) Rδ
ε(0) −Rδ

ε(x) = 2V 2
∫ ∞

δ
(1 − cos(2πkx))|k|1−ε ψ∞(k) dk.

The key simple observation is that the integral in (3.41) converges absolutely

as δ → 0 to

(3.42) 2V 2
∫ ∞

0
(1 − cos(2πkx))|k|1−ε ψ∞(k) dk < +∞

for the entire range of spectral parameters, ε, with −∞ < ε < 4; further-

more, Taylor expansion of cos(kx) for k near zero yields absolute conver-

gence of the integral in (3.42) for ε with −∞ < ε < 4. With a slight abuse of
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notation, we denote the expression in (3.42) as Rε(0)−Rε(x) (even though

Rε(0) = +∞ for 2 ≤ ε < 4). Clearly it is not difficult to prove that the

solutions P δ of (3.40) with smooth initial data converge to P which sat-

isfies the limiting equation in (3.38) for −∞ < ε < 4 provided we make

the identification between Rε(0)−Rε(x) and (3.42) as mentioned above for

2 ≤ ε < 4.

To develop the large scale, long time renormalization theory for the

correlation function, we consider the rescaling transformation in (3.9) and

consider the rescaled correlation function PΛ analogous to T
Λ

from (3.10)

for the mean statistics. Thus, PΛ is given by

(3.43) PΛ(x, y, t) = (λα)−1P

(
x

λ
,
y

α
,
t

ρ2

)
.

From (3.38) PΛ satisfies

(3.44)

∂PΛ

∂t
=

α2

ρ4
2t

(
Rε(0) −Rε

(
x

λ

))
∂2PΛ

∂y2

PΛ|t=0 = (λα)−1
〈
T0

(
x

λ
,
y

λ

)
T0(0, 0)

〉
.

There is a completely different scaling behavior for Rε(0)−Rε
(
x
λ

)
as λ → 0

in the regime ε < 2 compared with the regime 2 < ε < 4.

First, in the regime with −∞ < ε < 2, since |k|1−εψ∞(|k|) ∈ L1, the

Riemann-Lebesgue lemma implies that

(3.45) Rε

(
x

λ

)
→ 0.

Therefore, PΛ converges to P which satisfies the diffusion equation

(3.46)
∂P

∂t
= 2tRε(0)

∂2P

∂y2

P |t=0 = C0δ(x) ⊗ δ(y)

for −∞ < ε < 2 provided that we use the same scaling relation

(3.47) ρ = α
1
2

as in the case for the mean statistics with w = 0 described in (3.14) to

(3.16). In this regime pairs of particles are uncorrelated and the diffusion
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coefficient for the pair distance function is merely twice the coefficient of

the mean statistics in (3.14). Incidentally, the constant C0 in (3.46) is given

by

(3.48)
C0 =

∫
R2

〈T0(x, y)T0(0, 0)〉 dx dy
= |T̂ |2(0)

and for simplicity in exposition, we always assume the Gaussian random

initial data in (2.9) satisfies |T̂ |2(0) 	= 0.

For the range with 2 < ε < 4, the function Rε(0) − Rε
(
x
λ

)
from (3.42)

has completely different scaling behavior which corresponds, according to

Barenblatt’s classification from [22], to asymptotic behavior of the second

kind in the parameter ε for ε > 2 (see [18]). By rescaling (3.42), it is easy

to establish the asymptotic behavior

(3.49) Rε(0) −Rε

(
x

λ

)
=

( |x|
λ

)ε−2

(Cε + o(1))

for 2 < ε < 4 as λ → 0 with

(3.50)

Cε = 2V 2
∫ ∞

0
(1 − cos(2πk))|k|1−ε dk

=
−V 2πε− 3

2 Γ
(
1 − ε

2

)
Γ
(
−1

2 + ε
2

) .

Thus, with (3.49) and (3.44), PΛ satisfies the equation

(3.51)
∂PΛ

∂t
=

(
α2λ2−ε

ρ4

)
2t |x|ε−2(Cε + o(1))

∂2PΛ

∂y2
.

Thus, we choose the scaling parameters (α, λ, ρ2) = Λ to satisfy

(3.52)
α2λ2−ε

ρ4
= 1, Λ → 0

for 2 < ε < 4. Then PΛ converges to P , the large scale, long time renormal-

ized correlation function where P satisfies the equation

(3.53)
∂P

∂t
= 2t |x|ε−2Cε

∂2P

∂y2

P |t=0 = C0δ(x) ⊗ δ(y)
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for 2 < ε < 4. The function P is clearly invariant under the scaling trans-

formation from (3.9) provided that Λ satisfies (3.52). The function P in

(3.53) is no longer Gaussian for fixed times for ε with 2 < ε < 4 unlike

(3.46) and reflects the build up of large scale correlations. (See [18] for a

complete discussion of the renormalization theory on a related problem and

also including the effects of molecular diffusion.) The δ function initial data

in (3.53) formally corresponds to the correlation function for scale invariant

Gaussian white noise statistics.

The function P in (3.46) and (3.53) together with the scaling laws in

(3.47) and (3.52) respectively describe the behavior of the renormalization

theory for the correlation functions in the case with w = 0. Clearly, there

is a “phase transition” from standard scaling behavior with uncorrelated

statistics for ε with −∞ < ε < 2 to anomalous scaling behavior with strongly

correlated statistics for ε with 2 < ε < 4.

3B) 2. Second Order Statistics with w 	= 0

As in the case of the mean statistics, 〈T 〉 , a nontrivial mean flow with

w 	= 0 in (3.1) introduces subtle new phenomena in the renormalization

theory for the correlation functions. A similar situation arises here for the

case with w 	= 0 as was discussed in (3.38)–(3.42) for the case with w = 0;

namely the pair distance evolution equation in (2.14) for w 	= 0 with the

velocity statistics in (3.2) extends to the regime −∞ < ε < 4. Rather than

repeat a similar argument as given in (3.38)–(3.42) in detail, we simply

present the equation in (2.14) for w 	= 0 with the formula for the diffusivity

utilizing (2.15) and show that this formula converges for −∞ < ε < 4.

With the velocity statistics described in (3.2), the equation for P (x, y, t)

in a shifted Galilean reference frame from (2.14) is given by

(3.54)

∂P

∂t
= D(x, t, w)

∂2P

∂y2

P |t=0 = 〈T0(x, y)T0(0, 0)〉
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where

(3.55)

D(x, t, w)

= 2

∫ ∞

0

∫ t

0
[2 cos(2πkws) − cos(2πk(x+ ws))

− cos(2πk(x− ws))]E(|k|) ds dk

=
2

πw

∫ ∞

0

[
sin(2πkwt) − 1

2
sin(2πk(wt+ x))

−1

2
sin(2πk(wt− x))

]
E(k)

k
dk

with E(k) = V 2 k1−ε ψ∞(k). This form of D(x, t, w) allows the rather

straightforward determination of convergence properties of D(x, t, w). For

large k, the ultraviolet cut-off, ψ∞(|k|), causes large wave number conver-

gence. For small k, from the Taylor expansion of the sine terms in (3.55),

it can readily be seen that the sum of the sine terms is of order k3; thus,

D(x, t, w) converges for ε < 4.

The first region of parameter space to be studied is the region in which

ε < 1. In this regime, the following inequality obtained from (3.55) holds:

(3.56) |D(x, t, w)| ≤ 4V 2

π|w|

∫ ∞

0
|k|−εψ∞(|k|) dk.

In other words, D(x, t, w) is bounded a priori by a constant that depends

on the ultraviolet cut-off, ψ∞. The function ψ∞(|k|) = e−|k| is chosen as an

instructive example since the covariance R can be computed explicitly and

is

(3.57) R

(
x

2π

)
=

2V 2

(1 + x2)1−
ε
2

cos

(
2
(
1 − ε

2

)
arctan(x)

)
Γ(2 − ε)

With the explicit formula in (3.57) we apply the Theorem in Section 2 to

deduce the following fact:

(3.58)

for w 	= 0 and the special cut-off ψ∞ = e−|k|, the evolution

equation for the pair correlation function is ill-posed for some

separation distances in x and for some interval of time provided

that ε satisfies ε < 1.

It is amusing to compare the behavior in (3.58) for the pair correlation statis-

tics with the behavior established earlier in (3.21) for the mean statistics.
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Lack of space in this paper prevents a more detailed study of the regime

with ε < 1 and w 	= 0 beyond these comments (see [14] for a numerical

study).

Instead we concentrate on the regime 1 < ε < 4 for the correlation

statistics with w 	= 0 since the regime 1 < ε < 2 yields super-diffusive

behavior for the mean statistics with w 	= 0. For 1 < ε < 4, the formula in

(3.55) is well-behaved even if ψ∞(|k|) ≡ 1. In this special case, the integral

representation in (3.55) can be computed explicitly to give

(3.59)

D(x, t, w) = w−1π− 3
2
+ε Γ

(
1 − ε

2

)
Γ

(
1
2 + ε

2

) V 2

×
[
|wt|ε−1sgn(wt) − 1

2
|wt+ x|ε−1sgn(wt+ x)

−1

2
|wt− x|ε−1sgn(wt− x)

]
for 1 < ε < 4, ε 	= 2 and

(3.60) D(x, t, w) = 2V 2

(
t log

∣∣∣∣∣x2 − w2t2

w2t2

∣∣∣∣∣ +
x

w
log

∣∣∣∣x+ wt

x− wt

∣∣∣∣
)

for ε = 2. In contrast to the behavior in (3.58) for ε < 1, we claim the

following fact:

(3.61)

For 1 < ε < 4, the coefficient D(x, t, w) from (3.59) and

(3.60) satisfies D(x, t, w) > 0 so that the evolution equation

in (3.54) for the correlation function is well-posed.

The proof of this claim is given in the Appendix.

For the second order statistics, P (x, y, t), an important physical quantity,

that is analogous to the mean square displacement for the mean statistics,

is the y-component of the mean square dispersion,
〈
/2y

〉
, related to the size

of clouds ([21]) and defined by

(3.62)
〈
/2y

〉
=

∫
y2P (x, y, t) dy

where P (x, y, t) satisfies (2.14) with initial conditions given by a prescribed

initial separation distance

(3.63) P (x, y, t) = δ(x− x0) ⊗ δ(y − y0).
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Of course, the interpretation of P (x, y, t) as the pair distance function, as

described in (2.16), is most relevant for understanding the mean square

dispersion from an intuitive point of view. With (2.14) and the initial

condition in (3.63), it is easy to calculate the general formula

(3.64)
〈
/2y

〉
= 2

∫ t

0
D(x0, s, w) ds+ y2

0 .

For the special case with ψ∞ ≡ 1, w 	= 0, and 1 < ε < 4, ε 	= 2, the formula

in (3.59) can be integrated explicitly to provide a useful example (see [14],

[17]). This formula yields

(3.65)

〈
/2y

〉
=

πε− 3
2

w2

V 2Γ
(
− ε

2

)
Γ

(
1
2 + ε

2

)
×

[
−|x0|ε − |wt|ε +

1

2
|x0 − wt|ε +

1

2
|x0 + wt|ε

]
+ y2

0 .

Next we develop the large scale, long time renormalization theory for

the correlation function, P (x, y, t), in the regime 1 < ε < 4 (ε 	= 2) with

w 	= 0 for the special case with ψ∞ ≡ 1 and D(x, t, w) given explicitly in

(3.59). With the rescaling transformation in (3.9) and (3.54), PΛ defined in

(3.43) satisfies

(3.66)

∂PΛ

∂t
= D̃

(
x

λ
,
t

ρ2
, w

)
∂2PΛ

∂y2

PΛ|t=0 = (λα)−1
〈
T0

(
x

λ
,
y

α

)
T0(0, 0)

〉
where

(3.67) D̃

(
x

λ
,
t

ρ2
, w

)
=

α2

ρ2
D

(
x

λ
,
t

ρ2
, w

)
with D given explicitly in (3.59). We denote by Cε the constant from (3.59)

given by Cε = π− 3
2
+ε Γ(1− ε

2)
Γ( 1

2
+ ε

2)
V 2.

We are interested in all limits with universal scaling behavior for PΛ

provided that Λ = (λ, α, ρ) → 0. For w 	= 0, another independent parameter

emerges, namely the ratio λ
ρ2 , for the renormalization theory as compared

with the case when w = 0. The quantity D̃ in (3.67) exhibits singular
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dependence for fixed ε and 1 < ε < 4 in both of the two scaling regimes
λ
ρ2 → 0 or λ

ρ2 → ∞ in the sense of Barenblatt’s intermediate asymptotics

of the second kind ([22]). This results in a more complex renormalization

theory for the correlations in the present case with w 	= 0 when compared

with the case with w = 0 which is already treated in (3.45)–(3.53).

First, we consider renormalization in the balanced regime where

(3.68)
λ

ρ2
= 1, i.e. ρ = λ

1
2 .

Then, from (3.59), we have the exact scaling behavior

(3.69) D̃

(
x

λ
,
t

ρ2
, w

)
=

α2λ1−ε

ρ2
D(x, t, w).

Thus, with the nonlinear scaling laws

(3.70) α = λ
ε
2 , ρ = λ

1
2

the correlation function PΛ converges to P as Λ → 0 where P is the solution

of the equation

(3.71)
∂P

∂t
= D(x, t, w)

∂2P

∂y2

P |t=0 = C0δ(x) ⊗ δ(y).

The function P is clearly invariant under the scaling transformation in (3.9)

with the nonlinear scaling laws from (3.70). The formulas in (3.70) and

(3.71) together define one scale invariant universal renormalization theory

which is distinct from the case with w = 0.

Next, we consider the regime where Λ → 0 and

(3.72)
λ

ρ2(λ)
→ 0.

With the relation in (3.72), we scale and Taylor expand D̃ from (3.67) to

obtain

(3.73)

D̃

(
x

λ
,
t

ρ2
, w

)
=

Cε

w

[(
α

ρε

)2

|wt|ε−1

+
α2λ2−ε

ρ4

(
|x|ε−2(1 − ε)wt+ o

(( λ

ρ2

)θ))]
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for some θ > 0. Thus, in the regime with λ
ρ2(λ)

→ 0, PΛ satisfies the diffusion

equation

(3.74)

∂PΛ

∂t
=

Cε

w

[(
α

ρε

)2

|wt|ε−1

+
α2λ2−ε

ρ4

(
|x|ε−2(1 − ε)wt+ o

(( λ

ρ2

)θ))]
∂2PΛ

∂y2
.

In this regime where λ
ρ2 → 0, there are different renormalization theories

that occur for 1 < ε < 2 and 2 < ε < 4.

For 1 < ε < 2, we use the scaling law

(3.75) ρ = α
1
ε .

Then with this scaling law, α2λ2−ε

ρ4 =
(

λ
ρ2

)2−ε
→ 0 for 1 < ε < 2. Therefore,

PΛ converges to P where P satisfies

(3.76)
∂P

∂t
= 2Ĉε t

ε−1 ∂
2P

∂y2

P |t=0 = δ(x) ⊗ δ(y)

with Ĉε the constant in (3.34). This is precisely the uncorrelated but super-

diffusive behavior already documented for the mean statistics in (3.33) with

the identical scaling law from (3.32).

For 2 < ε < 4 in the situation with λ
ρ2 → 0, we look at (3.74) and select

the nonlinear scaling law

(3.77)
α2λ2−ε

ρ4
= 1.

With the choice in (3.77),
(

α
ρε

)2
=

(
λ
ρ2

)ε−2
→ 0 for 2 < ε < 4. Thus, from

(3.74) we see that PΛ converges to P where P satisfies the diffusion equation

(3.78)
∂P

∂t
= (Cε(1 − ε)) t |x|ε−2 ∂

2P

∂y2

P |t=0 = C0 δ(x) ⊗ δ(y).

Looking back at (3.52) and (3.53), since Cε(1 − ε) = 2Cε from (3.50), we

see that the renormalization theory in (3.77) and (3.78) reduces to the one

discussed earlier for w = 0 and ε with 2 < ε < 4.
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For completeness, without any details, we report the behavior for the

third renormalization regime characterized by the requirements, Λ → 0 but
λ
ρ2 → ∞. In this case, the nonlinear scaling law in given by

(3.79) α = λρε−2

for 1 < ε < 4 and PΛ converges to P where P satisfies

(3.80)
∂P

∂t
= Cε(ε− 1)(ε− 2)|w|ε−4|t|ε−3 x2 ∂

2P

∂y2

P |t=0 = δ(x) ⊗ δ(y).

It is worth remarking here that with the Cε given below (3.67), Cε(ε −
1)(ε − 2) defines a positive diffusion coefficient for 1 < ε < 4. It is worth

mentioning here that the nonlinear scaling laws in (3.77) and (3.79) both

converge in the limit λ
ρ2 → 1 to the scaling law in (3.70).

The following table summarizes the large scale, long time renormaliza-

tion theory for the correlation functions which we have just developed. The

expression “diffusion” coefficient in these tables always refers to the ex-

plicit diffusion coefficient for the evolution equation for P which we have

calculated above. It is worth emphasizing here that for all of these differ-

ent regimes of behavior with −∞ < ε < 4, the renormalized second order

correlation functions, P, are universal and scale invariant with the appro-

priate rescaling x′ = λx, y′ = αy, t′ = ρ2t with α, ρ determined by the

corresponding nonlinear scaling law.

4. The Effect on the Mean Statistics of Molecular Diffusion with

w 	= 0

We consider the effects of molecular diffusion on the mean statistics for

the model equation

(4.1)

∂T

∂t
+ w

∂T

∂x
+ v(x)

∂T

∂y
= κ∆T

T |t=0 = T0(x, y).

As in Section 3, we consider v(x) to be a stationary zero mean Gaussian

random field with correlation function given by

(4.2) R(x) = V 2
∫ ∞

−∞
e2πikx|k|1−εψ∞(|k|) dk
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Table 3.2. Large Scale Renormalization Theory for Second Order Statistics When a)

w = 0 and b) w �= 0

a)

w = 0

“Diffusion”
Parameter Scaling Law Coefficient

ε < 2 ρ = α
1
2 O(t)

2 < ε < 4 α2λ2−ε

ρ4 = 1 O(t|x|ε−2)

b)

w 	= 0

“Diffusion”
Regime Parameter Scaling Law Coefficient

λ
ρ2 = 1 1 < ε < 4 ρ = λ

1
2 , α = λ

ε
2 equation (3.59)†

λ
ρ2 → 0 1 < ε < 2 ρ = α

1
ε O(tε−1)‡

2 < ε < 4 α2λ2−ε

ρ4 = 1 O(t|x|ε−2)§

λ
ρ2 → ∞ 1 < ε < 4 αρ2−ε

λ = 1 O(tε−3x2)

† Scale invariant universal theory.
‡ Uncorrelated and same as for mean statistics.
§ Same as for w = 0; see Table a) above.

with the parameter ε varying for −∞ < ε < 2. For the special case of w = 0,

the renormalized large scale, long time Green’s function was calculated in

reference [6] with super-diffusive and non-Gaussian behavior occurring for

ε with 0 < ε < 2. Recently, interesting multidimensional generalizations of

this model behavior have been developed in [10] and for the special value of

ε = 1 in [23].

Here we focus on the phenomena that occur with a nontrivial mean flow,

w 	= 0, and nonzero molecular diffusion, κ 	= 0. The main effect of molec-

ular diffusion developed here for the mean statistics is to induce diffusive

behavior for ε with ε < 1 rather than the trapping or sub-diffusive behavior

developed in Section 3A)2. for κ = 0 (see Table 3.1). For ε with 1 < ε < 2,
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the behavior remains super-diffusive at large scales and long times and is

governed by the inviscid theory in Section 3A)2. Here we consider only

the scaling theory for the y-component of the mean squared displacement,〈
Y 2(t)

〉
, rather than the complete behavior for the mean statistics, 〈T 〉 .

First we write the stochastic trajectory equations for (4.1)

(4.3)
dX = w dt+

√
2κ dW1(t)

dY = v(X) dt+
√

2κ dW2(t)

where W1 and W2 are independent Brownian motions. Integrating the equa-

tions in (4.3) yields

(4.4)
X(t) = w t+

√
2κW1(t)

Y (t) =

∫ t

0
v (X(s)) ds+

√
2κW2(t).

We now look at the mean square displacement where the expectation 〈·〉 is

with respect to both the velocity statistics and the Wiener process:

(4.5)

〈
Y 2(t)

〉
=

〈(∫ t

0
v(X(s))ds+

√
2κW2(t)

)
×

(∫ t

0
v(X(s′))ds′ +

√
2κW2(t)

)〉
v,W

=

〈∫ t

0

∫ t

0
v(X(s))v(X(s′)) ds′ds

+2
√

2κW2(t)

∫ t

0
v(X(s)) ds+ 2κW 2

2 (t)

〉
v,W

=

∫ t

0

∫ t

0

〈
R(X(s) −X(s′))

〉
W
ds′ds+ 2κ t.

Here in (4.5) we have moved expectations inside the double integral and

used the fact that 〈W2(t)〉 = 0 and
〈
W 2

2 (t)
〉

= t. We substitute the integral

representation for R(x) from (4.2) and the representation of X(s) from (4.4)

into (4.5) and get

(4.6)

∫ t

0

∫ t

0

〈
R(X(s) −X(s′))

〉
W
ds′ds

= V 2
∫ t

0

∫ t

0

〈∫ ∞

−∞
e2πik

[
w(s−s′)+

√
2κ (W1(s)−W1(s′))

]
× |k|1−εψ∞(|k|) dk

〉
W

ds′ds

= V 2
∫ t

0

∫ t

0

∫ ∞

−∞
e(2πiwk−4π2κk2)|s−s′||k|1−εψ∞(|k|) dk ds′ds.
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The second equality is true since W1(s)−W1(s
′) is Gaussian and calculating

the expectation merely involves calculating the characteristic function of

W1(s) −W1(s
′). At this point the order of integration is changed and the

double integral is computed resulting in

(4.7)

V 2
∫ ∞

−∞

∫ t

0

∫ t

0
e(2πiwk−4π2κk2)|s−s′|ds′ds |k|1−εψ∞(|k|) dk

= 2V 2
∫ ∞

−∞

[
e(2πiwk−4π2κk2)t − 1

(2πiwk − 4π2κk2)2
− t

2πiwk − 4π2κk2

]
× |k|1−εψ∞(|k|) dk

= 4V 2
∫ ∞

0

[
4π2κ2k2 − w2

4π2k2(4π2κ2k2 + w2)2

×
[
cos(2πwkt) e−4π2κk2t − 1

]]
|k|1−εψ∞(|k|) dk

+4V 2t

∫ ∞

0

κ

4π2κ2k2 + w2 |k|
1−εψ∞(|k|) dk.

Note that we have used the fact that the integral over a symmetric interval

of an odd function is zero to eliminate all of the imaginary components in

the above. Using the result from (4.7) in (4.5), we see that the mean square

displacement is

(4.8)

〈
Y 2(t)

〉
= 4κ2

∫ ∞

0

V 2

(4π2κ2k2 + w2)2

×
[
cos(2πwkt) e−4π2κk2t − 1

]
|k|1−εψ∞(|k|) dk

−w2

π2

∫ ∞

0

V 2

(4π2κ2k2 + w2)2

×
[
cos(2πwkt) e−4π2κk2t − 1

]
|k|−1−εψ∞(|k|) dk

+4κ t

∫ ∞

0

V 2

4π2κ2k2 + w2 |k|
1−εψ∞(|k|) dk

+2κ t

Note that (4.8) implies that we must always observe at least diffusive type

behavior.

The Large Scale, Long Time Behavior

In order to look at the large scale, long time behavior, the following
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change of scales is used: y = ỹ
α , t = t̃

ρ2 . Thus, (4.8) becomes

(4.9)

〈
Y 2(t̃)

〉
= 4κ2w−4α2

∫ ∞

0

[
cos

(
2πwk

t̃

ρ2

)
e
−4π2κk2 t̃

ρ2 − 1

]
× |k|1−ε ˜̃ψ∞(|k|) dk

−(wπ)−2α2
∫ ∞

0

[
cos

(
2πwk

t̃

ρ2

)
e
−4π2κk2 t̃

ρ2 − 1

]
× |k|−1−ε ˜̃ψ∞(|k|) dk

+4κ t̃
α2

ρ2

∫ ∞

0

V 2

4π2κ2k2 + w2 ‖k|
1−εψ∞(|k|) dk

+2κ t̃
α2

ρ2

= {1} + {2} + {3} + {4}

with ˜̃
ψ∞(k) =

V 2w4

(4π2κ2k2 + w2)2
ψ∞(k).

We now drop tildes on the rescaled variables and assess each term in (4.9)

in succession. We first note that term {4} automatically guarantees that

ρ = αθ for θ ≤ 1 since κ 	= 0 and predicts that we must have at least a

diffusive time scale. The integral in {1} can be bounded from above by

(4.10) C

∫ ∞

0
|k|1−εψ∞(|k|) dk

where C is a constant since∣∣∣∣cos

(
2πwk

t

ρ2

)
e
−4π2κk2 t

ρ2 − 1

∣∣∣∣ ≤ 2

and ∣∣∣∣ ˜̃ψ∞(|k|)
∣∣∣∣ ≤ V 2ψ∞(|k|).

Since this integral converges for ε < 2, the magnitude of {1} is dominated

by Cα2 for ε < 2. Thus, {1} → 0 as α → 0 for ε < 2 regardless of the choice

of scaling law ρ.

The integral in {2} is bounded from above by

(4.11) C

∫ ∞

0
|k|−1−εψ∞(|k|) dk
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which converges for ε < 0. Thus by the same argument used for term {1},
we see that {2} → 0 as α → 0 for ε < 0 without regard to the choice of time

scaling law.

For the integral in {3}, an upper bound is given by

(4.12) C

∫ ∞

0
|k|1−εψ∞(|k|) dk

which converges for ε < 2. Thus, for ρ = αθ for θ < 1, the term {3} → 0

as α → 0 for ε < 2; whereas if θ = 1, {3} does not approach 0, but instead

converges to a constant. Likewise, when θ = 1, {4} does not approach 0

regardless of the value of ε. Thus, we conclude that for ε < 0, the appropriate

scaling law is the diffusive scaling with ρ = α and

(4.13)
〈
Y 2(t)

〉
= 4κ t

∫ ∞

0

V 2

4π2κ2k2 + w2 |k|
1−εψ∞(|k|) dk + 2κ t.

In order to determine the behavior for 0 < ε < 2, we need to analyze

{2} further. With the change of variables k′ = k
ρ2 , the term {2} can be

rewritten as follows, where we drop primes for simplicity

(4.14)
{2} = |πw|−2 α

2

ρ2ε

∫ ∞

0
(1 − cos(2πwkt)) |k|−1−ε ψ̃∞(ρ2k) dk

+|πw|−2 α
2

ρ2ε

∫ ∞

0

(
1 − e−4π2κk2ρ2t

)
|k|−1−ε ˜̃

ψ∞(ρ2k) dk

with

ψ̃∞(k) = e−4πκk2t V 2w4

(4π2κ2k2 + w2)2
ψ∞(k)

and ˜̃
ψ∞(k) =

V 2w4

(4π2κ2k2 + w2)2
ψ∞(k).

Both the first and second integrals in (4.14) are absolutely convergent inte-

grals independent of ρ for 0 < ε < 2 since |k|−1−ε is integrable for |k| ≥ 1

and both (1− cos(2πwkt)) and (1− e−4π2κk2ρ2t) are bounded and vanish to

second order at k = 0. Thus, by the dominated convergence theorem,

(4.15) lim
ρ→0

∫ ∞

0

(
1 − e−4π2κk2ρ2t

)
|k|−1−ε ˜̃

ψ∞(ρ2k) dk = 0
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and

(4.16)

lim
ρ→0

∫ ∞

0
(1 − cos(2πwkt)) |k|−1−ε ψ̃∞(ρ2k) dk

= V 2
∫ ∞

0
(1 − cos(2πwkt)) |k|−1−ε dk

= Cε |wt|ε

with

(4.17) Cε =
−V 2πε+ 1

2 Γ
(
− ε

2

)
2Γ

(
1
2 + ε

2

)
Now for ε with 0 < ε < 1, term {4} requires the diffusive scaling, ρ = α,

so that from (4.14)–(4.16), {2} = O
(
α2(1−ε)

)
which tends to zero. For

1 < ε < 2, term {2} dominates so we choose the scaling law ρ = α
1
ε and

obtain through (4.14)–(4.16) that

(4.18)
〈
Y 2(t)

〉
= |πw|−2Cε |wt|ε

for 1 < ε < 2. We note that the large time behavior of the mean square

displacement from (4.18) has exactly the same coefficient as predicted in

Table 4.1. Large Scale Renormalization Theory for Mean Square Displacements When

w �= 0

Mean Square Qualitative
Parameter Scaling Law Displacement Behavior

κ = 0

ε < 0 arbitrary
〈
Y 2(t)

〉
∼ 0 trapping

0 < ε < 1 ρ = α
1
ε

〈
Y 2(t)

〉
∼ tε sub-diffusive

ε = 1 ρ = α
〈
Y 2(t)

〉
∼ t diffusive

1 < ε < 2 ρ = α
1
ε

〈
Y 2(t)

〉
∼ tε super-diffusive

κ 	= 0

ε ≤ 1 ρ = α
〈
Y 2(t)

〉
∼ t diffusive

1 < ε < 2 ρ = α
1
ε

〈
Y 2(t)

〉
∼ tε super-diffusive
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(3.35) by the scaling theory without molecular diffusivity in Section 3. The

scaling behavior for w 	= 0 for the cases with and without molecular diffusion

is summarized now in the following table:

Observe that the addition of molecular diffusion overwhelms the sub-dif-

fusive behavior observed when κ = 0. However, in the super-diffusive regime,

the addition of molecular diffusion did not change the large scale, long time

behavior.

5. The Renormalization Theory with an Infrared Cut-off

One of our goals here is to compare, briefly, the results obtained in Sec-

tions 3 and 4 of this paper to those in references [6] and [7] which utilize an

infrared cut-off for the velocity statistics as given in (1.5). We consider the

basic problem in (1.2) where necessarily the velocity field has a correlation

function with an infrared cut-off, i.e. the velocity correlation function is

given by

(5.1) Rδ
ε(x) = 2V 2

∫ ∞

δ
cos(2πkx)|k|1−εψ∞(k) dk.

First we consider the mean statistics, 〈T 〉 , in the simplest case with

w = 0 and κ = 0 for ε with 2 < ε < 4. In this special case, as in (3.7), the

exact equation for the evolution of 〈T 〉 is given by

(5.2)

∂ 〈T 〉
∂t

= tRδ
ε(0)

∂2 〈T 〉
∂y2

〈T 〉 |t=0 = T0(x, y).

For a fixed value of ε with 2 < ε < 4, there is infrared divergence of energy

because

(5.3) Rδ
ε(0) → ∞ for 2 < ε < 4.

Nevertheless, for a fixed value of δ, the mean square displacement,
〈
Y 2(t)

〉
,

from (3.6) is given by

(5.4)
〈
Y 2(t)

〉
= 2t2Rδ

ε(0).
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Clearly the behavior in (5.4) is not uniform in δ and the constant in (5.4)

explodes as δ → 0 due to (5.3); in fact,

Rδ
ε(0) = 2V 2

∫ ∞

δ
|k|1−ε ψ∞(k) dk

= δ2−ε 2V 2
∫ ∞

1
|k|1−ε ψ∞(δk) dk

so that as δ → 0, for 2 < ε < 4,

(5.5) Rδ
ε(0) = 2V 2(ε− 2)−1δ2−ε(1 + o(δθ))

with some value of θ with θ > 0. The simplest remedy employed in refer-

ences [6] and [7] and motivated by important practical problems involving

isotropic models for eddy diffusivity is to consider the isotropic scaling trans-

formation

(5.6) x′ = δx, y′ = δy, t′ = ρ2(δ)t

and

(5.7) T
δ
(x, y, t) = δ−2 〈T 〉

(
x

δ
,
y

δ
,

t

ρ2(δ)

)
.

With equation (5.2), T
δ

satisfies the equation

(5.8)
∂T

δ

∂t
=

δ2

ρ4
tRδ

ε(0)
∂2T

δ

∂y2

when 2 < ε < 4. Thus, with the behavior for Rδ
ε(0) in (5.5), we choose the

nonlinear scaling law

(5.9) ρ(δ) = δ1− ε
4

for 2 < ε < 4 and deduce that T
δ

converges to T which satisfies

(5.10)
∂T

∂t
= t V

2
ε

∂2T

∂y2

T |t=0 = δ(x) ⊗ δ(y).

Here V
2
ε is the normalized energy from equation (5.1) with δ = 1 and

ψ∞ ≡ 1, i.e. V
2
ε = 2V 2(ε − 2)−1. In the renormalized super-diffusive time
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scale from (5.10), the mean squared displacement
〈
Y 2(t)

〉
is renormalized

and given by

(5.11)
〈
Y 2(t)

〉
= 2V

2
ε t

2.

In references [6] and [7], the same renormalized limiting behavior in (5.9)–

(5.11) for 2 < ε < 4 is proved when the effects of a nonzero mean flow,

w �= 0, and a nonzero molecular diffusivity, κ �= 0, are included in (1.2).

It is worthwhile to demonstrate visually this convergence at large scales

explicitly in an instructive example. We choose the Kolmogoroff value,

ε = 8
3 , w = 1, V = 1, ψ∞(|k|) ≡ 1, and κ = 0 for a sequence of values

of the infrared cutoff δ in (5.1) with δ = 10−2, 10−3, 10−4, 10−5, 10−6. With

these assumptions, we have calculated a closed analytic expression for the

mean square displacement,
〈
Y 2(t)

〉
. In Figure 1 and Figure 2, we plot the

normalized quantity

Fig. 1. Plot of
〈Y 2(t)〉

2δ2−εV
2
εt

2
versus time for various infrared cutoffs (δ = 10−2,

10−3, 10−4, 10−5) when ε = 8
3
, w = 1, V = 1, and κ = 0 demonstrating the

effect of decreasing δ.
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Fig. 2. Plot of
〈Y 2(t)〉

2δ2−εV
2
εt

2
versus time for various infrared cutoffs (δ = 10−4,

10−5, 10−6) when ε = 8
3
, w = 1, V = 1, and κ = 0 demonstrating the effect of

decreasing δ.

(5.12)

〈
Y 2(t)

〉
2 δ2−ε V

2
ε t

2

as a function of time for these values of the cutoff parameter δ. Accord-

ing to the general theory in references [6] and [7] and demonstrated ex-

plicitly for w = 0 in (5.6)–(5.11), the expression in (5.12) should tend

to 1 as δ → 0. In Figure 1, we demonstrate this behavior for the values,

δ = 10−2, 10−3, 10−4, 10−5, on the shorter time interval, 0 ≤ t ≤ 100, while

Figure 2 illustrates this convergence dramatically on the longer time inter-

val 0 ≤ t ≤ 3000 for δ = 10−4, 10−5, 10−6. Of course, for any fixed value

of δ, the ultimate large time behavior as t → ∞ is trapping because, from

(5.1), the Fourier transform of Rδ
ε has no mass at the origin. In Figure 3, we

demonstrate this behavior for δ = 10−2 by graphing
〈
Y 2(t)

〉
on the interval

0 ≤ t ≤ 500. Clearly the wiggles in this graph correspond to ill-posed be-

havior for the mean statistics at large enough times for fixed δ as discussed
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Fig. 3. Plot of mean square displacement for δ = 10−2, ε = 8
3
, w = 1, V = 1, and κ = 0

explicitly showing the trapping behavior at large times caused by the presence of the
infrared cutoff.

in Section 2.

Next we show how to deduce the scaling in (5.9) as well as (5.10) through

simple dimensional analysis. The quantity δ is a wavenumber so it has

dimensions of (length)−1; with t̃ = ρ2t, consider the nondimensional mean

squared displacement

〈
Ỹ 2(t̃)

〉
= δ2

〈
Y 2

(
t̃

ρ2

)〉
.

Then from (5.4) and (5.5), we calculate that as δ → 0

〈
Ỹ 2(t̃)

〉
= 2V

2
ε

δ4−ε

ρ4
t̃2,

from which we arrive at the nonlinear scaling law in (5.9) together with the

behavior for the large scale, long time mean square displacement in (5.11).

As indicated above, as a consequence of the exact formulas in (5.2), (5.5),

and (5.7), there is very little flexibility in calculating the large scale behavior
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of the mean statistics for 2 < ε < 4. With the more general anisotropic

scaling laws from (3.9)

(5.13) x′ = λx, y′ = αy, t′ = ρ2t

we need to link α and ρ2 explicitly with the cut-off parameter δ so that

(5.14)
α2δ2−ε

ρ4
= 1

and the renormalized equation is given in (5.10). Furthermore, the equa-

tion in (5.10) is not invariant under the corresponding scaling group in

(5.13). This behavior contrasts with the nonlinear scaling laws and univer-

sal renormalized equations developed throughout Section 3 of this paper for

both the mean statistics and the correlation functions; all universal large

scale, long time renormalized equations in Section 3 are scale invariant un-

der the corresponding symmetry group of rescaling transformations from

(3.9) associated with the appropriate nonlinear scaling laws. In fact, in

Section 3 we have established this universal scale invariant behavior for

the second order correlation statistics throughout the regime 2 < ε < 4

with w = 0 and w 	= 0 despite the infrared divergence of energy in (5.3).

Such differing behavior between the mean statistics and the second order

statistics for the transported scalar for velocity spectra with infrared diver-

gences of energy is not unexpected. It was suggested long ago by G.I. Taylor

in reference [24] that the mean statistics of the scalar are dominated by the

velocity scales with the most energy and thus, in our case, depend strongly

on the infrared cut-off for δ ↓ 0 as established quantitatively in the sim-

ple model in (5.2)–(5.11). On the other hand, the second order statistics

such as the pair distance function, P (x, y, t), sense velocity differences on

the scale of the separation and are expected to be universal, renormalizable,

and scale invariant at large scales despite the infrared divergence; this is pre-

cisely what is established in Section 3B) for these second order statistics. In

recent work by one of the authors ([18]), the complete dynamic statistical

renormalization group involving all correlation functions for the scalar has

been computed in another more complex exactly solvable model with strong

infrared divergences with the same philosophical conclusions (see the discus-

sion section in [18]). Nevertheless, in contradiction to the rigorous behavior

established here and in reference [18] as well as the conventional wisdom of
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the turbulence community described earlier, some authors ([25], [26]) have

repeated the calculations from reference [6] and claimed that the problem

in (1.2) is not renormalizable for ε with 2 < ε < 4 simply because the

mean statistics are not scale invariant; in that work ([25]) scale invariance

is restored for the mean statistics by artificial, nonphysical devices involving

a time dependent cut-off (to quote from reference [25], “time dependence

in the infrared cut-off ... is utilized to achieve consistency between the

asymptotic scaling exponents and the scaling behavior of the asymptotic

equations”). The mathematical results presented in Section 3B) as well as

those just discussed here and elsewhere ([18]) indicate a conceptual mis-

understanding of those researchers ([25], [26]) as regards the inertial range

renormalization theory for turbulent diffusion.

Next we discuss the role of the infrared cut-off in (5.1) in the regime

of ε with −∞ < ε < 2 where there is no infrared divergence of energy. In

reference [7] the large scale, long time behavior of the model problem in (1.2)

was determined for κ 	= 0, w 	= 0, and with an infrared cut-off. With the

usual diffusive scaling law, i.e. ρ(δ) = δ in equation (5.6), it was established

in reference [7] that there is a conventional homogenized diffusion equation

satisfied by T for any ε with −∞ < ε < 2. In particular at large times, the

mean square displacement,
〈
Y 2(t)

〉
, satisfies

(5.15)
〈
Y 2(t)

〉
= D∗

ε t

for −∞ < ε < 2. These results, involving the infrared cut-off explicitly for

ε with −∞ < ε < 2, do not agree with the rigorous results in Section 4 for

the mean square displacement for w 	= 0, κ 	= 0 without an infrared cut-off.

Recall that without an infrared cut-off, super-diffusive behavior occurs for

ε with 1 < ε < 2 (see for example the summary in Table 4.1). There is

no contradiction in these different rigorous results; the use of the infrared

cut-off simply removes most of the energy at the largest scales and this

extra energy is responsible for the super-diffusive behavior for w 	= 0 and

1 < ε < 2 as established in Section 3A)2. for κ = 0 and Section 4 for κ 	= 0.

To confirm this intuition rigorously, one can consider the renormalization

theory for the mean statistics for w 	= 0 and κ = 0 in the regime −∞ <

ε < 2 but with the velocity field having an infrared cut-off so that the

corresponding correlation function is given in (5.1). Calculations following
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those in Section 3A)2. can be repeated with the following results:

(5.16)

For the velocity field with the infrared cut-off in (5.1) and

w 	= 0, κ = 0, and any ε with −∞ < ε < 2, consider the

isotropic scaling law x′ = δx, y′ = δy, t′ = ρ2t where ρ2 tends

to zero in an arbitrary fashion. Then the large scale

renormalization equation for the mean statistics is the

trivial equation

∂T

∂t
= 0 for −∞ < ε < 2.

The proof of this result follows similar calculations as were already pre-

sented in Section 3; we do not give the details here (see [27]). The result in

(5.16) confirms the above intuition that the effect of the infrared cut-off is

to remove energy from the largest scales and to prevent the super-diffusive

behavior without the cut-off which we have established rigorously in Sec-

tion 3 for ε with 1 < ε < 2 when w 	= 0 for κ = 0. It should be clear to the

reader that the result in (5.15) from [7] with nonzero molecular diffusivity

but involving an infrared cut-off bears the same relationship to the results

in Section 4 with κ 	= 0 as we have just described by comparing the results

with κ = 0 from (5.16) with an infrared cut-off to those established in Sec-

tion 3 for w 	= 0, κ = 0 without such a cut-off of energy. This explains the

important differences in the results reported here in Section 4 for κ 	= 0 and

those from reference [7].

Appendix. Positivity of the Pair Distance Diffusion Coefficient

for 1 < ε < 4 and w 	= 0

Here we verify the positive character of the explicit diffusion coefficient

in (3.59) and (3.60) for 1 < ε < 4. Recall the formula

(A.1)

D(x, t, w) = w−1π− 3
2
+ε Γ

(
1 − ε

2

)
Γ

(
1
2 + ε

2

) V 2

×
[
|wt|ε−1sgn(wt) − 1

2
|wt+ x|ε−1sgn(wt+ x)

−1

2
|wt− x|ε−1sgn(wt− x)

]
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for ε 	= 2. The formula for ε = 2 is discussed at the end of this Appendix.

In the following, the fact that D(x, t, w) > 0 for 1 < ε < 4 is demonstrated.

For 1 < ε < 2, π− 3
2
+ε Γ(1− ε

2
)

Γ( 1
2
+ ε

2
)
V 2 > 0. For |x| < |wt|, the remaining terms

from (A.1) may be written as

(A.2)
1

|w| |wt|
ε−1

[
1 − 1

2

∣∣∣∣1 +
x

wt

∣∣∣∣ε−1

− 1

2

∣∣∣∣1 − x

wt

∣∣∣∣ε−1
]
.

Since f(y) = yε−1 is concave, f(1 + x
wt) + f(1 − x

wt) < 2f(1) = 2, making

(A.2) positive. Therefore, D(x, t, w) > 0 for |x| < |wt| and 1 < ε < 2. For

|x| > |wt|, the remaining terms from (A.1) may be written as

1

|w| |wt|
ε−1

[
1 − 1

2

∣∣∣∣ xwt + 1

∣∣∣∣ε−1

+
1

2

∣∣∣∣ xwt − 1

∣∣∣∣ε−1
]

for
x

wt
> 1(A.3a)

1

|w| |wt|
ε−1

[
1 +

1

2

∣∣∣∣ xwt + 1

∣∣∣∣ε−1

− 1

2

∣∣∣∣1 − x

wt

∣∣∣∣ε−1
]

for
x

wt
< −1.(A.3b)

It is clear that the terms in (A.3a) and (A.3b) are completely symmetric;

thus, it suffices to consider the case in (A.3a). Again let f(y) = yε−1 be a

concave function. Introduce g( x
wt) = f( x

wt + 1) − f( x
wt − 1). Observe that

g(1) = f(2) − f(0) = f(2) < 2 since f is concave. Also note that the

derivative of g can be written as g′( x
wt) = f ′( x

wt +1)−f ′( x
wt −1) < 0 since f

is concave. Since g is decreasing and initially g is less than 2, g( x
wt) < 2. In

other words, f( x
wt + 1) − f( x

wt − 1) < 2 for x
wt > 1, making (A.3a) positive.

Hence, D(x, t, w) > 0 for 1 < ε < 2.

For 2 < ε < 4, π− 3
2
+ε Γ(1− ε

2
)

Γ( 1
2
+ ε

2
)
V 2 < 0, and we argue similarly as above.

For |x| < |wt|, the remaining terms from (A.1) are as given in (A.2). Since

f(y) = yε−1 is convex, f(1 + x
wt) + f(1 − x

wt) > 2f(1) = 2, making (A.2)

negative. Thus, D(x, t, w) > 0 for |x| < |wt| and 2 < ε < 4. For |x| > |wt|,
(A.3a) and (A.3b) are still valid. By analogous arguments to those for the

concave case, it can be seen that only (A.3a) need be considered and that

f( x
wt + 1) − f( x

wt − 1) > 2 for x
wt > 1, causing (A.3a) to be negative. This

result could also have been seen by applying the previous argument to the

concave function −f. Therefore, D(x, t, w) > 0 for 2 < ε < 4 and 1 < ε < 2.

For ε = 2, logarithmic terms appear in the formula for the covariance
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function. In this case, recall that D(x, t, w) is as follows

(A.4) D(x, t, w) = 2V 2t log

∣∣∣∣∣x2 − w2t2

w2t2

∣∣∣∣∣ + 2V 2 x

w
log

∣∣∣∣x+ wt

x− wt

∣∣∣∣ .
Since D(x, t, w) does not change when either −x or −w are substituted for x

or w respectively, without loss of generality it is assumed that x > 0, w > 0.

For x < wt,

(A.5)
D(x, t, w) > 2V 2 x

w

[
log

∣∣∣∣∣x2 − w2t2

w2t2

∣∣∣∣∣ + log

∣∣∣∣x+ wt

x− wt

∣∣∣∣
]

= 4V 2 x

w
log

∣∣∣∣wt+ x

wt

∣∣∣∣ > 0.

For x > wt,

(A.6)
D(x, t, w) > 2V 2t

[
log

∣∣∣∣∣x2 − w2t2

w2t2

∣∣∣∣∣ + log

∣∣∣∣x+ wt

x− wt

∣∣∣∣
]

= 4V 2t log

∣∣∣∣x+ wt

wt

∣∣∣∣ > 0.

Thus, D(x, t, w) > 0 for 1 < ε < 4.
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