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1　Fallacious Comments on the Boy or Girl Paradox 

 Our intuition has often been diagnosed as bad at probability judgment. The most popular illus-
tration is the Boy or Girl paradox, which is almost as well known as the Monty Hall problem. We will 
inspect how plausible this diagnosis is, although only for the Boy or Girl paradox. We will indicate 
the fallacies involved in presenting an applied version of the paradox, and make a modest protest 
against the prevalent diagnosis for human intuition. Let us begin with the following puzzle: 

Gary Foshee, a collector and designer of puzzles from Issaquah near Seattle walked to the lectern 
to present his talk. It consisted of the following three sentences: “I have two children. One is a 
boy born on a Tuesday. What is the probability I have two boys?” (Bellos, 2010)

	 The	first	thing	we	must	recognize	is	the	identity	or	the	essence	of	the	puzzle	we	are	thinking	
about. The puzzle keeps its identity even if the day of the week involved in the sentences is changed. 
This is a matter of course because potential questioners will not always have children born on 
Tuesdays. The same applies to the gender.
 Whether or not the information about being born on a Tuesday is relevant to the right answer is 
Foshee’s	purpose	of	the	problem	presentation.	So	first	of	all	we	had	better	consider	the	puzzle	in	its	
classic form, namely without the phrase ‘born on a Tuesday.’ 
 This puzzle could also have been “I have two children. One of them is a girl. What is the 
probability	I	have	two	girls?”	Both	of	the	versions	are	qualified	for	the	same	purpose.		Depending	on	
the questioner’s family make-up, we are ready for either version.  Because boy and girl are symmet-
rical, the gender difference does not change the logical structure of this puzzle. This same problem is 
sometimes presented as the girl-version such as “…one of them is a girl. What is the probability that 
there are two girls?” (Mlodinow, 2008; Marks & Smith, 2011).
 So, we must obtain the answer valid for the sentences: “I have two children. One is a x.  What 
is the probability I have two xs?” where x refers to either boy or girl. In this respect, “the right 
answer” given by Gary Foshee and others (including many mathematicians and psychologists) is 
wrong.
 As the puzzle is potentially composed of the two versions, when we are informed of which 
version is actually told by the parent, who in this case is the same person as the questioner, we obtain 
information useful for revising the probability through the questioner’s version choice. Initially, we 
had the probability 1/4 for two boys; after hearing the boy-version, we obtain the posterior probability 
as follows:
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The questioner’s choice was the boy-version	 	 	 　　#B
The questioner’s children are boys	 	 	 	 　　BB
The questioner’s children are an elder boy and a younger girl	 　　BG
The questioner’s children are an elder girl and a younger boy	 　　GB
The questioner’s children are girls	 	 	 	 　　GG

 P (#B)	= 1/2,    P (BB) = P (BG) = P (GB) = P (GG) = 1/4

 P (BB | #B) = P (#B | BB) P (BB) / P (#B) = (1 × 1/4) / 1/2 = 1/2

	 Gary	Foshee	and	the	commentators,	such	as	Bellos	(2010),	Devlin	(2010),	Briggs	(2010)	and	
Rutherford (2010), regarded P (BB | #B) = 1/3. They are mistaken. Their calculation is probably like 
this: P (BB | #B) = P (#B | BB) P (BB) / P (#B) = (1 × 1/4) / 3/4 = 1/3. In short, they thought that  
P (#B) = 3/4. Instead, we must distinguish between the questioner having at least one boy and the 
questioner selecting the boy-version as the question this time. #B is the latter, not the former.
	 In	the	first	person	presentation	by	Foshee	and	Bellos,	the	parent	is	identified	in	the	beginning,	
and he chooses gender according to his knowledge of his children. Then, P (#B) is not 3/4, but 1/2, 
because it is untrue that 3/4 of all parents with two children would freely choose the boy-version with 
probability one. 
 To be sure, let us calculate P (#B).

P (#B) = P (BB) P (#B | BB) + P (BG) P (#B | BG) + P (GB) P (#B | GB) + P (GG) P (#B | GG) 
= (1/4 × 1) + (1/4 × 1/2) + (1/4×1/2) + (1/4×0) = 1/2

 Foshee’s presumption was P (#B | BG) = P (#B | GB) = 1, not 1/2, but the presumption is 
boy-biased. In the situation BG or GB, the parent as the questioner would choose the boy-version or 
the girl-version with equal probability.
 Strictly speaking, this symmetric consideration applies only to a completely spontaneous 
gender-mention	 by	 the	 parent.	 Thus,	 in	 Devlin	 (2010),	 Keith	 Devlin	 refers	 to	 Gary	 Foshee’s	
questioning. So his writing about himself: “I tell you I have two children and that (at least) one of 
them is a boy, and ask you what you think is the probability that I have two boys.” may not be his free 
choice.	He	may	be	copying	Foshee’s	expression	because	of	 the	contingent	 truth	of	Devlin’s	own	
family	make-up.	 If	 this	 is	 the	case,	 the	puzzle	Devlin	presented	 is	actually	 the	same	as	 the	other	
version: “I have two children. A stranger asked me if I have a boy. I answered yes. What is the 
probability I have two boys?” 
	 In	 this	 version,	 there	 is	 no	 parental	 free	 choice	 of	 the	 version.	Gender	was	first	 determined	
independently.	If	Devlin	had	at	least	one	boy,	he	would	have	expressed	the	sentence	equivalent	to	the	
one in #B. That is, P (#B | BG) = P (#B | GB) = 1. This is an excessively benevolent interpretation of 
Devlin’s	actual	questioning	though.
	 We	cannot	exactly	conclude	the	ambiguity	is	due	to	the	first	person	narrative	mode.	The	third	
person narrative in the broad sense can be ambiguous in this respect. Let us suppose the puzzle were 
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presented by a person in the story, different from the parent, such as “Bob told me ‘Alice has two 
children. One is a boy.’ What is the probability she has two boys?” Here Bob probably would have 
had	some	reason	in	advance	to	mention	a	boy,	and	Alice	was	selected	as	a	qualified	parent	for	the	
condition.	Then,	P	(#B	|	BG)	=	P	(#B	|	GB)	=	1.	This	could	also	be	false;	Bob	might	have	identified	
Alice	first.	As	long	as	the	person	in	the	story	selects	the	gender,	the	suspicion	often	remains	that	the	
parent	was	 selected	 first.	The	 issue	 is	 not	 always	 in	 the	 first	 person	 but	 in	 the	 choice	 of	 gender	
dependent on the knowledge about the children concerned.
 The ambiguity-free presentation of this puzzle is the one where it is explicit that the choice of 
gender	comes	first,	according	to	which	a	parent	is	randomly	chosen,	as	we	saw	above	as	a	benevolent	
interpretation	in	favor	of	Devlin.	This	is	accomplished	in	two	ways.	First,	a	person	in	the	story	who	
does not know the gender should chose the gender in advance. Second, the real questioner outside the 
story, as in ordinary math problems, should directly choose the gender. In the second case, which has 
been called ‘the third person narrative’ in the narrow sense, the situation is described from the 
impersonal, transcending point of view, or no viewpoint, such as “Alice has two children. One is a 
boy.	What	is	the	probability	she	has	two	boys?”	In	this	case,	Alice	is	whoever	satisfies	the	definition	
of the problem, or even a mere stipulated character. Here the phrases ‘x has two children. One is a 
boy’	refer	to	the	necessary	and	sufficient	condition	of	any	parent	employed	for	the	puzzle.	Alice	can	
be understood as a random sample from the reference class. In that case, P (#B) = 3/4; that is 3/4 of 
all parents with two children could have been employed for the puzzle with the same probability.
 About the Boy or Girl paradox, it is well-known that in general (under the most natural assump-
tions) the correct answer is 1/3 if a parent or a family is chosen at random and 1/2 if one child is 
encountered at random (Bar-Hillel & Falk, 1982). However, it does not seem to be recognized clearly 
(with	a	few	exceptions	such	as	Marks	&	Smith,	2011,	Kaos,	2011)	that	in	general	the	correct	answer	
is 1/3 if the gender mentioned in the narrative is chosen at random and 1/2 if the gender mentioned 
in the narrative is determined causally by the children’s make-up. We will call this kind of insensi-
bility the narrative fallacy of probability.

2　Applied Versions of the Paradox

	 We	confirmed	that	the	right	answer	to	Foshee’s	question	“I	have	two	children.	One	of	them	is	a	
boy. What is the probability I have two boys?” is 1/2, not 1/3. Then, Foshee’s puzzle has the second 
part	with	 a	 specific	day	of	 the	week,	which	 composes	 the	 essential	 aim	of	 his	 challenge.	 In	 this	
essential	part	too	though,	Foshee	and	Devlin	committed	a	narrative	fallacy.	Let	us	move	to	Foshee’s	
question with the phrase ‘on a Tuesday’ that we saw at the beginning, and his explanation from Bellos 
(2010). 

 Let’s list the equally likely possibilities of children, together with the days of the week they are 
born on. Let’s call a boy born on a Tuesday a BTu. Our possible situations are:
•When	the	first	child	is	a	BTu	and	the	second	is	a	girl	born	on	any	day	of	the	week,	there	are	seven	
different possibilities.
•When	the	first	child	is	a	girl	born	on	any	day	of	the	week	and	the	second	is	a	BTu,	again,	there	are	
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seven different possibilities.
•When	the	first	child	is	a	BTu	and	the	second	is	a	boy	born	on	any	day	of	the	week,	again	there	are	
seven different possibilities.
•Finally,	there	is	the	situation	in	which	the	first	child	is	a	boy	born	on	any	day	of	the	week	and	the	
second child is a BTu – and this is where it gets interesting. There are seven different possibilities 
here too, but one of them – when both boys are born on a Tuesday – has already been counted when 
we	considered	the	first	to	be	a	BTu	and	the	second	to	have	been	born	on	any	day	of	the	week.	So,	
since	we	are	counting	equally	likely	possibilities,	we	can	only	find	six	extra	possibilities	here.
 Summing up the totals, there are 7 + 7 + 7 + 6 = 27 different equally likely combinations of 
children	with	the	specified	gender	and	day	of	birth,	and	13	of	these	combinations	are	two	boys.	So	
the answer is 13/27, which is very different from 1/3. (Bellos, 2010)

 Foshee and Bellos presuppose the answer 1/3 for the preliminary question without ‘on a 
Tuesday.’ If we understand the situation literally according to Bellos’s presentation, the preliminary 
answer	must	not	be	1/3	but	1/2.	So	it	is	gratuitously	difficult	to	see	why	their	logic	for	the	final	answer	
13/27 is incorrect. To be clear on the puzzle, we should now distinguish the four possible variations 
including	the	one	for	which	the	final	answer	13/27	is	correct.
 The common background of the following four situations is that we know the questioner has two 
children.	The	a	priori	stage	is	conditioned	only	by	the	common	background.	The	first	stage	is	further	
conditioned by the information that one is a boy. The second stage is further conditioned by the 
information that one is a boy born on a Tuesday. The ways of getting the information are different 
from one version to another. 

  Version 1   The questioner told us spontaneously: “One is a boy born on a Tuesday.” (The literal 
interpretation of Foshee, Bellos and other’s presentation.)
  Version 2   The questioner told us spontaneously: “One is a boy.” Someone ignorant of the situation 
then	asked:	“Do	you	have	a	boy	born	on	a	Tuesday?”	The	questioner	answered	yes.	
		Version	3			 The	questioner	was	asked	by	someone	ignorant	of	the	situation:	“Do	you	have	a	boy?”	
The questioner answered yes, and then spontaneously added: “One is a boy born on a Tuesday.”
		Version	4			 The	questioner	was	asked	by	someone	ignorant	of	the	situation:	“Do	you	have	a	boy	
born on a Tuesday?” The questioner answered: “Yes, one is a boy born on a Tuesday.” 

 Finally the questioner asks us: “What is the probability I have two boys?” Now, what are the 
correct answers? 
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	 Following	Devlin’s	way	of	enumerating	the	cases,	we	obtain	14	possibilities	for	each	child:	

B-Mo, B-Tu, B-We, B-Th, B-Fr, B-Sa, B-Su 
G-Mo, G-Tu, G-We, G-Th, G-Fr, G-Sa, G-Su

 When the questioner tells you that one of her children is a boy born on a Tuesday, she reduces 
the possibilities, leaving the following:

(first	child,	second	child)＝(B-Tu, B-Mo), (B-Tu, B-Tu), (B-Tu, B- We), (B-Tu, B-Th), (B-Tu, B-Fr), 
(B-Tu, B-Sa), (B-Tu, B-Su), (B-Tu, G-Mo), (B-Tu, G-Tu), (B-Tu, G- We), (B-Tu, G-Th), (B-Tu, 
G-Fr), (B-Tu, G-Sa), (B-Tu, G-Su), (B- Mo, B-Tu), (B-We, B-Tu), (B-Th, B-Tu), (B- Fr, B-Tu), 
(B-Sa, B-Tu), (B-Su, B-Tu), (G- Mo, B-Tu), (G-Tu, B-Tu), (G-We, B-Tu), (G-Th, B-Tu), (G- Fr, 
B-Tu), (G-Sa, B-Tu), (G-Su, B-Tu)

	 The	questioner’s	final	information	was	certainly	“One	is	a	boy	born	on	a	Tuesday.”		However,	
the datum to be used to reach the posterior probability of (B, B) is not the bare fact that one is a boy 
born on a Tuesday, but the fact that the questioner gave the information: “One is a boy born on a 
Tuesday.” Let us call this meta-information #B-Tu.  The value of P ((B, B)|#B-Tu) depends on how 
we get #B-Tu. The processes of our obtaining #B-Tu are as follows. In Version 1, the questioner 
intentionally presented the conditional information: “One is a boy born on a Tuesday.” In Version 4, 
by	chance,	the	questioner	has	satisfied	the	given	condition:	“One	is	a	boy	born	on	a	Tuesday.” In 
Versions 2 and 3, the questioner intentionally performed half of the process. Especially in the second 
stage, only in Versions 1 and 3 is the information about a birthday intentionally selected by the parent 



54 Toshihiko MIURA

as a true report on whatever his children’s birthdays are.
 Therefore, 

P (#B-Tu | (B-Tu, B-Tu)) = 1
When　X	≠	B-Tu,
P (#B-Tu | (B-Tu, X)) = P (#B-Tu | (X, B-Tu))
= 1/2   in  Versions 1 and 3 
= 1      in  Versions 2 and 4

 Notice that it is only in Version 4 where the parent is a random sample of the parents who have 
a boy born on Tuesday. In Version 1, the parent is a random sample of the parents who would sponta-
neously	say	“One	is	a	boy	born	on	Tuesday”	at	 the	specific	occasion.	As	we	saw	earlier,	Foshee,	
Bellos	and	Devlin	fell	into	the	narrative	fallacy	about	this	last	distinction.	They	missed	the	distinction	
because	of	their	confusing	#B-Tu	with	the	necessary	and	sufficient	condition	that	“One	is	a	boy	born	
on a Tuesday.” They regarded P (#B-Tu | (B-Tu, X)) and P (#B-Tu | (X, B-Tu) as 1. In Versions 1 and 
3 though, the questioner might have used X, but not B-Tu, as a component of her question sentences 
with the chance of 1/2.

3　Calculations

 Let us calculate each version one by one. The conclusion in each version will be the same 
whether	 or	 not	 it	 is	 calculated	with	 P	 ((B,	 B))	 at	 the	 a	 priori	 stage	 or	 at	 the	 first	 stage.	 So,	 for	
convenience, we will perform the a priori stage calculation for the continuous SS and AA patterns 
(Versions	1	and	4)	and	the	first	stage	calculation	for	the	articulated	SA	and	AS	patterns	(Versions	2	
and 3). 

●Version	1		(SS	pattern,	so	conveniently	based	on	the	a	priori	P	((B,	B)))	
P ((B, B)) = 1/4 
P (#B-Tu) = 1/14
P (#B-Tu | (B-Tu, B-Tu)) = 1
P (#B-Tu | (B-Tu, X)) = P (#B-Tu | (X, B-Tu)) = 1/2　　X	≠	B-Tu

P ((B, B) | #B-Tu) = P (#B-Tu | (B, B)) P ((B, B)) / P (#B-Tu) = (1/7 × 1/4) / (1/14) = 1/2

P (#B-Tu | (B, B)) is obviously 1/7 considering the symmetry of the 7 days, but a detailed analysis is 
as follows: 
 The category {(B, B)} involves 49 equiprobable cases concerning a day of the week.  Among 
them, under the category {(B, B)with B-Tu} 13 cases are involved: (B-Tu, B-Mo), (B-Tu, B-Tu), 
(B-Tu, B- We), (B-Tu, B-Th), (B-Tu, B-Fr), (B-Tu, B-Sa), (B-Tu, B-Su), (B- Mo, B-Tu), (B-We, 
B-Tu), (B-Th, B-Tu), (B- Fr, B-Tu), (B-Sa, B-Tu), (B-Su, B-Tu). Among these only P (#B-Tu | (B-Tu, 
B-Tu))is 1, twice as much as any other P (#B-Tu | (B, B)), so P (#B-Tu | (B, B)) is calculated as (1 × 
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1 + 12 × 1/2) / 49＝1/7. 

●Version	2　(SA	pattern,	so	conveniently	based	on	the	first	stage	P	((B,	B)))
P ((B, B)) = 1/2
P (#B-Tu) = 13/49 × 1/2 + 1/7 × 1/4 + 1/7 × 1/4 = 10/49
P (#B-Tu | (B-Tu, B-Tu)) = 1 
P (#B-Tu | (B-Tu, X)) = P (#B-Tu | (X, B-Tu)) = 1　　X	≠	B-Tu　　　

P ((B, B) | #B-Tu) = P (#B-Tu | (B, B)) P ((B, B)) / P (#B-Tu) = (13/49 × 1/2) / (10/49) = 13/20

 P (#B-Tu | (B, B)) is analyzed as follows.
 The category {(B, B)} involves 49 equiprobable cases concerning a day of the week.  Among 
them, under the category {(B, B) with B-Tu} 13 cases are involved, among which every P (#B-Tu | 
(B, B)) is 1, so P (#B-Tu | (B, B)) is calculated as 13/49. 

●Version	3　(AS	pattern,	so	conveniently	based	on	the	first	stage	P	((B,	B)))
P ((B, B)) = 1/3
P (#B-Tu) = 1/7    ∵	The	existence	of	a	boy	is	already	informed	at	the	first	stage,	so	the	information	
given at the second stage must be limited to boys’ birthdays, in order to keep the opportunity of the 
questioning with the non-trivial answer other than probability 0. 

P (#B-Tu | (B-Tu, B-Tu)) = 1
P (#B-Tu | (B-Tu, X)) = P (#B-Tu | (X, B-Tu)) = 1/2　　X	≠	B-Tu

P ((B, B) | #B-Tu) = P (#B-Tu | (B, B)) P ((B, B)) / P (#B-Tu) = (1/7×1/3) / (1/7) = 1/3

P (#B-Tu | (B, B)) is analyzed in the same way as we saw in Version 1.

●Version	4	　(AA pattern, so conveniently based on the a priori P ((B, B)))
P ((B, B)) = 1/4　
P (#B-Tu) = 1 – (13/14 × 13/14) = 27/196　　　∵	In	every	case	other	than	(X,	Y)	for	X,	Y	≠	B-Tu,	
the questioner says yes, and starts giving the puzzle. 
P (#B-Tu | (B-Tu, B-Tu)) = 1
P (#B-Tu | (B-Tu, X)) = P (#B-Tu | (X, B-Tu)) = 1　　Ｘ ≠	B-Tu　　　

P ((B, B) | #B-Tu) = P (#B-Tu | (B, B)) P ((B, B)) / P (#B-Tu) = (13/49 × 1/4) / (27/196) = 13/27

P (#B-Tu | (B, B)) is analyzed in the same way as we saw in Version 2.

 For reference, let us examine the ordinary third person narrative (presentation from no point of 
view	or	the	transcending	viewpoint)	of	ordinary	math	problems,	as	the	fifth	version,	where	the	infor-
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mation on the children is provided from outside the story.

●Version	5	　(First, based on the a priori P ((B, B)))
P ((B, B)) = 1/4　
P (#B-Tu) = 1 – (13/14 × 13/14) = 27/196　　　∵	In	every	case	other	than	(X,	Y)	for	X,	Y	≠	B-Tu,	
the questioner can truly describe the parent employed for the puzzle. 
P (#B-Tu | (B-Tu, B-Tu)) = 1
P (#B-Tu | (B-Tu, X)) = P (#B-Tu | (X, B-Tu)) = 1　　X	≠	B-Tu

P ((B, B) | #B-Tu) = P (#B-Tu | (B, B)) P ((B, B)) / P (#B-Tu) = (13/49 × 1/4) / (27/196) = 13/27

P (#B-Tu | (B, B)) is analyzed in the same way as we saw in Version 2.

	 (Next,	based	on	the	first	stage	P	((B,	B)))
P ((B, B)) = 1/3　
P (#B-Tu) = 27/147　　　∵ The same reason as in Version 2. 
P (#B-Tu | (B-Tu, B-Tu)) = 1
P (#B-Tu | (B-Tu, X)) = P (#B-Tu | (X, B-Tu) = 1　　X	≠	B-Tu　　　

P ((B, B) | #B-Tu) = P (#B-Tu | (B, B)) P ((B, B)) / P (#B-Tu) = (13/49 × 1/3) / (27/147) = 13/27
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 Lynch (2011) stated “the question that Foshee actually answered was: ‘Of all two-child families 
with at least one child being a boy born on a Tuesday, what proportion of those families have two 
boys?’ The correct answer to the question he actually posed is P  =  1/2” (p. 72). Lynch is right. Marks 
& Smith (2011) also correctly indicated the parallel error of Mlodinow (2008) on the pioneering 
applied Boy or Girl paradox featuring a girl named Florida. 
	 Foshee,	Bellos	and	Devlin’s	calculations	are	correct	only	for	Versions	4	and	5	(and	only	struc-
turally for Version 2). This has been intuitively obvious at the start, because in their actual version 
(Version 1) the questioner appears to have given no informative knowledge at the second stage. The 
impression of no informative value in Versions 1 and 3 came not only from our knowledge that 
birthday and gender are mutually independent, but also from our tacit recognition that a birthday was 
never mentioned independently of the original information source on gender. So the possibilities 
were never tried or tested by any random sampling. 

4　The Lesson Neglected

 To make sure of our conclusion on Version 1, let us try a thought experiment. Let each parent all 
over the world, who has just two children, issue a puzzle about his or her children in the template 
form “One is a x born on a y. What is the probability I have two xs?” (x refers to gender; y refers to 
a day of the week). 
 Half of them would choose boy for x, whom we will call #B parents. #B parents are composed 
of 100% of parents in the category (B, B), 50% of parents in the category (B, G) and (G, B) and 0% 
of parents in the category (G, G). So P ((B, B) | #B) = 1 / (1 + 1/2 + 1/2 + 0) = 1/2, not 1/3. Here 
Foshee,	Bellos	and	Devlin	committed	their	first	narrative	fallacy.	
 One seventh of #B parents would choose Tuesday for y; we will call them #B-Tu parents. #B-Tu 
parents are composed of 100% of parents in the category (B-Tu, B-Tu), 50% of parents in the category 
(B-Tu,	B-X),	 (B-X,	B-Tu),	where	X	≠	Tu,	 (B-Tu,	G)	and	 (G,	B-Tu),	 and	0%	of	parents	 in	other	
categories. So P ((B, B) | #B-Tu) = (1 × 1 + 12 × 1/2) / (1 × 1 + 12 × 1/2 + 14 × 1/2 + 0) = 1/2. The 
final	 probability	P	 ((B,	B)	 |	 #B-Tu)	 is	 the	 same	as	P	 ((B,	B)	 |	 #B).	 Information	 about	 the	day	 is	
irrelevant,	as	our	naïve	intuition	had	told	us.	Here	Foshee,	Bellos	and	Devlin	committed	their	second	
narrative fallacy. 
 Versions 1 and 4 correspond to the two versions of Monty Hall problem. One has the rule that 
Monty should always open an empty door; the other has the rule that Monty should open a door at 
random. In the former version, the apparent datum does not give any expected information, although 
in	the	Monty	Hall	problem,	due	to	its	specific	situation,	the	player	can	obtain	a	hint	about	what	to	do.	
The latter version has a risk that the game will stop en route. In the Monty Hall problem, Monty 
might open the winning door. In Version 4, the parent might say “No, I do not have a boy born on a 
Tuesday. What is the probability I have two boys? ” which is not the same puzzle as the version “Yes, 
I have a boy born on a Tuesday. What is the probability I have two boys? ” 
	 When	I	heard	Version	1	for	the	first	time,	I	though	the	information	about	the	day	was	irrelevant	
and that Version 4 is where the information of the day is useful. My intuition, and probably many 
other	people’s	naïve	intuition	too,	seems	much	more	reliable	than	Devlin	and	Briggs	warn.	Actually,	
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both	Devlin	and	Briggs	confess	their	first	impression	that	the	correct	answer	is	1/2	upon	their	first	
reading. Of course they were right, but their mathematics spoiled their intuition! They strangely 
failed to utilize the lesson of the Monty Hall problem, namely, the importance not just of the contents 
but also the lesser-known importance of the process of getting the information. Still more strangely, 
even Rutherford, who pointed out consciously many misunderstandings on the original version of the 
Boy	or	Girl	paradox,	and	mentioned	the	first	person	versions	as	his	versions	3,	9	and	10	(Rutherford,	
2010, pp. 168, 170), does not criticize the authors who suggest that the correct answer to Version 1 is 
1/3. 
	 After	his	unfortunately	mistaken	commentary,	Devlin	presented	an	applied	quiz:	

Now that your intuition has been primed, let me leave you with this problem. I tell you I have two 
children, and (at least) one of them is a boy born on April 1. What probability should you assign 
to the event that I have two boys? If you think that is going to be too cumbersome, simply tell me 
whether the probability is close to 1/2 or to 1/3, or to some other simple fraction, and provide an 
estimate as to how close. (Once more, you should assume all birth possibilities are equally likely, 
ignoring	in	particular	the	well	known	seasonal	variations	in	actual	births.)	(Devlin,	2010)

 Here again, our naïve intuition (non-primed intuition) tells us that the information on the 
birthday	is	irrelevant,	and	the	intuition	is	definitively	right.	Because	this	problem	is	presented	in	the	
Version	1	 style,	 the	 answer	Devlin	 assumes	 to	 be	 correct	 is	 doubly	wrong.	First,	 as	we	 saw,	 the	
probability	we	should	assign	to	the	parent	(whether	Keith	Devlin	himself	or	not)	having	two	boys	
after we hear his words: “I tell you I have two children, and (at least) one of them is a boy.” is not 1/3 
but	1/2.	Devlin	should	not	have	presented	the	problem	in	the	first	person.	To	ensure	1/3	as	the	correct	
answer, the information that one of them is a boy needs to be given independently of the parent’s and 
all other person’s knowledge on his children’s gender. Second, after we hear the additional infor-
mation “one of them is a boy born on April 1,” the probability we should assign to the event that the 
parent	has	two	boys	should	not	ever	change.	To	ensure	the	revision	of	probability	as	Devlin	hopes,	
the information that a boy was born on April 1 needs to be given independently of the parent’s self-
enumeration.
	 Devlin	(and	Foshee	and	others)	should	have	presented	the	problem	in	the	third	person	(exactly,	
from no viewpoint, such as Version 5) or in the second person (introduced as a response to an inter-
rogative such as Version 4). 
	 The	correct	answer	to	Devlin’s	last	problem	is	just	1/2.	Or,	benevolently	taken	as	Version	3,	the	
correct answer is 1/3, and remains 1/3 all along. The information on the birthday is irrelevant. The 
answer	Devlin	intended	to	be	correct,	namely	“very	close	to	1/2,”	has	the	same	value	as	the	answer	
we will get if the problem is taken as a Version 4 type. Unfortunately, the Version 4 calculation is 
beside	the	point	if	we	follow	the	literal	meaning	of	Devlin’s	presentation.

5　Mathematical Intuition and Narrative Skill

 If taken as the Version 4 type, our naïve intuition does not protest against the claim that the 
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information	on	 the	birthday	 is	very	 influential.	As	 long	as	we	understand	correctly	 the	described	
situation and how it was described (ex. who told it with what knowledge and intention), our intuition 
about probability seems much more reliable than sometimes pointed out by mathematicians and 
psychologists. The problem is perhaps much less in our probability judgment and more in our ability 
to read and understand correctly what situation is explicitly described and how. This diagnosis of ours 
is basically homologous to the current criticisms of the wordings of the original puzzle (ex. Rutherford, 
2010), and of the birthday version (ex. Lynch, 2011). 
 When we read a novel in which the characters’ background circumstances are not explicitly 
described, we can usually make suitable inferences, namely, almost correct probabilistic inferences, 
without setting ourselves to mathematical calculations. Our intuition works well enough if we already 
adequately understand the narrated facts and the narration itself, including whether it is reported by 
the person in the story or by a person outside the story. When we are in the context of art or literature, 
we are not as vulnerable to the narrative fallacy of probability as we are in the context of mathematics. 
We are generally careful about the narrative mode--point of view, tense, tone, mood, degree of 
spontaneity, etc.--when appreciating artwork, but such carefulness is felt pointless in mathematics. 
	 Perhaps	Devlin	and	others	were	mistaken	not	in	their	diagnosis	on	human	intuition	but	rather	
about	the	narration	of	the	puzzle.	They	were	especially	indifferent	to	or	underestimated	the	influence	
of the narrative point of view on the interpretation of the text. Maybe many of what we call tricky 
probability problems (Briggs, 2010) should	actually	be	classified	under	literature	or	narrative	theory,	
or even practical narrative skills, not under the category of mathematics. We tend to be wrong more 
often on the reading, writing and reporting than on the probability inferences. 
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