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On the Lie Algebra Θ(X)(X)(X) of

Vector Fields on a Singularity

By Herwig Hauser and Gerd Müller

Abstract. To any germ X of a complex analytic variety with local
ring OX one associates the topological Lie algebra Θ(X) = DerOX of
vector fields on X. We show that isolated hypersurface singularities X
of dimension at least 3 are uniquely determined up to isomorphism by
the topological Lie algebra Θ(X).

1. Introduction

Let X be the germ of a complex analytic variety with local ring OX .

Consider the Lie algebra and OX -module Θ(X) = DerOX of vector fields

on X. The Zariski-Lipman conjecture asserts that X is smooth if and only

if Θ(X) is a free module. Jordan [J] and Siebert [Si] prove that X is smooth

if and only if Θ(X) is a simple Lie algebra. In the present paper the Lie

algebra structure of Θ(X) is related to X in the singular case:

Theorem. Isolated hypersurface singularities X of dimension at least

3 are uniquely determined up to isomorphism by the abstract topological Lie

algebra Θ(X).

Actually, it will be shown that any bicontinuous isomorphism Φ : Θ(Y )

→ Θ(X) is induced by a unique analytic isomorphism ϕ : X → Y . The

topology on Θ(X) is the one induced by the weak topology on OX . We

have no counter-examples for varieties which do not satisfy the assump-

tions of the theorem. However, the method of proof does not extend to

more general cases without substantial modification. There are three main
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ingredients: Subalgebras ΘZ(X) of vector fields tangent to subvarieties Z of

X are characterized in purely Lie algebra theoretic terms. The OX -module

generated by a Hamiltonian vector field H is expressed as an intersection

of such ΘZ(X). Thirdly, the map TwistΦ,h : Θ(X) → Θ(X) introduced in

[HM] is exploited to construct the map ϕ. The proof follows the pattern

given in [HM], the arguments being more involved due to the absence of

vanishing vector fields.

In the affine algebraic case, the corresponding result has been proven by

Siebert [Si] for normal varieties.

The work on this paper was mainly done during a visit of the second

author at the Mathematics Department of the Universidad Autónoma de

Madrid. He thanks its members for their hospitality.

2. Characterization of ΘZZZ(X)(X)(X)

The germ X is assumed to be reduced and irreducible. For an embedding

X ⊆ (Cn, 0) let On = O(Cn,0) and OX = On/IX so that Θ(X) � DX/IX ·D
where D = DerOn and DX = {D ∈ D, D(IX) ⊆ IX}. For a reduced but

possibly reducible subvariety Z of X with ideal IZ ⊆ OX let

ΘZ(X) = {D ∈ Θ(X), D(IZ) ⊆ IZ}

be the tangent algebra of Z relative to X. Given any subalgebra A of Θ(X),

the subvariety XA of X defined by the radical of the ideal

IA = {g ∈ OX , g · Θ(X) ⊆ A}

is called the integral variety of A relative to Θ(X). Similarly as in [HM]

one has A ⊆ ΘXA
(X).

Proposition 1. Let Z ⊆ X and A = ΘZ(X).

(a) If A � Θ(X) then Z = XA.

(b) If A = Θ(X) then Z = X or Z ⊆ SingX.

(c) Let Y � X with Y 	⊆ SingX and assume Y and Z irreducible. If

A ⊆ ΘY (X) then Y = Z or Y ⊆ SingZ.

Proof. (a) and (b) being analogous to [HM] we only show (c). Set

B = ΘY (X). Then IZ ⊆ IA ⊆ IB. Thus B � Θ(X) and

Y = XB ⊆ XA ⊆ Z.
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We prove that Y 	⊆ SingZ implies dim Y = dim Z and hence Y = Z.

Embed X in some (Cn, 0) and let k, resp. c denote the codimension of

Z, resp. X in (Cn, 0). Choose points p ∈ Y arbitrarily close to 0 such

that p 	∈ SingZ ∪ SingX. If f1, . . . , fm ∈ On define Z in (Cn, 0), the

corresponding Jacobian matrix (∂ifj) has rank ≤ k on Z, and SingZ is

defined by the vanishing of its k-minors. Applying this in turn to X and

Z one may choose fi and coordinates such that f1, . . . , fc vanish on X and

the upper left k-minor of (∂ifj) does not vanish in p. Consider the n − k

vector fields (i = k + 1, . . . , n)

Di =

∣∣∣∣∣∣∣∣

∂1 ∂1f1 . . . ∂1fk
...

...
...

∂k ∂kf1 . . . ∂kfk
∂i ∂if1 . . . ∂ifk

∣∣∣∣∣∣∣∣
given by the cofactor expansion along the first column. If f vanishes on Z

the functions Di(f) vanish on Z because the resulting (k+1)×(k+1)-matrix

has rank ≤ k on Z. And if f vanishes on X the matrix




∂1f ∂1f1 . . . ∂1fc
...

...
...

∂kf ∂kf1 . . . ∂kfc
∂if ∂if1 . . . ∂ifc




has rank ≤ c on X, hence the Di(f) vanish on X. Therefore the vector

fields Di are tangent to Z and X. From ΘZ(X) ⊆ ΘY (X) we conclude that

they are tangent to Y . As they are linearly independent in p a theorem of

Rossi [R] implies that the dimension of Y in p must be at least n− k. But

p was arbitrarily close to 0. We obtain dim Y ≥ n − k = dim Z, proving

the Proposition. �

For any inclusion A ⊆ B of Lie algebras we define a decreasing series

A[i] of subalgebras of A by

A[1] = {D ∈ A, [D,B] ⊆ A}, A[i] = (A[i−1])[1].

Moreover set A[∞] =
⋂

A[i]. This is the largest ideal of B contained in A.
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Proposition 2. Let Z ⊆ X be irreducible with A = ΘZ(X) � Θ(X).

Then A[∞] consists of the vector fields vanishing on the minimal V ⊇ Z

with ΘV (X) = Θ(X).

Proof. Let B = {D ∈ Θ(X), D(OX) ⊆ IZ}. By [Si, 3.31] one has

B[∞] = {D ∈ Θ(X), D(OX) ⊆ IV }.

Clearly B[∞] ⊆ A[∞]. Conversely, take D ∈ A[∞] and arbitrary E1, . . . , Ek

∈ Θ(X). Then D′ = [. . . [D,E1], . . . , Ek] ∈ A, in fact D′ ∈ A[∞]. For all

g ∈ OX and E ∈ Θ(X) we have

D′g · E = [D′, gE] − g · [D′, E] ∈ A,

hence D′g ∈ IA. Proposition 1 implies IA ⊆
√
IA = IZ . Thus D′g vanishes

on Z and D′ ∈ B. This means D ∈ B[∞]. �

Proposition 3. (a) Let Z ⊆ X and A = ΘZ(X). Then A[2] 	= 0. If

Z � X is irreducible and Z 	⊆ SingX then A[∞] = 0.

(b) Let A ⊆ Θ(X) be a subalgebra and Z = XA. If A[2] 	= 0 then Z � X.

If A[∞] = 0 then Z 	⊆ SingX.

Proof. (a) For the first assertion, take g ∈ IZ and D ∈ A and use the

structural equation of the preceding proof to show that g2D is contained in

A[2]. The second follows from Propositions 1 and 2.

(b) The first part is similar to [HM, Proposition I.6.2.(a)]. For the second,

let S = SingX. Then IkS · Θ(X) is a non-zero ideal of Θ(X) for all k. If

Z ⊆ S then IkS · Θ(X) ⊆ A for some k. �

We say that a subalgebra A of a Lie algebra B is balanced if A[2] 	= 0

and A[∞] = 0.

Theorem 1. For an irreducible germ X of an analytic variety the map

Z �→ ΘZ(X)

defines a bijection between the set of irreducible subvarieties Z � X with

Z 	⊆ SingX but SingZ ⊆ SingX and the set of maximal balanced subalge-

bras of Θ(X). In particular, every maximal balanced subalgebra of Θ(X) is

an OX-submodule.



On the Lie algebra Θ(X) 243

Proof. (a) Let Z be a subvariety of X as in the statement of the

Theorem. By Proposition 3(a) the subalgebra A = ΘZ(X) is balanced in

Θ(X). To prove maximality let B ⊆ Θ(X) be balanced with ΘZ(X) ⊆ B.

By Proposition 3(b) we can choose a component Y of XB with Y 	⊆ SingX.

Moreover Y � X. By Seidenberg [Se] any vector field tangent to a variety

is tangent to its components. Hence

ΘZ(X) ⊆ B ⊆ ΘXB
(X) ⊆ ΘY (X).

As Y 	⊆ SingX we conclude by Proposition 1(c) that Y = Z and ΘZ(X) =

B.

(b) Let A ⊆ Θ(X) be maximal balanced. Proposition 3(b) allows to choose

a component Z of XA with Z 	⊆ SingX and Z � X. By Proposition 3(a)

the subalgebra ΘZ(X) is balanced in Θ(X). From A ⊆ ΘXA
(X) ⊆ ΘZ(X)

and maximality of A follows A = ΘZ(X). Proposition 1(a) shows that Z

is uniquely determined as Z = XA. If we had SingZ 	⊆ SingX there were

a component Y of SingZ with Y 	⊆ SingX. As

A = ΘZ(X) ⊆ ΘSingZ(X) ⊆ ΘY (X)

the same argument as above gives A = ΘY (X) and Y = Z, contradic-

tion. �

Propositions 1 and 3 also yield information on the ideals of Θ(X):

Corollary. (a) ([J], [Si, 3.56]) X is smooth if and only if Θ(X) is a

simple Lie algebra.

(b) If X has an isolated singularity then every ideal of Θ(X) has finite

codimension.

Proof. We remarked above that IS ·Θ(X) with S = SingX is a non-

zero ideal of Θ(X) which is clearly different from Θ(X) if X is not smooth.

Conversely, let A be a non-trivial ideal of Θ(X). It is easy to show that

every vector field on X is tangent to Z = XA. Hence Z = X or Z ⊆ SingX.

But A[2] 	= 0 gives Z � X. And A 	= Θ(X) implies Z 	= ∅. In the smooth

case we are done. If X has an isolated singularity we conclude Z = 0. Then

the assertion follows from [HM, Proposition I.4.2]. �
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Remark. The results and proofs of this section hold true for affine

algebraic varieties X and the Lie algebra Θ(X) of derivations of their coor-

dinate ring. One obtains in particular a one to one correspondence between

the non-singular points of an affine algebraic variety X and the maximal

balanced subalgebras of Θ(X) having finite codimension. Similarly as in

[HM, part II, sec. 6] one deduces that normal affine algebraic varieties X are

uniquely determined up to isomorphism by the abstract Lie algebra Θ(X),

see also [Si, Theorem 3].

3. Isomorphic varieties

Equip OX with the weak topology, i.e. the initial topology with respect

to the natural maps OX → OX/mk
X where mX denotes the maximal ideal

of OX . With the induced topology Θ(X) becomes a topological Lie algebra.

Any isomorphism ϕ : X → Y induces a continuous Lie algebra isomorphism

ϕ# : Θ(Y ) → Θ(X).

Theorem 2. Let X and Y be isolated hypersurface singularities of

dimension ≥ 3. For every isomorphism Φ : Θ(Y ) → Θ(X) of topological

Lie algebras there is a unique isomorphism ϕ : X → Y such that Φ = ϕ#.

Given an isomorphism Φ : Θ(Y ) → Θ(X) and an element h ∈ OY define

a C-linear map

TwistΦ,h : Θ(X) → Θ(X) : D �→ Φ(h · Φ−1(D)).

If Φ = ϕ# for some isomorphism ϕ : X → Y one has

TwistΦ,h(D) = ϕ∗(h) ·D

for all h ∈ OY and D ∈ Θ(X). This shows that there can be only one ϕ

inducing Φ (at least if X is irreducible).

In the sequel X denotes an isolated hypersurface singularity of dimension

at least 3, defined in (Cn, 0) by some f ∈ On. Fix coordinates on (Cn, 0)

with induced partial derivatives ∂1, . . . , ∂n. Consider the OX -submodule

H(X) of Θ(X) generated by the Hamiltonian vector fields

Dij = ∂jf · ∂i − ∂if · ∂j .
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Proposition 4. (cf. [J], [Si]) H(X) is an ideal of Θ(X) independent

of the choice of f and the coordinates.

Proof. As X has an isolated singularity the module of relations be-

tween the partials is generated by the trivial relations. Hence H(X) is

obtained from {D ∈ D, Df = 0} by restriction to X. For D,E ∈ D with

Df = 0 and Ef = af for some a ∈ On, there is ∆ ∈ D with Da = ∆f .

Thus [D,E]− f ·∆ annihilates f , which shows that H(X) is an ideal. The

rest is standard. �

Proposition 5. Let X and Y be isolated hypersurface singularities of

dimension ≥ 3. Let Φ : Θ(Y ) → Θ(X) be an isomorphism of topological

Lie algebras. For every h ∈ OY there is an element α(h) ∈ OX such that

for all D ∈ H(X):

TwistΦ,h(D) = α(h) ·D.

Proof of Theorem 2. It is immediately seen that the map α :

OY → OX is an injective algebra homomorphism. To prove surjectiv-

ity apply Proposition 5 to Φ−1 : Θ(X) → Θ(Y ). One obtains a map

β : OX → OY with

Φ−1(g · Φ(E)) = β(g) · E

for all E ∈ H(Y ). Fix 0 	= E ∈ H(Y ). By the Corollary of section 2 the

ideal H(X) has finite codimension in Θ(X). Hence there is 0 	= g ∈ OX

with D := g · Φ(E) ∈ H(X). Clearly Φ−1(D) = β(g) · E ∈ H(Y ). By

computation one gets

h ·D = α(β(h)) ·D

for all h ∈ OX , proving β = α−1. Finally, to show that

Φ(E) ◦ α = α ◦ E

for all E ∈ Θ(Y ) one has to repeat the calculations in part (c) of the proof

of [HM, Proposition II.5.1.] using the fact that H(X) is an ideal of Θ(X).

This proves the Theorem. �

For the proof of Proposition 5, fix Φ and h and call D ∈ Θ(X) appro-

priate if TwistΦ,h(D) belongs to the OX -module (D).
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Lemma 1. If f, ∂1f, . . . , ∂n−1f form a regular sequence in On then

u ·Dij is appropriate for i, j < n and any unit u ∈ O∗
n.

Proof. (a) We consider D = D12. By definition of Twist it is enough

to show that Φ−1 maps the OX -module (D) onto an OY -submodule of

Θ(Y ). Define H as the set of irreducible subvarieties Z � X of dimension

≥ 1 with at worst an isolated singularity at 0 and such that D is tangent

to Z. By Theorem 1 the Lie algebra isomorphism Φ−1 maps the tangent

algebra ΘZ(X) onto an OY -submodule of Θ(Y ) for any Z ∈ H. The Lemma

then follows from

(D) =
⋂
Z∈H

ΘZ(X).

(b) To prove this equality let E be an element of the intersection and

Ẽ =
∑

i ai ∂i ∈ DX an extension of E to (Cn, 0). In a first step we show

that a3, . . . , an vanish on X. Let 3 ≤ i ≤ n− 1 and set y = xi, z = xn. For

c ∈ C−{0} and k ∈ N consider the hypersurface section Zkc of X given by

g = z + cyk. Its singular locus is defined by

∂1f, . . . , ∂̂if, . . . , ∂n−1f and ∂if − ckyk−1 ∂nf.

By assumption J = (f, ∂1f, . . . , ∂n−1f) is an m-primary ideal, m the max-

imal ideal of On. Hence mk−1 ⊆ m · J for large k. For such k one has

(f, ∂1f, . . . , ∂̂if, . . . , ∂n−1f, ∂if − ckyk−1 ∂nf) = J

and consequently Zkc has an isolated singularity at 0. Since n ≥ 4 and

g defines a smooth variety, Zkc is an isolated hypersurface singularity of

dimension ≥ 2, in particular irreducible. Moreover, as i, n ≥ 3, D is tangent

to Zkc. Thus Zkc ∈ H and E is tangent to Zkc. Now

cyk−1(kaiz − any) = ckaiy
k−1z + anz − an(z + cyk) = zẼg − ang

vanishes on Zkc. Varying c and k this implies that ai and an vanish on X.

(c) We can now assume that Ẽ = a1 ∂1 + a2 ∂2 ∈ DX . As Ẽf = af

for some a and f, ∂1f, ∂2f is a regular sequence, Ẽ must be a multiple of

∂2f · ∂1 − ∂1f · ∂2 modulo f · D. This ends the proof of Lemma 1. �
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Lemma 2. Let b ∈ On not depend on the last two variables and write

x′ for the first n − 2 variables. There is a coordinate change ψ(x) =

(ψ′(x′), xn−1, xn) such that, setting δi = ψ#(∂i):

(a) Dn−1,1 + b ·Dn−1,2 = ψ#(Dn−1,1).

(b) f, δ1f, . . . , δn−1f generate the same ideal as f, ∂1f, . . . , ∂n−1f .

(c) If f, ∂1f, . . . , ∂n−1f form a regular sequence then u · ψ#(Dn−1,1) are

appropriate for all u ∈ O∗
n.

Proof. As ∂1 + b ∂2 is a non-singular vector field on (Cn−2, 0) there is

a coordinate change as in the Lemma such that ψ#(∂1) = ∂1 + b ∂2. Then

δif ∈ (∂1f, . . . , ∂n−1f) for i < n and (b) follows by symmetry. Moreover

δn−1 = ∂n−1 and

Dn−1,1 + b ·Dn−1,2 = (∂1 + b ∂2)f · ∂n−1 − ∂n−1f · (∂1 + b ∂2) = ψ#(Dn−1,1).

Part (c) follows from (a), (b) and Lemma 1. �

Proof of Proposition 5. Using the fact that for generic coordinates

f, ∂1f, . . . , ∂̂if, . . . , ∂nf form a regular sequence for all i we can write

TwistΦ,h(u ·Dij) = cij(u) · u ·Dij

with some cij(u) ∈ OX . For fixed unit u the cij(u) are independent of i and

j. To see this, let j 	= k so that u · (Dij +Dik) is appropriate by Lemma 2.

Hence

cij(u) ·u ·Dij + cik(u) ·u ·Dik = TwistΦ,h(u · (Dij +Dik)) = c ·u · (Dij +Dik)

for some c ∈ OX . As X is an isolated singularity, Dij and Dik are linearly

independent over OX . Therefore cij(u) − c = 0 = c − cik(u). Next, write

c(u) = cij(u). For a unit u not depending on the last two variables the

vector field Dn−1,1 +u ·Dn−1,2 is appropriate and the argument from above

gives c(u) = c(1). Since TwistΦ,h is continuous and the units are dense in

On we conclude

TwistΦ,h(a ·Dij) = c(1) · a ·Dij

for those a ∈ On which do not depend on at least two variables. To show

this for all a ∈ On we may assume a monomial, i = n− 1 and j = 2. Write
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a = b · a0 where b is a monomial in the first n − 2 variables and a0 is a

monomial in the last 2 variables. Then

a ·Dn−1,2 = a0 ·D − a0 ·Dn−1,1

with D = Dn−1,1+b·Dn−1,2. By Lemma 2 we have D = δ1f ·δn−1−δn−1f ·δ1.

Therefore TwistΦ,h(a·Dn−1,2) = c(1)·a·Dn−1,2 proving the Proposition. �

4. Finite generation

It is desirable to reveal the structure of the infinite dimensional Lie

algebras Θ(X). Here we only show that in many cases they are finitely

generated as topological Lie algebras. By this we mean that Θ(X) is the

topological closure of a subalgebra which is finitely generated as an abstract

Lie algebra. Given an Euler vector field E =
∑

i λixi ∂i we say that D ∈ D

is homogeneous w.r.t. E of degree degD if [E,D] = degD ·D.

Proposition 6. Let A ⊆ D be a Lie submodule. Assume that A con-

tains an Euler vector field E =
∑

i λixi ∂i with positive integers λi and

that A is generated as an On-module by homogeneous elements. Then A is

finitely generated as a topological Lie algebra.

Proof. For a multiindex α = (α1, . . . , αn) ∈ Nn let (α, λ) =
∑

i αiλi.

One calculates

[xjE, xαE] = ((α, λ) − λj)xjx
αE.

Thus starting with E, x1E, . . . , xnE and the finitely many xjx
αE with

(α, λ) = λj one can generate all monomial multiples of E. Therefore the

module (E) is finitely generated as a topological Lie algebra. For a homo-

geneous D ∈ A and all g ∈ On we have

degD · g ·D = Dg · E − [D, gE].

If degD 	= 0 then the module (D,E) is generated as a Lie algebra by

D and (E). If degD = 0 it is enough to add the generators xjD since

[E, xjD] = λjxjD, i.e. xjD has degree λj 	= 0. �

Corollary. If the isolated hypersurface singularity X is weighted ho-

mogeneous then DX and Θ(X) are finitely generated as topological Lie al-

gebras.
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Proof. Let f be a weighted homogeneous generator of IX , say Ef =

df with E =
∑

i λixi ∂i. It is well known and easily proven that the module

DX is generated by E and the Hamiltonian vector fields Dij = ∂jf · ∂i −
∂if · ∂j . As

[E, ∂jf · ∂i] = E(∂jf) · ∂i + ∂jf · [E, ∂i] = (d− λj) · ∂jf · ∂i − ∂jf · λi · ∂i

we see that Dij is homogeneous of degree d − λi − λj and Proposition 6

applies. �

References

[HM] Hauser, H. and G. Müller, Affine varieties and Lie algebras of vector fields,
Manuscr. Math. 80 (1993), 309–337.

[J] Jordan, D. A., On the ideals of a Lie algebra of derivations, J. London
Math. Soc. 33 (1986), 33–39.

[R] Rossi, H., Vector fields on analytic spaces, Ann. of Math. (2) 78 (1963),
455–467.

[Se] Seidenberg, A., Differential ideals in rings of finitely generated type, Amer.
J. Math. 89 (1967), 22–42.

[Si] Siebert, T., Lie-Algebren von Derivationen und affine algebraische Geome-
trie über Körpern der Charakteristik 0, Dissertation Berlin 1992.

(Received September 29, 1993)

Herwig Hauser
Institut für Mathematik
Universität Innsbruck
A 6020 Innsbruck
Austria, and
Departamento de Matemáticas
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