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Galois rigidity of pure sphere braid groups

and profinite calculus

By Hiroaki Nakamura

Abstract. Let C be a class of finite groups closed under the for-
mation of subgroups, quotients, and group extensions. For an algebraic
variety X over a number field k, let πC

1 (X) denote the (C-modified) profi-
nite fundamental group of X having the absolute Galois group Gal(k̄/k)

as a quotient with kernel πC
1 (Xk̄) the maximal pro-C quotient of the geo-

metric fundamental group of X. The purpose of this paper is to show
certain rigidity properties of πC

1 (X) for X of hyperbolic type through the

study of outer automorphism group OutπC
1 (X) of πC

1 (X). In particular,

we show finiteness of OutπC
1 (X) when X is a certain typical hyperbolic

variety and C is the class of finite l-groups (l: odd prime).
Indeed, we have a criterion of Gottlieb type for center-triviality of

πC
1 (Xk̄) under certain good hyperbolicity condition on X. Then our

question on finiteness of OutπC
1 (X) for such X is reduced to the study

of the exterior Galois representation ϕC
X : Gal(k̄/k) → OutπC

1 (Xk̄),
especially to the estimation of the centralizer of the Galois image of
ϕC
X (§1.6). In §2, we study the case where X is an algebraic curve

of hyperbolic type, and give fundamental tools and basic results. We
devote §3, §4 and Appendix to detailed studies of the special case X =
M0,n, the moduli space of the n-point punctured projective lines (n ≥
3), which are closely related with topological work of N. V. Ivanov,
arithmetic work of P. Delinge, Y. Ihara, and categorical work of V. G.
Drinfeld. Section 4 deal with a Lie variant suggested by P. Deligne.

§0. Introduction

In this paper, we shall study some special algebraic varieties whose profi-
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nite fundamental groups possess certain “rigidity” properties under the Ga-

lois group operation.

Let X be an algebraic variety defined over a number field k, and AutkX

the group of all the k-automorphisms of X. Suppose that we have a good

homotopy theory in which there is a canonical homomorphism

ΦX : AutkX → Ek(X),

where Ek(X) is the group of the classes of self-homotopy equivalences of X

compatible with hypothetical Galois actions. Any “continuous” parameter

in AutkX should be mapped trivially into the target homotopy set Ek(X)

by ΦX . Suppose that some suitable hyperbolicity condition is imposed on

X, so that the finiteness of AutkX eliminates such continuous parameters,

and the map ΦX approaches injectivity. Then at that stage, our basic

question is to what extent one can expect AutkX to be reflected faithfully

or precisely in Ek(X) via ΦX . Especially, can one expect Ek(X) to be

finite?

The purpose of this paper is to provide some positively directed case

studies around these questions, in the situation where X is K(π, 1) and

Ek(X) is defined in the continuous outer automorphism group of the profi-

nite fundamental group of Xk̄ = X ⊗ k̄.

To be more precise, let C be a class of finite groups closed under the

formation of subgroups, quotients and group extensions. We denote by

πC
1 (Xk̄) the maximal pro-C quotient of the etale profinite fundamental group

π1(Xk̄), and let πC
1 (X) be the quotient of π1(X) divided by the kernel of

π1(Xk̄) → πC
1 (Xk̄). If Gk denotes the absolute Galois group of k, then there

is an exact sequence

1 −−−→ πC
1 (Xk̄) −−−→ πC

1 (X)
pC
X/k−−−→ Gk −−−→ 1,

together with a canonical exterior Galois representation

ϕC
X : Gk → OutπC

1 (Xk̄).

We shall say that a continuous group automorphism f of πC
1 (X) is Gk-

compatible, if it satisfies the condition pC
X/k ◦ f = pC

X/k, and denote the
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group of all the Gk-compatible automorphisms of πC
1 (X) by AutGk

πC
1 (X).

Moreover, we put

EC
k (X) = AutGk

πC
1 (X)/InnπC

1 (Xk̄),

where InnπC
1 (Xk̄) is the subgroup formed by the inner automorphisms of

πC
1 (X) induced by the elements of πC

1 (Xk̄). It follows from the functoriality

of etale fundamental groups ([13]) that there is a canonical homomorphism

ΦC
X : AutkX → EC

k (X),

whose image is not necessarily a normal subgroup of EC
k (X). This paper

will provide several examples of (X,C) with EC
k (X) finite or ΦC

X bijective,

in the case where

C = Cl = {all finite l-groups} (l : a prime).

In this pro-l case, we shall also write as

EC
k (X) = E

(l)
k (X), ΦC

X = Φ
(l)
X , πC

1 (X) = π
(l)
1 (X).

Let us here introduce our central basic object: the moduli space of

ordered n-pointed projective lines M0,n defined by

M0,n = (P1)n − {week diagonals}/PGL2 (n≥3).

For example, M0,3 is a point, M0,4 is P1 − {0, 1,∞}, and M0,5 is P2 mi-

nus 6 lines (complete quadrangle). The topological fundamental group

π1(M0,n(C)) is isomorphic to the Teichmüller modular group of type (0, n),

denoted by Γn
0 . Fixing a number field k of finite degree over Q, we consider

M0,n to be defined over k.

Theorem A. Let l be an odd prime. Then Outπ
(l)
1 (M0,n) is finite,

and the homomorphism

Φ
(l)
M0,n

: AutkM0,n → E
(l)
k (M0,n)
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gives a bijection (n ≥ 4). Moreover, if Γn,pro−l
0 denotes the pro-l completion

of Γn
0 , then the canonical exterior representation

ϕ
(l)
0,n : Gk → OutΓn,pro−l

0

induced from the variety M0,n over k has image whose centralizer is iso-

morphic to S3 when n = 4, and to Sn when n ≥ 5.

It is known that the automorphism group of M0,n is just the symmetric

group Sn when n ≥ 5, while the action of S4 on M0,4 factors through S3

([45], [29]; see also [34] §5). Actually, for more general C satisfying certain

admissibility condition for Γn
0 (1.2.2), we show that ΦC

M0,n
has an inverse

ΨC
n : EC

k (M0,n) → AutkM0,n with ΨC
n ◦ ΦC

M0,n
= 1 (Theorem (3.1.13)).

Moreover, if UC
k (M0,n) denotes the kernel of ΨC

n, then we can construct

an embedding UC
k (M0,n) ↪→ UC

k (M0,n−1) × UC
k (M0,n−1) (n ≥ 5) (Corollary

(3.2.3)). Therefore for proving the bijectivity of ΦC
M0,n

(n ≥ 5), we are

reduced to the case of M0,4 = P1 − {0, 1,∞} (“le premier étage”). In

particular, Theorem A follows from [31]. We remark that rough description

of the proof of Theorem A was announced in [32].

There is a Lie variant of Theorem A suggested by P.Deligne. It is for-

mulated in terms of l-adic realizations of the motivic fundamental groups

of M0,n (n ≥ 5) in the sense of [8].

Theorem B. Assume that l is an odd prime. Let Ll(Γn
0 ) be the pro-

jective limit of the Lie algebras of l-adic analytic groups associated with

nilpotent quotients of Γn
0 (see 4.2.2 for the precise definition), and let

ϕLien : Gk → OutLl(Γn
0 ).

be the canonical Galois representation. Then the centralizer of the Galois

image ϕLien (Gk) in OutLl(Γn
0 ) is isomorphic to the symmetric group Sn

when n ≥ 5.

Theorems A and B may be considered as profinite analogues of a topo-

logical theorem by N.V.Ivanov which asserts that the outer automorphism

group of the discrete group Γn
0 (n ≥ 5) is a finite group, an extension of Sn

by Z/2Z ([21], see also [26]). It seems remarkable that Theorem A is valid

even in the 1-dimensional case of n = 4, while in this case the Lie variant
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has not yet been assured. As M0,4 = P1 − {0, 1,∞} is a typical algebraic

curve of hyperbolic type, we will be led to the following conjecture.

Conjecture C. Let C be a smooth hyperbolic curve over a number

field k, and let l be a prime number. Then Outπ
(l)
1 (C) would be finite.

In this paper, Conjecture C will be verified for hyperbolic lines together

with hyperbolic curves with special stable reductions and Jacobians (The-

orems (2.2.5), (2.3.1)). Further examples supporting the Conjecture C will

be obtained in a joint work with H.Tsunogai ([35]).

In §1, we prepare relatively general statements about pro-C groups, and

establish basic relations among three objects: EC
k (X), OutπC

1 (X), and the

centralizers of the Galois image of ϕC
X . As a result, we realize that the

center-triviality of πC
1 (Xk̄) makes the situation quite clear. In §2, we study

the case where X is a smooth hyperbolic curve. Weight characterization

of inertia subgroups in 2.1 will give a technical key point in later parts of

the present paper. In 2.2, 2.3, some examples supporting Conjecture C

will be given. In §3, we study the case where X = M0,n. Subsection 3.1

is devoted to showing that certain special inertia subgroups are invariant

under the Galois-compatible automorphisms of πC
1 (M0,n). In 3.2, Theorem

A is proved by inductive reduction to the case of n = 4 [31]. In §4, Lie

variants are discussed. In 4.1, we compute the automorphism group of the

graded Lie algebras associated with the lower central series of Γn
0 (4.1.2). By

applying it, we prove Theorem B in 4.2. The line of the proof of Theorem

B is due to P.Deligne. In Appendix, we give another proof of Drinfeld’s

pentagon formula [9] (which is reformulated by Y.Ihara [20] in the presented

cyclic form) concerning the Galois image in the automorphism group of the

fundamental group of P1−{0, 1,∞}. Our proof is purely group-theoretical,

and is closely related with the technique developed in §3. A sketch of a more

geometric proof of it can be found in Ihara’s article [20].

As explained in Drinfeld’s paper [9], consideration of the varieties M0,n

as primitive examples of so-called “anabelian” varieties is recommended

in Grothendieck’s mysterious note [14]. The present study of this paper

also started from a desire to understand [14] more mathematically through

concrete materials.

The author would like to express his sincere gratitude to Professors

P.Deligne, Y.Ihara and Takayuki Oda. Professor Oda kindly inspired in

the author various fundamental material including [12], [45], etc., and gave



76 Hiroaki Nakamura

warm encouragement and suggestions. Pioneer work and attitudes of Pro-

fessor Ihara often indicated leading principle in the course of this study.

Professor Deligne, after reading the original version of this paper, gave sev-

eral comments on it, and especially suggested the possibility of the Lie

variant of Theorem A through kind letters. Finally, the author also thanks

Professors M.Asada and H.Konno for valuable discussion and communica-

tion.
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§1. Preliminaries

1.1. C-good groups

A class C of finite groups is said to be almost full, if it is closed under

the formation of subgroups, quotients, and finite products. If it is further

closed under the formation of group extensions, it is called a full class of

finite groups. When C is almost full, a pro-C group is, by definition, a

profinite group obtained as the limit of a projective system in C.
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Given a discrete group Γ and an almost full class C of finite groups, the

set N = N (Γ,C) of all the normal subgroups of Γ with quotients in C forms

a family such that

(1.1.1) N ∈ N , N ⊂ N ′ � Γ ⇒ N ′ ∈ N ;

(1.1.2) N,N ′ ∈ N ⇒ N ∩N ′ ∈ N .

From this, we see that {Γ/N |N ∈ N} forms naturally a projective system

in C, and we define the pro-C completion Γ̂ = Γ̂(C) of Γ to be the projective

limit lim←−N∈N
Γ/N . The canonical map i : Γ → Γ̂ has a dense image and

satisfies the universal property: every homomorphism of Γ into a pro-C

group always factors through i.

The pro-C completion of Z is denoted by ZC. If C is a full class, then

ZC =
∏
p∈|C| Zp. Here we define |C| to be the set of all primes p such that

Z/pZ ∈ C.

Let S = S(Γ,C) be the family of subgroups of Γ containing some ele-

ments in N (Γ,C), and for each Π ∈ S, denote by Π̄ the closure of the image

of Π by i : Γ → Γ̂. The map Π → Π̄ gives a bijection of S(Γ,C) into the set

of open subgroups of Γ̂ such that (Γ : Π) = (Γ̂ : Π̄) ([10]15.14). Moreover,

if C is a full class, it is easy to see S(Π,C) ⊂ S(Γ,C) for every Π ∈ S(Γ,C).

From this we see, in this case, that Π̄ is isomorphic to the pro-C completion

of Π itself ([25]).

In what follows, C is assumed to be a full class of finite groups. Let Γ be a

discrete group, G the pro-C completion of Γ, and C(G) the abelian category

of (finite) continuous G-modules in C. Each object M of C(G) can be

considered as a Γ-module via i : Γ → Γ̂ = G, and a finite Γ-module M ∈ C

comes from C(G) if and only if the image of Γ → Aut(M) belongs to C.

Trivial G (or equivalently Γ)-modules are called constant. The restriction of

the standard cochains induces a canonical homomorphism of the profinite

group cohomology Hq(G,M) into the discrete group cohomology Hq(Γ,M)

for every M ∈ C(G) and q ≥ 0.

Definition (1.1.3) (Serre [41] I-36/Artin-Mazur [2] §6). Notations

being as above, the discrete group Γ is called C-good, if the canonical ho-

momorphism Hq(G,M) → Hq(Γ,M) gives an isomorphism for every q ≥ 1

and M ∈ C(G).

Definition (1.1.4) (Serre [42]). A discrete group Γ is said to be of
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type FP, if the trivial Z[Γ]-module Z has a finite projective resolution:

0 → Pn → · · · → P1 → P0 → Z → 0,

where Pi (0 ≤ i ≤ n) are finitely generated projective Z[Γ]-modules. If we

can take finitely generated free Z[Γ]-modules for Pi (0 ≤ i ≤ n) above, then

we say Γ is of type FL.

If Π varies in S(Γ,C), the cohomology groups Hq(Π,M) form an induc-

tive system with respect to the restriction maps, and the homology groups

Hq(Π,M) form a projective system with respect to the corestriction maps.

Proposition (1.1.5). Let Γ be a discrete group, C a full class of finite

groups, and G the pro-C completion of Γ. Then the following conditions (1)

and (2) are equivalent:

(1) Γ is C-good;

(2) lim−→Π∈S(Γ,C)
Hq(Π,M) = 0 for every (constant) M ∈ C(G) and q ≥ 1.

If furthermore Γ is of type FP, then the above conditions are also equivalent

to

(3) lim←−Π∈S(Γ,C)
Hq(Π,M) = 0 for every (constant) M ∈ C(G) and q ≥ 1.

Proof. Observe first that, in (2) and (3), the limitation of M ∈ C(G)

running only over constant coefficients does not alter the conditions, because

every M ∈ C(G) becomes constant for sufficiently small Π ∈ S(Γ,C).
The equivalence (1)⇔(2) is derived from [39] I-15/16. (2)⇒(1): We

shall prove iq : Hq(G,M)
∼→ Hq(Γ,M) (M ∈ C(G)) by induction on q ≥ 1.

If q = 1, we are reduced to the case of M being constant, by the Hochschild-
Serre spectral sequence (5-exact sequence). Then the desired isomorphism
is just Hom(G,M) ∼= Hom(Γ,M). So let q ≥ 2. For each Π ∈ N (Γ,C), the
Γ-module M ′ coinduced from the Π-module M belongs also to C(G), as C

is a full class. The canonical embedding M ↪→ M ′ yields the commutative
diagram of two long exact sequences

Hq−1(G,M ′)
f̂Π−−−−→ Hq−1(G,M ′/M) −−−−→ Hq(G,M)

res−−−−→ Hq(Π̂′,M)��
��

�iq �
Hq−1(Γ,M ′)

fΠ−−−−→ Hq−1(Γ,M ′/M) −−−−→ Hq(Γ,M)
res−−−−→ Hq(Π′,M)

in which by induction hypothesis the left two vertical arrows are isomor-

phisms. When Π varies in N (Γ,C), the cokernels of f̂Π cover the whole
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Hq(G,M) so that the injectivity of iq follows. The assumption (2) implies

that the cokernels of fΠ (Π ∈ N (Γ,C)) cover Hq(Γ,M), from which we

conclude the surjectivity of iq. (1)⇒(2): Suppose Γ is C-good. Then by

Shapiro’s lemma, every Π ∈ S(Γ,C) is also C-good. To prove (2), it suffices

to show that for any Π ∈ S(Γ,C) and x ∈ Hq(Π,M) (q ≥ 1,M ∈ C(G)),

there exists Π′ ∈ S(Γ,C) such that the image of x by the restriction map

resΠ
Π′ : Hq(Π,M) → Hq(Π′,M) is 0. By assumption, x is represented by

a continuous (i.e. locally constant) q-cochain ξ : Π̂q → M . So we find an

open subgroup U of Π̂(C) with ξ|U q = 0. If we take Π′ ∈ S(Π,C) with

Π̂′ = U , then we have a commutative diagram

Hq(Π̂,M) −−−→ Hq(Π,M)

res

� �res
Hq(Π̂′,M) −−−→ Hq(Π′,M),

which shows resΠ
Π′(x) = 0. We next prove (2) ⇔ (3) under the assumption

that Γ is of type FP with M being constant in C(G). Since a finite index

subgroup of a FP group is also of type FP, Hq(Π,M) is finite for every

q ≥ 0 and Π ∈ S(Γ,C). Therefore the condition (2) (resp. (3)) is equivalent

to the assertion that for each Π ∈ S there exists Π′ ∈ S such that the re-

striction map resΠ
Π′ : Hq(Π,M) → Hq(Π′,M) (resp. the corestriction map

corΠ′
Π : Hq(Π

′,M) → Hq(Π,M)) is 0-mapping. By the universal coefficient

theorem, we have two exact sequences

0 → Ext1Z(Hq−1(Π,Z),M) → Hq(Π,M) → Hom(Hq(Π,Z),M) → 0,(1)

0 → Hq(Π,Z) ⊗M → Hq(Π,M) → TorZ
1 (Hq−1(Π,Z),M) → 0,(2)

together with two isomorphisms

Hom(Hq(Π,Z),M∗) ∼= Hq(Π,Z) ⊗M∗ ([7] Chap.II, §5)),(3)

TorZ
1 (M∗, Hq−1(Π,Z)) ∼= Ext1Z(Hq−1(Π,Z),M)∗ ([7] Chap.VI, §5),(4)

where X∗ denotes Hom(X,Q/Z) for any module X. (We use finite gen-

eration of Hq−1(Π,Z) to get (4).) As (1)-(4) are functorial in Π, and as

M∗ ∼= M for finite M , we see that resΠ
Π′ = 0 if and only if corΠ′

Π = 0 for

any pair (Π,Π′) of S(Γ,C) with Π ⊃ Π′. This completes the proof. �
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1.2. Extension properties

Let C be a full class of finite groups. In this subsection, we review some

standard facts about extension properties of the pro-C completion functor
∧(C) known by Serre [41], Friedlander [11] and Anderson [1].

Let (Γ) : 1 → Π → Γ → Σ → 1 be an exact sequence of discrete groups.

In general, it is easy to see that the functor ∧(C) is right exact so that

Π̂(C) → Γ̂(C) → Σ̂(C) → 1 is exact. For the injectivity of Π̂(C) → Γ̂(C), it is

necessary and sufficient that for each N ∈ N (Π,C) there exists Γ′ ∈ N (Γ,C)

such that Γ′ ∩ Π ⊂ N . If this is the case, the following weaker condition

holds:

(1.2.1) For each N ∈ N (Π,C) with N � Γ, the canonical map by conjuga-

tion

Γ → Aut(Π/N)

has image belonging to C.

Definition (1.2.2). We say a group extension (Γ) is C-admissible if

it satisfies the condition (1.2.1).

(1.2.3) If C = Cfin, i.e., C is the class of all finite groups, then the

condition (1.2.1) is obviously empty. In the case C = Cl := {all finite

l groups} for a prime l, we have a simple criterion to satisfy (1.2.1) as

follows. By a well known theorem of P.Hall, the group of automorphisms

of a finite l-group G which act trivially on the quotient G/[G,G]Gl form a

l-group. So if Σ acts on Π/[Π,Π]Πl trivially by conjugation, then (1.2.1)

holds for C = Cl. Convenient criteria for other classes C do not seem to be

known.

Proposition (1.2.4). Let (Γ) : 1 → Π → Γ → Σ → 1 be a group

extension with Π finitely generated, and suppose that Σ is C-good. Then the

canonical map Π̂(C) → Γ̂(C) is injective if and only if (Γ) is C-admissible.

Proof. The ‘only if ’ part is already mentioned. We shall prove the

‘if’ part. For an arbitrary N ∈ N (Π,C), it suffices to find Γ′ ∈ S(Γ,C) with

Π ∩ Γ′ ⊂ N . As Π is finitely generated, X = Hom(Π,Π/N) is a finite set.

Replacing N by
⋂
x∈X ker(x), we may assume that N is normal in Γ. Let I

be the kernel of the map Γ → Aut(Π/N) induced by conjugation. Then the

C-admissibility insures I ⊂ N (Γ,C). Moreover, if we put M = (I ∩ Π)/N ,

∆ = I/I ∩ Π, then we see that M ∈ C(∆̂(C)) by the conjugate action of
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∆ on M . Since Σ is C-good, by the natural inclusion ∆ ↪→ Σ, ∆ is also

C-good. Then by Proposition (1.1.5), lim−→∆′∈N (∆,C)
H2(∆′,M) = 0. As the

extension class of

1 −−−→ M −−−→ I/N
p−−−→ ∆ −−−→ 1

vanishes in H2(∆′,M) for some ∆′ ∈ N (∆,C), we obtain a complement

Γ′
0 ⊂ I/N with p(Γ′

0) = ∆′. Take for Γ′ the inverse image of Γ′
0 via the

canonical projection Γ → Γ/N . Then Γ′ ∈ N (I,C) ⊂ S(Γ,C). Moreover,

Γ′
0 ∩M = 0 leads to Γ′ ∩ Π = N as desired. �

(1.2.5) Let 1 → Π → Γ → Σ → 1 be an extension of discrete groups,

and suppose that the pro-C completion functor ∧ yields an exact sequence

1 → Π̂ → Γ̂ → Σ̂ → 1,

and that Π,Σ are C-good with Π being of type FP. Then Γ is also C-good.

Proof. Let M ∈ C(Γ̂). The FP-ness of Π insures the finiteness of

Hq(Π,M). Then, from the standard cochains description, we see Hq(Π,

M) ∈ C. Therefore, the C-goodness of Π and Σ implies that there are

natural isomorphisms between E2-terms of the Hochschild-Serre spectral

sequences

Hp(Σ̂, Hq(Π̂,M)) ∼= Hp(Σ, Hq(Π,M)).

From this we obtain Hp+q(Γ̂,M) ∼= Hp+q(Γ,M) at E∞. �

1.3. Center-triviality of pro-C groups

Let k be a commutative ring with unit, G a group, and kG the group

algebra of G over k. The (discrete) Hattori-Stallings space (cf.[43]) is by

definition the quotient module of kG by the k-submodule generated by x−y

(x, y: conjugate in G). Let T : kG → T (kG) denote the canonical projec-

tion. Each element of T (kG) can be identified with a k-valued function r

on the set of conjugacy classes of G, cG, which we write as
∑

τ∈cG r(τ)τ .

We have

T (
∑
g

ag · g) =
∑
τ∈cG

(
∑
g∈τ

ag)τ.

It is easy to see that for α1, α2 ∈ kG, T (α1 + α2) = T (α1) + T (α2) and

T (α1α2) = T (α2α1).
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Given a pair of (f, f̄) of a group homomorphism f : G → G′ and a ring

homomorphism f̄ : k → k′, we have a commutative diagram:

kG
ϕ−−−→ k′G′

T

� �T
T (kG) −−−→

Tϕ
T (k′G′)

where ϕ and Tϕ are defined by

ϕ(
∑
g∈G

agg) =
∑
g∈G

f̄(ag)f(g),

Tϕ(
∑
τ∈cG

r(τ)τ) =
∑
τ ′∈cG′

(
∑
τ∈cG
f(τ)⊂τ ′

f̄(r(τ)))τ ′.

Let G be a profinite group, and p a rational prime number. Recall that the

completed group algebra Zp[[G]] is defined to be the limit of the projective

system {An,N := (Z/pnZ)[G/N ]} indexed by the pairs (n,N) of positive

integers n and open normal subgroups N of G, with morphisms ϕ
(n,N)
(m,M) :

An,N → Am,M for n ≥ m, N ⊂ M induced from the canonical projections

f : G/N → G/M and f̄ : Z/pnZ → Z/pmZ as in the previous paragraph.

For each level An,N of this projective system, we can associate a canonical

surjection to its Hattori-Stallings space: Tn,N : An,N → T (An,N ) to get the

commutative diagram

An,N
ϕ−−−→ Am,M

Tn,N

� �Tm,M

T (An,N )
Tϕ−−−→ T (Am,M )

whenever n ≥ m, N ⊂ M . Thus we define the profinite Hattori-Stallings

space of G with respect to p by

T (Zp[[G]]) := lim←−
n,N

T (An,N ),
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together with a canonical projection T : Zp[[G]] → T (Zp[[G]]) in the obvious

manner. The properties T (λ + µ) = T (λ) + T (µ), T (λµ) = T (µλ) for

λ, µ ∈ Zp[[G]] are obviously inherited from those of the discrete level.

The set cG of the conjugacy classes of G has canonically a structure of a

profinite space, as cG = lim←−N

c(G/N), where N runs over the open normal

subgroups of G.

In general, a Zp-valued measure on a profinite set X is by definition a

rule λ which associates with each compact open subset U of X a p-adic

integer λ(U) such that λ(U ∪ U ′) = λ(U) + λ(U ′) whenever U ∩ U ′ = ∅.
Each element x ∈ X defines a Dirac measure δx on X which takes 1 for

open compact U � x of X, and 0 otherwise.

Since each element of An,N (resp. T (An,N )) is considered to be a

(Z/pnZ)-valued function on G/N (resp.c(G/N)), the elements of Zp[[G]]

(resp. T (Zp[[G]])) are interpreted as the Zp-valued measures on G (resp.
cG). (See e.g. [28].) The projection T : Zp[[G]] → T (Zp[[G]]) then in the

usual sense sends a Zp-valued measure on G to a Zp-valued measure on cG

with respect to the canonical map G → cG of profinite sets.

Definition (1.3.1). Let F be a finitely generated free Zp[[G]]-module

with basis x1, . . . , xr and let f : M → M be a Zp[[G]]-linear endomorphism.

We define the Hattori-Stallings trace tr(f) ∈ T (Zp[[G]]) of f to be the sum∑r
i=1 T (aii), where aij ∈ Zp[[G]] (1 ≤ i, j ≤ r) are defined by f(xi) =∑r
i=1 aijxj .

In the definition, it is easy to see that tr(f) does not depend on the

choice of the basis x1, . . . , xr of F , and that for two Zp[[G]]-endomorphisms

f, g, we have tr(f + g) = tr(f) + tr(g), tr(fg) = tr(gf).

Theorem (1.3.2). Let G be a profinite group, and p be a prime num-

ber. Suppose that the trivial Zp[[G]]-module Zp has a finite free resolution

(F ) : 0 → Fn → · · · → F1 → F0 → Zp → 0,

where Fi (1 ≤ i ≤ n) are finitely generated free Zp[[G]]-modules, with Euler

characteristic χ :=
∑

(−1)irank(Fi) �= 0. Then G has trivial center.

Proof. We follow the argument of Stallings [43] in our profinite con-

text. Suppose that we have a nontrivial central element γ in G, and con-

sider two Zp[[G]]-endomorphisms (fi), (gi) of the complex (F) such that
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fi =identity and gi = multiplication by γ on Fi for every 0 ≤ i ≤ n. By

standard argument in homology theory, we can construct a chain homo-

topy di : Fi → Fi+1 with fi − gi = ∂i+1di + di−1∂i (0 ≤ i ≤ n). Here

∂i : Fi → Fi−1 (i ≥ 1) denotes the boundary map of (F), and ∂0 and d−1

are understood to be 0. Then

∑
(−1)itr(fi) −

∑
(−1)itr(gi) =

∑
(−1)i{tr(∂i+1di) + tr(di−1∂i)}

=
∑

(−1)i{tr(∂i+1di) − tr(di∂i+1)}
= 0.

On the other hand, by the definition of trace, we have

tr(fi) = rank(Fi)δ1, tr(gi) = rank(Fi)δγ ,

where δ1 (resp. δγ) is the Dirac measure supported at the conjugacy class

{1} (resp. {γ}). Thus

χ(δ1 − δγ) = 0

in T (Zp[[G]]). But since δ1 �= δγ , for cG is a Hausdorff space, we get χ = 0.

This contradicts our assumption. �

In the remainder of this subsection, C denotes a full class of finite groups.

Corollary (1.3.3) (The profinite Gottlieb theorem). If Γ is a C-

good group of type FL with Euler characteristic �= 0, then the pro-C com-

pletion Γ̂ has trivial center.

Proof. By assumption, there is a finite free resolution

(F.) : 0 → Fn → · · · → F1 → F0 → 0, H0(F.) ∼= Z,

such that Fi ∼= Z[Γ]⊕ri with
∑

i(−1)iri �= 0. Fix a prime p ∈ |C|, and define

for each pair of m ≥ 1 and Π ∈ N (Γ,C),

Fi(m,Π) : = (Z/pmZ)[Γ/Π] ⊗Z[Γ] Fi (1 ≤ i ≤ n)

( = (Z/pmZ) ⊗Z[Π] Fi)
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Then F̂i := lim←−(m,Π)
Fi(m,Π) ∼= Zp[[Γ̂]]⊕ri . Since, for each i, the projective

system {Hi(F.(m,Π))}(m,Π) satisfies the Mittag-Leffler condition,

Hi(lim←−F.(m,Π)) = lim←−Hi(F.(m,Π)) = lim←−Hi(Π,Z/pmZ).

The C-goodness of Γ assures that Hi(lim←−F.(m,Π)) = 0 for i ≥ 1. For i = 0,

we have H0(F.(m,Π)) = H0(Π,Z/pmZ) = Z/pmZ. Hence H0(lim←−F.(m,Π))

= Zp. Thus we obtain the exact sequence

0 → F̂n → · · · → F̂1 → F̂0 → Zp → 0

with rank(F̂i) = rank(Fi) (1 ≤ i ≤ n). We may apply Theorem (1.3.2) to

get the conclusion. �

It is easy to see that a free group of finite rank r, Fr, is a C-good group

of type FL. If Πg denotes the surface group (i.e. the fundamental group of a

compact Riemann surface ) of genus g, then Πg is also C-good of type FL. In

fact, the FL-ness follows from the fact that K(Πg, 1) has a homotopy type

of a finite simplicial complex. Since each Π ∈ N (Πg,C) is also a surface

group, H2(Π,Z/nZ) = Z/nZ. If we take a normal subgroup Π′ of Π such

that [Π : Π′] = n, then the corestriction map corΠ′
Π is multiplication by

n. This leads us to lim←−Π
H2(Π,Z/nZ) = 0 for Z/nZ ∈ C. By (1.1.5), we

conclude the C-goodness of Πg.

Considering the Euler characteristics of Fr and Πg, we obtain

Corollary (1.3.4) ([1], [25]). The pro-C completion of Fr (r ≥ 2)

and Πg (g ≥ 2) have trivial center.

Note We can also apply Theorem (1.3.2) to get “the pro-p Gottlieb

theorem” which implies the centerfreeness of pro-p groups with nonzero

Euler characteristics. The key point of the application lies in the fact that

Zp[[G]] is a pseudocompact local ring for any pro-p group G in the sense

of A.Brumer. We discuss this topic in a separate paper [33]. For a number

theoretic application for pro-p Galois groups, see Yamagishi [48].

1.4. Two remarks on profinite groups

The following proposition is useful and can be found in [23] (with small

typographical errors).
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Proposition (1.4.1). Let G be a profinite group, K a closed subgroup

of G.

(i) For any open subgroup M of K, there exists an open subgroup L of G

such that L ∩K = M .

(ii) If K is normal in G, then for any open normal subgroup M of K, there

exists an open normal subgroup L of G such that L ∩K ⊂ M .

Proof. (i): Let {Nα}α∈A be the system of open normal subgroups of

G, and put Mα = MNα. Then, as G is a Hausdorff topological space, it is

easy to see that M =
⋂
α∈AMα. In particular, M =

⋂
α∈A(Mα ∩ K). By

assumption, K \M is compact. So we find a finite subset A0 of A such that

M =
⋂
α∈A0

(Mα ∩ K) =
⋂
α∈A0

Mα ∩ K. We may take
⋂
α∈A0

Mα for L.

(ii): By (i), we have an open subgroup L of G with L ∩ K = M . Replace

L by
⋂
g∈G gLg−1, we get the desired one. �

(1.4.2) Notations : For a profinite group G, [G,G] (or G′) denotes the

closure of the commutator subgroup of G, and Gab = G/[G,G]. If p is a

prime number, SylpG means a p-Sylow subgroup of G. For a subset S of

G, we denote by 〈S〉 the smallest closed subgroup containing S. Moreover,

NG(S) (resp. CG(S)) denotes the normalizer of 〈S〉 (resp. centralizer of

S) in G.

Remark. In the above notations, it is easy to see that CG(S) =

CG(〈S〉). Moreover we can show that CG(S) and NG(S) are closed sub-

groups of G. (Use the compactness of 〈S〉 for the latter.)

Proposition (1.4.3). Let C be a full class of finite groups, and let

G = F̂r be the pro-C completion of a free group of rank r ≥ 1. Let z ∈ G be

an element such that there exist only finitely many primes p with Sylp〈z〉 �=
1. Then [NG(z) : CG(z)] < ∞.

Proof. We may assume z �= 1. Let P be the set of primes p with

Sylp〈z〉 �= 1. As P is finite, we can take an open normal subgroup N of

G, such that the image of 〈z〉 in G/N has a nontrivial p-Sylow subgroup

for each p ∈ P . Let U = N · 〈z〉. Then U is a free pro-C group ([25](1.4))

and 〈z〉 is injectively mapped into Uab. Any element x ∈ U normalizing 〈z〉
centralizes 〈z〉. In fact, if we put xzx−1 = za (a ∈

∏
p∈P Zp), going to the

abelianization of U , we get a = 1. Therefore the conjugate action of NG(z)
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on 〈z〉 factors through NG(z)/NG(z) ∩ U which is a finite group. �

Remark. In the case C = Cl (l an odd prime), the group NG(z)/

NG(z)∩U in the above proof is a finite l-group, therefore must be trivially

mapped into Aut〈z〉 ∼= Z×
l . Thus, in this case, we have NG(z) = CG(z).

1.5. Automorphisms of group extensions

(1.5.1) For a profinite group G, let AutG denote the group of all the con-

tinuous group automorphisms of G. (We recall that a continuous bijection

of a compact space onto a Hausdorff space is automatically bicontinuous.)

If N is an open normal subgroup of G, then

AN = {f ∈ AutG | f(x)x−1 ∈ N (x ∈ G)}

forms a subgroup of AutG. We can introduce a topology in AutG by letting

the family {AN | N � G open} be a fundamental system of neighborhoods

of the identity. It is easy to see that AutG is a totally disconnected Haus-

dorff topological group which is in general not compact.

We consider AutG to be acting on G on the left. So, an inner automor-

phism by an element g ∈ G is written as

inn(g) : x → gxg−1 (x ∈ G).

The (normal closed) subgroup of inner automorphisms of G is denoted by

InnG which has a topology as a subgroup of AutG. If ZG is the center

of G, the canonical homomorphism G/ZG → InnG gives a continuous bi-

jection. By the above remark, this map is also bicontinuous. The outer

automorphism group OutG of G is defined as the quotient group of AutG

by InnG. For each f ∈ AutG, we denote by f̄ the image of f in OutG.

(1.5.2) Let π be a profinite group, π1 a closed normal subgroup of π,

and p : π → G = π/π1 the projection. By the cross section theorem of

profinite groups ([41] I, Prop.1), there is a continuous map s : G → π with

p ◦ s = id. (Here s is not necessarily a homomorphism.) If µ denotes a

continuous map G×G → π1 defined by

(1.5.2.1) s(σ)s(τ) = µ(σ, τ)s(στ) (σ, τ ∈ G),



88 Hiroaki Nakamura

then it satisfies the property

(1.5.2.2) µ(σ, τ)µ(στ, ρ) = s(σ)µ(τ, ρ)s(σ)−1µ(σ, τρ) (σ, τ, ρ ∈ G).

Recall that we can recover the group π, if we are given π1 and G together

with the data s, µ.

(1.5.3) We have two basic representations of G which actually do not

depend on the choice of s. The first one is in the center Z of π1. The action

of G on Z is given by

σ ·m = s(σ)ms(σ)−1 (σ ∈ G,m ∈ Z).

By this action, Z is a topological G-module, and the continuous cochain

cohomology groups H∗
cont(G,Z) are defined (Tate [44]).

The second one is an associated exterior representation

ϕ : G → Outπ1,

where for each σ ∈ G, ϕ(σ) is the class of the restriction of the inner

automorphism by s(σ) to π1.

(1.5.4) Our first task in this subsection is to study the group Aut(π, π1)

of all the continuous group automorphisms f of π with f(π1) = π1. Follow-

ing Wells [47], we shall say a pair (f0, f1) ∈ AutG× Autπ1 is compatible if

the following two conditions hold:

1) f0(ker(ϕ)) = ker(ϕ);

2) f̄1ϕ(σ)f̄−1
1 = ϕ(f0(σ)) in Outπ1 (σ ∈ G).

The compatible pairs naturally form a subgroup of AutG × Autπ1 which

we denote by C.

A profinite version of Wells’ exact sequence [47] is described as follows:

Lemma (1.5.5). There is a canonical exact sequence

0 → Z1
cont(G,Z) → Aut(π, π1) → C → H2

cont(G,Z).

The middle two maps are group homomorphisms, but the last map is in

general not.
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In the above lemma, Z1
cont(G,Z) is the group of the continuous 1-

cochains γ : G → Z such that

(1.5.5.1) γ(στ) = γ(σ)s(σ)γ(τ)s(σ)−1 (σ, τ ∈ G).

The second cohomology group H2
cont(G,Z) is by definition the quotient

group Z2
cont(G,Z)/B2

cont(G,Z), where Z2
cont(G,Z) is a collection of the con-

tinuous 2-cochains h : G×G → Z such that

(1.5.5.2) h(σ, τ)h(στ, ρ) = s(σ)h(τ, ρ)s(σ)−1h(σ, τρ) (σ, τ, ρ ∈ G),

and B2
cont(G,Z) is a subgroup of Z2

cont(G,Z) consisting of the 2-cochains of

the form

(1.5.5.3) h(σ, τ) = s(σ)v(τ)s(σ)−1v(στ)−1v(σ) (σ, τ ∈ G).

for some continuous maps v : G → Z.

The second map in (1.5.5) sends γ ∈ Z1
cont(G,Z) to an automorphism

f ∈ Aut(π, π1) such that

(1.5.5.4) f(xs(σ)) = xγ(σ)s(σ) (x ∈ π1, σ ∈ G).

The exactness at Z1
cont(G,Z) is straightfoward from the definition.

The third map in (1.5.5) associates with f ∈ Aut(π, π1) a compatible

pair (f0, f1) in AutG × Autπ1 in an obvious way. For any element f ∈
Aut(π, π1) with associated pair (f0, f1), define β : G → π1 by

(1.5.5.5) f(s(σ)) = β(σ)s(f0(σ)).

Then we can deduce the following two formulae in which we understand

σ, τ ∈ G, x ∈ π1:

β(στ) = f1(µ(σ, τ))−1β(σ)s(f0(σ))β(τ)s(f0(σ))−1µ(f0(σ), f0(τ));

(1.5.5.6)

f1(s(σ)xs(σ)−1) = β(σ)s(f0(σ))f1(x)s(f0(σ))−1β(σ)−1.(1.5.5.7)

Conversely, if a pair (f0, f1) ∈ AutG×Autπ1 admits a map β : G → π1 with

(1.5.5.6), (1.5.5.7), then (1.5.5.5) defines an automorphism f ∈ Aut(π, π1)
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corresponding to the pair. The exactness at Aut(π, π1) follows from this

observation: if f0 and f1 are trivial, then γ = β gives a desired 1-cocycle.

To define the fourth map, we need some argument. Let (f0, f1) ∈ C.

The compatibility condition assures the existence of a unique continuous

map δ : G → Innπ1 for which the formula

f1 ◦ inn(s(σ)) = δ(σ) ◦ inn(s(f0(σ))) ◦ f1

holds in Autπ1 for every σ ∈ G. Lifting back δ by the cross section theorem,

we obtain a continuous map γ : G → π1 satisfying (1.5.5.7) (with β = γ).

Define at first a function k : G×G → π1 by

k(σ, τ) = µ(f0(σ), f0(τ))−1s(f0(σ))γ(τ)−1

(1.5.5.8)

· s(f0(σ))−1γ(σ)−1f1(µ(σ, τ))γ(στ)

for σ, τ ∈ G. Eliminating x from (1.5.5.7) by y = s(f0(σ))f1(x)s(f0(σ))−1,

and then replacing σ by στ there, we see that k(σ, τ) commutes with every

y ∈ π1, i.e., k(σ, τ) ∈ Z (σ, τ ∈ G). Moreover if we apply (1.5.2.2), (1.5.5.7),

(1.5.5.8)×2, and (1.5.2.1) to the middle portion of k(στ, ρ)k(σ, τρ)−1 in this

order, and independently apply (1.5.2.2) to the last two factors of it, we

obtain

k(στ, ρ)k(σ, τρ)−1 = k(σ, τ)−1s(f0(σ))k(τ, ρ)s(f0(σ))−1 (σ, τ, ρ ∈ G).

(We also use iteratedly the fact that k(∗, ∗) lies in the center of π1.) From

this together with (1.5.5.7), we see that h : G×G → Z defined by

h(σ, τ) = f−1
1 (k(σ, τ)) (σ, τ ∈ G)

satisfies the 2-cocycle condition (1.5.5.2). If we change the lift γ of δ into

another one γ′, then we obtain another 2-cocycle h′ in the same way. The

difference of these two 2-cocycles comes from a 2-coboundary as follows:

h(σ, τ)−1h′(σ, τ) = s(σ)v(τ)s(σ)−1v(στ)−1v(σ) (σ, τ ∈ G),

where v(σ) = f−1
1 (γ(σ)γ′(σ)−1) which lies in Z (σ ∈ G). Therefore we can

define the fourth map by letting the image of (f0, f1) ∈ C be the class of h.
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Finally, if (f0, f1) ∈ C is mapped to a 2-coboundary (1.5.5.3), then the

map β : G → π1 defined by

β(σ) = γ(σ)f1(v(σ)) (σ ∈ G)

satisfies (1.5.5.6). This produces an automorphism f ∈ Aut(π, π1) mapped

to the (f0, f1). Thus the exactness at C follows and the proof of Lemma

(1.5.5) is completed. �
(1.5.6) We proceed with the situation in (1.5.2)-(1.5.3). An automor-

phism f ∈ Aut(π, π1) is said to be G-compatible if the induced automor-

phism on G by f is identity. We denote the group of all the G-compatible

automorphisms by AutGπ. The inner automorphisms of π by the elements

of π1 form a subgroup of AutGπ (denoted also Innπ1). We put

EG(π) = AutGπ/Innπ1.

Let OutG(π1) denote the centralizer of ϕ(G) in Outπ1. Then it is easy to see

that the restriction map AutGπ → Autπ1 gives a canonical homomorphism

R : EG(π) → OutG(π1).

As an application of Lemma (1.5.5), we obtain

Corollary (1.5.7). Suppose that the center of π1 is trivial. Then

the above homomorphism R : EG(π) → OutG(π1) gives a group isomor-

phism. �

1.6. Galois centralizers and outer automorphisms of π1

(1.6.1) Let X be an absolutely irreducible algebraic variety defined over

a number field k, and C an almost full class of finite groups. As usual, we

denote by πC
1 (Xk̄) the maximal pro-C quotient of the geometric fundamental

group of X, and by πC
1 (X) the unique quotient of π1(X) naturally fitting

into the exact sequence

1 → πC
1 (Xk̄) → πC

1 (X) → Gk → 1.

In this setting, we shall write EC
k (X) for EGk

(πC
1 (X)) (1.5.6).
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Lemma (1.6.2). The notations being as above, πC
1 (Xk̄) is a charac-

teristic subgroup of πC
1 (X). If πC

1 (Xk̄) has trivial center, then there is a

canonical exact sequence of groups

1 → EC
k (X) → OutπC

1 (X) → Out(Gk).

Moreover if X has a descent model X0 over a subfield k0 of k, then the

image of the third map above contains a subgroup isomorphic to Aut(k/k0).

Proof. It is known by [39] that πC
1 (Xk̄) is always finitely generated.

On the other hand, since k is hilbertian, every nontrivial normal closed

subgroup of Gk is not finitely generated ([10] Theorem 15.10; [46]). Thus

πC
1 (Xk̄) is maximum among the finitely generated closed normal subgroups

of πC
1 (X); hence it is characteristic in πC

1 (X).

Let π = πC
1 (X), π1 = πC

1 (Xk̄) and G = Gk. By the above, Aut(π) =

Aut(π, π1). Since Gk has trivial center, AutGπ∩ Innπ = Innπ1. Hence, we

have a canonical embedding

EG(π) = AutGπ/Innπ1 ↪→ Autπ/Innπ(= Outπ).

The cokernel of this embedding is isomorphic to

D := Autπ/AutGπ · Innπ.

Let us identify Aut(π, π1) with the group of compatible pairs in AutG ×
Autπ1 by Lemma (1.5.5), and consider the first projection pG. Then ker(pG)

= AutGπ, and pG(Innπ) = InnG. Therefore D is embedded into AutG/

InnG = OutG.

If X has a descent model X0/k0, then πC
1 (X) is an open subgroup of

πC
1 (X0). The inner automorphisms by elements of Gk0 is lifted to those by

elements of πC
1 (X0). From this the last assertion follows. �

By the Neukirch-Ikeda-Iwasawa-Uchida theorem [36], we know OutGk
∼=

Aut(k/Q) which is obviously a finite group. Therefore,

Corollary (1.6.3). Under the assumption that πC
1 (Xk̄) is centerfree,

finiteness of OutπC
1 (X) is equivalent with finiteness of EC

k (X).
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§2. Fundamental groups of algebraic curves

2.1. Weight characterization of inertia subgroups

Naively speaking, weight filtration in an l-adic cohomology group

H∗(X ⊗ k̄,Ql) gives a family of (linear) subspaces which are character-

ized by conditions on Frobenius eigenvalues. As introduced by Deligne [8],

Oda-Kaneko [22] and other authors in Hodge theory, such weight filtra-

tion can also exist in the (Lie algebras of the) pronilpotent fundamental

groups of algebraic varieties, in which filtered components form a system of

subgroups (or Lie subalgebras).

In this subsection, we shall present an attempt to formulate another

weight filtration in pro-C fundamental groups of punctured smooth curves.

This weight filtration characterizes the conjugacy union of the inertia sub-

groups in πC
1 (X⊗ k̄) which is therefore not closed under the group operation

of the ambient space. For this reason, we want to say our weight filtration

is ‘of nonlinear type’, or if it deserves, ‘of anabelian type’.

This type of weight filtration was firstly considered in the previous paper

[30], and applied to show that the exterior Galois representations in the

full profinite fundamental groups of punctured projective lines over fields

finitely generated over the rationals determine the isomorphism classes of

the lines themselves. We shall present the following exposition by adding

some technical improvements to [30].

Let C be a full class of finite groups, X a smooth noncomplete (absolutely

irreducible) curve defined over a number field k, Xk̄ = X ⊗ k̄, and πC
1 (X)

the quotient of the etale fundamental group of X divided by the kernel of

π1(Xk̄) into the maximal pro-C quotient πC
1 (Xk̄). Then we have an exact

sequence of profinite groups

1 −−−→ πC
1 (Xk̄) −−−→ πC

1 (X)
pX/k−−−→ Gk −−−→ 1.

By the Grothendieck comparison theorem, πC
1 (Xk̄) is isomorphic to the pro-

C completion of the discrete group

Πg,n = 〈x1, . . . , x2g, z1, . . . , zn|[x1, x2] · · · [x2g−1, x2g]z1 · · · zn = 1〉

where [x, y] = xyx−1y−1, g is the genus of the smooth compactification

Xc of X with geometric complement {p1, . . . , pn} and each zi generates an
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inertia subgroup over pi (1 ≤ i ≤ n). We shall assume n ≥ 1, 2−2g−n < 0

so that πC
1 (Xk̄) is a free pro-C group of rank 2g + n− 1.

Definition. Let z be a nontrivial element of πC
1 (Xk̄). A closed sub-

group N of πC
1 (X) is said to be a cyclotomic normalizer of z, if and only if

the following conditions 1)-3) hold.

1) N normalizes 〈z〉.
2) pX/k(N) is open in Gk.

3) The conjugate action of N on 〈z〉 factors through N/N ∩πC
1 (Xk̄) and the

induced homomorphism

N/N ∩ πC
1 (Xk̄)(⊂ Gk) → Aut〈z〉

gives the cyclotomic character.

Theorem (2.1.1) (‘Nonlinear’ weight filtration). Let C be a full class

of finite groups. Then a nontrivial element z in πC
1 (Xk̄) is contained in an

inertia group if and only if z has a cyclotomic normalizer in πC
1 (X).

The ‘only if’ part of the above theorem follows from the classical branch

cycle argument: We may assume that C = Cfin and that each pi ∈ Xc \X

is a k-rational point (1 ≤ i ≤ n). After replacing z by its conjugate if

necessary, we may furthermore assume that z ∈ 〈zi〉 for some 1 ≤ i ≤ n.

Let R be the completion of the local ring OXc,pi with field of fractions F .

The canonical morphism SpecR → Xc induces SpecF → X together with

ρi : GF = π1(F ) → π1(X). By [40] II, Th.2, F is isomorphic to k((T ))

with a uniformizing parameter T , and the embedding k ↪→ k((T )) gives the

exact sequence

1 → I → GF → Gk → 1,

where I is the absolute Galois group of K = k̄((T )). Since the algebraic

closure of K is the union of the Kummer extensions Kn = k̄((T 1/n)) of K

([40] IV Prop.8, Puiseax’s theorem), the Kummer character

Gal(Kn/K) � σ → σ(T 1/n)/T 1/n ∈ µn(k̄)

yields a canonical isomorphism I ∼= lim←−n
µn(k̄). (Here µn denotes the group

of n-th roots of unity.) From this, we can see that the conjugate action of
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Gk on I is given by the cyclotomic character. As 〈zi〉 is (conjugate to) the

image of I by ρi, it suffices to take (a conjugate of) ρi(GF ) for N .

Before going to the proof of the ‘if’ part, we shall prepare some lemmas,

in which C is assumed to be a full class of finite groups (1.1).

Lemma (2.1.2). Let F̂n be a free pro-C group with free generators

x1, . . . , xn, and z an arbitrary element of 〈x1〉 \ {1}. Then the centralizer

of z is just 〈x1〉.

This lemma follows as a special case of [16] Theorem B′, in the proof

of which the Kurosh subgroup theorem in free pro-C products by Binz-

Neukirch-Wenzel was used as a main tool. Here, we shall give a different

and direct proof due to Akio Tamagawa. The author would like to thank

him for communicating this elegant proof and permitting us to share it

here.

Proof. Let y be in the centralizer of 〈z〉 in F̂n, and N an open normal

subgroup of F̂n with projection π : F̂n → G = F̂n/N . It suffices to show

that π(y) ∈ 〈π(x1)〉 in G. Let us write z as xα1 (α ∈ ZC =
∏
p∈|C| Zp), and

choose a prime p such that the p-component αp of α is nontrivial. Then, we

fix an embedding G ↪→ GLr(Zp) for a sufficiently large r ≥ 1 and consider

the pro-C group

G′ = {X =

(
A B

O C

)
∈ GL2r(Zp)|A ∈ G,C ∈ 〈π(x1)〉}

together with the surjection λ : G′ � X → A ∈ G. Since F̂n is free, it is

possible to define a continuous homomorphism ψ : F̂n → G′ by putting

ψ(x1) =

(
π(x1) π(x1)

O π(x1)

)
, ψ(xi) =

(
π(xi) O

O 1r

)
(i ≥ 2)

so that the lifting condition π = λ ◦ ψ holds. Then, letting g denote the

cardinality of G, we have

ψ(zg) = ψ(xgα1 ) =

(
1r gαp1r
O 1r

)
.

If we put ψ(y) =

(
π(y) B

O C

)
∈ G′, then the commutativity of y and zg

gives gαpC = gαpπ(y). Therefore π(y) = C ∈ 〈π(x1)〉 as desired. �
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Corollary (2.1.3). Notations being as in Lemma (2.1.2), there exist

no abelian subgroups A ⊂ F̂n such that A ∩ 〈xi〉 �= 1, A ∩ 〈xj〉 �= 1 for

1 ≤ i < j ≤ n. �

Lemma (2.1.4). Let G be the pro-C completion of the surface group

Πg,n = 〈x1, . . . , x2g, z1, . . . , zn|[x1, x2] · · · [x2g−1, x2g]z1 · · · zn = 1〉

with n ≥ 1, 2 − 2g − n < 0, and define closed subsets Z, Zi (1 ≤ i ≤ n) by

Z =
n⋃
i=1

Zi Zi = {gzai g−1|g ∈ G, a ∈ ZC}.

Then the following two conditions on z ∈ G are equivalent.

(1) z ∈ Z.

(2) For every prime l in |C| and for every open subgroup H containing z,

z ∈ [H,H]H l〈Z ∩H〉.

Proof. It suffices to show that (2) implies (1). Let us first assume

n ≥ 2. Then z1, . . . , zn can be members of a free generator system of the

free pro-C group G. Suppose z �∈ Z. Then by Lemma (2.1.2), we see

〈z〉 ∩ Z = {1}. Let l be a prime with 〈z〉 �= 〈zl〉 and B an open subgroup of

G with B ∩ 〈z〉 = 〈zl〉 (1.4.1). Since Z \B and 〈z〉 \B are disjoint compact

subsets in the Hausdorff space G, we can find an open normal subgroup

M(⊂ B) of G such that Z \ B and 〈z〉 \ B are disjoint still in the quotient

G/M . This means in turn that Z ∩ M〈z〉 is contained in B. If H denotes

M〈z〉, then H/M〈zl〉 ∼= Z/lZ; hence [H,H]H l ⊂ M〈zl〉 ⊂ B. Thus we

conclude [H,H]H l〈Z ∩H〉 ⊂ B �� z.

Next we consider the case n = 1. Let l be a prime in |C|. Then the open

normal subgroup N = [G,G]Gl〈Z〉 corresponds to the fundamental group

of a certain unramified covering of degree l2g over the Riemann surface with

fundamental group Πg,1. Therefore we may do the same argument as above

after replacing G by N . �

Now we are in a position to give the proof of the ‘if’ part of Theorem

(2.1.1). Let z be in πC
1 (Xk̄) with a cyclotomic normalizer N in πC

1 (X), and
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let Z be the total subset of the inertia subgroups in πC
1 (Xk̄). If z is not

contained in Z, then by Lemma (2.1.4), we have an open subgroup H(� z)

and a prime l in |C| such that

(*) z �∈ [H,H]H l〈Z ∩H〉.

Choose an open subgroup H ′ ⊂ πC
1 (X) with H ′ ∩ πC

1 (Xk̄) = H, and let Y

be the finite etale cover of X with πC
1 (Y ) ∼= H ′. Since pX/k(H

′∩N) is open

in Gk, there exists a finite extension K of k in k̄ such that Y is defined over

K with pY/K : πC
1 (Y ) → GK sending N ∩ πC

1 (Y ) onto GK . It is known that

the target of the pro-l abelianization map

πab : πC
1 (Yk̄)(= H) → Het

1 (Yk̄,Zl)

has a GK-module structure by conjugation with torsion free weight filtration

in the ordinary sense:

W−1 = Het
1 (YK̄ ,Zl),

W−2 = πab(〈Z ∩H〉),
W−3 = 0.

Since the image of 〈z〉 in Het
1 (YK̄ ,Zl) is acted on by GK via the cyclotomic

character, z must lie in (W−2)-part. (By the Riemann-Weil hypothesis, the

complex absolute value of a Frobenius image in W−1/W−2 of an unramified

prime p of K must be the half square of the absolute norm of p.) This

contradicts the condition (*).

2.2. Probraid calculus: genus 0 case

In this subsection, generalizing [31], we shall discuss the finiteness of

E
(l)
k (X) for hyperbolic lines X over number fields k. The main statement

is Theorem(2.2.5).

(2.2.1) Let l be a prime, and Π̂0,n the free pro-l group with free gener-

ators x1, . . . , xn−1 (n ≥ 3). Put xn = (x1 · · ·xn−1)
−1. The abelianization

Λ of Π̂0,n is a free Zl-module of rank n − 1 generated by the images of xi
(denoted Xi) (1 ≤ i ≤ n − 1). We define Λi (1 ≤ i ≤ n − 1) to be the
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Zl-submodule of Λ generated by X1, . . . , X̌i, . . . , Xn−1 (Xi: omitted), and

Λ∗
n−1 ⊂ Λn−1 by

Λ∗
n−1 =

{ 〈X1, . . . , Xn−3〉, if n ≥ 4,

0, if n = 3.

(2.2.2) A continuous group automorphism f of Π̂0,n is called braid-like, if

there exist a ∈ Z×
l and ti ∈ Π̂0,n (1 ≤ i ≤ n) such that f(xi) = tix

a
i t

−1
i

(1 ≤ i ≤ n). The constant a ∈ Z×
l is determined uniquely by f , hence

is denoted by af . If we impose on ti the condition ti (mod Π̂′
0,n) ∈ Λi

(1 ≤ i ≤ n− 1), then we see that ti is also determined uniquely by f . (Use

e.g. (2.1.2).) We will write such ti as ti(f) for each i ∈ {1, . . . , n − 1}.
The group of all the braid-like automorphisms is denoted by Aut%(Π̂0,n).

Further we put Out%(Π̂0,n) = Aut%(Π̂0,n)/Inn(Π̂0,n). It is easy to see that

for f, g ∈ Aut%(Π̂0,n),

afg = afag,(2.2.2.1)

ti(fg) = f(ti(g))ti(f) (1 ≤ i ≤ n− 1).(2.2.2.2)

If a braid-like automorphism f ∈ Π̂0,n satisfies further the condition tn(f) =

1, tn−1(f) (mod Π̂′
0,n) ∈ Λ∗

n−1, then f is called a normalized probraid. The

normalized probraids form a subgroup of Aut%(Π̂0,n), which is denoted by

Brd(Π̂0,n). The following proposition is easy to see.

Proposition (2.2.3). The group Aut%(Π̂0,n) is a semidirect product

of InnΠ̂0,n with Brd(Π̂0,n). In particular, Out%(Π̂0,n) ∼= Brd(Π̂0,n). �

Now we shall generalize Lemma 2 of [31]. Let Π̂0,n = Π(1) ⊃ Π(2) ⊃ · · ·
be the lower central series of Π̂0,n, and set

A[m] = {f ∈ Aut%(Π̂0,n) | af = 1, ti(f) ∈ Π(m), 1 ≤ i ≤ n− 1}.

for each m ≥ 1. The mapping f #→ af gives a homomorphism a :

Aut%(Π̂0,n) → Z×
l with kernel A[1].

Lemma (2.2.4). Let G be a subgroup of Aut%(Π̂0,n) and assume that

there exist an integer m(≥ 1) and elements g, h ∈ G such that
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1) ag ∈ Z×
l is nontorsion;

2) h ∈ A[m] \A[m + 1].

Then the centralizer of G in Aut%(Π̂0,n) is injectively mapped into the tor-

sion subgroup of Z×
l via a.

Proof. Let f be an element of Aut%(Π̂0,n) centralizing G. By using

(2.2.2.2), we compute

ti(fhf
−1) = fhf−1(ti(f)−1) · f(ti(h)) · ti(f) (1 ≤ i ≤ n− 1).

Since the image of ti(h) in Π̂0,n/Π(m + 1) is central, and since h therefore

acts trivially on Π̂0,n/Π(m + 1), we obtain

ti(fhf
−1) ≡ f(ti(h)) mod Π(m + 1) (1 ≤ i ≤ n− 1).

Moreover, since f acts on Π(m)/Π(m+1) by multiplication by amf , it follows

that

ti(fhf
−1) ≡ amf ti(h) mod Π(m + 1).

By assumption, there exists at least one i ∈ {1, . . . n− 1} such that ti(h) �∈
Π(m + 1). Therefore we get amf = 1. It remains to show that f = 1

under the assumption f ∈ A[1]. Suppose that there exists N ≥ 1 with

f ∈ A[N ] \A[N + 1]. Then by the similar argument as above, we see

ti(gfg
−1) ≡ aNg ti(f) mod Π(N + 1) (1 ≤ i ≤ n− 1).

Since f commutes with g, and since there exists 1 ≤ i ≤ n − 1 with

ti(f) �∈ Π(N + 1) by assumption, we get aNg = 1; contradiction. Thus

f ∈
⋂
N≥1 A[N ] = {1}. This completes the proof of Lemma (2.2.4). �

Theorem (2.2.5). Let n ≥ 3, X an n-point punctured projective line

defined over a number field k, and l an odd prime. If π1(Xk̄)
pro−l denotes

the maximal pro-l quotient of π1(Xk̄), then the centralizer of the image of

the canonical Galois representation

ϕX : Gk → Outπ1(Xk̄)
pro−l,
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or equivalently E
(l)
k (X) by (1.5.7), is a finite group isomorphic to a subgroup

of Sn. In particular, Outπ
(l)
1 (X) is finite.

Proof. Let us identify π1(Xk̄)
pro−l with Π̂0,n so that xi generates an

inertia subgroup of the former group (1 ≤ i ≤ n). By Corollary (1.5.7),

OutGk
Π̂0,n is isormophic to E

(l)
k (X). Then, it follows from the nonlinear

weight filtraition (2.1.1), that each Gk-compatible automorphism of π
(l)
1 (X)

permutes the conjugacy unions of the inertia subgroups over the deleted

points on P1. Thus we have a canonical map E
(l)
k (X) → Sn. The kernel E1

of this map is contained in Out%(Π̂0,n) ∼= Brd(Π̂0,n) (2.2.3). It remains to

show that E1 = {1}. Let φn : Gk → Brd(Π̂0,n) be the unique lift of ϕX , and

consider the canonical map p : Brd(Π̂0,n) → Brd(Π̂0,3) obtained by setting

x1 = · · · = xn−3 = 1. Let f be an arbitrary element of E1 ⊂ Brd(Π̂0,n).

Then, since p(f) commutes with φ3(Gk), we obtain 1 = ap(f) = af from

[31]. In particular, we see f ∈ A[1]. On the other hand, since there is a

nontrivial Galois image σ lying in φ3(Gk) with aσ = 1 ([31] §4), there exists

also an element h ∈ φn(Gk) which satisfies the condition 2) of (2.2.4) for

some m ≥ 1. Thus we can apply Lemma (2.2.4) for G = φn(Gk) to conclude

f = 1. The last statement follows from (1.6.3) and the proof of Theorem

(2.2.5) is completed. �

2.3. Curves with special stable reductions and Jacobians

Let k be a number field with absolute Galois group Gk, C a complete

nonsingular (absolutely irreducible) curve of genus g ≥ 2 defined over k.

For a prime l, we denote the maximal pro-l quotient of the geometric fun-

damental group of C simply by π1. Let ϕ : Gk → Outπ1 be the canonical

exterior representation.

In this subsection, we shall show the following theorem (2.3.1) which

suggests that E
(l)
k (C) should be finite for a wide class of hyperbolic curves

C over number fields. In a crucial step of the proof, we make use of a recent

result of Takayuki Oda [37].

Theorem (2.3.1). Let J be the Jacobian variety of C, and suppose

that

(1) Endk(J) ∼= Z;

(2) there exists a prime p(� l) of k such that J has good reduction at p but
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C has stable bad reduction at p.

Then the centralizer of the Galois image ϕ(Gk) in Outπ1, or equivalently

E
(l)
k (C) by (1.5.7), is a finite group of order at most 2. In particular,

Outπ
(l)
1 (C) is finite (1.6.3).

Before going to the proof, we shall briefly review some results of Asada-

Kaneko [4]. Let Γ′ = Autπ1, Γ = Outπ1, and let π1 = π1(1) ⊃ π1(2) ⊃ . . .

denote the lower central series of π1. We choose a standard generator system

x1, ..., x2g of π1 with the defining relation [x1, x2] · · · [x2g−1, x2g] = 1. For

each i (1 ≤ i ≤ 2g) and f ∈ Γ′, let si(f) = f(xi)x
−1
i , and define the

filtration of Γ′ (resp. Γ) by

Γ′[m] = {f ∈ Γ′ | si(f) ∈ π1(m + 1); 1 ≤ i ≤ 2g}
( resp. Γ[m] = Γ′[m] · Innπ1/Innπ1)

for m ≥ 1. It is shown that Γ[m] = Γ′[m]/Innπ1(m). So the homomorphism

(2.3.2) i′m : Γ′[m] → (grm+1π1)
⊕2g, f #→ (si(f) mod π1(m + 2))1≤i≤2g

induces a canonical injection

(2.3.3.) im : grmΓ → (grm+1π1)
⊕2g/Hm

for m ≥ 1, where Hm is the image of Innπ1(m) by i′m. As the target space

of im is shown to have no torsion, grmΓ turns out to be a torsion free Zl-

module [3]. Every element of Γ′ acts canonically on π1/π1(2) so that we

have a surjective homomorphism λ : Γ → GSp(2g,Zl). Letting Xi denote

the image of xi in π1/π1(2), we define the matrix (λij(f))1≤i,j≤2g for f ∈ Γ

by λ(f)(Xj) =
∑

i λij(f)Xi. We have a GSp(2g,Zl)-bimodule structure on

(grm+1π1)
⊕2g as follows. The left action of λ ∈ GSp(2g) is the diagonal

one: λ acts componentwise on grm+1π1 in a canonical way. The right action

of λ = (λij) ∈ GSp(2g) on (si) ∈ (grm+1π1)
⊕2g is defined by

(2.3.4) (s1, ..., s2g) · λ = (

2g∑
u=1

λuisu)1≤i≤2g.
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The action of the inner automorphism by f ∈ Γ′ on grmΓ′ is calculated in

the module (grm+1π1)
⊕2g by the following fundamental formula of [4]:

(2.3.5) (si(fhf
−1))1≤i≤2g = λ(f) · (s1(h), . . . , s2g(h)) ·λ(f−1), h ∈ Γ[m].

(Here we write the formula via left action of Autπ1 on π1. This formula

was described in [4] in a slightly different style via right action of Autπ1 on

π1.)

Proof of the Theorem. Let f be an arbitrary element of Γ =

Outπ1 centralizing ϕ(Gk). By the Tate conjecture proved by Faltings, we

have

EndGk
Tl(J(k̄)) ∼= Endk(J) ⊗ Zl ∼= Zl.

As the Tate module Tl(J(k̄)) is canonically isomorphic to π1/π1(2), we may

assume that f acts on π1/π1(2) via af -multiplication for some af ∈ Z×
l .

Step 1. We first prove that af = ±1. Let Ip ⊂ Gk be an inertia subgroup

over p, and consider the restrction ϕp of ϕ : Gk → Γ to Ip. Then, by

using the nonabelian Picard-Lefschetz formula, Takayuki Oda [37] proved

under the condition (2) that ϕp has a nontrivial image δ in Γ[2] \ Γ[3]. Let

[δ′] ∈ (gr3π1)
⊕2g be the image of a lift δ′ of δ in Γ′[2] via (2.3.2), and apply

the formula (2.3.5) to h = δ′. Then, since δ commutes with f in Γ, we

obtain [δ′] ≡ a3
f [δ

′]a−1
f mod Hm. As the map (2.3.3) is injective, we obtain

a2
f = 1, i.e., af = ±1.

Step 2. Assume af = 1. We may prove f = 1. If f �= 1, there exists

m ≥ 1 such that f ∈ Γ[m]\Γ[m+1]. Let σp ∈ Gk represent a Frobenius class

modulo Ip, and put φp = ϕ(σp). Then by the Riemann-Weil hypothesis,

λ(φp) ∈ GSp(2g) has algebraic eigenvalues with complex absolute values

Np1/2 (Np is the absolute norm of p). From this and the formula (2.3.5), it

follows that the inner automorphism by φp acts on Γ[m]/Γ[m+1]⊗Ql via the

algebraic eigenvalues with complex absolute values Npm/2. In particular,

since grmΓ is torsion free, no nontrivial elements of grmΓ are fixed by the

conjugate action of φp. This contradicts the commutativity of f and φp. �

Remarks. 1) The author does not assure yet how to construct al-

gebraic curves satisfying (1),(2) of the above theorem explicitly. We just

notice here that (1) is generic condition for algebraic curves over C, and

expect that (2) happens frequently around certain boundaries of the moduli

space of curves.
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2) Generalization of the theorem to the case of punctured curves will be

studied in a joint work with H.Tsunogai. (See [35].)

§3. Galois-braid groups

3.1. Combinatorics in Galois-braid groups

(3.1.1) Let us begin our study of the case of the moduli variety M0,n

introduced in §0 (n ≥ 3). We assume that it is defined over a fixed number

field k. Each point of M0,n (n ≥ 3) corresponds to an isomorphism class

of n-pointed projective lines (P1; a1, . . . , an) where the ai (1 ≤ i ≤ n) are

distinct points on P1. As in [12], adding the points of isomorphism classes

of “stable n-pointed P 1-trees”, we obtain a smooth compactification Bn of

M0,n. The complement Bn − M0,n consists of several irreducible divisors,

each of which reflects a type of stable n-pointed P 1-tree of two projective

lines. The special irreducible divisor Dij (1 ≤ i < j ≤ n) is one of them such

that each point of a dense open subset of Dij represents an isomorphism

class of (C; a1, . . . , an) in which:

1) C is the union of two projective lines normally crossing at one point a;

2) ai and aj are distinct points on one component of C − {a};
3) all other ar (r �= i, j) are on another component of C − {a} and distinct

from each other.

We denote by Γn
0 the (discrete) fundamental group of the analytic mani-

fold M0,n(C). Fix a full class of finite groups C. The pro-C completion Γ̂n
0 (C)

of Γn
0 is isomorphic to the maximal pro-C quotient of the geometric funda-

mental group π1(M0,n⊗k̄). If πC
1 (M0,n) denotes the quotient of the profinite

fundamental group π1(M0,n) divided by the kernel of π1(M0,n⊗k̄) → Γ̂n
0 (C),

then the following exact sequence holds:

1 → Γ̂n
0 (C) → πC

1 (M0,n) → Gk → 1.

Each irreducible divisor Dij gives in Γ̂n
0 (C) a conjugacy union Xij of the

inertia groups of valuations lying over Dij . We put conventionally Xij = Xji

and Xii = {1}.
(3.1.2) Let n ≥ m ≥ 3 and S a subset of {1, . . . , n} with cardinality n−

m. There is a canonical morphism fS : M0,n → M0,m obtained by forgetting

the points ai (i ∈ S) on P1 and renumbering the suffixes of the other ak
(k �∈ S) without change of order in a unique way. The homomorphism
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πC
1 (M0,n) → πC

1 (M0,m) (resp. Γn
0 → Γm

0 ) induced from fS is denoted by pS
(resp. pclS ), and when S = {ν} (1 ≤ ν ≤ n) simply by pν (resp. pclν ). We

call pS or pclS the forgetful homomorphism associated to S ⊂ {1, . . . , n}.
Let (Γn0 ) denote the exact sequence of discrete groups:

1 → ker(pclν ) → Γn
0 → Γn−1

0 → 1

for some ν ∈ {1, . . . , n} (n ≥ 5). We notice that, by symmetry, the group

extension is independent of the choice of ν and that ker(pclν ) is isomorphic

to the fundamental group of an (n− 1)-point punctured sphere denoted by

Π0,n−1. Let us now assume that (Γn0 ) is C-admissible (see (1.2.2)). Then,

for any m ≤ n (m ≥ 5), (Γm0 ) is also C-admissible, because the following

commutative diagram of group extensions holds:

1 −−−→ Π0,n−1 −−−→ Γn
0

pcl0−−−→ Γn−1
0 −−−→ 1�surj. �pcln �pcln−1

1 −−−→ Π0,n−2 −−−→ Γn−1
0

pcl0−−−→ Γn−2
0 −−−→ 1.

By using Propositions (1.2.4), (1.2.5) iteratedly, we see that Γn
0 is a C-

good group (of type FL). Moreover, ker(pν) is isomorphic to the pro-C

completion of ker(pclν ) ∼= Π0,n−1. Thus Γ̂n
0 (C) is a successive extension of

free pro-C groups, hence has trivial center. (This last assertion also follows

from Proposition (1.3.3).)

(3.1.3) Let D1 be the unit disk on P1(C) with boundary S1 and choose

n points a1, . . . , an on S1 in the anticlockwise order around D1. Let a ∈
M0,n(C) be the points corresponding to (P1; a1, . . . , an). Then, for each i,

j (1 ≤ i < j ≤ n), we define Aij ∈ π1(M0,n(C), a) to be the homotopy class

of the loop represented by the diagram in Fig.1, and put Aij = Aji, Aii = 1

for all 1 ≤ i, j ≤ n.

It is known that π1(M0,n(C), a) is generated by the Aij (1 ≤ i, j ≤ n) and

that the defining relations are given by the following (3.1.3.1) ∼ (3.1.3.7)

(c.f. [27] §3.7, [5] §4.2), in which we shall say a sequence of natural numbers

(i1, . . . , im) is in fair order if ai1 , . . . , aim are distinct from each other and

lie on S1 in the anticlockwise order around D1.

(3.1.3.1) Aij = Aji, Aii = 1 (1 ≤ i, j ≤ n).
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Fig. 1

(3.1.3.2) ArsAijA
−1
rs = Aij , if (i, j, r, s) is in fair order.

(3.1.3.3) AjsAijA
−1
js = A−1

is AijAis, if (i, j, s) is in fair order.

(3.1.3.4) ArjAijA
−1
rj = A−1

ij A
−1
ir AijAirAij , if (i, r, j) is in fair order.

(3.1.3.5) ArsAijA
−1
rs = A−1

is A
−1
ir AisAirAijA

−1
ir A

−1
is AirAis, if (i, r, j, s) is in

fair order.

(3.1.3.6) A1i · · ·Ani = 1 for each 1 ≤ i ≤ n.

(3.1.3.7) (A12)(A13A23) · · · (A1nA2n · · ·An−1,n) = 1.

Remark. Let Bn be the Artin braid group with n strings, presented

by the usual generators σ1, . . . , σn−1 and by relations{
σiσj = σjσi (|i− j| ≥ 2),

σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n− 2)

Then the pure braid group Pn is generated by the Aij = σ−1
i · · ·

σ−1
j−2σ

2
j−1σj−2 · · ·σi (1 ≤ i < j ≤ n). If yi = σi−1 · · ·σ2σ

2
1σ2 · · ·σi−1

(2 ≤ i ≤ n) and zn = y2y3 · · · yn, then the center of Bn (and of Pn) is

known to be an infinite cyclic group generated by the zn. Moreover we

know the canonical isomorphisms

Γn0
∼= Pn−1/〈zn−1〉 ∼= Pn/〈zn, Bn-conjugates of yn〉.

(3.1.4) In the following of this section, we fix the situation as follows. We

let n ≥ 5, and assume that the group extension (Γn0 ) is C-admissible for a full

class of finite groups C. (We see that (Γn0 ) is C-admissible not only for Cfin
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but also for Cl (l: any prime) by observing the relations (3.1.3.2)∼(3.1.3.5).

See (1.2.3).) We fix a k-rational point a = (P1; a1, . . . , an) ∈ M0,n and

a geometric point ā lying over it, together with an embedding of k̄ into

C, so that the pro-C completion Γ̂n
0 of Γn

0 = π1(M0,n(C), a) is canonically

identified with the maximal pro-C quotient of π1(M0,n⊗k̄, ā). Let xij denote

the image of Aij (1 ≤ i, j ≤ m) in πC
1 (M0,m) under this identification. Then,

we have

Xij = {gxcijg−1 | c ∈ ZC, g ∈ Γ̂n
0 }.

Given a forgetful homomorphism pS : πC
1 (M0,n, ā) → πC

1 (M0,m, fS(ā))

associated to S ⊂ {1, . . . , n}, we identify the geometric part of the target

group with the pro-C completion of π1(M0,m(C), fS(a)). In the latter group,

we introduce a generator system as in (3.1.3) by using the configuration

obtained from Fig.1 by deleting the ai (i ∈ S) from S1 ⊂ P1(C), and

by renumbering the suffices of the remaining aj (j �∈ S) without change

of order in a unique way. We denote the image of Aij (1 ≤ i, j ≤ m)

in πC
1 (M0,m) under the above identification by xij again. Then, if i or

j (1 ≤ i < j ≤ n) belongs to S, then pS(xij) = 1. Otherwise, pS(xij)

coincides with xrs for some suitable 1 ≤ r < s ≤ m. We remark that for

m < n, the element xij ∈ πC
1 (M0,m) is determined only up to conjugacy in

Γ̂m
0 , because it depends on the choice of S for which M0,m is regarded as

the target space of fS .

(3.1.5) Now, let us take an arbitrary Gk-compatible automorphism

f ∈ AutGk
πC

1 (M0,n).

The remainder of this subsection is devoted to considering how Xλµ (1 ≤
λ, µ ≤ n, λ �= µ) are mapped by f . In Theorem (3.1.13), we will obtain a

conclusion that f permutes these Xλµ among them in such a way that the

action is induced from a permutation of the set of indices {1, . . . , n}. Letting

m ≥ 4 and ν ∈ {1, . . .m}, suppose that for a forgetful homomorphism

pS : πC
1 (M0,n) → πC

1 (M0,m) associated to S ⊂ {1, . . . , n}, the following two

conditions hold:

(3.1.5.1) pS ◦ f(Xλµ) �= 1;

(3.1.5.2) pν ◦ pS ◦ f(Xλµ) = 1.

Proposition (3.1.6). Let z = pS ◦f(xλµ) and assume
⋃

1≤i≤n f(Xλi)

⊂ ker(pν ◦ pS). Then for each g ∈ Γ̂m
0 there exists g0 ∈ ker(pν) such that

gzg−1 = g0zg
−1
0 .
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Proof. Since Γ̂n
0 is generated by the centralizer of xλµ and the xλi(1 ≤

i ≤ n), this is obvious from the assumption. (cf. [19] Proposition 2.3.1) �

Let us choose a group section s∞ : Gk → πC
1 (M0,n) of p0,n (whose

image is) normalizing the inertia subgroup 〈xλµ〉 (and acting on it by

conjugation) via the cyclotomic character. Such a section can be con-

structed, for example, as follows. Consider the forgetful homomorphism

pλ : πC
1 (M0,n) → πC

1 (M0,n−1) so that xλµ ∈ ker(pλ). The rational point

α = fλ(a) gives a morphism Spec k → M0,n−1, and induces a group sec-

tion sα : Gk → πC
1 (M0,n−1) of p0,n−1. If Cα is the (n − 1)-point punctured

projective line represented by α ∈ M0,n−1(k), then p−1
λ (sα(Gk)) is canon-

ically identified with πC
1 (Cα) as Gk-augmented profinite groups. Then, by

Belyi’s well-known method, we can construct a complement of πC
1 (Cα ⊗ k̄)

in πC
1 (Cα) normalizing 〈xλµ〉 via the cyclotomic character. [For example,

define such a complement by

{
w ∈ πC

1 (Cα) |
wxλµw

−1 = xaλµ, wxλρw
−1 = txaλρt

−1,

∃ a ∈ Z×
C

∃ t ∈ (ker(pλ))
′〈xλi | i �= λ, µ, ρ, ρ′〉

}
.

for some ρ, ρ′ ∈ {1, . . . , n} \ {λ, µ}, ρ �= ρ′.] This gives desired s∞. The

Galois compatibility of f assures that pS ◦ f ◦ s∞ gives also a section Gk →
πC

1 (M0,m) of p0,m normalizing 〈pS ◦ f(xλµ)〉 via the cyclotomic character.

Let χ : πC
1 (M0,m) → Z×

C
denote the homomorphism obtained by composing

p0,m : πC
1 (M0,m) → Gk with the cyclotomic character of Gk. Then since

πC
1 (M0,m) is a semidirect product of Γ̂m

0 with pS ◦ f ◦ s∞(Gk), we can

generalize (3.1.6) to the following

Proposition (3.1.7). Let z = pS ◦f(xλµ) and assume
⋃

1≤i≤n f(Xλi)

⊂ ker(pν ◦pS). Then for each g ∈ πC
1 (M0,m), there exists g0 ∈ ker(pν) such

that gzg−1 = g0z
χ(g)g−1

0 . �

We proceed under the assumption of Proposition (3.1.7). Let x de-
note the rational point fν ◦ fS(a) ∈ M0,m−1(k), and Cx the (m − 1)-point
punctured projective line over k represented by x ∈ M0,m−1(k). Then,
we see that Π = p−1

ν (sx(Gk)) is isomorphic to πC
1 (Cx) with geometric part
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π = ker(pν), and obtain the following commutative diagram:

1 −−−−→ π −−−−→ Π −−−−→ sx(Gk) −−−−→ 1 (exact)∥∥∥ � �
1 −−−−→ ker(pν) −−−−→ πC

1 (M0,m) −−−−→
pν

πC
1 (M0,m−1) −−−−→ 1 (exact).

Let l be a prime such that Syll〈z〉 �= 1, and zl the l-component of z.

We notice that the same statement as Proposition (3.1.7) holds even if z is

replaced by zl there. From this, it follows that NΠ(zl) is surjectively mapped

onto sx(Gk) by pν . Since [Nπ(zl) : Cπ(zl)] < ∞ by (1.4.3), Proposition

(1.4.1) yields an open subgroup M of NΠ(zl) such that M ∩ π = Cπ(zl).

Let K be a finite extension of k in k̄ with pν(M) = sx(GK). Then the

conjugate action of M on 〈zl〉 gives a Galois character

ψ : GK → Aut〈zl〉 = Z×
l .

On the other hand, we have another Galois character χ induced from the

conjugate action of pS ◦ f ◦ s∞(Gk) on 〈zl〉:

χ : GK → Aut〈zl〉 = Z×
l

which apriori coincides with the cyclotomic character. To compare ψ and

χ, let N be the normalizer of zl in πC
1 (M0,m). Then, by the construction,

we see that for each σ ∈ GK there exists g(σ) ∈ N ∩ Γ̂m
0 such that

z
χ(σ)ψ(σ)−1

l = g(σ)zlg(σ)−1.

Proposition (3.1.7) (on zl) assures that these g(σ) may be taken from π =

ker(pν). But since [Nπ(zl) : Cπ(zl)] < ∞, the image of the Galois character

χψ−1 is contained in the torsion of Z×
l . From this, we get a finite extension

L of K in k̄ such that, on GL, ψ ≡ χ (i.e. the cyclotomic character).

This means that N := M ∩p−1
ν (sx(GL)) gives a ‘cyclotmic normalizer’ of zl

in Π ∼= πC
1 (Cx) (see 2.1). It follows from the “nonlinear weight filtration”

(2.1.1) that zl is contained in an inertia group of π = πC
1 (Cx⊗ k̄). Moreover,

by Lemma (2.1.2), the same statement holds for z itself. Since the union of

inertia groups in π = ker(pν) is
⋃

1≤j≤m Xνj , we obtain
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Lemma (3.1.8). Besides the hypothesis of (3.1.5), assume that⋃
1≤i≤n f(Xλi) ⊂ ker(pν ◦ pS). Then pS ◦ f(Xλµ) is contained in one of

the Xνj (1 ≤ j ≤ m, j �= ν). �

(3.1.9) Two special irreducible divisors Dij and Drs in Bn normally cross

each other if and only if {i, j} ∩ {r, s} = ∅. [In fact, this latter condition

is necessary and sufficient for Dij ∩ Drs �= ∅ ([12] p.153). Assume s > i, j

without loss of generality. The canonical morphism f{s} : M0,n → M0,n−1

is extended naturally to a flat morphism f̄{s} : Bn → Bn−1 giving the

universal family of stable (n− 1)-pointed P 1-trees over Bn−1 together with

an isomorphism Drs
∼→Bn−1 ([12]). Since Drs has a neighborhood where

f̄{s} is smooth, and since Dij ⊂ Bn is a unique irreducible component of

f̄−1
{s}(Dij) intersecting Drs, they normally cross each other.] In this case,

the local monodromy in M0,n near a general point of Dij ∩ Drs gives a

homomorphism ρ : Z2
C
→ Γ̂n

0 . The image A = Im(ρ) is an abelian subgroup

such that

(*) Xij ∩A �= {1}, Xrs ∩A �= {1}.
This can also be seen directly from the presentation described in (3.1.3),

if we put A = 〈xij , xrs〉 when (i, j, r, s) is in fair order, and A = 〈xij ,
x−1
ir xrsxir〉 when (i, r, j, s) is in fair order. (For the latter case, use (3.1.3.3)

for (i, r, s) together with (3.1.3.5).)

Definition. A closed abelian subgroup A of Γ̂n
0 satisfying the condi-

tion (*) is called a connecting abelian subgroup between Xij and Xrs.

Roughly speaking, we see in Γ̂n
0 a regular graph system of the special

weight (−2) subsets Xij (1 ≤ i, j ≤ n) connected by “edges” of abelian sub-

groups. An arbitrary Galois compatible automorphism f ∈ AutGk
πC

1 (M0,n)

preserves this graph structure, but we do not apriori know that the images

f(Xij) actually coincide with the original Xij as subsets of Γ̂n
0 . To verify

this last assertion later in Theorem (3.1.13), we need two more lemmas. In

the remainder of this section, we sometimes omit the symbol “◦” making

composition of homomorphisms.

Remark. In connection with Hyperbolicity Conjecture on sufficiently

open varieties, F.A.Bogomolov suggested a somewhat related idea of rank-2

abelian subgroups. See [6] §3.

Lemma (3.1.10). Under the hypothesis of (3.1.5), either
⋃

1≤i≤n ·
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f(Xλi) or
⋃

1≤i≤n f(Xµi) is contained in ker(pν ◦ pS).

Proof. Since the statement is obvious when m = 4, we may assume

m ≥ 5. Define three sets T,T1,T2 by

T = {T ⊂ {1, . . . ,m− 1} | 0 ≤ |T | ≤ m− 5},

T1 =



T ∈ T |

⋃
1≤i≤n

f(Xλi) �⊂ ker(pT pνpS),

⋃
1≤i≤n

f(Xµi) �⊂ ker(pT pνpS)




,

T2 =


(τ, T ) |

T ∈ T1, τ ∈ {1, . . . ,m− 1 − |T |},⋃
1≤i≤n

f(Xλi) or
⋃

1≤i≤n
f(Xµi) ⊂ ker(pτpT pνpS)


 .

Let us deny the conclusion of the lemma. Then ∅ ∈ T1. Observe that if

T ∈ T1, then there exists (τ, T ′) ∈ T2 such that T ⊂ T ′.
We first claim that T1 has an element with cardinality m − 5. If m =

5, there is nothing to prove. So let m ≥ 6 and suppose that we have

(τ, T ) ∈ T2 with |T | < m − 5. To prove the claim, it suffices to show that

there exists T ′ ∈ T1 with |T ′| = |T | + 1. By symmetry, without loss of

generality we may assume
⋃

1≤i≤n f(Xλi) ⊂ ker(pτpT pνpS). As T ∈ T1, we

can choose i0 such that f(Xλi0) �⊂ ker(pT pνpS). Then by Lemma (3.1.8),

pT pνpSf(Xλi0) ⊂ Xτj0 for some 1 ≤ j0 ≤ m − 1 − |T |. Let ε be such that

1 ≤ ε ≤ m− 1− |T |, ε �∈ {τ, j0}, and define T ′′ ⊂ {1, . . . ,m− 1} by pεpT =

pT ′′ . Then f(Xλi0) �⊂ ker(pT ′′pνpS). If
⋃

1≤i≤n f(Xµi) �⊂ ker(pT ′′pνpS),

then we may take T ′′ as T ′. So let
⋃

1≤i≤n f(Xµi) ⊂ ker(pεpT pνpS) and

choose r such that f(Xµr) �⊂ ker(pT pνpS). Then by Lemma (3.1.8) again,

there exists 1 ≤ s ≤ m − 1 − |T | such that pT pνpS(Xµr) ⊂ Xεs. Since

m − 1 − |T | ≥ 5, we can choose 1 ≤ δ ≤ m − 1 − |T | with δ �∈ {τ, j0, ε, s}.
Then we may define our desired T ′ by pδ ◦pT = pT ′ . Thus our claim follows.

By the claim, we obtain T ∈ T1 with |T | = m − 5. To deduce con-

tradiction, consider the projection p = pT pνpS : πC
1 (M0,n) → πC

1 (M0,4).

Then neither
⋃

1≤i≤n f(Xλi) nor
⋃

1≤i≤n f(Xµi) is contained in ker(p). As

f(Xλµ) ⊂ ker(p) by (3.1.5.2) and xλ1 · · ·xλn = 1 (resp. xµ1 · · ·xµn = 1),

there exist at least two i’s outside {λ, µ} such that f(Xλi) �⊂ ker(p) (resp.

f(Xµi) �⊂ ker(p)). Therefore we may assume f(Xλγ), f(Xµα) �⊂ ker(p) for
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some α, γ with {α, γ} ∩ {λ, µ} = ∅, α �= γ. Let pab denote the composite of

the restriction of p to Γ̂n
0 with the abelianization map ( )ab of Γ̂ 4

0 . Then,

since there exists a connecting abelian subgroup between Xλγ and Xµα, and

since Γ̂ 4
0 admits no connecting abelian subgroups between any two of X14,

X24, X34 (see Corollary (2.1.3)), we get pabf(Xλγ) and pabf(Xµα) are con-

tained in the same line Z of either Xab
14, Xab

24 or Xab
34. For similar reason, all

pabf(Xij) with {i, j} �= {λ, µ}, {λ, α}, {µ, γ}, {α, γ} lie in the same image Z.

But since xλ1 · · ·xλn = 1, xµ1 · · ·xµn = 1 and f(Xλµ) ⊂ ker(p) as above, we

see that pabf(Xλα) and pabf(Xµγ) are also contained in Z. Finally follows

that pabf(Xαγ) ⊂ Z from xα1 · · ·xαn = 1, and thus we conclude that all

f(Xij) (1 ≤ i, j ≤ n) are sent into Z by pab. As Γ̂n
0 is generated by these

Xij (1 ≤ i, j ≤ n), this contradicts the surjectivity of pab. The proof of

Lemma (3.1.10) is completed. �

As a special case of Lemma (3.1.10) where m = n and S = ∅, we obtain

the following

Corollary (3.1.11). Let f ∈ AutGk
πC

1 (M0,n), and λ, µ, ν ∈ {1, . . . ,
n} with λ �= µ. Assume f(Xλµ) ⊂ ker(pν). Then either

⋃
1≤i≤n f(Xλi) or⋃

1≤i≤n f(Xµi) is contained in ker(pν). �

Lemma (3.1.12). Let f ∈ AutGk
πC

1 (M0,n) and ν ∈ {1, . . . , n}. Then

there exists at least one Xij (1 ≤ i < j ≤ n) such that f(Xij) is contained

in ker(pν).

Proof. The statement is nontrivial when n ≥ 5. Assume f(Xij) �⊂
ker(pν) for all 1 ≤ i < j ≤ n. Then there exist S ⊂ {1, . . . , n − 1}, ε ∈
{1, . . . , n− 1 − |S|} and Xλµ with 1 ≤ λ < µ ≤ n such that

f(Xij) �⊂ ker(pSpν) (1 ≤ i < j ≤ n),(3.1.12.1)

f(Xλµ) ⊂ ker(pεpSpν).(3.1.12.2)

Put m = n− 1 − |S|. Then m ≥ 4 by (3.1.12.1).

By (3.1.8) and (3.1.10), we may assume that each pSpνf(Xλi) (1 ≤ i ≤
n, i �= λ) is contained in some Xεα(i) (1 ≤ α(i) ≤ m,α(i) �= ε). If all α(i)

are the same α, then since Γ̂n
0 is generated by the xλi (1 ≤ i ≤ n) and their

centralizers, Γ̂m
0 must be generated by conjugates of the centralizers of xεα.



112 Hiroaki Nakamura

This is absurd as m ≥ 4. So we obtain r(�= µ) such that

pSpνf(Xλr) ⊂ Xεα(r) �= Xεα(µ) ⊃ pSpνf(Xλµ).

Let δ = α(µ). Then f(Xλµ) ⊂ ker(pδpSpν), f(Xλr) �⊂ ker(pδpSpν). There-

fore by (3.1.8) and (3.1.10), each pSpνf(Xµj) (1 ≤ j ≤ n, j �= µ) must be

contained in some Xδβ(j) (1 ≤ β(j) ≤ m, δ �= β(j)).

Thus we get to a situation where (3.1.12.1) holds and there are two

maps

α : {1, . . . , n} \ {λ} → {1, . . . ,m} \ {ε},
β : {1, . . . , n} \ {µ} → {1, . . . ,m} \ {δ},

with α(µ) = δ, β(λ) = ε such that

(3.1.12.3)

{
pSpνf(Xλi) ⊂ Xεα(i) (1 ≤ i ≤ n, i �= λ),

pSpνf(Xµj) ⊂ Xδβ(j) (1 ≤ j ≤ n, j �= µ).

(3.1.12.4) Claim. The above map α (resp. β) satisfies either of the

following:

(i) α (resp. β) is surjective and at least one fibre has cardinality ≥ 2;

(ii) the image of α (resp. β) has cardinality ≥ 2, and each nonempty fibre

has cardinality ≥ 2.

It suffices to prove the Claim in the case of α, because the argument

can also be applied to the case of β in a parallel way by the symmetry of

α and β. (Notice that (3.1.12.2) results from (3.1.12.3).) Let Xij denote

the image of xij (1 ≤ i, j ≤ m) in the abelianization of Γ̂m
0 . Then applying

pSpνf to xλ1 · · ·xλn = 1, we obtain

∑
i�=λ

1≤i≤n

ciXεα(i) = 0 (∃ ci ∈ ZC \ {0})

Rewrite this as ∑
j �=ε

1≤j≤m

djXεj = 0 (dj =
∑
α(i)=j

ci),
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and compare it with the basic equation from (3.1.3.6):
∑

1≤j≤mXεj = 0.

Then either of the following holds.

Case (i): 0 �= ∃ d = dj (1 ≤ j ≤ m, j �= ε). In this case, the map α must be

surjective. Since n > m, this case yields (i) of the Claim.

Case (ii): ∀ dj = 0 (1 ≤ j ≤ m, j �= ε). In this case, for each j,
∑

α(i)=j ci =

0. Since ci �= 0, we have at least two i’s with α(i) = j if α−1(j) �= ∅. As we

already know α(r) �= α(µ), this case yields (ii) of the Claim.

Thus the Claim (3.1.12.4) follows.

Let us deduce contradiction by using this Claim. Assume first that

|β−1(ε)| ≥ 2, i.e., there exists v �= λ such that β(v) = β(λ) = ε. If

v �= r, then a connecting abelian subgroup between Xvµ and Xλr exists.

But pSpνf(Xvµ) ⊂ Xεδ and pSpνf(Xλr) ⊂ Xεα(r) are both contained non-

trivially in ker(pε) which is free of rank m− 2. This forces δ = α(r), hence

contradiction. Therefore we may assume v = r. We apply (3.1.8) and

(3.1.10) to {
pSpνf(Xλr) ⊂ Xεα(r) ⊂ ker(pα(r)),

pSpνf(Xλµ) ⊂ Xεδ �⊂ ker(pα(r)).

Then there exists q (1 ≤ q ≤ m, q �= α(r)) such that

pSpνf(Xµr) ⊂ Xqα(r).

But since pSpνf(Xµr) ⊂ Xδβ(r) and δ �= α(r), we obtain q = δ. On the

other hand, when r = v, we have

pSpνf(Xµr) = pSpνf(Xµv) ⊂ Xδβ(v) = Xδε.

Therefore we must conclude α(r) = ε. This is a contradiction.

By (3.1.12.4) and the symmetry of α and β, it remains to consider the

case where |β−1(ε)| = 1 and α is surjective. But then, we can take τ �∈ {ε, δ}
such that |β−1(τ)| ≥ 2, and further u ∈ α−1(τ) and v ∈ β−1(τ) such that

u �= v. Then pSpνf(Xλu) ⊂ Xετ and pSpνf(Xµv) ⊂ Xδτ are both contained

in ker(pτ ) which is free of rank m − 2. This contradicts the existence of

a connecting abelian subgroup between Xλu and Xµv. Thus the proof of

Lemma (3.1.12) is completed. �

Now we are in a position to prove the following
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Theorem (3.1.13). Let f be a Gk-compatible automorphism of

πC
1 (M0,n) (n ≥ 4). Then, there exists a Gk-compatible automorphism h

of it coming from Autk(M0,n) such that f ◦ h maps each Xij onto itself

(1 ≤ i < j ≤ n).

Proof. The case of n = 4 follows from the weight filtration of non-

linear type (Theorem (2.1.1)). We assume n ≥ 5. Let f be an arbitrary

element of AutGk
πC

1 (M0,n), and pn : πC
1 (M0,n) → πC

1 (M0,n−1) the forget-

ful homomorphism defined in (3.1.2). By Lemma (3.1.12) there exists Xλµ

such that f(Xλµ) ⊂ ker(pn). Applying Corollary (3.1.11) we may assume

without loss of generality that

(3.1.13.1)
⋃

1≤i≤n
f(Xλi) ⊂ ker(pn).

Then by Lemma (3.1.8), each of the f(Xλi) (1 ≤ i ≤ n, i �= λ) coincides

with one of the Xnj (1 ≤ j ≤ n− 1) respectively. Therefore we can take an

element h of AutGk
πC

1 (M0,n) coming from Sn(∼= Autk(M0,n)) such that

(3.1.13.2) f ◦ h(Xni) = Xni (1 ≤ i ≤ n− 1).

Next, let us consider the other forgetful homomorphisms pν : πC
1 (M0,n) →

πC
1 (M0,n−1) (1 ≤ ν ≤ n − 1). Since we already know f ◦ h(Xnν) ⊂ ker(pν)

by (3.1.13.2), by applying (3.1.8), (3.1.11) and (3.1.13.2) again, we see that

f ◦ h must induce a permutation of the set

X
(ν) = {Xjν | 1 ≤ j ≤ n− 1, j �= ν}

for each ν. (Notice that Xnν is preserved by f ◦h.) Then observing {Xij} =

X(i) ∩X(j), we conclude f ◦ h(Xij) = Xij (1 ≤ i, j ≤ n− 1). This completes

the proof of Theorem (3.1.13). �

3.2. Reduction to P1 − {0, 1,∞}, Proof of Theorem A

Let C be a full class of finite groups, and Γ̂n
0 denote the pro-C completion

of Γn
0 (n ≥ 4).

Definition (3.2.1). A continuous automorphism f of Γ̂n
0 is said to

be quasi-special if it satisfies

f(Xij) = Xij
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for all 1 ≤ i < j ≤ n. (See (3.1.1) or (3.1.4) for the definition of Xij .) We

denote by Aut%(Γ̂n
0 ) the group of all the quasi-special automorphisms of Γ̂n

0 .

Moreover we put Out%(Γ̂n
0 ) = Aut%(Γ̂n

0 )/InnΓ̂n
0 . It is easy to see that each

f ∈ Aut%(Γ̂n
0 ) acts on Γ̂n

0 /[Γ̂n
0 , Γ̂n

0 ] by multiplication by a constant af ∈ Z×
C
.

When af = 1, we say that f is a special automorphism of Γ̂n
0 (cf. [19]).

Let n ≥ 5, and pν : Γ̂n
0 → Γ̂n−1

0 the forgetful homomorphism associated

to ν ∈ {1, . . . , n}. Since ker(pν) is generated by the Xiν (1 ≤ i ≤ n), there

are canonical homomorphisms

qν : Aut%(Γ̂n
0 ) → Aut%(Γ̂n−1

0 ),

q̄ν : Out%(Γ̂n
0 ) → Out%(Γ̂n−1

0 )

induced by pν (1 ≤ ν ≤ n).

Lemma (3.2.2). Let n ≥ 5 and assume that the group extension (Γn
0 )

is C-admissible (3.1.2). Then for each pair of λ, µ ∈ {1, . . . , n} with λ �= µ,

the homomorphism

(q̄λ, q̄µ) : Out%(Γ̂n
0 ) → Out%(Γ̂n−1

0 ) ×Out%(Γ̂n−1
0 ), h #→ (q̄λ(h), q̄µ(h))

is injective.

Proof. By symmetry, we may assume λ = 1, µ = n. Let us introduce

the generator system {xij | 1 ≤ i < j ≤ n} of Γ̂n
0 as in (3.1.3). Suppose

we are given an automorphism f ∈ Aut%(Γ̂n
0 ) such that q1(f) and qn(f) are

inner automorphisms. Then af = 1. Since the centralizer of xn−1,n in Γ̂n
0 is

mapped surjectively onto Γ̂n−1
0 via pn, replacing f by a composition with

an inner automorphism of Γ̂n
0 , we may normalize f to satisfy

(3.2.2.1) f(xn−1,n) = xn−1,n;

(3.2.2.2) f(xn−2,n) = txn−2,nt
−1, ∃ t ∈ (ker(pn))

′〈x1n, . . . , xn−4,n〉;
(3.2.2.3) qn(f) =identity.

If B is a subgroup of Γ̂n
0 defined by

B =

{
g ∈ Γ̂n

0 |
gxn−1,ng

−1 = xn−1,n, gxn−2,ng
−1 = txn−2,nt

−1,

∃ t ∈ (ker(pn))
′〈x1n, . . . , xn−4,n〉

}
.
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then (3.2.2.1)-(3.2.2.2) assures f(B) = B. Moreover, by (3.2.2.3), B is

pointwise fixed by f , for the restriction of pn to B gives an isomorphism of

B onto Γ̂n−1
0 . We next define subgroups B′ ⊂ Γ̂n

0 , B′
0 ⊂ Γ̂n−1

0 by

B
′ =

{
g ∈ Γ̂n

0 |
gx12g

−1 = x12, gx13g
−1 = tx13t

−1,

∃ t ∈ (ker(p1))
′〈x15, . . . , x1n〉

}
,

B
′
0 =

{
g ∈ Γ̂n−1

0 |
gx12g

−1 = x12, gx13g
−1 = tx13t

−1,

∃ t ∈ (ker(p1))
′〈x15, . . . , x1,n−1〉

}
.

As x12, x13 ∈ B, we have f(x12) = x12, f(x13) = x13, from which we see

f(B′) = B′. Since p1 gives an isomorphism B′ ∼= Γ̂n−1
0 , f acts on B′ as an

inner automorphism by an element γ of B′. Now there is a commutative

diagram
Γ̂n

0 ⊃ B′ ∼−−−→
p1

Γ̂n−1
0

pn

� �pn−1

Γ̂n−1
0 ⊃ B′

0
∼−−−→
p1

Γ̂n−2
0

and by the definition of B′
0, the restriction of pn maps B′ into (hence onto)

B′
0. From this and (3.2.2.3) together with the center-triviality of B′, it

follows that γ ∈ ker(pn)∩B′. Moreover, noticing that xn−1,n, xn−2,n ∈ B′,
by (3.2.2.1)-(3.2.2.2), we conclude that γ = 1. Thus f acts trivially on B′,
and hence q1(f) =identity. In particular, since xin ∈ B′ (3 ≤ i ≤ n− 1),

(3.2.2.4) f(xin) = xin (3 ≤ i ≤ n− 1).

Next we consider

B
′′ =

{
g ∈ Γ̂n

0 |
gx13g

−1 = x13, gx12g
−1 = tx12t

−1,

∃ t ∈ (ker(p1))
′〈x15, . . . , x1n〉

}
.

Then, for the similar reason as for B′, f preserves setwise B′′. But since

q1(f) is trivial, the action of f on it must be trivial. By (3.1.3), we compute

x2nx13x
−1
2n = (x−1

1n x
−1
12 x1nx12)x13(x

−1
12 x−1

1n x12x1n);

x2nx12x
−1
2n = x−1

1n x12x1n.
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From this together with (3.1.3.4), we see that

(3.2.2.5) x1nx2nx
−1
1n = (x−1

1n x
−1
12 x1nx12)

−1x2n ∈ B
′′ is fixed by f.

On the other hand, it follows from (3.2.2.4) and (3.1.3.6) that

(3.2.2.6) x1nx2n = (x3n . . . xn−1,n)
−1 is also fixed by f.

Thus, by (3.2.2.4)-(3.2.2.6), we conclude that f acts trivially on ker(pn).

Since Γ̂n
0 = ker(pn) � B, this completes the proof of Lemma (3.2.2). �

Remark. When C = Cl (l: a prime), Ihara [19] proved a stronger

result that

q̄ν : Out%Γn
0 → Out%Γn−1

0

is already injective (1 ≤ ν ≤ n).

We shall apply Lemma (3.2.2) to Galois compatible automorphisms of

πC
1 (M0,n). Let

Φn = ΦC
M0,n

: Autk(M0,n) → EC
k (M0,n)

be the canonical homomorphism introduced in §0. By Theorem (3.1.13),

we have a homomorphism

Ψn : EC
k (M0,n) → Autk(M0,n)

such that the restriction of any element of ker(Ψn) to Γ̂n
0 belongs to

Out%(Γ̂n
0 ). Let UC

k (M0,n) denote the kernel of Ψn. Then since EC
k (M0,n) is

identified with OutGk
Γ̂n

0 by (1.5.7), UC
k (M0,n) is isomorphic to the central-

izer of the Galois image in Out%(Γ̂n
0 ). On the other hand, the exterior Galois

representation ϕ0,n : Gk → OutΓ̂n
0 also has its image in Out%(Γ̂n

0 ), and sat-

isfies the compatibility condition ϕ0,n−1 = qν ◦ ϕ0,n for every 1 ≤ ν ≤ n.

Therefore Lemma (3.2.2) implies the following

Corollary (3.2.3). Under the same assumption of Lemma (3.2.2),

we have an injective homomorphism UC
k (M0,n) → UC

k (M0,n−1) ×
UC
k (M0,n−1).
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Remark. In the above discussion, the fact that Autk(M0,n) ∼= Sn for

n ≥ 5 ([45],[29]) is not used yet. Using this fact, we can conclude at once

that Ψn gives an inverse of Φn with Ψn ◦ Φn = 1 and that Autk(M0,n) is

embedded into EC
k (M0,n). In the proof of the following theorem, we will

admit this fact as in §0, but actually we do not need it for the result that

E
(l)
k (M0,n) ∼= Sn for n ≥ 5. In fact, from this latter result we can compute

Autk(M0,n) conversely as in [34] §5.

Now we are in a position to prove Theorem A.

Theorem A. If l is an odd prime, then Outπ
(l)
1 (M0,n) is finite, and

the homomorphism

Φ
(l)
M0,n

: AutkM0,n → E
(l)
k (M0,n)

gives a bijection (n ≥ 4). Moreover, If Γn,pro−l
0 denotes the pro-l completion

of Γn
0 , then the canonical exterior representation

ϕ
(l)
0,n : Gk → OutΓn,pro−l

0

induced from the variety M0,n over k has image whose centralizer is iso-

morphic to S3 when n = 4, and to Sn when n ≥ 5.

Proof. By (1.5.7), (1.6.3), we have only to show the bijectivity of

Φ
(l)
M0,n

for n ≥ 4 (l: an odd prime). For this it suffices to show that

UC
k (M0,n) = {1} for C = Cl. But by Corollary (3.2.3), we are reduced

to the case of M0,4 = P1 − {0, 1,∞} which was dealt in [31]. (See also

2.2) �

§4. Lie variants

4.1. Graded automorphisms

We denote the lower central series of a group Γ by Γ = Γ (1) ⊃ Γ (2) ⊃
. . . , and the associated graded Lie algebra by

grΓ =
∞⊕
i=1

griΓ.
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Each graded piece griΓ is the quotient abelian group Γ (i)/Γ (i + 1), and

the Lie bracket [X,Y ] ∈ gri+jΓ of X ∈ griΓ and Y ∈ grjΓ is defined by

[X,Y ] = xyx−1y−1 modΓ (i + j + 1)

where x ∈ Γ (i), y ∈ Γ (j) are representatives of X, Y respectively.

The notations being as in (3.1.1)∼(3.1.3), we consider the discrete group

Γn
0 = π1(M0,n(C), a) for n ≥ 3, and let Xij denote the image of Aij ∈ Γn

0

in gr1Γ
n
0 .

Proposition (4.1.1) (Kohno/Hain; in this form, see Ihara[19] 3.1).

The Lie algebra grΓn
0 has the following presentation:

generators: Xij (1 ≤ i, j ≤ n),

relations:




Xii = 0 (1 ≤ i ≤ n),

Xij = Xji (1 ≤ i, j ≤ n),
n∑
j=1

Xij = 0 (1 ≤ i ≤ n),

[Xij , Xrs] = 0, if {i, j} ∩ {r, s} = ∅.

We shall denote by pS : Γn
0 → Γm

0 the canonical homomorphism induced

from the morphism fS : M0,n(C) → M0,m(C) (3.1.2), and call it the forgetful

homomorphism associated to S ⊂ {1, . . . , n}. Each pS induces a graded Lie

algebra homomorphism

grpS ⊗K : grΓn
0 ⊗K → grΓm

0 ⊗K

for any commutative ring K. It follows from Lemma 3.1.1 of [19] and the

presentation in (3.1.3) that ker(grpS ⊗K) ∼= gr(kerpS)⊗K. In particular

when S = {ν}, ker(grpν⊗K) is isomorphic to the free Lie algebra generated

by gr1(kerpν) ⊗K.

Observe that the product group Sn ×K× acts on gr1Γ
n
0 ⊗K by

(σ, λ)(Xij) = λ ·Xσ(i)σ(j) (σ ∈ Sn, λ ∈ K×),
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and that these operations extend naturally to graded automorphisms of

the Lie algebra grΓn
0 ⊗ K. The purpose of this subsection is to verify the

following lemma expected by P.Deligne.

Lemma (4.1.2). Let K be a field. Then the group of the graded auto-

morphisms of the graded Lie algebra grΓn
0 ⊗ K is isomorphic to Sn × K×

when n ≥ 5.

We can prove this lemma by modifying combinatorial arguments de-

veloped in §3 in a suitable way in the context. But in the present fully

linearized situation, there is a more natural “characterization of infinity”

due to P.Deligne which makes the proof of the lemma very simple. So, in

the following, we shall take the latter line for the proof of Lemma (4.1.2).

Lemma (4.1.3) (P.Deligne). Let X be an element of gr1Γ
n
0 ⊗K (n ≥

5), C(X) the centralizer of X in grΓn
0 ⊗K, C1(X) = C(X) ∩ gr1Γ

n
0 ⊗K.

Then the following two conditions on X are equivalent:

(a) dimC1(X) ≥ (n−1)(n−4)
2 + 1;

(b) X is a scalar multiple of one of the Xij (1 ≤ i < j ≤ n).

Proof. We first notice that dimgr1Γ
n
0 ⊗ K = n(n − 3)/2. As was

proved by Ihara [19] Proposition 3.3.1(ii), (b) implies the equality in (a).

So we let X satisfy (a), and argue by induction on n ≥ 5. Let us denote

grpν ⊗ K : grΓn
0 ⊗ K → grΓn−1

0 ⊗ K simply by pν . For X �= 0, we can

always find ν (1 ≤ ν ≤ n) such that pν(X) �= 0. Therefore, by symmetry,

we may assume pn(X) �= 0.

Step 1: n = 5. By assumption, we have dimC1(X) ≥ 3 with p5(X) �= 0.

Since grΓ 4
0 is a free Lie algebra of rank 2, there are no rank 2 commutative

subspaces in gr1Γ
4
0 ⊗K. Therefore dimC1(X)∩kerp5 = 2. This means that

the linear homomorphism ad(X) : gr1(kerp5) → gr2(kerp5) has exactly 2-

dimensional kernel. Let

B = {Y ∈ gr1Γ
5
0 ⊗K| [Y,X45] = 0, [Y,X35] = [T,X35] ∃T ∈ KX25}.

It is easy to see that B ∩ kerp5 = 0, and that p5 gives an isomorphism

B ∼= gr1Γ
4
0 ⊗K. We choose free generators (X1, X2, X3) of kerp5 and basis

(Y1, Y2) of B as follows: X1 = X25, X2 = X35, X3 = X45, Y1 = X23, Y2 =
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X12 + X23. Then we have

[Y1, X1] = [X1, X2], [Y1, X2] = −[X1, X2], [Y1, X3] = 0,

[Y2, X1] = [X3, X1], [Y2, X2] = −[X1, X2], [Y2, X3] = 0.

Put X = aY1 + bY2 + cX1 + dX2 + eX3 (a, b, c, d, e ∈ K). Then the linear

homomorphism ad(X) : gr1(kerp5) → gr2(kerp5) is expressed as follows:

ad(X)(X1, X2, X3)

= ([X1, X2], [X2, X3], [X3, X1])


 a− d −a− b + c 0

0 −e d

b + e 0 −c


 .

When a �= 0, we may assume a = 1. Then the above condition on the

degeneration of ad(X) gives four solutions:

(a, b, c, d, e) = (1, 0, 0, 0, 0), (1,−1, 0, 0, 0), (1, 0, 1, 1, 0), (1,−1, 0, 1, 1),

which correspond to X = X23,−X12, X14,−X34 respectively. (In the com-

putation, we use equations like X12 + X23 + X13 = X45 which are derived

easily from (3.1.3.6) and (3.1.3.7).) When a = 0, we may assume b = 1 as

p5(X) �= 0. In this case we obtain two solutions:

(a, b, c, d, e) = (0, 1, 1, 0, 0), (0, 1, 0, 0,−1),

which give X = −X24,−X13 respectively.

Step 2: n ≥ 6. We consider the exact sequence

0 → C1(X) ∩ kerpn → C1(X) → C1(pn(X)).

Case 1: dimC1(pn(X)) ≤ (n− 2)(n− 5)/2.

In this case, dim(C1(X)∩kerpn) ≥ n−2 = dim(kerpn). Therefore C1(X) ⊃
kerpn. This is impossible: we may express X as

∑
1�i<j<n aijXij (aij ∈ K).

Then [Xin,
∑

j �=i,n aijXjn] = 0. (Use [Xin, Xij ] = [Xjn, Xin].) As gr(kerpn)

is free of rank n− 2, we get all aij = 0, i.e., contradiction.

Case 2: dimC1(pn(X)) > (n− 2)(n− 5)/2.

In this case, we may apply the induction hypothesis to pn(X)(�= 0), and may
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assume pn(X) = Xrs for some 1 ≤ r < s ≤ n − 1. Then dimpn(C1(X)) ≤
dimC1(pn(X)) = 1 + (n− 2)(n− 5)/2. From this we get (*): dim(C1(X)∩
kerpn) ≥ n− 3. Let us put X = Xrs +

∑n−1
k=1 akXkn (ak ∈ K), and choose

three indices li (i = 1, 2, 3) from {1, ..., n − 1} \ {r, s}. By (*), there is

a linear combination Yij of Xlin and Xljn contained in C1(X) \ {0} for

every (i, j) = (1, 2), (2, 3), (3, 1). Then [X,Yij ] = [
∑n−1

k=1 akXkn, Yij ] = 0,

from which it follows that
∑n−1

k=1 akXkn is a scalar multiple of Yij . Since

KY12 ∩KY23 ∩KY31 = 0, we conclude X = Xrs. �

We are now in a position to prove Lemma (4.1.2).

Proof of Lemma (4.1.2). Let f be an arbitrary graded Lie algebra

automorphism of grΓn
0 ⊗K (n ≥ 5). By Lemma (4.1.3), f permutes the lines

generated by Xij (1 ≤ i < j ≤ n). Considering the commutation relations:

[Xij , Xrs] = 0({i, j} ∩ {r, s} = ∅), we find that there exists a permutation

σ ∈ Sn such that f(Xij) = λijXσ(i)σ(j) for some λij �= 0 (1 ≤ i < j ≤ n).

But since f preserves the relations
∑

1≤j≤nXij = 0 (1 ≤ i ≤ n), all λij
must coincide with a constant λ ∈ K×. This completes our proof of the

lemma. �

4.2. Pure sphere braid Lie algebras

In this subsection, we show that the pure sphere braid Lie algebras

with n strings (n ≥ 5) have also Galois rigidity properties, along the lines

suggested by P.Deligne. The synthetic reference for the formulation of this

section is [8]. In the following, we fix a prime l, and denote by Γ pro−l the

pro-l completion of a discrete group Γ .

(4.2.1) Let us begin by considering the quotient nilpotent group Γn
0 /

Γn
0 (N) for N ≥ 1. This is obviously finitely generated, and has no torsion

for grΓn
0 is torsion-free. Therefore Γn

0 /Γn
0 (N) is residually finite-l ([15] The-

orem 2.1). It follows that the pro-l completion of Γn
0 /Γn

0 (N) is isomorphic

to Γn,pro−l
0 /Γn,pro−l

0 (N), where {Γn,pro−l
0 (N)}∞N=1 denotes the lower cen-

tral series of the pro-l group Γn,pro−l
0 . Since Γn,pro−l

0 (N) is a characteristic

subgroup of Γn,pro−l
0 , we have a canonical representation

ϕ
(l)
n,N : Gk → Out(Γn,pro−l

0 /Γn,pro−l
0 (N)).

As is well known, (Γn
0 /Γn

0 (N))pro−l is an l-adic analytic group (e.g. [24]

Proposition 2.6), the Lie algebra of which we denote by L[N ]
l (or L[N ]

l (Γn
0 )).
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Then L[N ]
l is a nilpotent Lie algebra over Ql on which the exterior Galois

action ϕ
(l)
n,N defines a weight filtration {W.} via the Frobenius eigenvalues.

(4.2.2) On the other hand, we have a rational mixed Hodge structure

{W., F .} on the Malcev Lie algebra L
[N ]
Q of Γn

0 /Γn
0 (N) and have a canonical

isomorphism L[N ]
l

∼= L
[N ]
Q ⊗Ql which preserves the weight filtration [8]. From

this together with a result of D.Quillen ([38] Appendix A), we obtain

grWL[N ]
l

∼= grWL
[N ]
Q ⊗ Ql

∼=
N⊕
i=1

griΓ
n
0 ⊗ Ql.

It follows from the Campbell-Baker-Hausdorff formula that the set

IntL[N ]
l := {exp ad(X) | X ∈ L[N ]

l }

forms a group of automorphisms of L[N ]
l . Moreover we see that {L[N ]

l }∞N=1

(resp. {IntL[N ]
l }∞N=1) gives a surjective projective system of Lie algebras

(resp. of unipotent algebraic groups). Let Ll(= Ll(Γn
0 )) := lim←−N

L[N ]
l and

IntLl := lim←−N
IntL[N ]

l . Then IntLl forms a normal subgroup of AutLl.
If we denote the quotient group by OutLl(Γn

0 ), we obtain a new Galois

representation

ϕLien : Gk → OutLl(Γn
0 ).

induced from the family of ϕ
(l)
n,N (1 ≤ N < ∞).

The Lie version of our Galois rigidity can be stated as follows:

Theorem B. Assume that l is an odd prime. Then the centralizer of

the Galois image ϕLien (Gk) in OutLl(Γn
0 ) is isomorphic to the symmetric

group Sn when n ≥ 5.

Proof. We first take a system of Galois representations

φn : Gk → AutΓn,pro−l
0 (n ≥ 4)

such that

1) each φn is a lift of ϕ
(l)
n : Gk → OutΓn,pro−l

0 (n ≥ 4) unramified outside l;

2) φn and φn−1 are compatible with pn : Γn,pro−l
0 → Γn−1,pro−l

0 (n ≥ 5),
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i.e., φn−1(σ) ◦ pn = pn ◦ φn(σ) (σ ∈ Gk);

3) the image of φ4 is contained in

{
g ∈ AutΓ 4,pro−l

0 |
∃ s ∈ Γ 4,pro−l

0 , ∃ t ∈ Γ 4,pro−l
0 (2), ∃ c ∈ Z×

l s.t.

g(x14) = sxc14s
−1, g(x24) = txc24t

−1, g(x34) = xc34

}
.

The existence of such a system is easy to see, for example by Belyi’s group

theoretical method, or more directly by Deligne’s tangential base points.

The Galois representation Gk → AutLl(Γn
0 ) induced from φn is also denoted

by the same symbol.

Fix a prime p � l of k with absolute norm Np, and choose σp ∈ Gk

with φn(σp) a Frobenius image over p. Let us denote φn(σp) simply by φp
(for all n ≥ 4). Then φp respects the weight filtration in Ll (= Ll(Γn

0 )),

and acts on graded pieces via multiplication by distinct positive powers

of Np. Therefore the action of φp on Ll is semisimple, and gives “the

weight graduation by φp” , i.e., if Ll,N (= Ll,N (Γn
0 )) = {Z ∈ Ll | φp(Z) =

(Np)NZ}, then Ll =
∏∞
N=1 Ll,N with

⊕∞
n=1 Ll,N a dense Lie subalgebra of

Ll isomorphic to grΓn
0 ⊗ Ql.

We recall here a standard fact about linear unipotent algebraic groups.

Lemma (4.2.3) (A.Borel). Let U be a connected unipotent subgroup

of a linear algebraic group G, s a semisimple element of G normalizing U

with trivial centralizer in U . Then for each u′ ∈ U , there exists a unique

u ∈ U such that su′ = usu−1.

Proof. See [17] Theorem 18.3(b). �

We continue the proof of Theorem B. Let us take an arbitrary auto-

morphism f of Ll(Γn
0 ) (n ≥ 5) whose image in OutLl centralizes ϕLien (Gk).

Then there exists u′ ∈ IntLl such that φpf = fφpu
′. If φp,N and u′

N denote

the operators on L[N ]
l induced from φp and u′ respectively, then, apply-

ing the above fact to the unipotent subgroup IntL[N ]
l , we obtain a unique

uN ∈ IntL[N ]
l such that φp,Nu′

N = uNφp,Nu−1
N . The uniqueness assertion

insures the compatibility of the sequence (uN )∞N=1; hence yields an element

u ∈ IntLl with φpu
′ = uφpu

−1. From this we obtain fuφp = φpfu. Thus fu

induces a graded automorphism of the graded Lie algebra
⊕∞

N=1 Ll,N . Let

(τ, af ) ∈ Sn×Q×
l be the corresponding pair by Lemma (4.1.2) to fu. Then,
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it remains only to show that af = 1. Let hτ ∈ AutLl be a representative

of an element of OutLl(Γn
0 ) coming from a k-automorphism of M0,n corre-

sponding to the permutation τ ∈ Sn. Since apriori hτ centralizes ϕLien (Gk)

in OutLl(Γn
0 ), we may apply the same argument above to hτ (instead of f),

and may assume after suitable replacement that hτ commutes with φp in

AutLl(Γn
0 ). Put f ′ = fuh−1

τ . Then f ′ acts on each Ll,N ⊂ Ll(Γn
0 ) by mul-

tiplication by aNf , and therefore preserves every graded ideal of
⊕

N Ll,N .

As the Galois equivariant homomorphism Ll(Γn
0 ) → Ll(Γ 4

0 ) respects the

weight graduation by φp, f ′ induces a graded scalar automorphism f ′
4 of

Ll(Γ 4
0 ) by powers of af , with image in OutLl(Γ 4

0 ) lying in the centralizer

of the Galois image ϕLie4 (Gk).

On the other hand, we know that there exist many nontrivial unipotent

elements u4 in the Galois image φ4(Gk) ⊂ AutLl(Γ 4
0 ) coming from cyclo-

tomic elements in K-theory. For any of such u4, we have f ′
4u4 = u4f

′
4u

′

for some u′ ∈ IntLl(Γ 4
0 ). If af ∈ Q×

l is nontorsion, then the above

Borel’s fact yields u ∈ IntLl(Γ 4
0 ) with f ′

4(u4u) = (u4u)f ′
4. But since

IntLl(Γ 4
0 ) ∩ φ4(Gk) = {1} (c.f. [De] 16.29), u4u has to be a nontrivial

unipotent element. From this, we see af is torsion, and get a contradiction.

To eliminate the possibility of af being nontrivial torsion, we need more

refined argument. In the following, we denote Ll = Ll(Γ 4
0 ), and let φσ =

φ4(σ) for σ ∈ Gk. Choose an odd integer m ≥ 3 prime to l − 1, and let

σ ∈ Gk be such that φσ − 1 conveys Ll(= W−2Ll) into W−2m−2Ll but not

into W−2m−4Ll. (The existence of such σ follows from the nonvanishing of

the cyclotomic element in H1(Z[1/l],Zl(m)) due to Soule, Schneider. See

e.g. [20],[8]) Then we have U ∈ Ll such that

φσf
′
4 = f ′

4φσ exp(adU).

If we consider this equation modulo W−2m−2Ll, we see U ∈ W−2mLl.
Next we consider it modulo M = W−2m−4Ll, and apply it to any ele-

ment Y of Ll,1(Γ 4
0 ). Then, noticing that the action of f ′

4 on Ll,N is via

aNf -multiplication, and observing that φσ−1 ≡ Logφσ on Ll/M, we obtain

(af − am+1
f )Logφσ(Y ) ≡ am+1

f (adU)(Y ) modM.

Since L[m+2]
l = Ll/M is generated by the image of Ll,1 in L[m+2]

l , we con-

clude (af − am+1
f )Logφσ and am+1

f (adU) induce the same derivation on

L[m+2]
l .
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We recall here that L[m+2]
l is the Malcev Lie algebra of Γ 4

0 /Γ
4
0 (m + 2)

tensored by Ql, and has special generators X34 = log x34, X24 = log x24

such that

(1) Logφσ(X34) = 0; (2) Logφσ(X24) �≡ 0 modM.

Since the centralizer of X34 in L[m+2]
l is easily seen to be QlX34 ⊕W−2m−2,

we obtain ad(U) = 0 on L[m+2]
l by (1). Therefore (af − am+1

f )Logφσ is also

zero derivation of Ll/M. This together with (2) implies af = 1, as m is

chosen to be prime to l−1. The proof of Theorem B is thus completed. �

(4.2.4) Let G[N ]
l (Γn

0 ) be the group of the group-like elements in the Hopf

algebra associated with L[N ]
l (Γn

0 ) (N ≥ 1), and let Gl(Γn
0 ) = lim←−N

G[N ]
l (Γn

0 )

(See [36] Appendix A). Then, since G[N ]
l (Γn

0 ) is isomorphic to the Ql-valued

points of the unipotent algebraic envelope of Γn
0 /Γn

0 (N) ([8] 9.5), Γn,pro−l
0

is identified with a subgroup of Gl(Γn
0 ). In particular, there is a canonical

embedding

AutΓn,pro−l
0 ↪→ AutGl(Γn

0 )(= AutLl(Γn
0 )).

One can expect that if InnΓn,pro−l
0 is not so different from IntLl(Γn

0 ) ∩
AutΓn,pro−l

0 , then Theorem A will follow from Theorem B when n ≥ 5. We

do not here try to estimate this possible gap directly. Instead, we shall

sketch a method of deducing Theorem A for n ≥ 5 from Theorem B with

the help of Theorem (3.1.13). Let γ ∈ Gl(Γn
0 ) be such that inn(γ) preserves

Γn,pro−l
0 ⊂ Gl(Γn

0 ), and assume that the image of inn(γ) in OutΓn,pro−l
0

commutes with the image of Gk (n ≥ 5). By Theorem C, it suffices to show

that γ lies actually in Γn,pro−l
0 . Since the group extension (Γn0 ):

1 → Π0,n−1 → Γn
0 → Γn−1

0 → 1

has a splitting homomorphism Γn−1
0 → Γn

0 , and since the action of Γn−1
0

on Π0,n−1/[Π0,n−1,Π0,n−1] is trivial, we have an exact sequence

1 → Π0,n−1/Π0,n−1(N) → Γn
0 /Γn

0 (N) → Γn−1
0 /Γn−1

0 (N) → 1

for each N ≥ 1 (cf. [19] Proposition 3.1.1). Then, by the exactness of the

Malcev completion functor, we obtain from the above a surjective projective
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system of exact sequences of Malcev Lie algebras over Q. Tensoring them

with Ql, and taking lim←−N
, we get the following two exact sequences

0 → Ll(Π0,n−1) → Ll(Γn
0 ) → Ll(Γn−1

0 ) → 1,

0 → Gl(Π0,n−1) → Gl(Γn
0 ) → Gl(Γn−1

0 ) → 1,

where Ll(Π0,n−1) is the projective limit of the Lie algebras L[N ]
l (Π0,n−1)

associated with the l-adic analytic groups Πpro−l
0,n−1/Π

pro−l
0,n−1(N) (N ≥ 1), and

Gl(Π0,n−1) is the group of the group-like elements in the complete Hopf

algebra associated with Ll(Π0,n−1). By Theorem (3.1.13), inn(γ) preserves

Xij for each 1 ≤ i < j ≤ n. Therefore, (through some inductive arguments)

we are reduced to the following simple

Proposition (4.2.5). Let Π0,n be the free group with free genera-

tors x1, . . . , xn−1 (n ≥ 3), and let γ ∈ Gl(Π0,n) satisfy the following two

conditions:

(1) inn(γ) preserves Πpro−l
0,n ⊂ Gl(Π0,n);

(2) inn(γ)(x1) = γx1γ
−1 is conjugate to x1 in Πpro−l

0,n .

Then γ ∈ Πpro−l
0,n .

Proof. Let inn(γ)(x1) = tx1t
−1 (t ∈ Πpro−l

0,n ). Replacing γ by t−1γ,

we may assume that γ commutes with x1. Since the centralizer of log x1 in

Ll(Π0,n) is Ql log x1, we get log γ = a log x1 for some a ∈ Ql. Then, from

the Campbell-Baker-Hausdorff formula, it follows that

inn(γ)(x2)x
−1
2 = [γ, x2] = a · [x1, x2]

in gr2Gl(Π0,n). But since [x1, x2] is a member of a Zl-basis of gr2Π
pro−l
0,n , we

get a ∈ Zl. Therefore γ = xa1 ∈ Πpro−l
0,n . �

Appendix. Generalization of the Belyi lifting to M0,5

In this note, we shall follow the notations introduced in §3 with fixing

a full class of finite groups C.

We first recall the case of M0,4. Let X = M0,4 = P1 − {0, 1,∞} be

defined over a number field k, and let p0,4 : πC
1 (X) → Gk be the canonical
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surjection. For convinience, we put x = x14, y = x24, z = x34 to present

Γ̂ 4
0 = 〈x, y, z|xyz = 1〉. The Belyi lifting for M0,4 is defined to be a homo-

morphism β : Gk → πC
1 (X) with p0,4 ◦β = id characterized by the following

properties of the images βσ = β(σ) for σ ∈ Gk:

βσzβ
−1
σ = zaσ ∃aσ ∈ Z×

C
;(A1)

βσyβ
−1
σ = tσy

aσ t−1
σ ∃tσ ∈ [Γ̂ 4

0 , Γ̂
4
0 ];(A2)

βσxβ
−1
σ = sσx

aσs−1
σ ∃sσ ∈ Γ̂ 4

0 .(A3)

It is easy to see that aσ and tσ ∈ [Γ̂ 4
0 , Γ̂

4
0 ] are uniquely determined for σ ∈ Gk

by the above conditions (A1), (A2), and that if we impose the conditon

sσ ≡ y
aσ−1

2 mod [Γ̂ 4
0 , Γ̂

4
0 ], then sσ is also determined uniquely for σ ∈ Gk

by (A3) ([18] Proposition 4). In addition, we know aσ is the cyclotomic

character of σ ∈ Gk. As Γ̂ 4
0 is a free pro-C group with free generators

y and z, tσ and sσ are considered to be “pro-words” in noncommutative

indeterminates y and z, and written as tσ = tσ(y, z), sσ = sσ(y, z).

Let

ΦC
X : AutkX → AutGk

πC
1 (X)

InnΓ̂ 4
0

be the canonical map introduced in §0. After suitably lifting the image of an

involution (resp. a 3-cyclic) of AutkX ∼= S3, we obtain Galois compatible

automorphisms f, g ∈ AutGk
πC

1 (X) such that

f(x) = z−1yz, f(y) = x, f(z) = z;(A4)

g(x) = y, g(y) = z, g(z) = x.(A5)

Applying f to (A1)-(A3), and making suitable transposition, we obtain

z
1−aσ

2 f(βσ)zf(βσ)
−1z

aσ−1
2 = zaσ ,(A6)

(A7) z
1−aσ

2 f(βσ)yf(βσ)
−1z

aσ−1
2

= (z
1+aσ

2 sσ(x, z)z
−1y

aσ−1
2 )yaσ(z

1+aσ
2 sσ(x, z)z

−1y
aσ−1

2 )−1,



Galois rigidity 129

(A8) z
1−aσ

2 f(βσ)xf(βσ)
−1z

aσ−1
2

= (z
1−aσ

2 tσ(x, z)x
1−aσ

2 )xaσ(z
1−aσ

2 tσ(x, z)x
1−aσ

2 )−1.

Comparing these with (A1)-(A3), we get the following formulae:

tσ(y, z) = z
aσ+1

2 sσ(x, z)z
−1y

aσ−1
2 ,(A9)

sσ(y, z) = z
1−aσ

2 tσ(x, z)x
1−aσ

2(A10)

βσ = z
1−aσ

2 f(βσ)(A11)

Similarly, if we apply g to (A1)-(A3), we get

z
1−aσ

2 tσ(z, x)−1g(βσ)zg(βσ)
−1tσ(z, x)z

aσ−1
2 = zaσ ,(A12)

(A13) z
1−aσ

2 tσ(z, x)−1g(βσ)yg(βσ)
−1tσ(z, x)z

aσ−1
2

= [z
1−aσ

2 tσ(z, x)−1sσ(z, x)]yaσ [z
1−aσ

2 tσ(z, x)−1sσ(z, x)]−1

(A14) z
1−aσ

2 tσ(z, x)−1g(βσ)xg(βσ)
−1tσ(z, x)z

aσ−1
2

= [z
1−aσ

2 tσ(z, x)−1x
1−aσ

2 ]xaσ [z
1−aσ

2 tσ(z, x)−1x
1−aσ

2 ]−1,

and obtain

tσ(y, z) = z
1−aσ

2 tσ(z, x)−1sσ(z, x),(A15)

sσ(y, z) = z
1−aσ

2 tσ(z, x)−1x
1−aσ

2 ,(A16)

βσ = z
1−aσ

2 tσ(z, x)−1g(βσ).(A17)

From (A10) and (A16), we see that t = tσ (σ ∈ Gk) satisfies

(A18) t(y, z) = t(z, y)−1.

If g−1 is applied to (A15), then tσ(x, y) = y(1−aσ)/2tσ(y, z)
−1sσ(y, z). Elim-

inating sσ(y, z) from this and (A10), we obtain the following hexagon rela-

tion for a = aσ and t = tσ (σ ∈ Gk):

(A19) t(z, x)z
a−1
2 t(y, z)y

a−1
2 t(x, y)x

a−1
2 = 1.
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The purpose of this note is to show the following

Theorem (A20). Let p0,5 : πC
1 (M0,5) → Gk be the canonical sur-

jective homomorphism, and suppose that the group extension (Γ5
0) is C-

admissible (3.1.2). Then there exists a unique group section β : Gk →
πC

1 (M0,5) of p0,5 such that the images βσ = β(σ) for σ ∈ Gk satisfy the

following four conditions (A21)-(A24).

βσx12β
−1
σ = xaσ12 ,(A21)

βσx23β
−1
σ = tσ(x23, x12)x

aσ
23 tσ(x23, x12)

−1,(A22)

βσx34β
−1
σ = tσ(x34, x45)x

aσ
34 tσ(x34, x45)

−1,(A23)

βσx45β
−1
σ = xaσ45 .(A24)

Moreover, these βσ satisfy also the following formula (A25):

(A25) βσx51β
−1
σ = tσ(x23, x12)tσ(x51, x45)x

aσ
51 tσ(x51, x45)

−1tσ(x23, x12)
−1.

It is known that the universal covering space T0,5 of M0,5 over C is the

same as the Teichmüller space of type (0,5), and that AutT0,5
∼= Γ

[5]
0 (the

full Teichmüller modular group). (See e.g. [29].) Here we have an exact

sequence

1 → Γ 5
0 → Γ

[5]
0 → S5 → 1,

and Γ
[5]
0 is the quotient of the Artin braid group B5 by the normal closure

generated by y5 and z5. (See Remark after (3.1.3).) From this it follows

that the images of

ΦC
M0,5

: AutkM0,5
∼= S5 → AutGk

πC
1 (M0,5)

InnΓ̂ 5
0

can be in principle calculated by seeing conjugacy actions of the standard

generators σi (1 ≤ i ≤ 4) on Γ 5
0 .

Recall we have forgetful homomorphisms pν : πC
1 (M0,5) → πC

1 (M0,4) for

ν ∈ {1, . . . , 5}.
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Proof of Theorem (A20). We begin by considering the following

conditions on β ∈ πC
1 (M0,5). (For a profinite group G, G′ or [G,G] denotes

the closure of the commutator subgroup of G.)

βx12β
−1 = xa12 ∃a ∈ Z×

C
,(A26)

βx23β
−1 = txa23t

−1 ∃a ∈ Z×
C
, ∃t ∈ (kerp2)

′〈x24〉,(A27)

βx45β
−1 = xa45 ∃a ∈ Z×

C
,(A28)

βx34β
−1 = sxa34s

−1 ∃a ∈ Z×
C
, ∃s ∈ 〈x34, x45〉′,(A29)

βx34β
−1 = sxa34s

−1 ∃a ∈ Z×
C
, ∃s ∈ (kerp4)

′〈x24〉,(A30)

βx23β
−1 = txa23t

−1 ∃a ∈ Z×
C
, ∃t ∈ 〈x12, x23〉′,(A31)

If we let L = {β|(A26), (A27)}, then L is a subgroup of πC
1 (M0,5) isomorphic

to πC
1 (M0,4) via p2. Therefore we may apply the Belyi lifting for M0,4 in

the exact sequence

1 → 〈x34, x45〉 → L → Gk → 1,

and get

B := {β|(A26), (A27), (A28), (A29)} ∼= Gk.

If we denote by βσ the unique element of B lying over σ ∈ Gk, then we have

βσx34β
−1
σ = tσ(x34, x45)x34tσ(x34, x45)

−1 by the definition of the pro-word

tσ. Moreover, since 〈x34, x45〉′ = 〈x34, x45〉 ∩ (kerp4)
′〈x24〉,

B = {β|(A26), (A27), (A28), (A29)}
= {β|(A26), (A27), (A28), (A30)}
= {β|(A26), (A28), (A30), (A31)} (by symmetry)

= {β|(A26), (A28), (A29), (A31)} (by existence and uniqueness).

As L′ = {β | (A28), (A30)} is an extension of Gk by 〈x12, x23〉 and is

isomorphic to πC
1 (M0,4) via p4, it follows that βσ ∈ B also satisfies (A23).

Thus, we conclude that βσ ∈ B is characterized as a unique element in

p−1
0,5(σ) satisfying the properties (A21)-(A24).

Let g be a Galois compatible automorphism of πC
1 (M0,5) induced from

the conjugation by (σ1σ2σ3σ4)
3 (g sends xij to xτ(i)τ(j) where τ denotes the

cyclic permutation (14253)), and define

B
′ = {tσ(x23, x12)g(βσ)|σ ∈ Gk}.
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Then it follows that β′
σ = tσ(x23, x12)g(βσ) is characterized as a unique

element of p−1
0,5(σ) such that

β′
σx45β

′−1
σ = xaσ45 ;(A32)

β′
σx51β

′−1
σ =(A33)

tσ(x23, x12)tσ(x51, x45)x
aσ
51 tσ(x51, x45)

−1tσ(x23, x12)
−1;

β′
σx12β

′−1
σ = xaσ12 ;(A34)

β′
σx23β

′−1
σ = tσ(x23, x12)x

aσ
23 tσ(x23, x12)

−1.(A35)

From this we also see that B′ forms a subgroup of πC
1 (M0,5) and that β′

gives a section of p0,5.

For the proof of Theorem (A20) it suffices to show B = B′. As 〈x12, x45〉
is selfnormalizing in Γ 5

0 , after observing the conditions (A21), (A24), (A32),

(A34) together with (A22) and (A35), we may put β′
σ = xλσ45 βσ for some

λσ ∈ ZC. Then, by (A35), we have

(A36) βσx51β
−1
σ =

x−λσ
45 tσ(x23, x12)tσ(x51, x45)x

aσ
51 tσ(x51, x45)

−1tσ(x23, x12)
−1xλσ45 .

Let f be a Galois compatible automorphism of πC
1 (M0,5) induced from

the conjugation by σ4σ
−1
1 σ2σ1. Then

f(x12) = x−1
12 x23x12; f(x23) = x12;

f(x34) = x13x51x
−1
13 ; f(x45) = x45;

f(x51) = x45x34x
−1
45 .

If we put β′′
σ = tσ(x23, x12)x

aσ−1
45 x12f(β′

σ)x
−1
12 for σ ∈ Gk, then after some

computations we see that β′′
σ satisfies the same conditions as (A21)-(A24)

for βσ together with

(A37) β′′
σx51β

′′−1
σ =

xλσ45 tσ(x23, x12)tσ(x51, x45)x
aσ
51 tσ(x51, x45)

−1tσ(x23, x12)
−1x−λσ

45 .
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The coincidence of the first four conditions assures that βσ = β′′
σ. We

conclude then by comparing (A37) with (A36) that λσ = 0. This completes

the proof of Theorem (A20). �

Corollary (Drinfeld [9]; in this form, see Ihara [20]). The pro-word

t = tσ (σ ∈ Gk) satisfies the following pentagon relation in Γ̂ 5
0 :

(A38) t(x12, x23)t(x34, x45)t(x51, x12)t(x23, x34)t(x45, x51) = 1.

Proof. Let βσ be as in the theorem, and put β′
σ = tσ(x12, x23)βσ,

and β′′
σ = (σ1σ2σ3σ4)

3βσ(σ1σ2σ3σ4)
−3. By observing the resulting first four

conditions for β′
σ and β′′

σ, we see β′
σ = β′′

σ. Repeating this 5 times, we get

the assertion. �

Lines of a more geometric proof of (A38) is illustrated in Ihara’s article

[20]. In [9], Drinfeld considered the Grothendieck-Teichmüller group GT

GT = {(a, t) ∈ Z×
C
× 〈y, z〉|(A18), (A19), (A38)}×

with group operation (a, t)(a′, t′) = (aa′, t(t′(y, z)ya
′
t′(y, z)−1, za

′
)), and as-

serted that GT operates on profinite Artin braid groups B̂n in a uniform

way for n ≥ 4. (Prof. Ihara showed a method to verify this assertion.) If we

compose this operation with the map Gk � σ → (aσ, tσ) ∈ GT , we obtain

Galois representations in AutΓ̂n
0 after suitable reduction B̂n ⊃ P̂n � Γ̂n

0

(n ≥ 4). It would be very plausible that this representation gives a lifting of

the Galois representations ϕC
0,n : Gk → OutΓ̂n

0 coming from the geometric

object M0,n. But the rigorous proof of this for n ≥ 6 seems not to have

appeared yet.
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[36] Neukirch, J., Über die absoluten Galoisgruppen algebraischer Zahlkölper,
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Notes added in proof. The main part §3 of this paper was written

before [33,34,35] in 1991, so it would be appropriate here to explain some

history of the present paper. After receiving comments from Prof. Deligne

on the original version, the author wrote §4, and in the process of enlarging

§3 to the pro-C context, began to equip the paper with some technical

tools §1–2 which were expected to suggest lines for future developments of

the ‘anabelian’ world. This latter effort seemed more or less successful, as

it clarified the importance of “universal center-triviality” of fundamental

groups, and lead to the work [34]. The use of weights as in 2.3 occurred

to the author when he examined lines of Deligne’s letter suggesting Lie

variant §4. Combining the linear weights in 2.3 with non-linear weights in

2.1, we were lead to the construction of weight coordinate formalism in a

joint work with H.Tsunogai [35]. The body of the present paper was thus

established in 1992. Since then the problem of estimating the centralizers

of Galois images in Outπpro−l1 has been developed, and our understanding

of the problem has been gradually deepened. In particular, the author has

realized that Theorem A can be deduced from Theorem B without help of

(3.13.3), contrary to the discussion in (4.2.4). It comes from the observation

that the Galois centralizer can act faithfully on the abelianization of πpro−l1

by a suitable weight argument. This point of view was pursued further in a

recent collaboration with N.Takao on the pro-l fundamental groups of braid

configuration spaces of higher genus curves.
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