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On the Lie Algebra ©(X) of
Vector Fields on a Singularity

By Herwig HAUSER and Gerd MULLER

Abstract. To any germ X of a complex analytic variety with local
ring Ox one associates the topological Lie algebra ©(X) = Der Ox of
vector fields on X. We show that isolated hypersurface singularities X
of dimension at least 3 are uniquely determined up to isomorphism by
the topological Lie algebra ©(X).

1. Introduction

Let X be the germ of a complex analytic variety with local ring Ox.
Consider the Lie algebra and Ox-module ©(X) = Der Ox of vector fields
on X. The Zariski-Lipman conjecture asserts that X is smooth if and only
if ©(X) is a free module. Jordan [J] and Siebert [Si] prove that X is smooth
if and only if ©(X) is a simple Lie algebra. In the present paper the Lie
algebra structure of ©(X) is related to X in the singular case:

THEOREM. Isolated hypersurface singularities X of dimension at least
8 are uniquely determined up to isomorphism by the abstract topological Lie
algebra O(X).

Actually, it will be shown that any bicontinuous isomorphism ¢ : O(Y)
— O(X) is induced by a unique analytic isomorphism ¢ : X — Y. The
topology on ©(X) is the one induced by the weak topology on Ox. We
have no counter-examples for varieties which do not satisfy the assump-
tions of the theorem. However, the method of proof does not extend to
more general cases without substantial modification. There are three main
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ingredients: Subalgebras ©7(X) of vector fields tangent to subvarieties Z of
X are characterized in purely Lie algebra theoretic terms. The Ox-module
generated by a Hamiltonian vector field H is expressed as an intersection
of such ©z(X). Thirdly, the map Twiste , : ©(X) — O(X) introduced in
[HM] is exploited to construct the map . The proof follows the pattern
given in [HM], the arguments being more involved due to the absence of
vanishing vector fields.

In the affine algebraic case, the corresponding result has been proven by
Siebert [Si] for normal varieties.

The work on this paper was mainly done during a visit of the second
author at the Mathematics Department of the Universidad Auténoma de
Madrid. He thanks its members for their hospitality.

2. Characterization of ©z(X)

The germ X is assumed to be reduced and irreducible. For an embedding
X C(C"0) let Oy = Ocnyy and Ox = Oy /Ix so that O(X) ~Dx /Ix-D
where D = Der O,, and Dx = {D € D, D(Ix) C Ix}. For a reduced but
possibly reducible subvariety Z of X with ideal Iz C Ox let

02(X) ={D € (X), D(Iz) C I}

be the tangent algebra of Z relative to X. Given any subalgebra A of ©(X),
the subvariety X4 of X defined by the radical of the ideal

In={9€0x, g-0(X) C A}

is called the integral variety of A relative to ©(X). Similarly as in [HM]
one has A C Oy, (X).

PROPOSITION 1. Let ZC X and A= 0z(X).
(a) If AC O(X) then Z = Xa.
(b) If A=0O(X) then Z =X or Z C Sing X.
(c) Let Y € X with Y ¢ Sing X and assume Y and Z irreducible. If
ACOy(X ) thenY = Z orY C Sing Z.

PrOOF. (a) and (b) being analogous to [HM] we only show (c). Set
B =0y(X). Then Iz C I4 C Ig. Thus B C O(X) and

Y=XpCX,CZ
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We prove that Y ¢ Sing Z implies dim ¥ = dim Z and hence Y = Z.
Embed X in some (C",0) and let k, resp. ¢ denote the codimension of
Z, resp. X in (C™,0). Choose points p € Y arbitrarily close to 0 such
that p ¢ SingZ U Sing X. If f1,...,fm € O, define Z in (C",0), the
corresponding Jacobian matrix (0;f;) has rank < k on Z, and Sing Z is
defined by the vanishing of its k-minors. Applying this in turn to X and
Z one may choose f; and coordinates such that fi,..., f. vanish on X and
the upper left k-minor of (0;f;) does not vanish in p. Consider the n — k
vector fields (i =k+1,...,n)

o oifi ... Oifx
Y0 fr ... Oufw
9 Oifi ... Oifw

given by the cofactor expansion along the first column. If f vanishes on Z
the functions D;(f) vanish on Z because the resulting (k+41) x (k+1)-matrix
has rank < k on Z. And if f vanishes on X the matrix

oif ofr ... Oife
Of Ohfr ... Oufs
of Oifi ... 0Oife

has rank < ¢ on X, hence the D;(f) vanish on X. Therefore the vector
fields D; are tangent to Z and X. From ©;(X) C Oy (X) we conclude that
they are tangent to Y. As they are linearly independent in p a theorem of
Rossi [R] implies that the dimension of Y in p must be at least n — k. But
p was arbitrarily close to 0. We obtain dim Y > n — k = dim Z, proving
the Proposition. [

For any inclusion A C B of Lie algebras we define a decreasing series
Al of subalgebras of A by

AV ={De A, [D,B]C 4}, Al = (A=),

Moreover set Al*l = (M AlY. This is the largest ideal of B contained in A.
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PROPOSITION 2. Let Z C X be irreducible with A = 0z(X) C O(X).
Then Al consists of the vector fields vanishing on the minimal V. 2 Z
with Oy (X) = 6(X).

Proor. Let B={D € O(X), D(Ox) C Iz}. By [Si, 3.31] one has
BI™l = (D € ©(X), D(Ox) C Iy}.

Clearly B>l C Al*l. Conversely, take D € Al and arbitrary Ei,... , Ej
€ O(X). Then D' = [...[D,Ey],... ,E;] € A, in fact D’ € Al®l. For all
g € Ox and E € O(X) we have

D'g-E=1[D' gE]—g-|D E] € A,

hence D'g € 14. Proposition 1 implies Iy C /14 = I;. Thus D’g vanishes
on Z and D' € B. This means D € B>,

PROPOSITION 3. (a) Let Z C X and A = ©4(X). Then AR £ 0. If
Z C X is irreducible and Z ¢ Sing X then Al®l = 0.
(b) Let A C O(X) be a subalgebra and Z = Xa. If AP #£0 then Z C X.
If Al®l =0 then Z ¢ Sing X.

PROOF. (a) For the first assertion, take g € I and D € A and use the
structural equation of the preceding proof to show that ¢?D is contained in
APl The second follows from Propositions 1 and 2.

(b) The first part is similar to [HM, Proposition 1.6.2.(a)]. For the second,
let S = Sing X. Then I% - ©(X) is a non-zero ideal of ©(X) for all k. If
Z C S then I% - ©(X) C A for some k. O

We say that a subalgebra A of a Lie algebra B is balanced if A? # 0
and Al = 0.

THEOREM 1. For an irreducible germ X of an analytic variety the map
Z— 0z(X)

defines a bijection between the set of irreducible subvarieties Z C X with
Z ¢ Sing X but Sing Z C Sing X and the set of mazimal balanced subalge-
bras of ©(X). In particular, every mazimal balanced subalgebra of ©(X) is
an Ox-submodule.
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PROOF. (a) Let Z be a subvariety of X as in the statement of the
Theorem. By Proposition 3(a) the subalgebra A = ©z(X) is balanced in
©(X). To prove maximality let B C ©(X) be balanced with ©7(X) C B.
By Proposition 3(b) we can choose a component Y of Xp with Y Z Sing X.
Moreover Y C X. By Seidenberg [Se] any vector field tangent to a variety
is tangent to its components. Hence

07(X) C B C Oy, (X) C Oy(X).

As Y ¢ Sing X we conclude by Proposition 1(c) that Y = Z and ©7(X) =
B.

(b) Let A C ©(X) be maximal balanced. Proposition 3(b) allows to choose
a component Z of X4 with Z € Sing X and Z C X. By Proposition 3(a)
the subalgebra ©7(X) is balanced in ©(X). From A C ©x,(X) C O7(X)
and maximality of A follows A = ©z(X). Proposition 1(a) shows that Z
is uniquely determined as Z = X 4. If we had Sing Z ¢ Sing X there were
a component Y of Sing Z with Y Z Sing X. As

A=07z(X) C Osing z(X) C Oy(X)

the same argument as above gives A = Oy (X) and Y = Z, contradic-
tion. O

Propositions 1 and 3 also yield information on the ideals of ©(X):

COROLLARY. (a) ([J], [Si, 3.56]) X is smooth if and only if ©(X) is a
simple Lie algebra.
(b) If X has an isolated singularity then every ideal of ©(X) has finite
codimension.

PrROOF. We remarked above that Is-©(X) with S = Sing X is a non-
zero ideal of ©(X) which is clearly different from ©(X) if X is not smooth.
Conversely, let A be a non-trivial ideal of O(X). It is easy to show that
every vector field on X is tangent to Z = X 4. Hence Z = X or Z C Sing X.
But AP £ 0 gives Z C X. And A # O(X) implies Z # (). In the smooth
case we are done. If X has an isolated singularity we conclude Z = 0. Then
the assertion follows from [HM, Proposition 1.4.2]. O
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REMARK. The results and proofs of this section hold true for affine
algebraic varieties X and the Lie algebra ©(X) of derivations of their coor-
dinate ring. One obtains in particular a one to one correspondence between
the non-singular points of an affine algebraic variety X and the maximal
balanced subalgebras of ©(X) having finite codimension. Similarly as in
[HM, part II, sec. 6] one deduces that normal affine algebraic varieties X are
uniquely determined up to isomorphism by the abstract Lie algebra 0(X),
see also [Si, Theorem 3].

3. Isomorphic varieties

Equip Ox with the weak topology, i.e. the initial topology with respect
to the natural maps Ox — Ox/ m’)“( where mx denotes the maximal ideal
of Ox. With the induced topology ©(X ) becomes a topological Lie algebra.
Any isomorphism ¢ : X — Y induces a continuous Lie algebra isomorphism

o 1 O(Y) - O(X).

THEOREM 2. Let X and Y be isolated hypersurface singularities of
dimension > 3. For every isomorphism ® : ©(Y) — O(X) of topological
Lie algebras there is a unique isomorphism ¢ : X — Y such that ® = @7 .

Given an isomorphism ® : ©(Y) — ©(X) and an element h € Oy define
a C-linear map
Twiste, : O(X) — O(X) : D &(h-d1(D)).
If & = p* for some isomorphism ¢ : X — Y one has
Twiste (D) = ¢*(h) - D

for all h € Oy and D € ©(X). This shows that there can be only one ¢
inducing ® (at least if X is irreducible).

In the sequel X denotes an isolated hypersurface singularity of dimension
at least 3, defined in (C",0) by some f € O,. Fix coordinates on (C",0)
with induced partial derivatives 04,...,0,. Consider the Ox-submodule
H(X) of ©(X) generated by the Hamiltonian vector fields

Dij = 8]f . 8Z — azf . 8j.
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ProprosiTION 4. (cf. [J], [Si]) H(X) is an ideal of ©(X) independent
of the choice of f and the coordinates.

PrOOF. As X has an isolated singularity the module of relations be-
tween the partials is generated by the trivial relations. Hence H(X) is
obtained from {D € D, Df = 0} by restriction to X. For D, E € D with
Df =0 and Ef = af for some a € O,, there is A € D with Da = Af.
Thus [D, E] — f - A annihilates f, which shows that H(X) is an ideal. The
rest is standard. O

PROPOSITION 5. Let X andY be isolated hypersurface singularities of
dimension > 3. Let ® : O(Y) — O(X) be an isomorphism of topological
Lie algebras. For every h € Oy there is an element a(h) € Ox such that
for all D € H(X):

TWiStq)’h(D) = a(h) - D.

ProOOF OF THEOREM 2. It is immediately seen that the map « :
Oy — Ox is an injective algebra homomorphism. To prove surjectiv-
ity apply Proposition 5 to ®~! : ©(X) — ©(Y). One obtains a map
G :O0Ox — Oy with

g ®(E)) =B(g)- B

for all F € H(Y). Fix 0 # E € H(Y). By the Corollary of section 2 the
ideal H(X) has finite codimension in ©(X). Hence there is 0 # g € Ox
with D := g - ®(E) € H(X). Clearly @YD) = 3(g) - E € H(Y). By
computation one gets

h-D =a(B(h)-D

for all h € Ox, proving 8 = a~!. Finally, to show that
®(E)oa=aoFE

for all E € ©(Y") one has to repeat the calculations in part (c) of the proof
of [HM, Proposition I1.5.1.] using the fact that H(X) is an ideal of ©(X).
This proves the Theorem. [

For the proof of Proposition 5, fix ® and h and call D € ©(X) appro-
priate if Twistg 5(D) belongs to the Ox-module (D).
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LemMa 1. If f,01f,... ,0n—1f form a regular sequence in O, then
u - Dyj is appropriate for i,5 < mn and any unit u € O;,.

PROOF. (a) We consider D = Djs5. By definition of Twist it is enough
to show that ®~! maps the Oy-module (D) onto an Oy-submodule of
O(Y). Define H as the set of irreducible subvarieties Z C X of dimension
> 1 with at worst an isolated singularity at 0 and such that D is tangent
to Z. By Theorem 1 the Lie algebra isomorphism ®~! maps the tangent
algebra ©7(X) onto an Oy-submodule of O(Y") for any Z € H. The Lemma
then follows from

(D)= [ ©2(X).
ZcH
(b) To prove this equality let E be an element of the intersection and
E = >.;a;0; € Dy an extension of E to (C",0). In a first step we show
that as, ... ,a, vanish on X. Let 3 <i<n—1 and set y = x;, 2 = x,,. For
¢ € C— {0} and k € N consider the hypersurface section Zj. of X given by
g = z + cyF. Tts singular locus is defined by

Ofreee  Oifser  On1f and Oif — ckyF Lo, 1.

By assumption J = (f,01f,... ,0,—1f) is an m-primary ideal, m the max-
imal ideal of ©,,. Hence m*~! C m - J for large k. For such k one has

—

(fLOLfs .o Oify oo Onr f, Oif — cky* YO f) =T

and consequently Zr. has an isolated singularity at 0. Since n > 4 and
g defines a smooth variety, Zi. is an isolated hypersurface singularity of
dimension > 2, in particular irreducible. Moreover, as ¢,n > 3, D is tangent
to Zge. Thus Zy. € H and FE is tangent to Z.. Now

ey Ykaiz — any) = ckaiy* 1z 4+ anz — an(z + cyf) = 2zEg — ang
vanishes on Zj.. Varying ¢ and k this implies that a; and a,, vanish on X.
(¢) We can now assume that E = a0 +a2dy € Dx. As Ef = af
for some a and f,d,f,d2f is a regular sequence, £ must be a multiple of
Oof <01 — O1f - O modulo f-D. This ends the proof of Lemma 1. O
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LEMMA 2. Let b € O, not depend on the last two variables and write
a’' for the first n — 2 wariables. There is a coordinate change (x) =
(V' (2)), Tp_1,2n) such that, setting & = V7 (0;):
(a) Dyp—11+ b+ Dyp_19 =07 (Dp_11).
(b) f,61f,...,6n_1f generate the same ideal as f,01f,... ,0n—1f.
(¢) If f,01f,. . ,On_1f form a reqular sequence then wu - *(D,_11) are
appropriate for all u € OF.

PROOF. As 01 + b0, is a non-singular vector field on (C"~2,0) there is
a coordinate change as in the Lemma such that 17 (9;) = 9; + bJs. Then
6if € (O1f,... ,0n—1f) for i < n and (b) follows by symmetry. Moreover
6n_1 = 8n_1 and

Dyp11+b-Dy12=(01+b0)fOp1—On-1f (01 +b0) = ¥ (Dy_1,).
Part (c) follows from (a), (b) and Lemma 1. [

PROOF OF PROPOSITION 5. Using the fact that for generic coordinates
f,01f,...,0:f,...,0nf form a regular sequence for all i we can write

TWiStQ,h(u . DZ]) = Cij ('LL) U Dij

with some ¢;j(u) € Ox. For fixed unit u the ¢;;(u) are independent of ¢ and
Jj. To see this, let j # k so that u- (D;; + D;i) is appropriate by Lemma 2.
Hence

cij(u)-u- Dij+cip(u) - u- Dy, = Twiste p(u- (Dij+ Dig)) = ¢-u- (Dij+ Diy)

for some c € Ox. As X is an isolated singularity, D;; and Dy, are linearly
independent over Ox. Therefore ¢;j(u) —c = 0 = ¢ — ¢j(u). Next, write
c(u) = ¢;j(u). For a unit u not depending on the last two variables the
vector field D, _11+u-D;,_1 is appropriate and the argument from above
gives c¢(u) = ¢(1). Since Twiste p is continuous and the units are dense in
O,, we conclude

Twistq>,h(a . Di]‘) = C(l) Q- Di]‘

for those a € O, which do not depend on at least two variables. To show
this for all a € O,, we may assume ¢ monomial, t =n — 1 and j = 2. Write
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a = b-ag where b is a monomial in the first n — 2 variables and ag is a
monomial in the last 2 variables. Then

a-Dyp_12=a9-D—ap-Dyp_1,

with D = Dn—l,l —I—b-Dn_LQ. By Lemma 2 we have D = 61 f-0,,—1—0n—1f01.
Therefore Twiste p(a-Dp—1,2) = ¢(1)-a-Dp—1 2 proving the Proposition. [0

4. Finite generation

It is desirable to reveal the structure of the infinite dimensional Lie
algebras ©(X). Here we only show that in many cases they are finitely
generated as topological Lie algebras. By this we mean that ©(X) is the
topological closure of a subalgebra which is finitely generated as an abstract
Lie algebra. Given an Euler vector field E =), A\jx; 0; we say that D € D
is homogeneous w.r.t. E of degree deg D if [E, D] = deg D - D.

ProrOSITION 6. Let A C D be a Lie submodule. Assume that A con-
tains an FEuler vector field E = Zz Aix; 0; with positive integers A\; and
that A is generated as an O,-module by homogeneous elements. Then A is
finitely generated as a topological Lie algebra.

PRrROOF. For a multiindex o = (v, ... , ) € N™ let (o, \) = Y. aui .
One calculates
[z;E,2%E] = ((ot, A) — \j)xjz*E.

Thus starting with F,z1FE,... ,z,F and the finitely many z;2“E with
(a,A) = \j one can generate all monomial multiples of E. Therefore the
module (F) is finitely generated as a topological Lie algebra. For a homo-
geneous D € A and all g € O,, we have

degD-g-D=Dg-E—[D,gE].

If degD # 0 then the module (D, FE) is generated as a Lie algebra by
D and (E). If degD = 0 it is enough to add the generators z;D since
[E,x2;D] = A\jz;D, i.e. ;D has degree \; # 0. O

COROLLARY. If the isolated hypersurface singularity X is weighted ho-
mogeneous then Dx and O(X) are finitely generated as topological Lie al-
gebras.



On the Lie algebra ©(X) 249

Proor. Let f be a weighted homogeneous generator of Ix, say Ef =
df with £ =), A\jz; 0;. It is well known and easily proven that the module
Dx is generated by E and the Hamiltonian vector fields D;; = 0;f - 0; —
O0if -0;. As

[E,0;f-0;) =E(0;f)-0; + 0;f - [E,0;] = (d—X;) - 0jf - 0; — 0;f - X\i - O

we see that D;; is homogeneous of degree d — A\; — A; and Proposition 6
applies. [
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