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INTRODUCTION

When we consider Fourier expansions of automorphic forms on reductive groups, various
kinds of spherical functions appear. Among others, one of the important functions is a Whit-
taker function. In the case of GL(n), there exists a Fourier expansion of an automorphic form
in terms of global Whittaker functions, which is found by Piatetski-Shapiro [35]. It is called
the Fourier-Whittaker ezpansion. The precise information of local Whittaker functions plays
important roles in the various aspects of automorphic forms on GL(n), for example, analysis
of local zeta integrals.

Our interest here is archimedean Whittaker functions on GL(n). Jacquet introduced an
integral expression of a (primary) Whittaker function for a principal series representation in
[17], which is called the Jacquet integral. However, the Jacquet integrals are difficult to handle
and accordingly archimedean zeta integrals defined by them are also difficult to understand.
Hence many authors study the explicit formulas of Whittaker functions which are suitable for
number theoretic applications ([2], [10], [16], [27], [40], [41], [42], [45]). They obtained the
explicit formulas by evaluating the Jacquet integral or by solving the differential equations.
The aim of this thesis is to give the explicit formulas of Whittaker functions on SL(3,R) (or
GL(3,R)). ’

Let us explain our problem in a more precise form. Let G = NAK be a reductive Lie group
with the Iwasawa decomposition. Here N is a maximal unipotent subgroup and K is a maximal
compact subgroup of G. We denote by g and gc the Lie algebra of G and its complexification,
respectively. For a non-degenerate unitary character n of N, let Cp°(N\G) be the subspace of
C*(G) consisting of functions f such that

f(ng) =n(n)f(9), (n,9) € N x G,

on which G acts by the right translation. For an irreducible admissible representation (m, H;)
of G, we set Ip r = Hom(yq i) (Hr x, Cp°(N\G)) and Igf,r = Homg (HZ°,Cp°(N\G)). For an
element ® of Z, . (resp. I,%,), the functions in the image of ® are called the secondary (resp.
primary) Whittaker functions. When G = GL(n,R), if 7, » is nonzero, it is known that 7 is
isomorphic to an irreducible generalized principal series ([18, §2]). Moreover, Shalika [38] show
that the space I,f,r is at most one dimensional for any irreducible admissible representation of
GL(n,R).

In this thesis, we concentrate our attention to the case of G = GL(3,R) or SL(3,R). The
explicit formulas of Whittaker functions at the minimal K-type of a principal series representa-
tion of SL(3,R) (induced from the minimal parabolic subgroup) have been obtained by Bump
[2] and by Manabe, Ishii and Oda [27]. Now we settle two purposes of this thesis as follows:

(1) Give the whole structure of the associated (gc, K)-module of any generalized principal
series representation of SL(3,R).

(2) Give the explicit formulas of Whittaker functions at the minimal K-type of a irreducible
generalized principal series representation of SL(3;R) induced from the maximal par-

abolic subgroup.
1
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This thesis is divided into three self-complete parts. In Part 1, we accomplish the first purpose.
We accomplish the second purpose in Part 2 and 3 by two different ways. Together with the
results of principal series, we have the explicit formulas of Whittaker functions at the minimal
K-type of any irreducible generalized principal series representation of GL(3,R). In principle,
by using the description of the (gc, K)-module structure in Part 1, we can obtain the explicit
formulas of the Whittaker functions at the whole K-types. Here we give a short introduction
of each part as follows:

Part 1. The structures of standard (g, K)-modules of SL(3,R).

We give the whole structure of the associated (gc, K)-module of any generalized principal
series representation of G = SL(3,R). The associated (gc, K)-modules of generalized princi-
pal series (m, Hy) of G is realized as a subspace of L?(K) as a K-module. Peter-Weyl’s theorem
tells that L?(K) has a basis consisting of matrix coefficients of simple K-modules as a Hilbert
space. Hence we can take the corresponding basis of H, and the explicit description of the
action of K on it. Because of the Cartan decomposition g = £ @ p, in order to describe the
action of gc, it suffices to investigate the action of pc. Our main result of this part is the
formulas of the action of pc on the above basis. This part is the reproduction of the paper
[30].

Part 2. Whittaker functions for generalized principal series representations of SL(3,R).

We study Whittaker functions at the minimal K-type of a generalized principal series rep-
resentation 7 of G = SL(3,R) induced from the maximal parabolic subgroup. By evaluating
the (gc, K)-module structure of 7, we give the system of partial differential equations charac-
terizing Whittaker functions at the minimal K-type. We give 6 power series solutions of this
system, that is, the power series expression of the secondary Whittaker functions for 7. We
also give the Mellin-Barnes type integral expressions of the unique solution having the moder-
ate growth property. By Wallach’s result [47], we note that this moderate growth solution is
the primary Whittaker functions for 7. This part is the reproduction of the paper [31].

Part 3. The Eisenstein series for GL(3,Z) induced from cusp forms.

We study the Fourier-Whittaker coefficients of the Eisenstein series for GL(3,Z) induced
from cusp forms. First, we give the expression of the Fourier-Whittaker coefficients of the
Eisenstein series in terms of the Jacquet integrals. Moreover, by evaluating the Jacquet in-
tegrals, we give the Mellin-Barnes type integral expressions of those at the minimal K-type.
Of course, by the uniqueness of the primary Whittaker function, these formulas are coincides
with the formulas in [2], [27] and Part 2 up to constant multiple. This part is the reproduction
of the paper [29].

ACKNOWLEDGMENTS

T would like to express here the most sincere gratitude to Professor Takayuki Oda for his
encouragement and valuable advices.



GENERALIZED PRINCIPAL SERIES OF SL(3,R) AND RELATED WHITTAKER FUNCTIONS 3

Part 1. The structures of standard (g, K )—modules of SL(3,R).

1. INTRODUCTION

For an admissible representation of a real reductive Lie group, the (g, K)-module structure
is a fundamental data. As far as we know, for some ‘small’ reductive Lie groups G, the (g, K)-
module structures of generalized principal series representations are completely described. For
example, the description of them for SL(2,R) is found in standard textbooks, and there
are rather complete results for some groups of real rank 1, e.g. SU(n,1) by Kraljevi¢ [22]
and Spin(1,2n) by Thieleker [44]. Moreover, in recent years, many authors give the explicit
description of degenerate principal series representations of several groups, e.g. Fujimura 6],
Howe and Tan [14], Lee [25], Lee and Loke [26]. However, for generalized principal series
representations of Lie groups of higher rank, there are few references as far as the author knows.
It seems to be difficult to describe the whole (g, K)-module structures of those representations,
since their K-types are not multiplicity free. In the paper [34], the (g, K )-module structures of
principal series representations of Sp(2,R) are described by Oda. In a former paper [32], we
extend the result for principal series representations of Sp(3,R). The method in these papers
is applicable to study of generalized principal series representations of other groups. In this
part, we use this method to study the associated (g, K')-modules of generalized principal series
of SL(3,R).

Before describing the case of SL(3,R), let us explain the problem in a more precise form for
a general real semisimple Lie group G with its Lie algebra g. Fix a maximal compact subgroup
K of G. Since the associated (g, K)-modules of generalized principal series are realized as
subspaces of L?(K) as K-modules, we can investigate those K-module structures by Peter-
Weyl’s theorem. In order to describe the action of g or gc = g ®r C, it suffices to investigate
the action of p or pc, because of the Cartan decomposition g = €@ p. To study the action of
pc, we compute the linear map I';; defined as follows.

Let (m, Hy) be a generalized principal series representation of G with its subspace Hy x of
K-finite vectors. For a K-type (7,V;) of 7 and a K-homomorphism 7: V; — H, g, we define
a linear map 7: V; ®cpc = Hr,x by v® X — 7(X)n(v). Then 7 is a K-homomorphism with
‘pc endowed with the adjoint action Ad of K. Let V; ®c pc ~ @;c; V be the irreducible
decomposition as a K-module and fix ¢; an injective K-homomorphism from V;, to V; ®c pc
for each i. We define a linear map I';;: Homg (V;, Hr k) = Homg (Vz,, Hr k) by n — 70 ¢;..
These linear maps I';; (¢ € I) characterize the action of pc. The goal of this part is to
give explicit expressions of ¢; and I';; for any generalized principal series representation m of
G = SL(3,R). As aresult, we obtain infinite number of ’contiguous relations’, a kind of system
of differential-difference relations among vectors in Hy[7] and H[r;]. Here H,[7] is T-isotypic
component of H,. These are described in Proposition 3.2, Theorem 4.5 and 5.5. We remark
that R. Howe give another description of I';; in [12] when 7 is a principal series representation
of GL(3,R). "

As an application, we can utilize the contiguous relations to obtain the explicit formulas of
some spherical functions. In the paper [27], Manabe, Ishii and Oda give the explicit formulas
of Whittaker functions for principal series representations of SL(3,R) to solve the holonomic
system of differential equations characterizing those functions, which is derived from the Capelli
elements and the contiguous relations around minimal K-type. We can obtain the holonomic
systems characterizing Whittaker functions for generalized principal series representations of
SL(3,R) induced from the maximal parabolic subgroup by using the result of this part. We
give the explicit formulas of Whittaker functions by solving this system in Part 2. On the
other hand, if we have the explicit formula of Whittaker function with a certain K-type, then
we can give those with another K-type by using contiguous relations.

We give the contents of this part. In Section 2, we recall the structure of SL(3,R) and
define generalized principal series representations. In Section 3, we introduce the standard
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basis of a finite dimensional irreducible representation of K and give explicit expressions of
ti: Vi, = V: ®cpc. In Section 4, we introduce the general setting of this part and give matrix
representations of I'-; for principal series representations (Theorem 4.5). In Section 5, we give
the matrix representations of I';; for generalized principal series representations of SL(3,R)
induced from the maximal parabolic subgroup (Theorem 5.5). In Section 6, we give explicit
expressions of the action of pc (Proposition 6.2).

2. PRELIMINARIES

2.1. Groups and algebras. We denote by Z, R and C the ring of rational integers, the real
number field and the complex number field, respectively. Let Z>o be the set of non-negative
integers, 1, the unit matrix of size n and Oy, 5, the zero matrix of size m x n and E;; the matrix
of size 3 with 1 at (4, j)-th entry and 0 at other entries. We denote by &;; the Kronecker delta,
ie.

5“ —_ 17 1= .7 9
Y71 0, otherwise.
For a Lie algebra [, we denote by [c = [®r C the complexification of [.
Let G be the special linear group SL(3,R) of degree three and g its Lie algebra. We define

a Cartan involution § of G by G 3 g — tg™1 € G. Here g and g~! means the transpose and
the inverse of g, respectively. Then the maximal compact subgroup of G is given by

K={geG|0(g) =g} =S50(3).

If we denote the differential of 6 again by 0, then we have 8(X) = —'X for X € g. Let &
and p be the +1 and the —1 eigenspaces of 6 in g, respectively, that is, :

t={Xeg|'X =-X}=50(3), p={Xegl'X =X}

Then € is the Lie algebra of K and g has the Cartan decomposition g = £ @ p.

Put ap = {diag(t1,%2,3) | t; € R (1 <4 < 3), t1+t2+t3 = 0}. Then ag is a maximal abelian
subalgebra of p. For each 1 < i < 3, we define a linear form e; on ay by ag > diag(ty, t2, t3) —
t; € C. The set X of the roots for (ao, g) is given by ¥ = X(ag,g) = {e; —e; | 1 <i # j <3},
and the subset 7 = {e; —¢; | 1 < ¢ < j < 3} forms a positive root system. For each a € ¥, we
denote the root space by g, and choose a root vector Eq, in go by Ee,—e; = Ejj (1 <i# j < 3).

If we put ng = @, cx+ Ja, then g has an Iwasawa decomposition g = ng @ ap @ & Also we
have G = NyAoK, where Ny = exp(ng) and Ay = exp(ap).

Let ny, ny be subalgebras of ng defined by n; = ge,—¢, ® ge;—e35 N2 = Gey—e3 D Feg—ez- We
take a basis {H1, H2} of ap by

H, =diag(1,0,-1), H, =diag(0,1,-1),

and set HY) = 2H; — H,, H® = H, + Hy. we define subalgebras a;, az of ap by a3 =
R-H®Y, gy = R-H®. The group G has three non-trivial standard parabolic subgroups
Py, Py, P, with Langland decompositions P; = N; A;M; (0 < ¢ < 2) where

My = {diag(e1, e2,€162) | &i € {£1} (1 <i<2)},

_ [ [ det(R)™" Oup +
Ml_{< o5 )‘heSL 2,R) !,

- ho Ony +
w={( & o Yresram),
Ai = exp(ai) Ni = exp(ni) (z = 1,2).
Here SL*(2,R) = {g € GL(2,R) | det(g) = +1}. For i = 1,2, let m; be a Lie algebra of M;.
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2.2. Definition of the P;-principal series representations of G. For 0 < i < 2, in order
to define the P;-principal series representation of G, we prepare the data (vi, 04) as follows.

For vy € Homg (ag, C), we define a coordinate (v0,1,10,2) € C? by v, =w(H;) (i =1,2).
Then the half sum py = e; — e3 of the positive roots has coordinate (po,15p02) = (2,1). We
define a quasicharacter e”°: Ay — C* by

€”(a) = a;*'as"?, a = diag(a1,az,a3) € Ag.

We fix a character o of Mp. It is convenient to identify oy with (00,1,002) € {0,1}%% deter-
mined by

Uo(diag(€1,82,€1€2)) = 8(170’1&‘;0’2, €1,€2 € {:l:l}.

For each i = 1,2, we identify 1; € Homg(a;, C) with a complex number v;(H®) € C. Let
pi (i = 1,2) be the half sums of positive roots whose root spaces are contained in n;, ie.
pL= %(261 —ey —e3), po = %(61 + ez — 2e3). Then both p; and ps are identified with 3. We
fix a discrete series representation o; of M; ~ SL*(2,R) for i =1, 2.

Definition 2.1. For 0 < i < 2, we define the P;-principal series rep}“esentation Tw0:) Of G
by ’

T(wi00) = Indlcji(lNi ®eitli @ 03),
i.€. T(y,,0,) 18 the right reqular representation of G on the space Hy, 0;) which is the completion
of

o _ S oo f(namz) = "% (a)o;(m) f (z)
H(Vi,ai) - {f' G = Vs, smooth for neN;, a€ Ay, me M;, z€ G

with respect to the norm

191 = [ G2,

Here V;° is the smooth part of the representation space Vy; of o; and || - ||5; is the norm on
Vo, - ‘

Remark 2.2. The P;-principal series representations are also called standard representations
or generalized principal representations.

3. REPRESENTATIONS OF K = SO(3)

3.1. The spinor covering. To describe the finite dimensional representations of SO(3), the
simplest way seems to be the one utilizing the double covering ¢: SU(2) = Spin(3) — SO(3).
We use the following realization introduced in [27].

We define ¢: SU(2) — SO(3) by

p?+q®—r?—s2  —2(ps—qr) 2(pr + gs)
p(x) = 2ps+qr) P - +r*—s>  —2(pg—rs)
—2(pr — ¢s) 2(pg +rs) pP?—q>—r?+s?

for x = ( —pr++'\/_—iils ;i— \/E—i; ) € SU(2) (p,q,7,s € R). Then ¢ is a surjective homo-

morphism whose kernel is given by {£12}.
The differential dp: su(2) — s0(3) of ¢ is an isomorphism and it maps the basis

a=(50 m ) e (B0) ()

to —2Ko3, 2K13, —2K19. Here Kij = Ez‘j — Eji (1 <1<j3< 3).
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3.2. Representations of SU(2). The set of equivalence classes of the finite dimensional con-
tinuous representations of SU(2) is exhausted by the symmetric tensor product 7 (I € Z>()
of the representation SU(2) 3 g — (v — g-v) € GL(C?). We use the following realizations of
those which are introduced in [27].

Let V, be the subspace consisting of degree [ homogeneous polynomials of two variables z,y

in the polynomial ring C[z,y]. For g € SU(2) with g71 = ( _aB 2 ) and f(z,y) € V| we set

n(9)f(z,y) = f(az + by, —bz + ay).

Passing to the Lie algebra su(2), the derivation of 7, denoted by same symbol, is described as
follows by using the standard basis {vj, = z*y!~* | 0 <k <1} of V} and the basis {uy,u2,uz}
of su(2). Namely we have

mi(H)vg =(1 - 2k)vy, Ti(E)vg = — kvg-1, ni(F)vg =(k — ) vg41-
Here {E, H, F} is a slp-triple defined by

1 1
H=—v/—1u, E = 5(up — vV=Tus), F = —5(uz + v-1ug) € su(2)c.

The condition that 7, defines a representation of SO(3) by passing to the quotient with
respect to ¢: SU(2) — SO(3) is that 7;(=13) = (=1)! =1, i.e. | is even. For [ € Zsg, we
denote the irreducible representation of SO(3) induced from (7, Vo;) again by (7o, Vo).

3.3. The adjoint representation of K on pgc. It is known that pc becomes a K-module
via the adjoint action of K. Concerning this, we have the following lemma.

Lemma 3.1. Let {w; | 0 < j < 4} be the standard basis of (74,Vs) and {X; |0 < j <4} be a
basis of pc defined as follows:

' | 1

Xo =Hz — v—-1(E23 + Es), X1 == 5{V-1(Br2 + Ba1) + (Eu3 + Ba1)},

1 1
Xy =— §(2H1 - Hy), X3=-— 5{\/-—-1(E12 + Eg1) — (B3 + E31)},

X4 =Hjy + v/—1(FEa3 + Es3).

Then via the isomorphism between Vi and pc as K-modules we have the identification w; =
X;(0<5<4).

Proof. By direct computation, we have Table. 1, which gives the adjoint actions of the basis
{dp(E), dp(H), dp(F)} of tc on the basis {X; | 0 < j < 4} of pc. Comparing the actions in
the above with the actions in Subsection 3.2, we obtain the assertion. O

TABLE 1. The adjoint actions of ¢c on pc.

- X X X9 X3 Xy
do(H) 4X, 2X; 0 —2X3 —4X,
d(p(E) -0 —Xo —2X1 —3X2 —4X3
do(F) —4X; —3X; —2X3 —1X4 0

3.4. Clebsch-Gordan coefficients for the representations of sl(2,C) with respect to
the standard basis. For later use, we consider the irreducible decomposition of V; ®¢c V4 as
s[(2, C) = su(2)c-modules for arbitrary non-negative integer [.

Generically, the tensor product V;®c V4 has five irreducible components Vi14, Viio, Vi, Vi_o
and V;_4. Here some components may vanish. We give an explicit expression of a nonzero
5((2, C)-homomorphism from each irreducible component to V; ®c V; as follows.
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Proposition 3.2. Let {v,(cl) | 0 < k <1} be the standard basis of V; for | € Zso. We put
v,(cl)=0 when k <0 or k > 1.

If Vitom-component of Vi ®c Vi does not vanish, then we define linear maps Iém: Vitom —
Vi®ec Vs (-2<m < 2) by

4
L, (’Ul(cl+2m)) = Z Al 2mik,i] 'v,(clj_z_m_i ® w;.
i=0
Here the coefficients Ajgmk) = a(l,2m; k, i) /d(l,2m) are defined by following formulas.
Formula 1: The coefficients of I': Viy4 — Vi ®c Vi are given as follows:
a(l,4;k,0) =l +4-k)(I+3-k)(+2-k)(I+1-k),
a(l,4;k,1) =4(l+4 - k)1 +3 - k) +2 - k)k,
a(l,4;k,2) =6(l+4 —k)(I + 3 — k)k(k — 1),
a(l,4;k,3) =4(l + 4 — k)k(k — 1)(k - 2),
a(l,4;k,4) =k(k — 1)(k — 2)(k - 3),
d(l,4) =(1+4)(+3)(+2)(1+1).
Formula 2: The coefficients of Ié: Visea = Vi ®c Vi are given as follows:
a(l,2;k,0) =(1+2-k)(I+1-k)(I—-k),
a(l,2;k,1) == (1 +2-=k)(I+1-Ek)( - 4k),
a(l,2;k,2) =—-3(1+2—k)(I — 2k + 2)k,
a(l,2;k,3) = — (38l — 4k + 8)k(k — 1),
a(l,2;k,4) =—k(k-1)(k—2), d(,2)=({+2)(I+ 1)L

- Formula 3: The coefficients of I(l]: Vi =+ Vi®c Vi are given as follows:

a(l,0;k,0) =(l —k)(I -1 - k), a(l,0;k,1) =—2(l — k)(I — 2k — 1),
a(l,0;k,2) =(1? — 6kl 4 6k — 1), a(l,0;k,3) =2(1 — 2k + 1)k,
a(l,0;k,4) =k(k — 1), d(l,0) =l(l - 1).

Formula 4: The coefficients of I' 5: Vi_y — Vi ®c V4 are given as follows:
a(l,-2;k,0) =(I — k — 2), a(l,-2;k,1) = — (3l — 4k — 6),
a(l,—2;k,2) =3(1 — 2k — 2), a(l,-2;k,3) =— (1 — 4k - 2),
a(l,-2;k,4) = — k, d(l,-2) =l — 2.

Formula 5: The coefficients of I_l_4: Viea = Vi ®c Va are given as follows:

a(l, —4;k,0) =1, a(l,—4;k,1) = -4, a(l,—4;k,2) =6,
a(l,—4;k,3) = -4, a(l,—4;k,4) =1, d(l,—4) =1.

Then I, is a generator of Homg(o ¢y (Vitom, Vi®cVa), which is unique up to scalar multiple.
Proof. We have

(1 ® 74) (E) 0 I, (o™
4

4
= > Apomo, - (1 (E)Uéllm_i) ® w; + ZA[l,2m;0,i] ' ’Uglm_i ® (14(E)w;)

= - Z((2 = m — i) A om0, + (@ + 1) Ap2m0,i+1) - villm_i ® w.
=0
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Here we put Af.2m;0,5) = 0. By direct computation, we confirm
(2 —m =) Apamoq + (0 + 1) Ay om0ty =0
for —2 <m <2and 0 <i<4. Hence 4
(1 ®73)(E) o Ly (vf ™) = 0.

Moreover, we have

(n®@74)(H) o Iém(v(()’“m)) =01+ 2m)Iém(,U(()l+2m))

)

since

l l
(n @) (H)(v @ wy) = (n(H)ol") @ w; + 00 @ (ra(H)uy)
= (+4-2i— 255" @ w,.
This means I%m(v(()lﬂm)) is the highest weight vector of the V}1o,,-component of V} ®¢ V4 with
respect to a Borel subalgebra (C- H) @ (C - E) of s((2, C).
Therefore, in order to complete the proof, it suffices to confirm
l
(1 @ 7a)(F) © Ly (o™ = B 0 711m (F) (0 ™)
for each 0 < k <[+ 2m.
We confirm these equations by direct computation. O
The coefficients A[j o515 in the above proposition have the following relations.
Lemma 3.3. The coefficients Ay amk,q) in Proposition 8.2 satisfy following relations:

A omirom—tk,0) = (= 1) Ap2mk.4; A omirom—tk,2) = (=1)™ A 2mik,2)5
3{(k—m+1)Apomp,1) + (= k+m+1)Apomps} = (ml +m® +m — 6) Ay ompg-
for =2<m <2and0<k<Il+2m.

Proof. These are obtained by direct computation. |

3.5. The contragradient representation of (7;,V;). We denote by (7%, V*) the contragra-
dient representation of (7,V’). Here we note that V;* is equivalent to V; as SU(2)-modules,
since the irreducible [ + 1-dimensional representation of SU(2) is unique up to isomorphism.

Lemma 3.4. Let {v,(cl)* | 0 < k <1} be the dual basis of the standard basis'{v,(cl) |0 <k <I}.
Via the isomorphism between V; and V;* as K-modules we have the identification

L= KK ()«
U’(cz)_(‘ l)k( l!) Uz(—)k
for0<k<I.

Proof. We denote by (,) the canonical pairing on V;* ®c V;.
Since

(rr(HYP* 00y = 0% n(H)w®) = @m — 1)om = (2k — 1)5km,
we have 7/ (H )v,(cl)* = (2k — l)v,(cl)*. Similarly, we obtain
7 (B = (k+ 1o, 7 (F)ol* = (1 = k + 1o
o _ O

From these equations, the identification vy’ = v;”" determines the isomorphism in the state-
ment. a
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4. THE (g, K)-MODULE STRUCTURES OF THE P,-PRINCIPAL SERIES REPRESENTATIONS

4.1. The irreducible decomposition of 7(,, ,,)|x as a K-module. We set
L%Mo,ao)(K) ={f € L*(K) | f(mz) = og(m)f(z) for a.e. me M, z € K}

and give a K-module structure by the right regular action of K. Then the restriction map
T Huyoo) 2 f 1 fli € L%Mo,oo)(K) is an isomorphism of K-modules.

The space L?(K) has a K x K-bimodule structure by the two sided regular action:

((k1, ko) f)(z) = f(k{'zhks), =z €K, fe€ L*K), (ki,ko) € K x K.
Then we define a homomorphism @;: V), ®c Vo; = L?(K) of K x K-bimodules by
wv— (z— (w, m9(z)v)).

Then Peter-Weyl’s theorem tells that

P o P Vs ®c Va — LK)
l€Z>o leZyo

is an isomorphism as K x K-bimodules. Here @ means a Hilbert space direct sum.

Since L%Mo,ao) (K) C L?(K), we have an irreducible decomposition of L%Mo, UO)(K ):

—

Lty o0y (K) = P (Vsiloo)) ®c Var.
lEZZO

Here V{[op] means the og-isotypic component in (7|pz,, V) for a K-module (7,V). Therefore
we obtain an isomorphism

—

rgto @ ;: @ (Vailoo]) ®c Var = Hiyy o0)-
lEZZO lEZZO

Since My is generated by the two elements
mo,1 =diag(-1,1,-1), mo,2 =diag(1l,—1,—1) € My,
we note that v € Vy[oy] if and only if '
T1(mo,i)v =00(moz)v = (—1)7%v (i=1,2)

for v € V. From the definition of (7o, Vo;) and

coa=fe (S 4)) = (5 )}

we have Tgl(mo,l)v,(fl) = (—1)kv§?l_)k and TQl(mO’Q)’U]E:zl) = (—l)l”kv,(fl). Hence we have

Valool= €@ C- ), + (—1)e(eoDy (),
kEZ(o0:l)
where €(09;1) € {0,1} such that e(oo;!) =1 — 091 — 09,2 mod 2 and
Z(o0;1) = {k€eZ|0<k<l, k=1~ 0p2 mod 2} if e(og;1) = 0,
(0031) = {k€Z|0<k<Il-1, k=l—-002mod?2} ife(op;l)=1.

We see that {vgl_); + (—l)E(UO;l)v,(fl)* | k € Z(oo;1)} is the basis of Vjj[op], by using the

identification V3 = V3 in Lemma 3.3.
Now we define the elementary function s(l;p,q) € Hy, +0) by

s(l;p, q) — 7,}-;1 ° (I)l((vg.l_); + (_1)6(Jo;l),uz()2l)*) ® 1}‘SZl))

for I € Z>o, p € Z(op;1) and 0 < g < 21.
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For each p € Z(oo;1), we put S(l;p) a column vector of degree 2"+ 1 whose g + 1-th
component is s(I;p, ), i.e. *( s(l;p,0), s(l;p,1), -+ ,s(l;p,20) ).
Moreover we denote by (S(l;p)) the subspace of H, (vo,00) 8enerated by the functions in the

entries of the vector S(I;p), i.e. (S(l;p)) = @glzo C - s(l;p,q) ~ Vy. Via the isomorphism.

between (S(l;p)) and Vy, we identify {s(I;p,q) | 0 < ¢ < 21} with the standard basis.
From above arguments, we obtain the following.

Proposition 4.1. As an unitary representation of K, it has an irreducible decomposition:

—_—

Hy00) = EP (Vsiloo]) ®c Var.
lEZZO

Then the 1o-isotypic component of T (vo,00) 15 given by
D Sp).
pEZ(003l)
Corollary 4.2. The multiplicity d(oo;l) of T9; in T(vo,00),K 15 given by

(I+2)/2 if (00,1,002) = (0,0) and I is even,
(1—1)/2 if (501,002) = (0,0) and [ is odd,
/2 if (00,1,00,2) # (0,0) and | is even,
(I+1)/2 if (00,1,002) # (0,0) and [ is odd.

d(O’o; l) =

- 4.2. General setting. Let H, o)),k be the K-finite part of H, ;). In order to describe the
action of g or gc = g ®r C, it suffices to investigate the action of p or pc, because of the
Cartan decomposition g = ¢ @ p.

For a K-type (79, Vo) of T(v;,0;) and a K-homomorphism 7: Vo — H, 0,k we define a
linear map ‘

77: Var ®c pc — H(Vi,O’i),K

by v ® X = 7(, 4,)(X)n(v). Here we denote differential of m(,, ,) again by T(v;,0;)- Lhen 7 is
K-homomorphism with pc endowed with the adjoint action Ad of K.
Since

Va®cpc=Va@cVax P Vagrm),
—2<m<2
there are five injective K-homomorphisms
Izzfni Va(i4m) = Vo ®c pc; -2<m<2
for general | € Z>q. Then we define C-linear maps
f,m: HomK(‘/QlaH(ui,ai),K) — HomK(%(Hm)aH(ui,ai),K)y -2<m<2
by nefolz,.
Now we settle the goal of this part:

(i): Describe the injective K-homomorphism I3, in terms of the standard basis.
(ii): Determine the matrix representations of the linear homomorphisms I‘;,m with respect
to the induced basis defined in the next subsection.

We have already accomplished (i) in Proposition 3.2. We accomplish (ii) in Theorem 4.5
and 5.5. As a result, we obtain infinite number of ’contiguous relations’, a kind of system
of differential-difference relations among vectors in Hy,, ,,)[721] and H(y, ;) [To(4m)]- Here
H(,, 5,)[7] is the 7-isotypic component of H(,, ).
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4.3. The canonical blocks of elementary functions. Let n: Vo; — H (vi,0:),K D€ & non-zero
K-homomorphism. Then we identify 7 with the column vector of degree 2/ + 1 whose ¢q + 1-th
component is n(vi™) for 0 < g < 21, ie. (n(w$), n(w), -+ ,7@WHY) ).

By this 1dent1ﬁcat10n, we identify S (l p) with the K-homomorphism

Var 'Uézl) = S(l;p, q) € H(l/o,ao),Ka 0<g<2

for p € Z(00;1). We note that {S(l;p) | p € Z(op;1)} is a basis of the intertwining space
Hompg (Var, H(yy,00),x) and we call it the induced basis from the standard basis.

We define a certain matrix of elementary functions corresponding to the induced basis
{S(ip) | p € Z(oo;1)} of Homp (Var, Hyy 00),k) for each K-type 7o of our principal series
representation 7, )

Definition 4.3. The following (21 + 1) x d(oo;1) matriz S(oo;l) is called the canonical block
of elementary functions for To- zsotypzc component of T, »,): When (00,1,002) = (0,0), we
consider the matriz

S(oo;1) =4 (S(:0), 8(52), S(:4), -, S(1)) — ifLis even,
70U (SW1), 8(53), S(:5), - ,S(U;1-2)) if L is odd.
When (o0,1,002) = (1,0), we consider the matriz

v (S50), S@:2), SE4), -+ ,S(51-2)) iflis even,
S(o0;1) —{ (81, S@3), S@:5), - ,SED) 1 is odd

When o2 = 1, we consider the matriz

7Y — (S(l;]-)) S(l73)a S(l75)a ’S(l;l-'l)
S(”"’”“{ ( S(1;0), S(;2), S(t;4), -+ ,SL1-1)

if | is even,

)
) ifl is odd.

4.4. The pc-matrix corresponding to Ig,ln For two integers cp, c; such that c¢o < ¢; and
a rational function f(z) in the variable z, we denote by

Diag (f(n))

co<n<er

the diagonal matrix of size ¢; — cg + 1 with an entry f(n) at the (n —co + 1,n — ¢p + 1)-th
component. Let e(l) (0 < i <1) be the column unit vector of degree [ + 1 with its ¢ + 1-th
O]

component 1 and the remaining components 0. Moreover, let e;’ be the column zero vector

of degree [ + 1 when i < 0 or | < 1.
In this subsection, we define pc-matrix &, of size (2(I +m) + 1) x (21 + 1) corresponding
to I with respect to the standard basis.

Let E, —ot gl ™ & X; be the image of I2. under the composite of natural linear maps
Homg (Va(i1m), Var ®c pc) — Home (Va(im), Vai ®c pc)
~ Homc (Va(i4m), Va1) ®c pe.

Then we define pc-matrix €;,,, = f o R (l’m)) ® X; where R(y (lym )) is the matrix representa-

tion of L(l’ ™ with respect to the standard basis. The explicit expression of the matrix R(¢ Z(l m))
of size ( (I+m)+1)x (2l +1) is given by

(02(l+m)+1,m+2a R(L((]l,m)), O2(l+m)+1,m+2)

= (02(l+m)—|—1,4——i7 Diag  (Api2mki)s 02(l+m)+1,i)
0<k<2(l+m)

for -2 <m <2 and 0 < ¢ < 4. Here we omit the symbol O, ,, when m = Oorn=0.
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For a column vector v = *(vg,vq,+-- ,vy) € (H(,,i,(,i),K)EBzH'1 which is identified with an
element of Homg (Var, Hy, 4,),k), We define € v € (H(,,im),K)692(”””)‘H ~ C2+m)+l @
H(I/o,ao),K by

Cmv = (RE™) - ) ® (14, 0 (Xi)vg).

0<i<4
0<g<2l

Here R(L,I(;l’m)) . e((fl) is the ordinal product of matrices R(Lgl’m)) and e,(lm).
From .the definition of &, we note that the vector &;,,v is identified with the image of v
under L

4.5. The contiguous relations.

- Lemma 4.4. The standard basis X; (0 < ¢ < 4) in pc have the following expressions according
to the Iwasawa decomposition gc = nc @ ac @ €c:

Xo=—2v _1Ee2—es + Hy + v/ —1K23,
1
X1 = - (Ee1—63 + v _1E61—ez) + §(K13 + v _1K12)7
1,
X9 =— §(2H1 — Hy),

X =(Beyey = VTEe, e;) 3 (Kis — V"TK0),
X4 =2v/~1E¢y_¢, + Hy — vV—1Kos.
Proof. We obtain the assertion immediately from Lemma 6.6. d
We give the matrix representation of P?,m with respect to the induced basis as follows.

Theorem 4.5. Forl € Z>o, —2 < m < 2 such that d(oo;1) > 0 and d(og;l+m) > 0, we have
(4.1) €,mS(o0;1) = S(o0;l +m) - R(TY,,)

with the matriz representation R(F?,m) € My(oo514m),d(o0oy) (C) of ]."?,m with respect to the in-
duced basis {S(l;p) | p € Z(o0;1)}. We give the explicit expressions of the matriz

On(ao;l,m),d(ao;l)
R(IY,p,)
as follows:

e When 002 =0 and (m, 00,1 +1) € {0,£2} x (2Z),

: (0) 0] )
0<k21(i§.l)_I(V[J,m;2k+5(ao;l),—1])) 4 ( N E,d((g)o,l) ))
B ~ iag (Vo .

O1,d(o030) 0<k<d(coid)—1 [1,m;2k+6(00;0),0]

O32,4(0051)—1 02,1
(0) (d(o0;1)—-2)

. (0)
Dia Yy o . Vel 11 " €l onsl)—
OSde(ail)_g [l,m,2k+6(ao,l),1]> Lmit,1] * €d(oosl)-3

e When 092 =0 and (m, 001 +1) € {0,£2} x (14 2Z),

Di " (0) Ol d(o. l)
p m; +0(oo;l),— 3 05
0<—k<—d(00;l)“1( [l, 2k 6( O’l)’ 1]) (

Diag 7(07)71 o
OSde(Uo;l)—l( [t,m;2k+6( oJ)’OJ)

+

Ol,d(ao;l)
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O2,4(00:1)-1 O2,1
* (OSkgii(‘;’og;l)_2(’7[(1?7)71;2k+6(ao;l),1]) Od(ao;l)—l,l) '
o When 092 =0, (m,00,1 +1) € {£1} x (2Z),
Diag

©
N o ston
OSde(Uo;l)—l( ms2k+0(ooit), )

( Ol,d(ao;l)—l 0 )
+ - (0)
Dia, . . Od(oo:l)—
o§k§d(a§;z)—2(7[l’m’2’“+ ‘5("0’1)’0]) d(ooit)-1,1

O2,4(0051)—2 O2,1 02,1
+ : (0) _ 0 (d(oo;1)-3) | .
nggitiil)_3(7[l,m;2k+5(cro;l),1]) Od(ooit)-2,1 Vi;mit,1) " €d(oo;1) -3

o When og2 =0 and (m,o001 +1) € {£1} x (1 +2Z),

Ol,d(ao;l)
Diag (Yt 50000, i i
(OSde(Uo;l)l( k(o) 1]> * o<k2£§‘l)—1(7[l’m;2k+6(ao;l)’0])
02,d(oo;l)_ R O1,d(o0i0)

( Os,d(o031) )

+ . ) '
Dia, ) ‘

OSde(ail)—1(7“””’2’“'5("0”)»1])

e When op2 =1,

Dia © . OLdtan)
(OSde(aog;l)_1(7[l,m,2k+6(ao,l),—1])) + ( Diag (0)

0
1 st
O1,4(c011) OSde(OO;l)—l( [ m;2k-+6(00:0).0

( O2,4(051)-1 02,1
+ : (0) _1\e(oo;l+m) (0) C(doosl)—2) | .
Dia, , . 1 Vit sl — €(50:l)—
OSde(o_og;l)_2(7[l,mx2k+6(0'0yl)’1]) ( ) [l7 ) 1’1] d( Oyl) 2

Here
’Y[(l?,)n;p,l] = (vo2 + po2 — 1+ p)A[Ql,Zm;2l—p+m——2,O],
1 : m(m + 1)
’Y[(l(,),)n;p,o] =73 (27/0,1 —vo2+2p01 — pog+1Im—3+ —'(—2—) Al 2m;21—p+m,2)»
(0)

Vimip,-1] = 02 + P02 + 1 = P) A 2meat—p+m 42,4,

(2-m)/2 if me {0, £2},
n(oo;l,m) = { (3—m)/2 if (m,l+002) € {£1} x (2Z),
(1-m)/2 if (m,l+002) € {£1} x (14 2Z),

and 6(og;1) € {0,1} such that §(oo;l) =1 — 0¢2 mod 2.

13

In the above equations, we put Apiompkq = 0 for k < 0 or k > 2(I + m), and omit the

symbols Diag (f(n)), Oon, Omyo and e\~
c<n<c—-1

Proof. Since

s(157,9)(18) = (e + (=)o), o) = by + (~1)05,
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we have
(4.2) , S(;p)(13) = €2, + (—1)=0Def).

Hence S(I;p)(13) (p € Z(00;1)) are linearly independent over C. Thus we note that it suffices
to evaluate the both side of the equation (4.1) at 13 € G.

First, we compute {W(Vo,ao)(Xi)S(l;P, @)} (13) for 0 < i <4, p € Z(op;l) and 0 < ¢ < 2.
Since {s(l;p,q) | 0 < ¢ < 21} is the standard basis of (S(I;p)), we have

{Two,00) (V=1K23)s(l;9,0)}(13) = (I — q)(d21—pq + (—=1)50V6,,,),
{T(vo,00) (K13 + V=1K12)5(5;, q)}(13) = —q(d21-p14 + (=1)5D5,11 ),
{7 (vo,00) (K13 — V=1K12)3(l;p, )} (13) = (2L — @) (21—p—14 + (1) 5,1 ).

Moreover, we obtain

{7 (wo,00) (Ea)s(;p,9)}(13) = 0 (a e TV),
{7 (wo,00) (Hi)s(; p, )} (13) = (v0,i + po,i)s(l;p, ) (13)
= (W0 + p0;i)(021—pq + (—=1)505,) (i=1,2),

from the definition of principal series representation. From these computations and Iwasawa
decomposition in Lemma 4.4, we obtain

{7 (wo,00) (X0)s(52, @) }(13) = (Mo2 + o2 + 1 — @) (G2—pq + (—1)5(70D5,,),
{Mn.00) (X2)5(:2, 0} (13) = =5 (Bamprg + (-1 dpi,),

1 .
{7(o,00) (X2) (52 0) }(13) = =2 (200,0 = 10,2 + 2001 = po,2) (S21—pq + (—1)N ),

A—q = o).
{T(wo,00) (X3)s(;,9) } (13) = — 5 9 (Gap14 — (~1)FD5, 1),

{T(woo0) (Xa)s(;9, )} (13) = (o2 + po2 — 1+ @) (G21-pq + (—1)°H6y).
We set

T000)(X)SEp) = 3 e @ (M 00) (Xi)s (15 P, 0))-

0<g<2!
Then we obtain

{Two,00)(X0)S(1:0)}(13) = (o2 + po2 — L+ p)ess, + (1) (g5 + poz +1 — pel),

~ 20—-p+1 (o wo)P+1
(T (XD)SE )} 1) = — ==l = ()N,

1 )
{T(o,00)(X2)S(l;p) H(13) = —5(2r01 ~ 102+ 2001 — o 2)(e§z )+ (= 1)e(eo) (),

+1 00; 21 p+1 1
{7 (v0,00)(X3)S(;p) }(13) = pz g??p = (~1) o,l)___z_____ ™,

{T(wo,00) (X4)S(l;) } (13) = (v0,2 + po2 + 1 — )eé?” + (1) (15 + po2 — I+ p)el?).

Let us compute {€;,S(;p)}(13). By the above equations, we have
{Q:l,ms(l;p)}(l3)
= 3 (RE™) - o) @ {(T(,00) (X)5(02,9)) } (1)

0<i<4
0<g<2l

= 3 RE™) - {(T(w00) (X2)S U ) } (1)

0<i<4
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R($™) - {(vo2 + poz — 1 +p)es) 4+ (—1)%0D (vo5 + pgy +1 — p)el®)

(I,m) 20-p+1 (@ . p+1 21
+R(y™)- { - —2’_ gl_)p-l-]_ (~1)loo = 1(:-1-)1}

+R(§™) - { - —(2’/0 1= Vo2 +2p01 — po 2)(e§l ) + (- )e("oﬂ)ez(f’))}

3
l, p+1 (x cwo) 2l =P+ 1 (2
+R(L( m)).{ 2 (21_)p 1 ( ) ( OI)_2— ;(;2)1}
+ R™) {02+ poz +1— pel + (~1)D (w5 + po — I + p)el}.
Since l
R(%( ’m))eéﬂ) = A[2l,2m;i+q+m—2,z] z(?lféiz))z’ —2<m<2,
we obtain ‘
\ l+m 00; 2(l4+m
(43) {Cl,mS(l Z {a[l m’p’z]eZ(l+m)))(p+m+2'L) + ( )6( 0 l)ﬂ[l,m;p, ;-}gm-{-Q)z)}’
-1<i<1
where

A mip,1] =02 + po,2 — U+ P) At 2m2i—ptm—2,0]»

1
Ali,mip,0] = — §(2V0,1 — 12+ 2po,1 — P0,2)A[2z,2m;2l—p+m,2]
20-p+1 A p+1
- —2—"— [21,2m;2l—p+m,1] — 9 A[2l,2m;2l—p+m,3]a

Alm;p,—1] =(1,2 +po2 +1— p)A[Zl,Qm;Zl—p+m+2,4]7
6[l,m;p,1] :(VO,Q + po,2 — l +p)A[2l,2m;p+m+2,4]7

1
B, mip,0] = (2’/0 1= Y02+ 2p0,1 — po,2) At 2mip+m,2]
p +1 20-p+1
5 ——Api2mpim,1] — _'"2_A[2l,2m;p+m,3]’

Biymip,—11 =02 + po,2 + 1 = p) Afat 2miptm—2,0]-
By the relations of the coefﬁments Al21,2m;k,i) in Lemma 3.3, we see that

0 .
Al mip,i] = (=)™ Bumip,i) = 7[(1,1)71;;;,@‘]’ -1<i< L
Therefore, (4.3) become

(44 {GmSEDII) = D Ampalesom pimean + (-DD el

—1<i<1
- From the equations (4.2), (4.4) and e(09;1) +m = £(09;1 + m) mod 2, we obtain the assertion.
]
5. THE (g, K)-MODULE STRUCTURES OF THE P;-PRINCIPAL SERIES REPRESENTATIONS FOR
i=1,2
In this section, we set ¢ =1 or 2.

5.1. The discrete series representations of SL*(2,R). The set of equivalence classes.
of discrete series representations of SL*(2,R) is exhausted by the induced representation

Dy = Indgﬁ(z(zrg) (D). Here D; is the discrete series representation of SL(2, R) with Blattner

parameter k, i.e. the one whose minimal SO(2)-type is given by the character

S0(2) > ( cost st ) > eV Tkt ¢ OX,

—sint cost
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We denote by D; the contragradient representation of D;" and set yo = diag(1, —1) € O(2).
Then a discrete series representation Dy is uniquely determined by spec1fy1ng the SL(2 R)-
module structure together with the action of yo. Since Dy SL(2R) = D ® Dy and D & D,
is infinitesimally equivalent with a subrepresentation of some principal series representatlon of
SL(2,R), we obtain the following realization of associated (s[(2, C), O(2))-module of Dy;:

Vbi0@ = @ Wii2a (Wp=C-xp+C-x_p)
a€Z>o
and
Di(ki)xp =€V My, Di(yo)xp = X-p, Di(w)xp = V—1pxp,
Dy(z4)xp = (k +p)xp+z, Di(z-)xp = (k — p)xp-2,
where

A R G ]
ﬂt='< cost Sint)esoay (t €R).

—sint cost
Here we denote the differential of Dy, again by Dy and the O(2)-finite part of Vp, by Vp, o(2)-
See [3, §2.5] for details. v

5.2. The irreducible decompositions of 7, )|k and 77(,,2 o2) | x as K-modules. We
identify M; with SL*(2,R) by natural isomorphisms m;: SL*(2,R) — M; defined by

i (h) = (deto(:,il 0;12), ma(h) = (0'1’2 detO(Z; )

for h € SL*(2,R). Then we may put o; = Dy o mz.‘1 for some k > 2.
We analyzes the K-type of the representation space H, (v1,0:) Of the P;-principal series repre-
sentation. the target V5, of functions f in H(,, ;,) has a decomposition:

Vo, = VD, = @ Wi42a-
anZO

Denote the corresponding decomposition of f by

o
£(2) =D (frr2a(2) ® X2 + F—(k420) (B) ® X—(h42a))-
a=0
From the definition of the space H (vi,0:)» We have
f|x (mz) = o;(m)f|k (z) (ae. z€ K, me K; = M; N K ~ 0O(2)).

For m = mj(kt), m;(yo), comparing the coefficients of xp in the left hand side with those in
the right hand side, we have the equations

Folr(mi(re)z) = eV~ £y e (), folg(mi(yo)z) = f-plKk (2).

Moreover, from the equality of inner products

/ k(@) 2 de= 3 { / FRp |dx}||xs<k+2a)nm

ee{il}, a€Zxo

we have fp|x € L?(K). Therefore f|x belongs to

—

P LHK; Wii2a)

OLEZZO
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where

L2 (K;W,) = {

f(z) = f(2) ® xp + f(mi(yo)z) ® X—p, }
(Kox)( ), z€K ’

; — eV—1pt .
Lixs xp) (K) = {f € L*(K) ﬁ%gf)@% o I”{f(w), } .

Here K means the connected component of K;, which is isomorphic to SO(2). We easily see
that the restriction map

7‘&? H(,,z ) 2 f—flg e @ “(K; Wgi2a)

a€Zxg
is a K-isomorphism.

By Peter-Weyl’s theorem, we have the following irreducible decomposition of L2 (K):

(K3 xp)

—

L%KionP) (K) = @ (‘/2*2[6(1,—‘0)]) ®c ‘/21.
l€Z3,

Here
Ep) K7 D my(ke) — eVt ¢ C¥
and V[¢; ;)] means the €;)-isotypic component in (7|ke, V) for a K-module (7, V).
In this section, we denote by {v% g | 0 < g < 2} the standard basis of V5. We define an

another basis {'v( 2 |0 < g <20} of Vo by -

1 _
oy = ra(uefy) = 5@+ -z +y)?T 0<qg<)

00 -1
=01 0o |eso®).
10 0

We note that v € Vy[§;;—p)] if and only if

a1 (mi(e) )0 =E(s;_p) (mi(e))o = ™V TPy (teR)
for v € V4. From the definition of (75, Vo;) and '

@7 (ma (k) = o7 g ma(meue) = { £ diag(e-“-_“/z,e“-_“ﬂ)} :

where

we have 7o (m; (k) )v; ( l) = ¢vV~1a-Dty (2” Hence we have

C-ov® i —i<p<l,
Vail¢(i—p) ={ 0 " otherwise .

By the identification V;; = V5; in Lemma 3.3, we obtain

: L%Kf’,xp)(K) @ (C- Uz(l_ap) ®c V.
‘ lGZZO

(l)

Here we put Vitp =0 if p < =l or I < p. Moreover, since

so—1<m1<yo)>=’{£(_°1 o) etamn = {= (& Vo))

we have -
* 1)
73(ma (vo) ™ Dol = (1)l

* )%
Wl = (~1)HPe{) Volhp = V9 p

Uity = V1l o1(ma(yo)”
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For 0 < p <1 -k such that p = [ — k mod 2, we define the elementary function t;(/;p,q) €
Hy, 0;) by ‘

; tilip,q) =@ (il p, 9))
where

<v§?§2’i,,, Tol (fv)vﬁ?) ® Xi—p + (=1)P (’Uf,l,)*, ol (z)’vfl)) ® Xp—1»

q
(Wsat T2 (2)02) @ x1—p + (= 1) (050", mor (2)02)) @ xps.

t1(l;p, q)(z)
ta(l;p, ) (2)

Let T;(l;p) be a column vector of degree 2] + 1 with its ¢ + 1-th component t;(I;p, q), i.e.
" ti(p,0), ti(lsp, 1), -+ ti(lsp, 20) ).

Moreover we denote by (T;(l;p)) the subspace of H (v;,0;) generated by the functions in the
entries of the vector T;(I;p), ie. (Ti(l;p)) = 2l=0 C" ti(l;p,q) ~ V. Via the isomorphism
between (T;(l;p)) and Vo, we identify {¢;(l;p,q) | 0 < g < 2} with the standard basis.

From above arguments, we obtain the following.

Proposition 5.1. As an unitary representation of K, it has an irreducible decomposition:

—

Hyoy= @B (@lp)
I€Z>q, 0<p<il—k
p=l—k mod 2

for i =1,2. Then the Ty -isotypic component of 7y, »,) is given by

P (@)
0<p<i-k
p=l—k mod 2

Corollary 5.2. The multiplicity d(os;1) of T2 in m(y, o) k 5 given by

dlogsl) = (I—-k+1)/2 ifk<landl—k is odd,

(l—k+2)/2 ifk<landl—k is even,
0 ifk>1.

5.3. The canonical blocks of elementary functions. By the identification introduced in
Subsection 4.3, we identify T;(I; p) with the K-homomorphism

Var 3 0% s (59, q) € Hyoiys 0< g <20

for 0 < p <1 —k such that p = ! — k mod 2. We note that {T;(l;p) |0 <p <l—k, p=
I~k mod 2} is a basis of Homg (Vay, H(y, ¢;),x) and we call it the induced basis from the standard
basis.

For each K-type 7o of our Pj-principal series representation m(,, ,.), we define a certain

matrix of elementary functions corresponding to the induced basis {T;(l;p) |0 <p <Il—k, p=
! — k mod 2} of Homg (Vay, Hiy, o,),k)-

Definition 5.3. Forl € Z>q such that d(o;;1) > 0, the following (21 + 1) x d(o4;1) matriz
T;(o4;1) is called the canonical block of elementary functions for To-isotypic component of
T(vi,0;)° When l —k is even, we consider the matriz

Ti(os;1) =( T:(50), Ti(;2), Ti(54), -, Ti(G1- k) ).
When | — k is odd, we consider the matriz
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5.4. The contiguous relations.

Lemma 5.4. (i) The standard basis {X; | 0 < j < 4} of pc have the following expressions
according to the decomposition gc = (n1,c ® a1,c Dmyc) + k-

: 1

XO =m1(fL'._), Xl = - (Eel—ep, + v _1Ee1——62) + §(K13 + v _1K12)’
1 1

Xo=—2HW, X =(Bey—e5 = V=1Ees—e;) = 5(K13 = V=1Kua),

Xy =my(zy).

€, The standard basis {X; 10 <j <4} of pc have the following expressions according to the
decomposition gc = Ad(u; ') (ng,c @ ag,c ®mac) + Ec:

_ 1
Xo=-— Ad(u l)m(x_), X1 —Ad( ( e1—e3 — V — Eez 33) - -2—(K13 =+ v/ —1K12),
1

X, §Aal( u Y H®), X3 == Ad(u; ") (Bey—eg + V—1Ee;—e;) + 5 (K13 — V=1Km),
Xg =~ Ad(ug ym(z+), |
Proof. We obtain the assertion immediately from Lemma, 6.6. O

We give the matrix representation of I‘f,m with respect to the induced basis as follows.

Theorem 5.5. For i = 1,2 and =2 < m < 2, we have the following equation with the
matriz representation R(L ) € My 14m),d(o:;)(C) of Tt,, with respect to the induced basis
{Ti(p) |0<p<I—k, p=1~kmod2}:

(5.1) , Q:l,mTi(C"i; l) = Ti(Ui;l + m) . R( %,m)

We give the explicit expressions of the matriz

On(ai ;l,m),d(cri ;1)
R(T%,,)

by
i (8 ' .
e _('Y[Zm;zjw(ai;z),-l]) O1,d(o:3)
0<j<d(oi;l)—1 Diag ( 0 » lo)
Ol,d(tn;l) 0<j<d(oi;l)— [ j+0(03;50),0]
+ Dia @ Outon ) _
OSde(aig;l)_Q(V[Z,m,2j+6(ai,l),l]) d(oi;l)—1,1
Here

'7[(lzzn,p,1] =(- 1)i+1(k"'l+p)A[2l,2m;2l—p+m—2,O]a

(1) m(m + 1)
[(;371;1),0] =—-——?;-— (Vi +pi+Ilm -3+ —2—> A[2l,2m;2l—p+m,2]’

7[(Zzn,p, 1= =(=1)"*(k + 1 = p)Apt 2m2i—prm+2.4]>
- (2-m)/2 if me {0, £2},
(o5;l,m)=¢ (3—m)/2 if (m,l—k) € {£1} x (2Z),
(1-m)/2 if (m,l—k) € {£1} x (1 +2Z),
and §(o4;1) € {0,1} such that 6(o;;1) =1 — k mod 2.
In the above equations, we put Apyomp ) = 0 for p < 0 or p > 2(I + m), and omit the
symbols Diag (f(n)) (co > c1); Omp (M <0 orn <0).

co<n<c
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Proof. By the similar computation in the proof of Theorem 4.5 using Lemma 3.7 (i), we obtain
the assertion in the case of i = 1. In the case of i = 2, the value of T5(I;p) at u. € G is given
by

Ty (l;p) (ue) =€, @ x1-p + (—1)'e™ @ xp1.

Thus, by the similar computation using Lemma 3.7 (ii), we also obtain the assertion in the
case of ¢ = 2 evaluating the both side of the equation (5.1) at u. € G. O

6. THE ACTION OF pc

The linear map I‘f,m characterize the action of pc. In this section, we give the explicit
description of the action of pc on the elementary functions.

6.1. The projectors for V) ®c V4. For —2 < m < 2, we describe a surjective sl(2, C)-
homomorphism lem from V; ®c V4 to Viyo, in terms of the standard basis as follows.

Lemma 6.1. Let {vy) | 0 < g <1} be the standard basis of Vi for | € Z>o. We put vél) =0
when ¢ < 0 or g > . '
We define linear maps Pém: ViocVe = Vijom (—2<m <2) by

+2
P, 2lm(’v§” ® wr) = By amigs - vtg+rf")l—2’

when Vijiom-component of V; ®c Vi does not vanish.
Here the coefficients By gm.qr = b(l,2m;q,7)/d'(1,2m) are defined by following formulas.
Formula 1: The coefficients of P}: V; @c Vi — Viys are given as follows:

b(l,4;q,7) =1 (0<r <4, ; d'(1,4) =1.
Formula 2: The coefficients of P}: V} l®c Vi = Viya are given as follows:
b(l,2;¢,0) =4q, b(1,2;¢,1) = — (I — 4q), b(1,2;¢,2) = - 2(I - 2¢),
b(1,2;4,3) = — (3] — 4q), b(1,2;¢,4) = — 4(1 — q), d'(1,2) =1 + 4.
Formula 3: The coefficients of Pé: Vi®c Vi =V, are given as follows:
b(l,0;¢,0) =6q(q — 1), b(1,0;¢,1) = — 3q(l — 2¢ + 1),
b(l,0;9,2) =12 — 6lg + 64> — 1, b(l,0;4,3) =3(1 — 2¢ — 1)(I — q),
b(1,0;9,4) =6(l —q)(I'— ¢ — 1), d'(1,0) =1+ 3)(1 + 2).

Formula 4: The coeﬂicientsy of Il_2: Vi—ce = Vi ®c Va are given as follows:
b(l,=2;4,0) =4q(¢ — 1)(¢ - 2), b(,-2;¢,1) = —q(g — 1)(3] — 4¢ +2),
b(l,-2;¢,2) =2q(l - 29)(I — g),
b(l,-24,3) =— (1 -4¢-2)( —g)(l — ¢ 1),
b(l,-2;¢,4) =—-4(l-q)(l—-g-1)(1—-q—-2), d(,-2)=(1+2)1+ 1)L

Formula 5: The coefficients of Il_4: Vi—g =V, ®c Vi are given as follows:

b(l, —4;4,0) = q(q — 1)(g - 2)(q — 3),
b(l, —4;¢,1) = —q(g — 1)(g - 2)( — q),
b(l,—4;4,2) = q(¢ - 1)(l - q)(l -q—1),
b(l,—4;4,3) = —q(l =)l —q - 1)(l — ¢ - 2),
b(l,—4¢,4) = —-q)(l—¢ —1)(l—q—2)(l—q—3),
d(l,—-4) =1+l -1)(I-2).
Then P, is the generator of Homgyz,c) (Vi ®c Vi, Vigam) such that P, ol = idy;, 5, -



GENERALIZED PRINCIPAL SERIES OF SL(3,R) AND RELATED WHITTAKER FUNCTIONS 21

Proof. The composite

Vi®cVa= Vi @c Vi = (Vi®c Va)* 3 f = f o LIy € Viigm = Vitom
is a surjective s[(2, C)-homomorphism from V; ®c V4 to Vjiam, which is unique up to scalar
multiple. Therefore we obtain the assertion from Proposition 3.2 and Lemma 3.3. a

6.2. The action of pc on the elementary functions.

Proposition 6.2. (i) An explicit expression of the action of pc on the basis {s(l;p,q) | I >
0, p € Z(oo;1), 0 < q<2l} of Hyy,yop),x 18 given by following equation:

T (vg,00) (X,«)S(l;p, Q) = Z 7[(1?',),1;p,j]3[2l,2m;q,r]3(l +mip+m+25,g+m+r— 2)
-1<5<1
—2<m<2

Here we put

0 0
7[(0,)7,1;0,_7‘] = B[O,2m;0,r] =0 form <2, 7[(1,)771;17,]'] = B[2,2m;q,r] =0 for m <0,

s(l;p,q) = 0 whenever p <1 such that p ¢ Z(o0;1) or ¢ <0 or g > 21,

s(l;p,q) = (=1)*Ns(l;20 — p,q) forp > 1.
(ii) For i = 1,2, the explicit expression of the action of pc on the basis {t;(l;p,q) |l >k, 0 <
p<l—k, p=l—-kmod2, 0<q<2l} of H, ),k 15 given by following equation:
T(v;,04) (Xr)ti (l;pa q) = Z 7{11%;p,j]B[2l,2m;q,r]ti(l + m;p +m+ 2j, g+m+r— 2)

~1<j<1
—2<m<2

Here we put t;(l;p,q) =0 unless 0 <p<l—k, p=1l—kmod2 and 0 < q < 2I.
Proof. Since

T (v0,00) (Xp)s(l;p,q) = Z F?,m(S(l;p)) o P2lm("]c(12l) ® X,),
—2<m<2

M) X2 0) = Y Tim(Ti(lsp) 0 P (v ® X7) (i=1,2),
—2<m<2
we obtain the assertion from Theorem 4.5, 5.5 and Lemma 6.1. |
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Part 2. Whittaker functions for generalized prmmpal series
representations of SL(3,R).

1. INTRODUCTION

Whittaker functions on real reductive Lie groups play fundamental roles in the archimedean
local theory of automorphic forms. Jacquet introduced an integral expression of a Whittaker
function in [17], which is called the Jacquet integral. However, the Jacquet integrals are
difficult to handle and accordingly archimedean zeta integrals defined by them are also difficult
to understand. Hence many authors study the explicit formulas of Whittaker functions which
are suitable for number theoretic applications.

For an archimedean local field £, an irreducible admissible representation w of GL(n, k) (n >
3) has a non-degenerate (continuous) Whittaker model if and only if 7 is an irreducible principal
series representation or an irreducible generalized principal series representation ([18, §2]).
The explicit formulas of Whittaker functions for principal series representations of GL(n, k) or
SL(n, k) already have some history. The explicit formulas of Whittaker functions for spherical
principal series representations of GL(n,R) have been developed by Bump [2], Vinogradov
and Tahtajan [45], Stade [40], [41], [42]. Recently, Ishii and Stade have reached a simple
recursive formula between those for GL(n,R) and GL(n — 1,R) in [16]. Those for non-
spherical principal series representations of SL(n,R) are obtained, for n = 3 by Manabe,
Ishii and Oda [27], and for n = 4 by Hina, Ishii and Oda [9]. Moreover, those for principal
series representations of GL(3, C) are obtained by Hirano and Oda [10]. They obtained the
explicit formulas by evaluating the Jacquet integral or by solving the differential equations. As
an extension of these studies, we discuss Whittaker functions for generalized principal series
representations of SL(3,R). Together with the results of principal series representations,
we have the explicit formulas of Whittaker functions for any generic irreducible admissible
representation of GL(3,k). In the spherical case, the explicit formulas of Whittaker functions
are utilized to evaluate the archimedean zeta integrals ([11], [42], [43]). We expect to utilize
our result for the investigation of the archimedean zeta integrals attached to generic cuspidal
representations of GL(3).

Let us explain our problem in a more precise form. Before describing our situation-for
SL(3,R), let us recall the general setting of the theory of Whittaker functions on a real re-
ductive Lie group G. Fix a maximal compact subgroup K and a maximal unipotent subgroup
Ny of G Take a non-degenerate unitary character £ of Ny and consider its C*°-induction
C°° Ind§ ,(€). For an irreducible admissible representation (m, H;) of G, we consider the
space Hom(gC,K)(ﬂ, Cc®*® Ind%o(f)) of intertwining operators. Let (7,V;) be a K-type of 7

and ¢: V; — H; a nonzero K-homomorphism. For ® € Hom g)(m, C* Ind%0 €)), we
can define the function ¢« contained in the space C’g’T* (No\G/K) of Vy«-valued smooth
functions on G satisfying f(ngk) = &(n)7*(k)"'f(g) for all (n,g,k) € No x G x K by
®(1(v))(9) = (v, ¢r+(9)) (9 € G, v € V;). Here (7%, V;+) means the contragradient represen-
tation of 7 and (,) is the canonical pairing of V; x V,«. We call ¢, .~ a Whittaker function
with a K-type 7. Here we remark that any function ¢ € Cg5.(No\G/K) is determined by its
restriction ¢|4, to Ao from the Iwasawa decomposmon G NOAOK of G. We call p|4, the
Ap-radial part of .

The purpose of this part is to give the explicit formulas of Ag-radial parts of Whittaker
functions with the minimal K-type of m when 7 is an irreducible generalized principal series
representation of G = SL(3,R). Here a generalized principal series representation of G is
an induced representation from a discrete series representation of the Levi part GL(2,R) of
a maximal parabolic subgroup. Firstly, we give the system of partial differential equations
satisfied by Whittaker functions in Proposition 4.5. We obtain these equations from the in-
vestigation of the (gc, K)-module structure around the minimal K-type of 7 and the Capelli
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elements which are generators of the center of the universal enveloping algebra of gc. Secondly,
we have 6 formal power series solutions in Theorem 5.8, which are considered as examples of
confluent hypergeometric series of two variables. These solutions are called secondary Whit-
taker functions and form a basis of the space of Whittaker functions with the minimal K-type
of m. Moreover, we also give the Mellin-Barnes type integral expressions of primary Whittaker
functions, i.e. the Whittaker functions having the moderate growth property, and the relation
between primary and secondary Whittaker functions in Theorem 5.9. '

2. PRELIMINARIES

2.1. Groups and algebras. We denote by Z, Q, R and C the ring of rational integers, the
rational number field, the real number field and the complex number field, respectively. Let
Z>( be the set of non-negative integers, 1, the unit matrix in the space M, (C) of complex
matrices of size n, Op, the zero matrix of size m x n and E;; the matrix unit in M3(C) with
1 at the (7, j)-th entry and 0 at other entries. We denote by é;; the Kronecker delta, i.e.

8ii = { I, = Js
Y71 0, otherwise.
For a Lie algebra [, we denote by [c = [®gr C the complexification of I.

Let G be the special linear group SL(3 R) of degree three and g its Lie algebra. We define
a Cartan involution 6 of G by G 2 g — 'g™! € G. Here g and g~! means the transpose and
the inverse of g, respectively. Then K = {g € G | 6(g) = g} = SO(3) is a maximal compact
subgroup of G.

If we denote the differential of 6 again by 6, then we have (X) = —!X for X € g. Let &
and p be the +1 and the —1 eigenspaces of 6 in g, respectively, that is,

t={Xeg|'X=-X}=150(3), p={Xeg|'X =X}
Then ¢ is the Lie algebra of K and g has a Cartan decomposition g=¢@®p.

Put ag = {diag(t1,2,3) | t; € R (1 < ¢ < 3), t1+t2+t3 = 0}. Then ap is a maximal abelian
subalgebra of p. For each 1 < i < 3, we define a linear form e; on ag by ag > diag(ty, t2, t3) —
t; € C. The set X of the restricted roots for (ao, g) is given by ¥ = X(ag,g) = {e;i—e; |1 < i #
j < 3}, and the subset &7 = {e; —¢; | 1 <i < j < 3} forms a positive restricted root system.
For each o € 3, we denote its restricted root space by go. Then Ej; is a restricted root vector
in ge;—e; for 1 <4 # j < 3. If we put ng = @ x5+ Jo, then g has an Iwasawa decomposition
g =19 P apdEt Also we have G = NyAoK, where No = exp(np) and Ay = exp(ag). We take
a basis {Hi, Ha} of ap by H; = diag(1,0,—1), Hy = diag(0,1,—1).

2.2. Whittaker functions. For a unitary character £ of Ny, we denote the derivative of £ by
the same letter. Since

nO/[nOa n0] ™~ fer—ey D Gey—es,
¢ is specified by two real numbers ¢; and ¢y such that

E(Bra) = 2nv—=1c1, €(Ea3) = 2mv/—1co.

When cjce # 0, the unitary character £ of Ny is called non-degenerate.
For a finite dimensional representation (7, V') of K and a non-degenerate unitary character &
of Ng, we consider the space Cg7 (No\G/K) of smooth functions ¢: G — V with the property

o(ngk) = £(n)7 (k) o(g), (n,9,k) € No x G x K.

Here we remark that any function ¢ € C¢; (No\G/K) is determined by its restriction |4, to
Ao from the Iwasawa decomposition G = NgAgK of G. We call |4, the Ag-radial part of ¢.
Also let C*° Ind§0(§ ) be the C*°-induced representation from ¢ with the representation space

Ce2(No\G) = {p € CF(G) | p(ng) =&(n)p(9), (n,9) € No x G},
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on which G acts by right translation. Then we note that the space £ (No\G/K) is isomorphic
to Homg (V*, Cg°(No\G)) via the correspondence between ¢ € Homg (V*, Cg°(No\G)) and
Fll e Cg5 (No\G/K) given by the relation «(v*)(g) = (v*, F(g)) for v* € V* and g € G with
the canonical pairing (,) on V* x V. Here (7*, V*) means the contragradient representation of
T. :

Let (m, Hy) be an admissible representation of G, and take a K-type (7*,V*) of 7 with an
injective K-homomorphism ¢: V* — H,. Then, for each element I in the intertwining space
I§,7r = Hom(gc,K) (HW,K’ CEO(NO\G))a the relation I(L(’U*))(g) = <U*7 @(I’ ") (g)> (U* evy, g€
G) determines an element ®(1,1) € er(No\G/K). Here H;  is a subspace of Hy, consisting
of all K-finite vectors. Now we put

Wh(r, €,7) = U {®(I,.) € CEZ(N\G/K) | I € I r}
t€Homg (V*,Hy k)

and call Wh(m, &, 7) the space of Whittaker functions for (m, &, 7). Moderate growth functions
in Wh(r,&,7) are called primary Whittaker functions and we denote by Wh(m, &, 7) ™°¢ the
subspace of primary Whittaker functions in Wh(r, £, 7). We consider Whittaker functions for
irreducible generalized principal series representations of G.

2.3. Generalized principal series representations of G. We set n and a be subalgebras
. of g defined by n = g¢, _¢; @ gey—e; and a = R - (Hy + Hs), respectively. Let P = NAM be a
maximal parabolic subgroup of G with a Langlands decomposition, where

h o)
M= { ( Ors deté{;—l >‘h € SLi(z,R)} ~ SL*(2,R), A=exp(a), N =exp(n).

Here SL*(2,R) = {g € GL(2,R) | det(g) = +£1}. Let m be a Lie algebra of M.

We identify v € ag = Homg (a, C) with a complex number v = v (3(H; + Hz)) € C. Let p
be the element of ag defined by 2p = (e; — e3) + (e2 — e3) = €1 + e2 — 2e3. Then p is identified
with 1. We define a character e¥: A — C* by

e’ (a(r)) =¥, a(r) = diag(r,r,r7%) € A.
+
We fix a discrete series representation o = Dy = Indgé'@(zﬁf)‘) (Dif) of M ~ SL*(2,R) where
D,j is a discrete series representation of SL(2,R) with the Blattner parameter k > 0.
Definition 2.1. We define a generalized principal series representation T(v,o) of G by
T(v,o) = IndIG’(lN ® e’ ® o),
i.e. T(y,0) 18 the right regular representation of G on the space H,,s) which is the completion

of
o . o f(nam:v) = e”+p(a)a(m)f(a:)
H(V’a)—{f.G—>VU smooth for neN, acA meM, zeG

with respect to the norm
2 2
117 = [ 176 Ear.
Here V° is the smooth part of the representation space V, of o and || - ||s,; is the norm on V.

For generic parameter v, a generalized principal series representation m(, ) is irreducible.
In this part, we always assume that 7, ) is irreducible.

3. THE (gc, K)-MODULE STRUCTURE OF T(v,0) AROUND THE MINIMAL K-TYPE

In this section, we explain some equations for weight vectors in the minimal K-type of m(, ),
which are determined from the (gc, K)-module structure of 7, ;). Although we explain only
a partial result here, we describe the whole (gc, K)-module structure of T(v,0) in Part 1.
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3.1. Irreducible K-modules. Let H; be the subspace consisting of degree | homogeneous
polynomials of three variables z,y, z in the polynomial ring C|z,y, z]. For g = (g;;) € SO(3)
and f € H; we set

ﬁ(g)f(fc’% Z) = f((xaya z) : g)
= f(g11% + 921y + 9312, 9122 + go2y + 9322, G13T + g23y + g332).

We put % = z% + y% + 22 € Hy. Since r? is SO(3)-invariant, 72 - H;_5 is a SO(3)-invariant
subspace of H;. Let 7; be the quotient representation of 7, on V; = H;/(r%-H;_3). Here we put
H_1 =H_3 =0. Then (7, V}) is an irreducible 2/ + 1-dimensional representation and the set
of equivalence classes of the irreducible finite dimensional continuous representations of SO(3)
is exhausted by 7; (I € Z>o).

We put

= (—vV—=1z)"(y + ev/=12)" mod - H;_, (e e {£1}, 0<i<).

Then {v,gl) | =1 < g <1} form a basis of V; and each vél) is a weight vector with respect to the
Cartan subalgebra of £c spanned by K33. We have the following formulas of the £c-action:

Tt(Kzs)Uy) = \/—_lqv,gl),

b+ VT THof) =~ + ol

7(K13 — vV=1K1p)v{) = (1 - ‘I)’Uylr
where K;j = E;j — Ej; (1<i<j<3). :

Remark 3.1. The weight basis {v,gl) | =1 < g < I} is the same basis that Manabe, Ishii
and Oda use in [27, §2] to treat the Whittaker functions for principal series representations of
SL(3,R).

3.2. The adjoint representation of K on pc. It is known that pc becomes a K-module
via the adjoint action Ad of K. Concerning this, we have the following lemma.

Lemma 3.2. Let {X; | -2 < j <2} be a basis of pc defined as follows:

1
X_9 = Hy —v/—1(E33 + E32), X_.1= —-2-{\/-—1(E12 + E91) + (E13 + E31)},
1 1
Xo = —§(2H1 - Hy), X = ——2—{v—1(E12 + E91) — (E13 + E31)},

Xo=Hy+ v —1(E23 + E32).

Then via the unique isomorphism between V3 and pc as K-modules we have the identification
2

UJ() X;(-2<7<2).

Proof. By direct computation, we have the following table of the adjoint actions of the basis

{K33, K13+ +/—1K13} of £c on the basis {X; | =2 < j < 2} of pc.

X_2 X_1 X(] Xl X2

Ky3 -2v/-1X_o | —v-1X_ 0 v—1X1 | 2v/-1Xo
K3 ++v—-1Kj9 0 -X_o -2X_1| -3Xo —4X;
Ki3 — vV—1K19 4X_ 3Xo 2Xy Xy 0

TABLE. The adjoint actions of £c on the basis {X; | -2 < j < 2} of pc.

Comparing the actions in the above table with the actions in Subsection 3.1, we have the
assertion. a
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3.3. The contragradient representation of (7;,V;). We denote by (7%, V*) the contragra-
dient representation of (7,V’). Here we note that V;* is isomorphic to V} as a SO(3)-module,
since the irreducible 2/ + 1-dimensional representation of SO(3) is unique up to isomorphism.

Lemma 3.3. Let {vél)* | =1 < g <1} be the dual basis of the weight basis {w(ll) | -1 <qg<l}.
Via the unique isomorphism between V; and V;* as a K-module we have the identification

O _ (e =D+ ) @«
v’ =0 @p

for =1 < ¢ <.

Proof. We denote by (,) the canonical pairing on V;* x V.
Since

<Tl*(K23) (D UU)) <v(l)* Tl(KZS) (l)> -V T(sqr = -V qaqra
we have 7; (K23)Uql)* —v/- qvq . Similarly, we obtain
Tl K13 +v—=1K19 ’Ul(Il)* = (l +q+ l)vy_):i,. Tl*(Klg - \/—_lKlg)'vy)* = —(l —q-+ l)vgl_)*i
- From these equations, we obtain the assertion. |

3.4. Some components of pc ® 7, for | > 1. For a K-module (m, H), we denote by H|[7]
the 7j-isotypic component of H. The tensor product pc ®c V; ~ Vo ®c V; has at most five
irreducible components Vj12, V41, Vi, Vi—1 and V;_5. Here some components may not appear.
For our later use, we take a basis of @y«,,<2(Pc ®c Vi)[Ti—m] as follows.

Proposition 3.4. We put

v(i,q) =Xi—1 ® véﬁ)_l -2X;® v( )+ Xin © v( )
forl>1, -1<i<land -l+1<q<I1-1. Then {v(i,q) |-—1§z§1, —-l+1<¢g<Il-1}
is a basis of @ogm<2(p0 ®c Vi)[1i—m] and satisfies the condition

(3.1) v(i,q) =), mod @D (rc ®c Vi)n-m)-
1<m<2

~()

determined by v

Here 04’ is the image of vq) under the unique isomorphism V; — (pc ®c V))[n] which is

(3 »—)v(l) v(=1,-1+1).

Proof. Let W be the vector space spanned by the elements v(i,q) (-1 <i<1, -I+1<¢g<

l Bl}z .direct computation, we have

(3.2) (ad ®7)(Kas)v(i,q) = vV=1(i + q)v(i, q),

(3.3) (ad ®m) (K13 + vV=1K12)v(i,q) = =(1 +i)v(i — 1,¢) — (1 + ¢ — 1)v(i,q - 1),
(3.4) (ad ®7) (K13 — V=1K12)v(i,q) = (1 = i)v(i + 1,¢) + (I — ¢ — 1)v(i,g + 1)

for -1 < i< 1land -l+1 < g <1 —1. Here we denote the differential of the adjoint
representation Ad by ad and put v(-2,q) = v(2,q) = v(i,—1) = v(s,l) = 0 for any i,q € Z.
From these equations, we see that W is closed under the action of €c and there are no elements
in W whose eigenvalues of (ad ®7;)(v/—1K>3) are larger than I. This implies W is a K-
submodule of @y,,<2(Pc ®c Vi)[7i—m]. Moreover, since the elements v(i,q) (-1 < i <
1, =l +1 < q <1 —1) are linearly independent, we have :

dimg W =6l — 3 = dimc P (pc ®c Vi)[n1-m)-
0<m<2
Hence we have W = @OSmSQ(PC ®c V) [7i—m]-
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By the equations (3.2) and (3.3), we see that v(—1,—[ + 1) is the highest weight vector of
(pc ®c V1)[1] with respect to the Borel subalgebra of £c spanned by Ko3 and K13 +/—1K1s.

Hence there is the unique isomorphism V; — (pc ®c Vi)[n] which is determined by UQ —
v(=1,-141).
We prove the equation (3.1) by induction with respect to ¢ +q. When i + ¢ = —I, the

equation (3.1) holds since v(—-1,—-l + 1) = v(g Assume that the equation (3.1) holds for
-1<4i<1, —l+1§q§l—lsuchthatz+q<n and take -1 < <1, -I+1<¢ <Il-1
such that i’ + ¢ = n. From the equation (3.2), there is some constant C(y 4 such that

v(i',q) = Cly g )vl(,lq, mod @B, <,,<2(Pc ®c Vi)[71—m]. Moreover, from the equation (3.3) and
the inductive assumption, we have

(ad ®7) (K13 + vV—1Ki3)v (i, ')
—(14i"Ww@E -1,¢) - (U +4¢ - 1v@,¢d 1)
- +i+ q’)ﬁﬁq,_l mod @ (pc ®c V))[r21-m)]

1<m<2
= (ad ®@7) (K13 + V—1K32) Z,i_q mod @ (pc ®c Vl)[n m)-
1<m<2
Hence we have C(y o) = 1, and complete the induction. a

3.5. Discrete series representatlons of SL*(2,R). In this subsection, we consider a dis-

crete series representation Dy = Indgi(z(QRl){) (D;f) of SL*(2,R) where D is a discrete series

representation of SL(2, R) with the Blattner parameter k£ > 0. Let D, be the contragradient
representation of D} and set yo = diag(1,—1) € O(2). Then a discrete series representation
Dy, is uniquely determined by specifying the SL(2, R)-module structure together with the ac-
tion of yo. Since Di|sr(2,r) = D,'c" & D, and D;: ® D, is infinitesimally equivalent with a
subrepresentation of some principal series representation of SL(2,R), we obtain the following
realization of associated (s{(2, C), O(2))-module of Dy:

Vbi,02) = @ Wi+2a (Wp =C-xp+C-x-p)
a€Zso
and
Di(w)xp = vV-1pxp,  Di(z1)xp = (k + P)xpr2; Dy (z-)xp = (k — p)Xp-2,
Di(ke)xp = € Plxg (t€R), Di(yo)xp =X-p,
where

0 1 = 1 +v-1 : _ cost sint
w_(_l O)’xi_<i\’_ -1 )65[(2,C), Kt’(—Sint cost)eso(z)'
Here we denote differential of Dy, again by Dy and the O(2)-finite part of Vb, by Vp,,0(2)- See
[3, §2.5] for details.

3.6. Irreducible decompositions of (7, )|k, H(,,)) as a K-module. We analyse the K-
type of the representation space H, ) of the generalized principal series representation. The
target V, of functions f in H, ;) has a decomposition:

Vo = VDk @ Wk+2a
aGZZo
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Denote the corresponding decomposition of f by

(e}

f(2) = Y (fer2a(2) ® Xet2a + f—(b+20) (T) ® X—(k120))-
a=0

We define the natural isomorphism m: SL*(2,R) — M by

h 02 1 | +
m(h) = ( O det(h) ) EM (h € SL*(2,R)),
and set 0 = Dy om 1. From the definition of the space H(, ,), we have
f(mz) = o(m)f(z) (a.e. z € G, me M).

For m = m(ky), m(yo) € Kay = M N K ~ O(2), comparing the coefficients of x, in the left
hand side of above equation with those in the right hand side, we have

fr(mr)e) = eV P f(a), fr(m(yo)z) = f-p(x).

Moreover, from the equality

/K @ 2de= 3 { /K |f5(k+2a)<w>|2dm}~||x€<k+2a>||3,

56{i1}7 aezzo

we have f,|x € L?(K). Therefore f|x belongs to

@ Lg (K; Wk+2a)
aGZZO

where
L2(K; W) = {£: K = W, | £(z) = /(2) ® xp + f(m(y0)) ® X—p, f € Llgs 1 (K),x € K},

Lixs, ) K) = {f € L*(K) | f(m(re)z) = eV~ f(2), m(x;) € K3y, @ € K}

Here K, means the identity component of Kjs, which is 1somorph1c to SO(2). It is easy to
see that the restriction map

TK: H(,,,U) >fflg € @ Lg(K; Wi12q)
a€Zxo

is a K-isomorphism.
By the Peter-Weyl’s theorem (see for example, [20]), we have a K-isomorphism

—

D Vi) &@cVi— L?K;M,X,,)(K)
l€Z>o

which is determined by
(Vi'-p) ®@cVi2 w@v = (z = (w,n(z)v)) € Ligs o (K).
Here
& Ky > m(ke) — eVt ¢ CX
and V/[¢,] means the &p-isotypic component in (7|3 , V) for a K-module (7,V).
We define a basis {w,gl) | -1 < qg<l}of Vi by
wl = n(u)ol) (-1<q<l)

where
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We note that v € V;[€_p] if and only if 7(K12)v = —/—1pv for v € V]. Since u ! Kiou, = Kos,
we have Tl(Klg)w,(Il) = \/—1qwgl). Hence we have

c-owl) if —i<p<i
VilE_, 1 = -p &£ ="
el { 0 otherwise .

By the identification V;* =V} in Lemma 3.3, we obtain

e

L%Kgl,xp)(K) ~ P (C-uwl*) @c Wi
lEZZo

Here we put w;,(,l)* =0if p < =l or p > I. Moreover, by direct computation, we have

7 (m(yo) HwP* = (—1)lwg;*-
For k < p <[ such that p = k mod 2, we define the elementary function ¢(I;p,q) € H (v,0) DY
tlsp,q) = rg ({(p,9)
where
i(t;p, @) (@) =(wf*, n(@)o) © xp + (1) (W) 1@l © x-p € LZ(K; Wy).

Let (T'(l;p)) be the subspace of H(, ) generated by the functions t(l;p,q) (=1 < ¢ <1). Via
the unique isomorphism between (T'(I;p)) and V;, we identify {t(/;p,q) | = < ¢ <[} with the
weight basis {vgl) | -l < g <I}.

From above arguments, we obtain the following.

Proposition 3.5. As a K-module, H, ;) has an irreducible decomposition:

H g = é; { &y (T(l;P))}-

l€Z>¢ | k<p<l, p—ke2Z
Corollary 3.6. The multiplicity [7(,,0)|K: 7] of T in 7(,0)| K is given by

(l—k+2)/2 ifk<landl—k is even,
[Twmlg:ml =9 (—k+1)/2 ifk <1 andl—Fk is odd,
0 if k> 1.

3.7. Dirac-Schmid equations. We denote by H(,,) x the K-finite part of H(, . From
Corollary 3.6, we see that 75 is the minimal K-type of (, ,) and its multiplicity is one. We

put tx: Vi > vflk) = t(k;k,q) € Hy o) k-
Lemma 3.7. For 0 < j <2, X; has the following expressions according to the decomposition
gc = Ad(u;1) (ng ® ac ®mg) + Ec:
Xo =%Ad(uc—1)(H1 +H,y), X1=-Ad(u;") (B3 +vV—1Ex) + %(Kw - V—1K1),
Xy = — Ad(u;YYym(zy),
Proof. We obtain the assertion immediately from Lemma 6.6. a

Lemma 3.8. The weight basis {t(k;k,q) | —k < q < k} of Hy o) k(%] = (T(k; k)) satisfies »
the following relations:

Xi1-t(ksk,q+1) = 2X; - t(ks k, q) + Xiga - t(ks k, g — 1) = vt(k; k, g +1)
for =1 <i<land -k+1<qg<k-1.
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Proof. The image of the element v(i,q) defined in Proposition 3.4 under the natural K-
homomorphism ix: pc ®c Vi 2 X @ v X - 1x(v) € H(y o),k is given by

ik(v(i,q) = Xij—1 - t(k;k, g + 1) — 2X; - t(k; k, q) + Xiqq - t(k; kg — 1)

for -1 <1< 1and —k+1<¢q<k~-1. On the other hand, from @, ,, <5 H(,/,a),K[Tk_m] =0
and Proposition 3.4, there is some constant C' € C such that i (v(i,q)) = Ct(k;k,q +4) for
any ¢,q. Hence we have

(3.5) Xio1-t(k;k,q+ 1) — 2X; - t(k; k, q) + Xivs - t(ks kyq — 1) = Ct(ks k, q + 1)

for -1<i<land -k+1<q¢g<k-1.

We evaluate the both sides of the equation (3.5) at u, when ¢ = 1 and ¢ = k — 1. By the
definition of ¢(k; k,q), we see that t(k;k, q)(uc) = Ok,q - Xk + (—1)*6_k,q - X—k- Therefore, the
right hand side of the equation (3.5) become ‘

Ct(k; k, k) (uc) = C - Xk
Since t(k;k, q) can be identified with v((lk); we have
(K13 — V=1K12) - t(k; k, q)) (ue) = (k = ) Ok g1 - Xk + (1) 0k g41 - x—4)-
Moreover, we have
(Ad(u;Y)E - t(k; k,q))(uc) =0 for E € nc,

(5 A + ) 1085 1,) ) () = 0+ 1A e+ (=145 xt)

(Ad(ug Yym(zy) - t(k; k, q)) (uc) = (2K)0kq - Xk+2,
from the definition of a generalized principal series representation. By above equations and
expressions of X; in Lemma 3.7, the left hand side of the equation (3.5) becomes

(Xo - t(k; k, k) (uce) — 2(X1 - t(ks b, k — 1)) (uce) + (X2 - t(ks b, k — 2)) (uc)
=Ww+1) - xt—xt+0=v"xk.

Hence we have C = v. : ‘ ' O

4. DIFFERENTIAL EQUATIONS

4.1. The Capelli elements. The Capelli elements are known to give generators for the center
Z(gc) of the universal enveloping algebra U(gc) of gc (cf. [13, §11]). We put

3
1 .
E;1=Eu—§( E Ejj), (1<i<3).
Jj=1

We compute the Capelli elements by the vertical determinant of characteristic matrix A =
(Aij)i<ij<s = ¢ - 13 —C € M3(U(gc)[z]) of degree 3, where C is an element of Ms(U(gc))

defined by
( Eil -1 E12 E13 )
C= Esy Eé2 Eo3 .
E3 FE3o Eé?’ +1

Then we have '

Z sgn(7) A1r(1)Azr(2)Asr(z) = 2° + Cox — C3

TEG3
with the Capelli elements Co and Cs of degree 2 and 3, respectively. Here G3 is symmetric
group of degree three. The explicit formulas of Cy and C3 are given by

Co =(Byy — 1)Egy + Egp(E33 + 1) + (Byy — 1)(E33 + 1) — EnsEsy — E13E31 — E12En,

C3 =(Ey; — 1)Egy(FE33 + 1) + E12Fo3F3) + E13F91 E3p
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~ (Bl — 1)Eg3E3y — E13Ep B3 — E19Ey (Bjg + 1).
We rewrite the Capelli elements {Cy, C3} as follows.

Lemma 4.1. The Capelli elements {C2, C3} have expressions of the form >, Z;Y:X; (Z; €
U(noc), Yi € U(apc), X; € U(tc)) as follows.

C ={%(2H1 ~ Hp) - 1}{-%(}11 —2M,) | + {—%(H1 - 2H2)}{—%(H1 + H) +1}
+ {%(21{1 ~Hy) - 1}{%(}11 +Hy) + 1}
— B2, — E% — B2, + Ep3Kp3 + Ey3Ky3 + E19K1o,
Cs ={%(2H1 — Hy) - 1}{%(}11 - 2H2)}{—§(H1 + H) +1}
- E§3{%(2H1 ~Hy) -1} - E%:.,,{—:,))l-(ﬂ‘1 ~2H)} - E%Q{—é-(Hl + Hp) +1}
+ {Elz{—%(ﬂl + H) +1} - E13E23}K12 + {Elg{—%(ﬂl —28,)} - E12E23}K13

1 . .
+ {E23{§(2H1 - Hy) - 1} - E13E12}K_23 + E19E23FE13 + E13E23FE19 + E13K12K93.

Proof. We obtain the assertion by direct computation. a

4.2. The eigenvalues of the Capelli elements. The elements of Z(gc) acts on Hy o),k by
scalar multiplication. We compute the eigenvalues of the Capelli elements by usual way.

We put P =3 s+ U(gc)E—q. Since Z(gc) C U(apc) ® P, we can define the projection
s+ of Z(gc) into the U(apc) factor. We put os+: agpc 2 H = H+po(H) € U(apc) and extend
ox+ to an algebra automorphism of U(agc). Here pg = e; — e3 is the half sum of positive roots.
We define the Harish-Chandra homomorphism v: Z(gc) — U(aoc) by v = os+07s+. By direct
computatlon the image of the Capelli element C; under the Harish-Chandra homomorphism
is given by

v(Ci) =Si( 117 Eé% ELIB3>

for ¢ = 2,3. Here S3(a,b,c) = ab+ bc + ca and S3(a, b, c) = abc are the elementary symmetric
functions of three variables of degree 2 and 3, respectively.

Let t be the #-stable Cartan subalgebra of m generated by H; — Hy and A, the infinitesimal
character of o relative to tc. It is easy to see that the value of A, at H; — Hs is given by
k — 1. According to [20, Proposition 8.22], the infinitesimal character of m(, ) relative to
(t+ a)c = agc is given by A; + v and the eigenvalue of C; is ((Aa +v)o 'y) (C;) for i =2,3.

Since

(Ao +2)(E}y) = (Ag +v) <%(H1 +Hy)+ o (H H2)) Y dni)
(e +0)(B3) = (g +) (G + o) = (0 = ) ) = =3,

1
(s +9)(Bfs) = (Ao +2) (—5(80+ H) ) = =
we obtain the following.

Lemma 4.2. Fori= 2,3, the eigenvalue X(,,0)(Ci) of C; is given by

v—k+1 v+k-1
X(V,a)(ci) =Si<"l/7 2 y 5 )
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4.3. The holonomic system of Whittaker functions. Let ®(I,) € Wh(7(,4),&,75) be

a Whittaker function determined by an intertwining operator I € T, and an injection

ﬂ-(":a)
Vi3 vé ) s t(k;k,q) € Hy )k (—k < ¢ < k). For —k < g < k, we define a scalar function
Fy on Ap by

Fy(a) = Itk (o) (a) = (o), ®(I, ) (a)), @ € 4.

Then a Whittaker function ®(I,) is characterized by {F, | -k < ¢ < k}. In fact, Ao radial
part of a Whittaker function ®(I, ) is written as

O, )| 40 = Z Fyeu{r.
q=—k

We write here the holonomic system for F;; with respect to the variables y = (y1,y2) where
y1 = a1/az, Y2 = az/az = a1a3 for a = diag(ai, az, a3) € Ao.
Lemma 4.3 ([13, Lemma 4.2 and 4.3]). For Z € U(noc), ¥ € U(apc), X € U(tc) and
v € Vi, we have
(ZY X - Ik (0)))(y) = €(Ad(a) Z) (Y - I (ek (7 (X)v))) (v)-

In particular, we have

(Hy - I(ex(v))) (y) =(01 + 02)I (1 (v)) (y), (Hz T () (y) =(=01 +202) I (1(v)) (9),
(Brz - I(ts(v))) (y) =27V =11y I (ex(v))(v),  (Enz - I(x(v)))(y) =0,
(Bas - I(tk())) (y) =27v/=Teayal (1 (v)) (9),

where 0; = yzac'; (1=1,2).

Proof. We obtain the assertion by easy computation. See [13] for details. |

Lemma 4.4. The weight basis {X; | =2 < i < 2} in pc have the following expressions
according to the Iwasawa decomposition gc = nc @ ac @ -

X_5 = —2v—-1Eg + Hy + V—1Ka3,
1
X_1=—(Fi3+ \/—1E12) + —2'(K13 + v _1K12)7

1
XO = —§(2H1 - Hz),

1
X1 = (B13 — V-1B1) — 5(Ki3 — vV—-1Ku),
Xy = 2v/=1E23 + Hy — vV/—1Ka;.
Proof. We obtain the assertion immediately from Lemma 6.6. O

Proposition 4.5. Put Fy(y) = y1y2F,(y) for —k < q¢ < k. Then F,(y) satisfies the following
system of partial differential equations:
(i) For -k +1<q¢<k-1,

(4.1) (=01 + 205 + 4meays — @) Fyy1 — dmeryi Fy + (=01 +k+q—1-v)Fpq =0,
(4.2) (-01+k—q—1- V)Fq_i_l - 4ﬂc1y1ﬁ’q + (=01 + 282 — dmeays + q)Fy1 = 0.
(4.3) 2reiy Fyn + (200 — k+ 1 — v) Fy + 2meiy1 Fymq = 0,

(i) For —k < q < k,

(4.4) {Ag + 2gmeoys + X(u,a)(Cz)}Fé + (k= @)meryi Fypr + (b + @)meryi Fymy =0,
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(4.5) {A3 — 2qmeay201 — X(v,0)(C3) } Fy
+ (k — ¢@)mery1 (02 + 27TC2y2)Fq+1 + (k+ @)me1y1 (82 — 27rczy2)15’q_1 =0.
Here
Do =8+ 8% — 310, — 4n°(Ay? + Byd),  As = 0y(0) — 02)0y + Ancy20r — dn’cy0,
andweputﬁq=0forq< —k orq > k.
Proof. We obtain the assertion from Lemma 3.8, 4.1, 4.2, 6.9 and 4.4. O

5. WHITTAKER FUNCTIONS FOR GENERALIZED PRINCIPAL SERIES REPRESENTATIONS OF
SL(3,R)

5.1. The dimension of the intertwining space T¢m, - Werecall two important invariants
for finitely generated U(gc)-modules, namely Gelfand-Kirillov dimension and multiplicity. See
[46] for details.

Let H be a finitely generated U(gc)-module and vy, vz, - - , vy, its generators. For n € Zx,
Un(gc) be the space of elements in U(gc) which may be written as a linear combination of
products of at most n elements of gc and put H, = Z?:l Un(gc)v;. Then, there exists some
polynomial p(z) in one variable over Q such that dimc H, = p(n) for sufficiently large n.
The Gelfand-Kirillov dimension Dim H is the degree of p(z). Let d be any integer such that
d > Dim H. Then the multiplicity c4(H) of H is defined by

ca(H) = the coefficient of d'p(z) at z¢ if d = Dim H,
a0 if d > Dim H.

Multiplicities are always non-negative integers. The definitions of Gelfand-Kirillov dimensions
and multiplicities do not depend on the choice of generators.

From the result of H. Matumoto (cf. [28, Corollary 2.2.2 and Theorem 6.2.1]), it follows
that the dimension of the intertwining space Z¢ , coincides with c3(Hr i) (3 = dimc noc) for
an admissible representation (m, Hr) of G. We estimate c3(H(,,q),x) as follows.

Let Py be a minimal parabolic subgroup of G with Langlands decomposition Py = NgAqMj
where My = {diag(e1,¢e2,€1€2) | €1,62 € {£1}}. By the subrepresentation theorem (see for
~ example, [20, Theorem 8.37]), T(v,0) 18 infinitesimally equivalent with a subrepresentation of a

principal series representation 7, ,,) = Indf.?0 (1n, ® €070 ® gq) for some character o of My
and 1y € ajc. We fix a such principal series representation ((,y,00)s H(vo,00)) @nd define the

(g9¢, K)-module (%(V,c,),I;T(,,’a)) by I:I(,,,a) = H(yy,00),k/H(v,0),k- Then we have the following
short exact sequence of U(gc)-modules:

0— H(V,U),K — H(Vo,tfo),K — .E[(,/,a) — 0.
By [46, Lemma 2.4], we see that
s(Hp),5) = €3(H{vo,00),) — ¢3(H0)-

From the result of Kostant [21, Theorem 5.5], it follows that c3(H(y,,+q),x) = dimc Ler vy o)
is the cardinality of the little Weyl group, i.e. c3(H(yy,0,),x) = 6. Therefore, it suffices to
estimate c3 (I:I(,,,a)).

In order to estimate c3(H (,,,a)), we prepare the following lemma.

Lemma 5.1. For a character 00, we take (00,1,002) € {0,1} x {0,1} such that

oo(diag(e1, €2, €162)) = €17'e5>?  (e1,62 € {£1}).
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Then the multiplicity [ﬂ(y0,00)|k: 7] of T in My, o0)| K 18 given by

1+2)/2 zf (00,1,002) = (0,0) and [ is even,

1) (-1)/2 1if (601,002) = (0,0) and is odd,
[T(wo.00) |52 7] = /2 if (00,1,002) # (0,0) and l is even,
(I+1)/2 if (00,1,002) # (0,0) and  is odd.

Proof. Let Vj[oo] be the op-isotypic component in (7;|ps,, V;). By Frobenius reciprocity (see for
example, [20, Theorem 1.14]), we have

[T(vo,00)| K Tl = [T1] 0, 00] = dimg Vi[og].

Since My is generated by the two elements mg; = diag(—1,1,—1), mo2 = diag(1, -1, -1),
we note that v € Vj[og] if and only if

7 (moz)v =00(mo)v = (=1)7% . (1=1,2)

for v € V. From the definition of (7, V}), we have Tl(mo,l)vgl) = (—1)l+qv(_lz and Tl(mo’z)’l)((ll) =
(—1)%5’). From these equations, we obtain
Viloo] = 69 C. (l) l)f(ao;l)vgl)),
qEZ(O'(),l)
where €(09;1) € {0,1} such that e(oo;1) =1+ 09,1 + 09,2 mod 2 and

Z(o0;1) = {geZ|0<q<l, g=092mod?2} ife(og;l)=0,
V7Y {¢geZ|1<q<l, g=0p2mod 2} if e(og;l) = 1.

Since [7(y,00)k : 1] is the cardinality of the set Z(op;1), we obtain the assertion. O
From Corollary 3.6 and Lemma 5.1, there is some constant Cy such that

(5.1) [Two) &2 T = [T(wo00) K2 7] = [0y |k 2 7] < Co (I € Zxo).

Let fi1, f2,---, fn be generators of I:I(,,,a) as a U(gc)-module. Then there is a non-negative

integer L such that f; € @o<i<z Hpo)[n] (1 <4 < k). Since pc ®c Vi = @ _s< < Viem and

Iipc®c Vid X@v— X -1(v) € fI(,,,a) (L€ HomK(Vl,ﬁ(,,,a))) is K-homomorphism, we see
that

bc H(u a) [Tl] - @ H(I/ o) [Tl—i—m]
—2<m<2

Here we denote by g’ - H (v,0) [7;] the space of elements in A, (v,0) Which are written as a linear
combination of X - f (X € ¢/, f € fI(,,,a) [11]) for a subalgebra g’ of gc. Moreover, since
gc = tc D pc, we have : .

gC . ﬁ(y’o') [Tl] C @ ‘FI(V,O') [Tl+m],
—2<m<2

Therefore, we see that Zle Un(9c)fi € Bo<i<rion I;T(W,) [1]. By the equation (5.1), we have

h _
dimg Z Un(gc)fi < dimc 69 Huy o) 1] < Co Z (2l4+1) = Co(L+2n + 1)2.
=1 0<I<L+2n 0<I<L+2n

This implies Dim I-I(,,,U) <2 and C3(}~I(,,,a)) =0.
From the above arguments, we have the following.

Proposition 5.2. The dimension of the intertwining space Ig’ﬂ(w) s 6.
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5.2. Power series solutions at the origin. In this section, we determine 6 linearly inde-
pendent formal power series solutions at the origin (y1,y2) = (0,0) of the system of partial
differential equations in Proposition 4.5 for generic parameter v. These solutions do not have
exponential decay at infinity, different from a primary Whittaker function. We refer to these
solutions as secondary Whittaker functions.

We use the same notation as in Subsection 4.3. After some computation, by inspection we
find that it is convenient to introduce scalar functions @[, .., as follows: :

We put

o_L = F 1_1o= ”
‘I’q =§(F—q+Fq)’ ‘I’q ='2'(F~q_Fq)

for 0 < g < k. Here we note that U} = 0. Then, for 1,62 € {0,1} and 0 < p < [k;szcﬂ], we
define the functions @, ,.,; by ‘

q
k — €1 — &2
\I;g;+61+62 = (=1)1t= Eh €1,€2;D,q q)[sl,ez,p] (0<qg< [—2_])
p=0
where |
1’ if (El,p,q) = (0,0’0)’
+ +1)+ +1)\ 2%P(p+q)! .
h(e1,€2;D,q) ( Ezpp_‘*l_q(ilﬁ(p 5;(16)2 )) (q_pgl!(qu)!’ if (e1,p,9) # (0,0,0), 0 < p < g,
0, otherwise ,

and the symbol [a] (¢ € R) means the maximal integer which is not larger than a. For
er,e2 € {0,1}, 0 < ¢ < [E=2=22], we call (—1)917F(y/=1)%2 kylygtﬁ[el,ez;p] the [e1,e9;D]-
component of a Whittaker function ®(1, ).

Remark 5.3. We note that the [e1, e2; p]-component (—1)51_k(\/'—1)52"ky1y2¢'[51’62;p] is the
image of the monomial fie, cpp) = gh=p—e1—e222 ,2p+e1 mod 2 - Hy_o € Vi, under the K-
homomorphism I o 1y, i.e. .

(D=1 Py192®, 01 (4) = Tk (fley 059)) (4) = (Flen aipps (L 16) ()
Lemma 5.4. The coefficients h(e1,e2;p,q) satisfy the following relations:
h(e1,0;p,q) + h(e1,0;p,¢ — 1) — 2h(e1, 1;p,q — 1) — 2h(e1,1;p — 1, — 1) = 0,
h(e1,1;p,q) + h(e1,1;p,¢ — 1) — 2h(e1,0;p,q) = 0,
forg>1, 0<p<gqande €{0,1}.
Proof. We obtain the assertion by direct computation. O

Proposition 5.5. The functions @, ., are determined from ®(g,0] recursively by the fol-
lowing equations:

(Z) (—281 + 262 +k—-1-— V)Q[O,I;O] - 47T02y2‘1)[1,0;0] + 47T61y1¢[0’0;0] =0.

(i) For ey € {0,1} and 1 < p < [E522],

471'613/1@[51,0;13] - (281 —-k+1-— V)q)[sl,l;p—-l] -+ 47T01qu)[51,0;p_1] =0.
(iii) For €1 € {0,1} and 0 < p < [F=5=1],
Ame1y1®le; 1) — (200 —k+1- V)‘I’[el,o;p] =0

Proof. By rewriting the equations (4.1) and (4.2) in the case of ¢ = 0 in terms of @[, .,.;), we
have

(=201 + 202 +4mcoys + k— 1 — V)‘i’[o,1;0] + 47rcly1<I>[0’0;0]
+ (=201 — 4dmcayz +k — 1 =)@ g0 = 0,
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(=201 + 202 — dmcoys + k — 1 — I/)Q)[O,l;o] + 47T61y1¢[0,0;0]
+ (201 — 4mcoys — k + 1+ V)(I)[l,O;O] =0.

Adding up these equations, we obtain (i).
We rewrite the equation (4.3) in terms of Wt as follows:

(5.2) drery 9 + (200 -k +1—v)T) =0,

(5.3) 2meryr (U9 g + Vo + Vg1 + 95 ) + (200 —k + 1 —v) (29 + TL) =0,
(5.4) 2me1y1 (o1 + 00 — W — U0 )+ (200 —k+1—v) (T - TL) =0
for 1 < ¢ <k — 1. The equations (5.3) and (5.4) are equivalent to

(5.5) 2rery1 U3 + (201 —k+ 1 —v) 0] =0, ,

(5.6) 2me1y1 (Pgtope, + Uhe,) + (201 —k+1-0) T2 =0

for2<q¢<k—e. .
By rewriting the equations (5.2), (5.5) and (5.6) in terms of @y, .,..,1, we have

(57) . 47{'613/1@[61’1;0] — (281 —k+1- V)q)[El,O;O].: 0,
q
(58) (_1)5'1 {Z(h(ala pr, q— 1) + h(El, 07p7 ‘I))Zﬂ'clqu)[el,o;p]
p=0
g—1
- Z (201 —k+1—v)h(e1,1;p,q — 1)@[51,1;17]}: 0,
p=0
r
(59) (—'1)61-'-1 Z{(h(f’:l, l;pa r—= 1) + h(81, L;p, r))zﬂclqu)[el,o;p]

_ (231 —k+1- y)h(61,0;Pa 7")‘1)[51,1;17]} =0

for e € {0,1}, 1 < ¢ < k—_zﬂ] and 1 <r < [k;ng] By using the relations in Lemma 5.4,
the equations (5.8) and (5.9) become

(_1)61 h(gla I;p,q— 1){47rcly1((1)[61,0;p] + @[61,0;p+1]) - (261 -k+1- V)(D[el,l;p]} =0,

r
(_1)51-'_1 Zh(el, L p, T) {47rcly1¢[e1,0;p] - (281 —k+1- V)(I)[el,l;p]} =0,
p=0

respectively. From these equations and (5.7), we obtain (ii) and (iii). O
By above proposition, it suffices to consider only the function @[ g,q-

Proposition 5.6. The function ®jg,0) satisfies the following system of partial differential
equations.

(5.10)  (4Ag — 4k — 3v% + 2kv + k* — 1)@ 0,0 = 0,

(5.11)  {4A3 — 4k0} + 4k°01 + 16kn°clyf + (v — k) (v + k + 1) (v + k — 1) }®[g 9,0) = 0.
Proof. From Proposition 5.5 (i), (iii), we have

(5.12) (=201 + 202 + k — 1 = v)®jg 1,0) — 4me2ya Py 0,0) + 411 Ppo 0,0 = 0,

(5.13) dmery1 ®po,150) — (201 —k + 1 —v)@0,0) = 0.
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We also have the following equations by rewriting the equations in Proposition 4.5 (ii) in terms
of @[, ¢, in the case of ¢ = 0:

(5.14) {Ag + X(V,a)(CZ)}‘I)[O,O;O] = 2kmc1y1®0,150) = 0, .
(5.15) A = X0 (C3)}®[0,050] — 2kme1y10290,150) + 4k7r20102y1y2<1>[1,0;0] =0.

Multiplying the both sides of the equations (5.14) and (5.13) by 4 and 2k, respectively, we
have

{442 + 4X(1,0)(C2) } @(0,0,0) — 8kTe1y1®po,1,0) = O,
—2k(200 —k+1- V)‘I)[o,o;o] + 8kme1y1®po,1;0) = 0.

Adding up these equations, we obtain the equation (5.10).
Multiplying the both sides of the equations (5.13), (5.12) and (5.15) by k(201 — k — 1+ v),
4kmciy; and 4 from the left, respectively, we have

— k(201 —k = 1+v)(201 —k+1—v)® g, + 4kmc1y1(201 — k+ 1+ 1)@ 1,9 = 0,
16km°ciy; ®(0,0,0) + 4kmeryr (—201 + 202 + k — 1 — v) @) 1,9) — 16km>c1c2y192P(1,0,0 = O,
{443 — 4X(1,0)(C3) }10,0,0] — 8kmC11102P0,150) + 16kT creay1ya®py 0,00 = 0.

Adding up these equations, we obtain the equation (5.11). O

Proposition 5.7. We put (I1,13,13) = (—v + k, %, %’““) and assume l; —1; € 27 (1 <
i # 37 <3). Let {\1, 2,3} be a permutation of the three complex numbers {l1,l2,l3}. Then
the power series solutions around (y1,y2) = (0,0) of the system in Proposition 5.6 are given

by

Do) = vy SO (2=3222) L (reyn) P (meays)
0,0;0 = — - — — .
10,00 L 0 m!n!(/\l §z+2)m(xl ,\3+2)m()\1 /\2+2)n(A3 §2+2)n

Here the symbol (a)y, means T'(a+ m)/T(a).
Proof. Let
P1o,0,0) (%) = ¥1"v5” Z Amn(meryr)™ (meays)"

m,n>0
be a formal power series solution around (y1,y2) = (0,0) of the system in Proposition 5.6 with
the normalization Agp = 1. From the equations (5.10) and (5.11), we obtain the following
recurrence relations:
{4(p1 +m)? + 4(p2 + n)? — 4(u1 +m)(u2 + n) — 4k(pr +m) — 302 + 2kv + k2 — 1} Ay
- 16Am—2,n - 16Am,n—2 =0,

{4(u1 +m) (1 — p2 +m —n)(ug + 1) — 4k(u1 + m)? + 4k%(u1 + m)
+W—-kv+k+1)(v+k—1)}Ann+16(u1 +m)Amn—2 — 16(u2 +n — k)Am—2, =0

for m,n > 0. Here we put A, = 0 when m < 0 or n < 0. From these equations, we may
write

Ppo,0,0) (%) = vy 4> Z Crn(me1y1)*™(meay2)™™.

m,n>0
Then above recurrence relations become
(5.16)
{4(p1 + 2m)? + 4(p2 + 2n)* — 4(p1 + 2m) (ug + 2n) = 4k(p1 + 2m)

— 3% 4+ 2kv 4+ k* = 1}Cpyp — 16Cy—1n — 16Cp n—1 = 0,
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(5.17)
{4(m1 +2m) (1 = p2 + 2m — 2n) (ug + 2n) — 4k(p1 + 2m)? + 4k (uy + 2m)
+ (W= B) W+ k+1)(u+k —1)}Cmn + 16(u1 + 2m)Crn1 — 16(uz + 21 — k)Crn_10 = 0

for m,n > 0. Here we put C’mn‘—Owhenm<Oorn<0
Multiplying both sides of the equations (5.16) and (5.17) by (u1 + 2m)/4 and 1/4, respec-
tively, we have

(u1 +2m){ (w1 +2m)* + (p2 + 2n)? — (u1 + 2m)(,u2 +2n) — k(u1 + 2m)
+ lily + lals + I3l — k*}Cmpn — 4(u1 + 2m)Crm—1,n — 4(pt1 + 2m)Crn_1 = 0,
{(1 +2m)(p1 — p2 +2m — 2n) (2 + 2n) — k(u1 + 2m)> + k> (u1 + 2m)
— llal3}Cmpn + 4(p1 + 2m)Crpe1 — 4(p2 + 2n — k)Cry1. = 0.
Adding up these equations, we have '
(5.18) (w1 —I1 +2m)(p1 — lp 4+ 2m)(p1 — I3+ 2m)Cp
—4(p1 +p2 —k+2m+2n)Cp1n =0.
Since
4u? + 4p3 — dpgpg — 4kpy — 3% +2kv + k2 —1 =0,
(1 =) (p1 = o) (p1 —13) =0

from the equations (5.16) and (5.18) in the case of (m,n) = (0,0), we see that characteristic
indices (u1, u2) take the following six values:

(11, p2) = (b, =1 + k) (1<i#j<3).

Let {A1, A2, A3} be a permutation of {l1,ls,l3} and we put (u1,pu2) = (A1, —A2 + k). Then
the equations (5.16) in the case of m = 0 and (5.18) become

87L()\3 — Ao+ 277,)007” - 1600,71_1 =0,
2m (A1 — Ao 4+ 2m) (A1 — A3 +2m)Crp — 4(A1 — A2 +2m + 2n)Cr_1 p, = 0.

From these equations, each coefficient Cy, 5, is determined recursively, and we obtain the formal
power series solutions in the statement. O

Theorem 5.8. We put (I1,12,13) = (—v +k, %, %’“"’1) and assume l; —1; €27 (1 < i #
Jj < 3). We define the functions 3(d) by '

[e1,€2;p]
1,2 —l k
>3 o I e
——l =142 li—l3+2 li—=l+2 Il3—la+42 ’
m,n>0 Wn'( )m—81—82+5162—p( : 2 )m—5152—p( 2 )n-—el—p( 2 )n——el
oY W) =y y"*"*’“
[e1.62:p) 1
x Y ( _lz—+2)m+n—p(7T01y1)_51_62_2”+2m(m2y2)51+2n
Li—la42 li—l3+2 l1—-l342 lo—1l342 ?
m,n>0 m!n'( = 2 )m 61—62+e1ez—p( ; 2 )m—61sz~p( ; 2 ) —p( : 2 )n+sl
@(2»1) (y) =y y—l1+k
[e1,€2;p)] 1 »
X Z (l2 l1+2)m+n+e1+ez—6162+p(7rcly1)61+62—25162+2m(7rc2y2)61+2p+2n
—l lo—1142 lo—l3+2 la—l14+2 I3—l142 ’
m,n>0 m'n' )m+61+62—6152+p( 2 )m+61+5‘2—26162 ( 2 )n+€1+p( 2 )n+p
(2a3) —l3+k

q)[51»525p] () = yl Y2
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l—l342 _
X Z (_2_23i)m+n+61+sz—6152( cly1)61+€2 261€2+2m(7rc2:'>/2)61+2n
l +2 lo—l3+2 l1—l3+2 lo—I3+2 ?
m,n>0 m'n'( = )m+31+52—5152+p( 2 )m+81+€2—28162 (4_53_) —p(_2~2$_—-)n+51

(3,1)

_ —li1+k
@[El,fz;P](y) y Yo

(l —l1+2)m+n+€162+p(ﬂ.cly1)—61—ez+26152—|—2m(ﬂ02y2)61+2p+2n
X Z m|n| —l1+2) (lg—lg+2) (lg—l1+2) (lg—l] +2) ?
m,n>0 m+e1e2+p 2 m—e1—ea+2e1€2 2 n+e1+p 2 n+p
3,2 l Ic
X Z (l _l2 +2)m+n—61+6162(Wclyl)_El_€2+25162+2m(7m2y2)—.61+2n
min!( la—11+2 +2) (l3—12+2) (ll—lz+2) (lg—l2+2) ’
m,n>0 2 m+e1ea+p 2 m—e)—eg+2€1€9 2 n—ei1—p 2 n—e1
fore1,e2 € {0,1} and 0 < p < [E=54=<2]. Then, for 1 <i# j < 3, there is an element M[(”,’c])

of Wh(m(,,5),&,75) whose [e1,€2; p]-component is (=1)s17k (/= 1)62_ky1y2<1>g’1j)€2_p]. Moreover,
the set { (m ‘1 <i1#j< 3} form a basis of Wh(m(,, o), &, 75)-

Proof. The function (I)Eo%)-o] is the same as the solution in Proposition 5.7 when (A1, Ag, A3) =

(Li,15,l6—i—j). Moreover, from Proposition 5.2 and the irreducibility of 7, ., it follows that
the dimension of the space Wh(7(, 4),&,7;) is 6. Therefore, if we show that the functions

Pleyeap] = <I>f€’lj )52 ] 2T€ determined from ®pg .0 = EO %)0] by the equations in Proposition 5.5,

the proof is completed.
We discuss only the case of (4,j) = (1,2) here since other cases are similar. We put

e1,62;0] _
Ol =

(a=p2)

- mlnine - if m,n>0

m!n!(M+H)m—€1—€2+€152—p(l_lil;lz)m—-elez—p(h_;z—tz)n-—el-—p (L‘s_;z+_2)n_£1 ’ ’ )
0, otherwise.

Then we have
.1)(1,2) (y)_yl y—l2+k Z C[q,eg,p](ﬂ.clyl) €1—€3— 2p+2m(ﬂ_c y) —e1+2n

[e1,62;p)
mneZ

We have to confirm the following relations obtained from the equations in Proposition 5.5:

(=4m + 4n + 2)CIE0 — 4000 4 40000 — o,
(<r<[57)

(=4m +4p + 3v — k — 1+ 2e1)Clpt# =1 4 40len 0ol 4 g4olHi= = o
. . —e -1
(—dm +4p +3v — k — 1 + 2e1)CLELOP) + 4CLL1#) = 0 ( <p< [ 2 ])

for m,n € Z. We prove these equations by direct computation using

i dm+4n—-3v+k+1 " m-ln = dm+4dn—-3v+k+1 ™" 7
4OEL0] _ Adm—-4p—-3v+k+3—2e1)(d4n —4p - 3v+k+ 5 — 4eq) Olentip—1]

s  4dm+4dn—4p—-3v+k+5—4e mn '
40[51’ 1] _ 4m(4m dp — 3v + k + 3 — 2¢1) C[gl,l;p_l],

“n T 4mtdn—4p-3v+k+5—4e
ACELIP = (4m — 4p — 3v + k + 1 — 261)Cle07).
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5.3. Primary Whittaker functions. From the multiplicity one theorem of Shalika [38] and
the result of Wallach [47], it follows that a primary Whittaker function for (Tw,0), &5 Tx) is
unique up to scalar multiple. We give the explicit formula of the primary Whittaker function
for (7(,,0),&, 1) as follows.

Theorem 5.9. We put (I1,l2,13) = (-v+k, %T—l, -”—'"%‘—’i) and assume l; —1; ¢ 27Z (1 < i #
Jj <3). Forej,ea € {0,1} and 0 < p < [@:%_ﬂ], we put
(W) —
(I)[Ehez;ll](y) -
(=1)%2 Sgn(Cil+€2C;1) /p1+\/—_loo /pz+\/—_100
4(2my/~1)? p1—v=Too Jpa—v/—Too

Vier,e2i0) (81, 52) (mle1lyr) *t (wea|y2) ~*2ds1dsz,

where
1"(51+l1—€1—62—2p)1'\(81+l2 )r\(sl—l-ls ) F(Sz—l1+k+51+2p)1-\( 82—l2+k)1'\(82—l3+k)
Vie eaip) (81, 52) = : ; Fz(.51+$2_;k_62—)2 2 2

Here the symbol sgn(a) (a € R*) means sgn(a) = a/|a| and the lines of integration are taken as

to the right of all poles of the integrand. Then there is an element Wi, x) of Wh(m(, o, &, 75) mod
whose [1, €2; p]-component is (—1)51_’“(\/—1)52‘ky1yzfl>fx)az;p]. l

Moreover, the relation between W,y and M[(Vi’g]) (1 <i#j<3) is given by
(5.19) C Wew@) = Y T (k) M ()
1<i#j<3

where

690, 8) = (alen ) (rfeu) 41 (S o (L= Yo (B =),

Proof. Stirling’s formula for the Gamma function ([48, §13.6]) shows that the integration of

@E::/)Ez,p] is absolutely convergent and defines a moderate growth function. Hence, if we can

show the expansion formula (5.19), we may conclude that the function Wi, 4 is the Ao-radial
part of the primary Whittaker function.
We may justify moving the line of integration to the left or right, avoiding the poles of the

integrand of ‘IJEW) Moving the line of integration to the left and summing the residues, we

€1,62;p]"
obtain
(W) (y) = (_1)62 Sgn(cil_l-ezc;l)

[e1,62;]

4
x Y Res(31,52)=(111p2)(V[el,c‘z;p](sl’32)(7T|Clly1)_sl(7T|02|y2)_32)-
(p1,p2): pole '
Now, we fix €1, €2, p and put
ri1=—-li+er+ea+2p, mo=—lp—¢€1—ea+2e169, T13=—l3+¢e1+¢e2— 2169,
ro,1 =11 — k — €1 — 2p, ro2 =la — k + €1, ro3 =1l3—k —e1.

(W)
[e1,62;p]

{(s1,82) = (r1i —2m,re5 —2n) | 1 <i#j <3, myn € Zxo}.

The residue Res(s, s)—(ry —2mra, ~2n) Ve cos (51, 52) (7le|y1) = (zlealya) — s given by

Then the set of the poles of the integrand of ® (y) are given by

(o DA - [ (Bpt  [(f7 — (2t )

m!n! p(m_%m —m—n)
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2m—ri,; ( 2n—r2,j

x (wlerly1) 7|calys)
By direct computation using
—1)»
(e =n) = Ty =,

n
we have

Z Res(sl,52)=(Tl,i—2m,r2,j—2n) (‘/[51,62;17] (s1,82)(mlet]yr) ™™ (7T|C2|y2)_52>
m,n>0
= 4(-1)* sgn(c§1+€2cgl)r(i,j)(y, k) - @Ej;{)w;p] (y)-

O

Remark 5.10. By the duplication formula ([48, §12.15]) 22°71D(2) (2 + 1) = v/7T(22), we
(W)
e1,62;p]

can rewrite the integrand of ® (y) as follows:

—89

Vier e2i01 (815 82) (mlerlyr) * (7] ealy2)
I(otthpimao) (s, 4 (2R (5, - 2ok
F(s] +32;-k—€2 )

— 2-—k+3ﬂ.

X (2mlerlyr) ™ (2m|ezly2) T2,
This simplification is compatible with the fact that the standard gamma factor defined from the
Langlands parameter of 7, ») is also simplified.

Remark 5.11. Following the suggestion of the referee, we explain the reason why our explicit
formulas of Whittaker functions for generalized principal series representations (Theorem 5.8
and 5.9) resemble to those for principal series representations ([2, §2], [27]). By the subrep-
resentation theorem ([20, Theorem 8.37]), our generalized principal series representation is
embedding into some principal series representation. Therefore, ‘in principle’, our formulas
should be obtained from the results in [2, §2] and [27], by considering the Whittaker realiza-
tion of the explicit (g, K)-module structure in Part 1. Actually, we can obtain our formulas in
this way when Blattner parameter & is small. However, for general k, it seems to be difficult
to compute in this way because of the combinatorial complexity.
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Part 3. The Eisenstein series for GL(3,Z) induced from cusp forms.

1. INTRODUCTION

In the theory of automorphic forms, the investigation of their Fourier expansions is a fun-
damental work and gives us many significant informations. Especially, Fourier coefficients of
Eisenstein series have been studied by many mathematicians ([1], [7], [15], [23], [33], [37], [39],
.etc).

In the case of GL(n), Piatetski-Shapiro [35] introduced the Fourier expansion of an automor-
phic form in terms of Whittaker functions, which is called the Fourier- Whittaker ezpansion.
This expansion plays an important role in the study of automorphic forms on GL(n). How-
ever, there are few references of the explicit description of the Fourier-Whittaker expansions
of the Eisenstein series, and they are not exhaustive even for the case of n = 3. The Fourier-
Whittaker expansions of the minimal parabolic Eisenstein series for GL(3,Z) are obtained
by Vinogradov and Takhtazhyan [45] and by Bump [2]. Friedberg [5] also obtain those of
the maximal parabolic Eisenstein series for GL(3,Z) induced from the trivial character. The
main purpose of this part is to investigate the Fourier-Whittaker expansions of the maximal
parabolic Eisenstein series for GL(3,Z) induced from cusp forms.

Let us explain our problem in a more precise form. Before describing our situation for
GL(3,R), we recall the general setting of the theory of the Eisenstein on a real reductive Lie
group G. Fix an arithmetic subgroup I', a maximal unipotent subgroup Ny and a maximal
compact subgroup K of G. We take a parabolic subgroup P = NAM of G with the Langlands
decomposition. Here AM and A are the Levi component and the radial component of P,
respectively. We put Ty = T'N M and let L2(T'p/\M) be the subspace consisting of all
¢ € L*(T'p/\ M) such that

/ © p(ng)dn=0 (g€ M)
J@pnN\N .

for a unipotent radical N’ of any parabolic subgroup of M. Via the right translation of M,
L2(Ta/\M) becomes a M-module. If (, Hy) is a irreducible subrepresentation of L2(I'y/\M),
we call m a cuspidal representation of M. For v € ag, let I,(7) be the associated (gc, K)-
module of the parabolic induction Ind(1y ® €**” ® 7). Here g and a are the Lie algebras of
G and A, respectively. We take a flat section ag x G 3 (v,g9) — F,(9) € Hy for I,(m), ie.
for v € ag, F, is contained in I,(7) and for k € K, the value of F, (k) does not depend on v.
Then we define the Eisenstein series E(F;g) by

E(F;9)= Y, AoF,(yg) - (ge @)
ve(TNP)\I'

where A: Hr 3 ¢ — ¢(1) € C. For a unitary character ¢ of Ny such that ¥(I'N Np) = 1, we
define the Fourier-Whittaker coefficient Ey(F,;g) by

ByFiig)= [ E(Finghb(n)dn.

(P'NNo)\ No ’
In this part, we consider the case of G = GL(3,R), I' = GL(3,Z) and P is a maximal parabolic
subgroup of G. For a flat section F, contained in the minimal K-type of I, (), we give the
Mellin-Barnes type integral expression of Ey(F,;g) in Theorem 6.16, which is analogous to
Bump’s formula [2]. This explicit formula gives us another proof of the analytic continuation
and the functional equation of E(F};g), which were originally proved by Langlands [24] for
general reductive groups. In principle, by using the description of the (g¢, K)-module structure
of I,(n) in Part 1, we can obtain the explicit formulas of the Eisenstein series at the whole
K-types. We expect to utilize our formula for deeper study of the Eisenstein series, such as
Rankin-Selberg convolution.
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Let us explain the contents of this part. In §2, we introduce basic notions of the Fourier-
Whittaker expansions and the Eisenstein series on G = GL(3,R). In §3, we recall the basic
facts about a cuspidal representation 7 of M. In §4, we give an explicit construction of a family
of flat sections, which becomes a basis of I, (7). Moreover, we introduce the (g, K )-embedding
from I, () to some principal series of G. In §5, we give the expression of Ey(F,;g) in terms of
the Jacquet integrals. Here the Jacquet integrals are Whittaker functions for principal series
representations of G, introduced by Jacquet [17]. We may realize the Jacquet integrals as
Whittaker functions for I, (w) via the embedding introduced in §3. In §6, we evaluate the
Jacquet integrals and give the explicit formulas of Ey(F,;g) at the minimal K-type of I, ()
in Theorem 6.16.

2. PRELIMINARIES

2.1. The structure of GL(3,R). We denote by Z, Q, R and C the ring of rational integers,
the rational number field, the real number field and the complex number field, respectively.
Let Z3; be the set of integers which are no less than [ € Z and R, the set of positive real
numbers. For z € C, we denote the real part and the imaginary part of z by Re(z) and Im(z),
respectively. Let 13 be the unit matrix of degree 3 and O, the zero ‘matrix of size m x n.
For a Lie algebra [, we denote by I[c = [ ®g C the complexification of [. Moreover, we denote
the universal enveloping algebra of [ and its center by U({) and Z(I), respectively.

Let G = GL(3,R) and ' = GL(3,Z). For a Cartan involution 8: G > g — g~ ! € G, its
fixed part K = {g € G | 6(g9) = g} = O(3) is a maximal compact subgroup of G. Here g and
g~ ! mean the transpose and the inverse of g, respectively.

Let g = gl(3,R) be the Lie algebra of G. If we denote the differential of # again by 6, then
we have §(X) = —'X for X € g. Let £ and p be the +1 and the —1 eigenspaces of 8 in g,
respectively, that is,

t={Xecg|'X=-X}=0(3), p={Xe€g|’X =X}

Then ¢ is the Lie algebra of K and g has the Cartan decomposition g = ¢ & p.

Let E;; be the matrix unit in g with 1 at (¢, j)-th entry and 0 at other entries. We put ag =
@D<i<sREi. Then ag is a maximal abelian subspace of p. If we put ng = D1« <j<3 REij,
then we have an Iwasawa decomposition g = ng @ ap ® €. Let Ag and Ny be the analytic
subgroups corresponding to ay and ng, respectively. Then also we have G = NyAoK.

We fix a complete system {w; € Nx(Ag) | 0 < i < 5} of representatives of the Weyl group
WG = NK(Ao)/ZK(Ao) as follows:

0 -1 0 1 0 0
wo = 13, w1 = 1 0 0 ; wo = 0 0 -1 s
0 0 1 01 0
w3 = wiwsy, w4 = Wawi, W5 = W1WW1 = WaW1W2.

Here Nk (Ap) and Zx(Ao) mean the normalizer and the centralizer of Ay in K, respectively.
It will be convenient to introduce the following notation:

1 =1 z3
n[$1,$2,$3] = 0 1 Z2 € NO)
0 0 1

aly1, Y2, y3] = diag(y1y2y3, y2v3, y3) € Ao,

where z1, 29,23 € R, y1,42,y3 € Ry. Then we have

Ao = {aly1,y2,y3] | y1,92,y3 € Ry}, No = {n[z1, 22, x3] | x1, 22, z3 € R}.
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2.2. Automorphic forms for I' on G. For z,9 € G and a function F on G, we put

(R(9)F)(z) = F(zg).

We denote the differential of R again by R.
An automorphic form for I' on G is a smooth function ¢ on G satisfying the following
properties:
(1) ¢(vg) = ¢(g) fory €T, g € G.
(2) ¢ is K-finite, i.e. the C-vector space spanned by R(k)¢ (k € K) is finite dimensional.
(3) ¢ is Z(gc)-finite, i.e. the C-vector space spanned by R(D)¢ (D € Z(gc)) is finite
dimensional.
(4) ¢ is moderate growth, i.e. there exists r, C € R such that |¢(g)| < C||g||" for g € G.
Here || - || is a norm on G defined by ||g||? = >ij lgi;12 + | det(g)| ! for g = (gi;) € G.
We denote by A(T'\G) the space of automorphic forms for I' on G. Via the right translation
R, A(T'\G) becomes a (gc, K)-module. '

2.3. Whittaker functions on G. We put e(z) = exp(2mv/—1z). For ¢1,c2 € R, we define
the unitary character ¥ = 4, ¢, of Ny by
Y(n[z1,z2,23]) = e(c1z1 + c2x2), ' z1,%2,23 € R.

The unitary characters of Ny is exhausted by characters of this type. Moreover, it holds that
Yer,eo (TN No) =1 if and only if ¢1,¢2 € Z.
We put

o0 D) = %0 W(ng) = ¢(n)W(g), (n,g) € No x G,
Crg(No\G; ¥) = {W € C=(G) W is moderate growth " }

and gc and K- act on this space by the right translation R. .

Let (II, H) be an admissible (gc, K)-module. For a (gc, K)-homomorphism from Hp to
Cig(No\G; 9), its image is called Whittaker model of IT and functions in its image are called
Whittaker functions for II.

2.4. The Fourier-Whittaker expansions. For m;,my € Z and ¢ € A(I'\G), we define the
Fourier- Whittaker coefficient ¢, m, of ¢ by

1 1 pl
¢m1,m2(9)?/() /0 /0 (n[€1, &2, E3]g)e(—mié&r — mobo)dEdéadés.

We note that ¢ — ¢m; m, is a (gc, K)-homomorphism from A(T\G) to Cge,(No\G; ¥y m,)-
Hence ¢, m, is a Whittaker function for A(T'\G).
n € Z} .

We put I'? = SL(2,Z) and
2 1 n
{0 1)

Proposition 2.1. An automorphic form ¢ € A(I'\G) has the following ezpansion:

ad 0
6= Y bmaldt > Y bmma (552 )0).
mip=—00 YET2\I'2 (m1,m2)€Z? ’

mo>0

This proposition was originally proved by Piatetski-Shapiro [35], in the adelic setting, on
GL(n). Also see Shalika [38, Theorem 5.8]. Bump [2, §4] have specialized the original proof
by induction on n to the case n = 3, and translated from the adele group to GL(3,R). The
expansion in Proposition 2.1 is called the Fourier- Whittaker expansion of ¢.
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2.5. The Eisenstein series induced from cusp forms. In this section, we define the Eisen-
stein series on G' which are induced from cusp forms of the standard maximal parabolic sub-
group

x % *
P = x x *x | €G
0 0 «

We specify the Langland decomposition P, = Ny A1 M; by

N h 02,1
= { (1)

A1 ={a[l,y2,y3] | y2,y3 € Ry}, Ni = {n[0,z2,z3] | 72,23 € R}.

h € SL*(2,R), ¢ € {il}},

Here SL*(2,R) = {g € GL(2,R) | det(g) = +£1}. Moreover, let m; be a Lie algebra of M;
and put I'ys, =T N M. ,

For v1 = (v1,1,v1,2) € C?, we define the character 4; 3 a = a”* € C* by a[l,y2, y3]"* =
y3 My T We put pr = (1/2, -1).

For v1. € C? and an admissible representation (7, H;) of Mi, we define the induced (gc, K)-
module I, () by

F: K-finite,
F(namg) = " *Pn(m)F (g),
(n,a,m,g) € Ny x A1 X My X G.

_ ) F:G— HY
Ly (m) = smooth
on which gc and K act by the right translation R. Here HZ® is the subspace consisting of all
smooth vectors in H,. We call C? x G > (v1,g) = F,,(g) € H® a flat section for I, () if F,
is an element of I, (7) and for k € K, F,, (k) does not depend on v; € C2.

We put

LY(Taf\ M) = {go € L2(rg1\M1) ‘ /01 ¢(n[x,0,0lm)dz =0, m € M1}

and M acts on this space by the right translation R. If 7 is an irreducible subrepresentation
of L2(T'a \M1), we call 7 a cuspidal representation of Mj.

Let (7, Hx) be a cuspidal representation of M; and define the evaluation map \: H; — C
by ¢ = ¢(13). If Re(v11 — v12) > 3/2, for F € I, (r), the Eisenstein series

(2.1) E(F;g)= Y, XoF(y)
YE€(TNP\T

is well-defined, and is absolutely convergent. Here we note that F — E(F;g) is a (gc, K)-
homomorphism from I, (7) to A(T'\G).

If we take a flat section F,, for I,, (), the Eisenstein series E(F,,;g) can be realized as
a function of vi. In §6, we show that E(F,,;g) has the analytic continuation to all v; € C?
and satisfies the functional equation at the minimal K-types of I, (7) by using the Fourier-
Whittaker expansions.

3. CUSPIDAL REPRESENTATIONS OF M;

In this section, we recall some facts for cuspidal representations of M;. See [3] and its
references for details. (Since M; ~ SL*(2,R) x {£1}, cuspidal representations of M; are
essentially same as those of GL(2,R).)
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3.1. The principal series of M;. We put

N = {n[z,0,0] [z € R}, Ap, = {aly,1/vy,1] |y € Ry},
Ky, = KN My, M= {diag(e1,e2,€3) | & € {£1}, 1 <i <3},

Then My = N Ap, Ky, is an Iwasawa decomposition of M;. We take a set {mo,;|1<i<3}
of generators of My with

-1 00 -1 0 0
mo,1 = 0 10 y mo2 = 0 -1 0 = 1767,—, mo,3 = —-13.
0 01 0 0 1

It will be convenient to introduce the following notation:

fi[z] = n[z,0,0] € Nppy, afy] = aly, 1/+/y,1] € Angy,

~cosf sinf O
kg = | —sinf cosf 0 | € Ky,
0 0 1

where z,0 € R, y € R;. Moreover, we put K3, = {Rg | 0 <0 < 27}.

For 7 € C, we define the character Ays, 3 a — a” € C* by @[y]” = 7. For 61, 4,03 € {0,1},
we define the character o = o(5, 4, 5,) of Mg by o(mg;) = (—1)% (i = 1,2,3). The characters
of My is exhausted by characters of this type.

For 7 € C and a character o of M, let T(5,0) be a principal series representation of M; with
the representation space

H _{ foMoc | Jmamg) = aho(m)£(), }
(P,0) =

My x M
measurable (n,a,m,g) € Ny X Apy X Mo 1)
flKMl e Lz(KM1)

on which M; acts by the right translation, that is, 7(; ,)(g9) = R(g) (9 € M1). We denote by
H(D,a),KMl the K, -finite part of H(j ;).

Since M1 = Npy A, K, and Ky, = MOKZC{,II, for g € M;, we have the decomposition
g = 7(g)a(g)m(g)ke, with 7i(g) € Nupy,alg) € Aa,,m(g) € My and 0 < 6, < 2m. For
q € §3 + 2Z, we define f(,;,a;q) € H('ZG),KMl by

00 (9) = a(g)"+ 2 a((g)) exp(v/—Tgby).

Then we have an irreducible decomposition

H(I),O'),KMI = @ ‘/(1770'7(1)
q€62+2Z >0

as a K, -module, where Vi 5.0y = Cf(5,0:9) + Cf(5,0,—q)- Here the action of Ky, on Vi 5.) is
given as follows:

(31) 7T(l?,o)(i‘}'@)f(l?,a;r) = exp( \Z _1r0)f(ﬁ,a;r)a
(3.2) T(5,0)(M0,1) f 5.0y = (= 1) £, 551
(3'3) T(0,0) (m0,3)f(17,a;r) = (_1)63f(17,a;r)

for r € {+q} and 0 < 6 < 27.
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3.2. Some subrepresentations of 7(; ;). If d2 =k mod 2, T(k=L 5 has a subrepresentation
2 bl
D, whose representation space is

Hpg, ) = @ V(%—l,a;q)
q€k+2ZZO

for k € Z»7 and a character o = 05, 5,,6,) of Mo. Here é means the Hilbert space direct
sum. Then D ) does not depend on 4y, i.e. D(kya(o,sz,sg,)) ~ D(k,d(1,52,s3))' Moreover, for each
discrete series representation D of Mj, there exists some (k, o) such that D is infinitesimally
equivalent with D ;).

Let (7, H;) be a cuspidal representation of M; with its Kpy,-finite part Hy K, - Then it
is known that 7 is isomorphic to unitary principal series or discrete series. Since mgz2 and
mo3 act on L2(T'p,\ M) trivially, we see that 7 is infinitesimally equivalent with T(5,0(6.0.0)
for some (7,6) € (V=1R) x {0,1} or D44, ,,) for some k € 2Z;.

It is convenient to introduce the following notations:

. (I;’ 6’ ZZZO) if H”’KMl = H(D,U(SO 0))7KM1’
(o, 3(), S (m)) = { (552,0,k +2Z50) if Hyk,, ~H

D(k,o(o’o’o))aKMl )
Or = 0(§(n),0,0) S(ﬂ-) = S+(7T) U (—S+(7I‘)).

We denote by (7, Hz) the subrepresentation of 7(;, ) whose representation space is

H; = @ V(ﬁ«,anm): @ Cf(ﬁmaw;q)'
qeS4(m) geS(m)

Then 7 is infinitesimally equivalent with 7.

3.3. The Jacquet integrals on M;. For ¢ € R, we define the unitary character 1. of Ny,
by ¥ (n[z]) = e(cz). We put

W(ng) = ¥c(n)W(9),

Crg(Na \Mi;9c) = { W € C°(M1) | (n,g9) € Ny X My,
W is moderate growth

and m;c and Ky, act on this space by the right translation R.
When Re(7) > 0, we define the Jacquet integral We(f;g) on M; by

W(f:g) = /R flundilrlgle(~cx)dz (g € My)

for c € R* and f € H3,0),Ky, - 1t is easy to see that . f — We(f;9) is an (mic, K )-
homomorphism from H(s 4) k,,, to Cig(Nary \Ma; ).

By using the flat section f(5 5,q) for Hp o), Ky We consider the analytic continuation of the
Jacquet integral to all 7 € C. From the definition, we have

Wc(f(ﬂ,a;q); g9) = e(x)Wc(ﬂ'(D,a) (k)f(ﬁ,a;q); d[y])
for ¢ € M; with the Iwasawa decomposition g = 7n[z]ay]c (z € R, y € R4, & € Kuy).
Therefore, from the formulas (3.1), (3.2) and (3.3), we see that We(f(5,4q); 9) is determined by
Wc(f(ﬂ,a;:i:q); d[y]) Since

S N S A
(3.4) fo0:0) (writ[z]aly]) = <sz+ya> (75%)
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we have
-1 -1

. (—v/=1)47" 2|2
3.5 Welfis.0:00; =
( ) c(f(u,a,q) a’[y]) F(f/-i- _5_ +sgn(c)%) |
by using the formula in [4, p.119 (12)]. Here sgn(c) = ¢/|c| (c € R*), I'(s) is the Gamma
function and Wi ;,,(2) is the confluent hypergeometric function introduced in [48, §16.12]. The
formula (3.5) gives the analytic continuation of We(f5,5.9);9) to all & € C.

ngn(c)%,l? (47r|c|y)

3.4. Explicit structures of cuspidal representations. For n € Z>1, we define the Hecke
operator T'(n) on LZ(T s, \M1) by

1 Z 1 a b 0
(T(n)e)(g) = —= pl—=104d 0 |g
v a,b,d€Z>0, vn 0 0 +/n
ad=n, 0<b<d

where ¢ € L2(T'p,\M1). If a cuspidal representation 7 of M is contained in a common eigen-
space of the Hecke operators T'(n) (n € Z>1), we call 7.a Hecke-eigen cuspidal representation.
We concentrate our attention to Hecke-eigen cuspidal representations since L2(T'pz, \M1) de-

compose into a Hilbert space direct sum of those.
Let (7, Hy) be a Hecke-eigen cuspidal representation of M;. The element ¢ of H, has the

Fourier-Whittaker expansion ¢(g) =3, ©(™)(g) where

1 v
w“”@)=i/ o (7[Elg)e(—mé)de.
0

Here we note that ¢ — (™ is a homomorphism from Hrk,, to Cou(Na\Mi;¢m) as
(mic, K, )-modules. We fix a (my ¢, Ky, )-isomorphism ¢y : Hi ky, = Hr k), and put or g =
ta(f(#n,0msq))- By the multiplicity one theorem (See for example, [3, Theorem 2.8.1]), there

exists ¢;(m) such that ‘

o (9) =cx(m)|m| ™" Win(f5r,0m10); 9) (q € S(m)).
Then we have ‘
(3.6) Prq(g) = Z Cw(m)|m|_D"Wm(f(17ﬂ,aw;¢1);9)-
m#0

By the standard arguments (which is similar to [3, §1.4]), we obtain the following facts.
Since c;(1) # 0, we may assume that c,(1) = 1. Then, for n € Z>1, ¢;(n) coincides with the
eigenvalue of T'(n) on H, and c;(—n) = (=1)*™¢,(n). Moreover, it holds that

mn
(3.7) lmlesm) = Y e (TF)-
' 0<d| gcd(m,n)
Here gcd(m, n) means the greatest common divisor of m and n.

For each prime number p, we take two complex numbers ar(p), Bx(p) such that a,(p) +
Br(p) = cx(p) and ar(p)Bx(p) = 1. From (3.7), we see that any c,(n) is determined by
{ax(p), Br(P)}p: prime, that is, if ged(m,n) = 1, ex(mn) = cx(m)cr(n) and for a prime number
p and e € Zxg, :
ey _ an(p)H — Br(p)H!

8 )= - 5 |

For s € C such that Re(s) > 3/2, we define the standard L-function for = by L(s,m) =

> m>0 &r(m)m™5. From (3.7), we see that L(s, ) has the following Euler product expressions:

Lis,m) = [ A-calp)p~ +p7%)!

p: prime
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= I Q-ap)p™) 71 - Belp)p™) "

p: prime
We put :
. (—1)6a if 7= T(5,06,0,0))
= koo
i (-1)2, if7= D(k,U(o,o,o))’
IFrR(s+ 7+ 6)TR(s— 7+ 9), ifx= T(,06,0,0))
LOO(S,TF = ) k:.—l ’ o -
T (s+%31), 7= Dk, o)
where Ir(s) = 77*/°I'(s/2) and I'c(s) = 2(2)~°T'(s). Then A(s, ) = Loo(s, 7)L(s,7) has
the analytic continuation to all s € C and satisfies the functional equation
(3.9) A(s,m) = exA(1 - s, m).

4. CONSTRUCTIONS OF FLAT SECTIONS FOR I, ()

4.1. Irreducible representations of K. Let V; be the subspace consisting of degree | ho-
mogeneous polynomials of three variables x1, 22,73 in the polynomial ring C[z1,z2, z3]. For
k € SO(3) and f € V], we set

%l(/("‘)f(wlax%mﬁl) = f(($1,$2,£l,‘3) : K)'

Here (x1,22,23) - £ is the ordinal product of matrices. We put r? = 22 + z3 + 73 € Va. Since
r? is SO(3)-invariant, we can define the quotient representation 7; of 7 on V; = V;/(r2 - Vi_5).
Here we put V; = 0 for [ < 0.

For § € {0,1}, we define the action Tf of K =0(3) on Vf =V, by

70 (k) =(det(k))? 7 (det(k)k), ke K.

Then (77, V) is an irreducible (2 + 1)-dimensional representation and the set of equivalence
classes of irreducible finite dimensional representations of K is exhausted by T;s (6 € {0,1},1 €

Zzo).
We define the basis {Uz(zl)}-lgqgl of V) = V] by
vgl) = (sgn(q)z1 + \/—_1x2)1q|xé_[q| mod 72 -Vj_y, —1<gq<lI.
We denote by (7%, V;%*) the contragradient representation of (72,V?), and take the dual ba-
sis {v,gl)*}_lgqgl of {vél)}_lsqgl. For later use, we compute the actions of £9,mo; € K on
{0} _1<q<t as follows:

(4.1) T,‘;*(/Eg)v((]l)* = exp(—\/—1q9)v‘(1l)* | (0 <0< 2m),
(42) 7" (mo,1 )l = (1)),
(4.3) 7% (mo 3)o{* = (=1)%0{V*.

4.2. Flat sections. We analyse the K-types of I, (77(,;’0)) for ¥ e C, 11 = (v11,v12) € C?
and a character o = o(s, 5, 5,) Of Mo. The target H;,) of functions in I, (7(3)) has a
decomposition:

Hr oy = @ Cl5,010)
‘ q€i2+2Z
Denote the corresponding decomposition of F' € I, (7r(,;,a)) by

F(:L‘) = Z Fq(I)f(ﬂ,a;q)'

q€02+2Z



50 TADASHI MIYAZAKI

From the definition of the space I, (7(5,)), we have
F(mz) = ﬂ(,;,a)(m)F(x) z €G, me M.

For m = kg, mo; € K, comparing the coefficients of f(7,0;q) in the left hand side of the
above equation with those in the right hand side, we have

Fy(Rox) = exp(vV—1¢0)Fy(z) (0 <6 < 2nm),
Fo(mo,1z) = (—1)61F—q($)’ Fy(mosz) = (—1)63Fq(37)-
Therefore F|g(x) belongs to
(4.4) D (Fo@)foop + (D" Fy(mo12) fio,0-g) | Fy € Crin(K59,65)}
q€d2+2Z>¢
where
) _ Fy(Rox) = exp(v/—1¢0) Fy(z), 6 € R,
Cﬁn(K, q, 5) - {Fq € Cﬁn(K) ] Fq(mo,sﬂi) — (—l)‘qu(x), z €K, :

Here we denote by Cgn(K) the space of K-finite functions in C*°(K). Since Py N K = Ky,
and G = P, K, we note that the restriction map F = F|k from I, (7(5)) to the space (4.4)
is an isomorphism of K-modules.

Peter-Weyl’s theorem (see for example, [20]) tells that Cg,(K) is generated by matrix co-
efficients of irreducible finite dimensional representations of K. From (4.1) and (4.3), we see
that Csn (K g,0) is generated by Fis4.) (v € Vi, le Z|,) with

F(‘S,Qav)(x) = (chl)*aTlJ(x)v>a z € K.

Here (-,-) is the canonical pairing on V;** x V}%. Moreover, from (4.2), we see that

Fls4)(mo,12) = (=1)F0F ;5 g4 (2).

Since G = N1A1 MK, for g € G, we have the decomposition ¢ = n1(g)ai(g9)m1(g)x1(g)
with n1(g) € Ni,a1(9) € A1,mi1(9) € M; and k1(g) € K. For q € 65 + 2Z, we define the
function F(lul,ﬂ,a; ) 0 1y, (7(5,0)) by

Floy 5,010 (9) =01(9)" 7 75,0 (M1 (9){ F 53,0,0) (K1(9)) f(5,00)

=+ (—1)l+61+63F(63,—q,v) (Hl (g))f(l"/,a;—‘I)}'

Although the decomposition g = n1(g)a1(g)mi(g)x1(g) is not unique, this definition is well-
defined. Then, by the above arguments, we have the decomposition

Ly (7(5,0) = ) {Fln gy |V €EVEY

q€62+2Z20, lEZZq

Here, if 62 = ¢ = 0 and [ 4+ 41 + 63 = 1 mod 2, the subspace { ) | v € Vl‘sﬁ"} vanish

and if not, it is isomorphic to 7'{53 as K-modules. Moreover, by the definition of the induced
(gc, K)-module, I, (D)) is a (gc, K)-submodule of I, (7T(k_—2—_1_’0_)) and we have

d
IVI (D(k,a)) = @ {F(lyl’k%’a;q,v) | vE Vvl 3}’
q€k+2Z50, l€Z>,

F!
(Vl V5034,V

Let (m, H;) be a Hecke-eigen cuspidal representation of M;. We extend the (mic, Ky, )-
isomorphism ¢, : H,~,,KM1 — H,r,KM1 in §3.4 to a M;-isomorphism from HZ° to H°. Then i,
induces a (gc, K)-isomorphism I,,,(7) 3 F +— 1z o F € I, (w). The image of F(lul,ﬁ,,,a,,;q,v)(g)
under this isomorphism is given by :

Flyy miqw)(9) =01(9)" P17 (ma(9)){Flo,4,0) (51(9)) ¢ g
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+ (=)™ Eg 40 (51(9))@r—g}s
and

Inm= @ AFmew [veV:
qeS+(m), I€Z>,

We note that C? 5 v — F(lulmq’v) € C*(G) ® Hy is a flat section for I, ().

4.3. The principal series of G. For vy = (v,1,%2,%,3) € C3, we define the character
Ao D ara”® € C* by '

vo,1, V0,1+v0,2 V0,1+V0,2+10,3

aly1, y2,y3]”° = y1 ' yo Y3 :
We put pg = (1,0, —1). For vy € C? and a character o = 0(51,82,65) Oof Mo, we put
F(namg) = a"*?0(m)F(g),

I(I/o,O’)= FECOO(G) (n,a,m,g)eNoonxMoxG,
F: K-finite

on which gc and K act by the right translation R. Then I(vy,0) is the associated (gc, K)-
module of a principal series representation of G.

We define the evaluation map \5,5): Hip,e) = C by f — f(13). If vg = (v1,1 + 7,011 —
U,v1,2), we see that A,y 0 F' € I(vg,0) for F € L, (7(3,0)) and @50y L, (7(54)) D F —
Ap,0)oF € I(v,0) is a (gc, K)-isomorphism. The image of F(lul,,,’ iaw) under this isomorphism
is given by

Flop,ria)(9) =00(9)" P {F 5 4,0)(ko(9)) + (1) Fg, g1 (k0(9))}-

Here we denote the Iwasawa decomposition of ¢ € G by g = ng(g)ao(g9)xo(g) with ng(g) €
No,ao(g) € Ao and ko(g) € K.
For a Hecke-eigen cuspidal representation 7 of M7, we have

IV1 (7!') = IV] (fl’) - IV1 (ﬂ.(i),,,aﬂ)) = I(VO, Uﬂ')
where vy = (v1,1 + Pr, 1,1 — Ur, v1,2). Hence we may realize I, (7) as a (gc, K)-submodule of
I(l/o, 07,-).
5. THE FOURIER- WHITTAKER EXPANSIONS OF THE EISENSTEIN SERIES

Throughout this section, let (7, H;) be a Hecke-eigen cuspidal representation of Mj.

5.1. The Jacquet integrals on G. Jacquet [17] introduced Whittaker functions for principal
series representations of arbitrary Chevalley groups. We specialize his general results to our
situation for GL(3,R). For 0 < i <5, c1,c2 € R and F € I(vg,0), we can define the Jacquet
integral We, ¢, (wi, F; g) € Cpt (No\G; Yey 5 )-

In this part, we use

We0(wy, Fig) = /RF(wm[xl,O, 0lg)e(—c1z1)dz,

Weyeo(ws, Fyg) = / \ F(wsn[z1, 2, z3]g)e(—c121 — cpz2)dridzodes.
R

Here We, ¢, (w;, F; g) (i = 1,5) is well-defined and is absolutely convergent when vy € D,,, with
Dy, = {(v0,1,10,2,703) € C* | Re(vo,1 — 1p,2) > 0},
Dw5 = {(l/o,l,l/o,g,l/073) S c3 | Re(l/o’i - 1/07,'_1_1) >0 (’L € {1,2})}

We note that F' — W, ¢, (wi, F; g) is a homomorphism from I(9,0) to Cgf (No\G;%cy c,) as
a (gc, K)-modules. Hence W, ., (w;, F'; g) is a Whittaker function for I(vp, o).
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Let C3 x G 3 (v9,9) = Fyy(g) € C be a flat section for I(vg,0), i.e. F,, is an element of
I(vy,0) and for € K, Fyy(k) does not depend on vy € C3. It is known that We, ¢, (wi, Fiy; 9)
has the meromorphic continuation to all vy € C3. We prove this fact by using explicit formulas
in Lemma 5.3 and §6.

5.2. The Fourier-Whittaker expansions of the Eisenstein series. For mi,my € Z, let
By my (FF ; 9) be the Fourier-Whittaker coefficient of E('F(ly1 - g), that is,

(v1,m3q,0)

1 p1 pl ’
Eml,mz(F(lyl,,r;q,v);g)=/0 /0 /0 E(F(l,,m;q’v);n[§1,§2,§3]g)e(—m1§1—m2§2)d§1d§2d53.

Because of the arguments in §4.3, the Jacquet integrals are realized as Whittaker functions for
I, (). In this subsection, we show that the Fourier-Whittaker coefficients Eyp,; m, (F(l,/1 iaw)’ 9)

are expressed in terms of the Jacquet integrals.
Lemma 5.1. We define the subsets S; (i =0,1,2) in T by

Sy = {13}, St = {ya(a,b,¢1) | (a,b,¢c) € Tr, | € Z},

Sy = {n2(a2, b, ca;l2)m (a1, b, e1310) | (aj,bj,¢5) € Br, [ € Z (= 1,2)},
where

r = {(a,b,c) €Z*|a >0, 0<b,c<a, bc=1 mod a},

n_( 1/a b 0 -1 1 c/a+l
7(a7bac7l)“( O a)(l 0 )(0 1 )a

. _ 7(“767 C;l) | 02,1 . _ 1 | 01,2
’71(aab, C,l) - ( 01,2 | 1 ) 72(0'7 ba G l) - 02’1 | ’)’(CL, b, c; l) .

The disjoint union S§ U ST U SY forms a complete system of representatives of (I' N P)\T.

Proof. We define the surjective map r: I' — P3 by

g1l 912 913
921 922 923 > (931, 932, 933)
g31 932 G33

where P3 = {(m1,ma, m3) € Z3 | ged(m1, ma, m3) = 1}. Then it is easy to see that r induces
a bijection (I' N P{)\I"' — P3 with

* ok ok
P = x x x | eP
0 01
By direct computation, we see that S; C T, r|4r is injective and
r(Sg) ={(0,0,1)}, r(S1) = {(0,mz,m3) € P3| mz > 0},
r(83) = {(m1,ma, m3) € Ps | m1 > 0}.

Therefore, the disjoint union (J;¢ {0,1’2}{51r U(=SF)} forms a complete system of representatives
of TN P)\I. Since’'N P, = (I'NnP{)U (- N P|), we obtain the assertion. O

Remark 5.2. The choice of representatives of (I' N P;)\I" in Lemma 5.1 is compatible with
the Bruhat decomposition G = ], <5 NoAoMow;No. Actually, we easily check that Szr C
NoAgMywe; Ny for 1 = 0,1, 2. T
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Lemma 5.3. (i) Let v € C, vy = (11,1,v1,2) € C? and a character o = 0(51,60,85) of Mo. If
Re(7) > 0, the following equality holds:

Weo (Wi Fly 510013 9) =01(9)" TP { (s, 0,0) (51(9)) We £ (5,00 M1 ()

+ (‘1)l+61+63F(53,—q,v) (Hl (g))Wc(f(ﬂ,a;~q); mi (9))}a
where vy = (V11 + P,v11 — P,v1). This equality gives the analytic continuation of the Jacquet
integral Weo(w, F(()Vo,a;q,v);g) to allv; € C?, v € C.
(ii) The function \ o F}

(v1,m50,0)

Ao F(1V1,7r;q,v) (9) = Z c,r(m)|m|_'7"Wm,0(w1, F(OVO’W;‘I’”);Q)
m#0

has the following expansion:

where vy = (V1,1 + Ux, V1,1 — Up,v12).
Proof. Since
Fp 0q)(9) =01(9)" P { F5, 00) (51(9)) f(,0:0) (M1 (9))
+ (1B 0 (51(9)) Fo.0mg) (M1 (9)) ),

we have

Wc,o(wl,F&O,a;q’v);g) =/RF(()Vo,a;q’v)(wln[cc,O,O]g)e(——cx)dx
= a1(g)"1+p1 {F(Jg,q,v) (Hl(g)) /Rf(]?,a;q) (wln[x’oa O]ml(g))e(_cx)dx

+ (=)t FG 0 (k1(9)) /R f(5,0—q) (w17[2, 0, O]ml(g))e(—cw)dx}-

Hence we obtain the statement (i). The statement (ii) is obtained from the statement (i), (3.6)
and the definition of F(lu1 ) a

We put

1 1 1
Lo (s ) (Foos ) = /0 /0 /0 W 0(w1, Fi; ynlés, €2, Eslg)e(—may — mata)dérdésdés

where m, m1,mg € Z, vp € C3, v € I and a flat section F,, for I(vg,c). Then, by the above
two lemmas, we see that ’

Em1 ,m2 (F(];/l ,ﬂ;q,'u); g) = Z Cr (m) |m|_i)" Z Imy(ml ,m2) (F(?/(Jyo'ﬂ';q’v)’ ’Y)

m#0 yeSt
i€{0,1,2}

where vy = (V1,1 + Ur, V1,1 — Ur, V12).

Lemma 5.4. The following equalities hold.
(i) For m,mi,my € Z and vy € C3?,

Wmio(wi, Fyesg),  if mi=m, ma =0,
Im,(m1,mz)(Fuo,13) ={ 0 m0(1, Fini 9) o{herwise. ,

(ii) For (a,b,c) € ¥r, 0 # m € Z, I,m1,ms € Z and vy € C3,
Im,(m1,m2)(FV01 72(0’7 ba G l)) = O

(iii) For (a1,b1,c1), (az,b2,c2) € Br, m,m1,mq € Z and v € C3,

z I (my ;ma) (Fuos 12(@2, b2, €25 12) 71 (a1, b1, c1511))
I1,l2€Z
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—vo,2+v0,3+1 —vo,1+v0,3+1 mic mabica
a Qo € ( a1 + as Wm1,m2(w5aFI/o;g)a

= if moa; = mag,

0, otherwise.
Proof. Since

(5.1) Wino(wi, Fu;n[€1, €2, €3]9) = e(m&1) Wi o(w1, Fiy; 9),

we have

: 1 1
Im,(ml,mg) (FV07 13) = Wm,O(wla Fuo; g)/O e((m - ml)gl)dfl/o e(—m2§2)d§2-

Therefore, by the equality
1 e
(5.2) / e(n)de = { L, ifn=0, (n € Z),
0

0, otherwise,

we have the statement (i).
Since

n[fl, 627 63] = ’T'L[O, 07 é?}]n[{l, §2a 0]:
Y2 (a‘7 b, (65 l)n[O, 07 63] = n[“a'§37 07 b§3]72(a7 b, G l)a
and (5.1), we have

1
Im,(ml,mz)(FV0772(a7 b,¢;1)) =/0 e(—mafs)dés

1 1
X / / Wmn,o(wi, Fuy;v2(a, b, ¢; 1)nfér, &2,0]g)e(—mi1€1 — mofa)dérdés.
0 Jo

Therefore, by the equality (5.2), we have the statement (ii).
Finally, we prove the statement (iii). Because of the analytic continuation, we may assume
that Re(vo,1 — 10,2) and Re(vp2 — vp3) are sufficiently large. We put

Y, 2] = v2(ag, ba, c2;l2)vi (a1, by, c15 7).
Then we have

D" Ly iy mg) (Fug, Vi, o)) = > / / / /Fuo wln[w00]’7[11,12]n[§1,€2,§3]9

l1,l2€Z l1,l2€Z
X e(—mx — m1&1 — mae)drdEidéades.

By direct computation, we have

l/az 0 —a1b2 .
win|z,0,0]y[l1, l2]n[é1, &2, &3] = 0 1/a1 aibez+b1 | wsn[zy, z2, 73]
0 0 a1(1,2
where
' b
=&+ §2+— +1—c2+b1l2,
ay a

l
$3=§3+<-§1—+11)§2+—-—+—2—
1

ai1a9 ai
Since F,,(nag) = a®®**°F, (g9) (n € Ny, a € Ag), by substituting
(&1,&2,&3,2) = (71,22, 23, &2),
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we have

" Intmuma) (Fros 1, 12])
l1,l2€Z

—vp o+103—2 —vo.14vos3—1 mic1  mas [ bicy
— g vo2tro3 a 0,1+%0,3 e + + bllg
1 2 a a asg
l17l2€z 1 1

142+, 1+ —L+ll Eat-2-4+ 2
a1a2 a1
/// F,, (wsn[z1, 22, x3]g)
—J—+l1 '

—L+ll £2+—2—+—1

X e ( iz — —a——m o+ (mTaz- - m2) 52) da3deydrode, .
1 1

We decompose Iz = ayly + 1 (I € Z, 0 < 7 < a1) and sum up the terms for l;,l5 € Z. Then
we have

(5'3) Z Im,(ml,mz)( uo,’)/[ll,lz]
l1,l2€Z

0,2 0,3 0,1 0,3 f

b ! ,
Ve ) Lo () o)

0<r<a;

ma
X / Fyo(wsn[z1, zg, z3]g)e (-—’m1$1 - a—2x2> dx1dzodxs.
R3 1

Since ged(b1,a1) = 1, we have

magbir) magr'\ [ a1, if ajlmas,
(5.4) Z € ( ay ) - Z € ( a ) o { 0, otherwise.
0<r<a; 7’ mod a1

Applying (5.2) and (5.4) to (5.3), we obtain the statement (iii). O

By this lemma, we see that Ep,, m, (F]

(11/1 mgw)’ g) is equal to

0 ifm1=0,m2=0,

er(ma) 1| 7 Wing 0(w1, F gyi9) i m1#0,ma =0,

é(ml’ "77/2)"’77'2|_i)7r Wm1,m2 ('LU5, F(O,/O,aﬂ;q’v); g) if ma2 7é 0’

)

where vy = (v1,1 + Ur, 1,1 — U, 1,2) and

~ moail _ _ micy mzblcz
C(m1,mg) = P ( ” ) (a1ap) "1 t27le ( + ) :

ay a2
(ai,bs,c:)EXT,
i€{1,2}, az|maoay

We evaluate C (mq,mg) as follows.
Lemma 5.5. For a nonzero integers my and ma, we define C,, r)(m1,mz) by the following:

(1) Clonymy (M1, ma) = sgn(ma)™Cly, ) (Jmal, |mal).-
(2) If ged(mimg, mimsy) = 1,

Cluy ) (mamy, mamy) = Cpy, xy(ma, m2)Clyy ) (M7, m3).
(3) For a prime number p and ny,ny € Z>q,
C(u1,7r) (p",p") = Sny iy (x (P)P™1, Br(p)p™ 1, p2).
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Here Sy, n, (0, B,7) is the Schur polynomial defined by

1 agmtl gnritna+2

1 ﬂn1+1 5n1+n2+2

1 ,Yn1+1 ,Yn1+nz+2

Sny e (@, B,7) = :

e N [CER e
Formi € Z, 0 #mg € Z and vy = (v1,1,v1,2) € C? such that Re(v11 —v12) > 3/2, we have
L1 —vig,m)

- L(vi1 — ro+1,m
C(m17m2) =

)cw(mz) if my =0,

ma |21 fmg |~
L(vii—vig+1,m)

Clvy,m)(m1,m2) otherwise.

Proof. In this proof, we use the following well-known formula (See for example, [8, Proposition
3.1.7)):

(5.5) e (%) = > (%)
0<r<e 0<!| ged(m,c)
ged(r,c)=1 .

for c € Z>; and n € Z. Here p(n) (n € Z>1) is the Moebius function defined by
H (—1)°rd1’(") if n: square-free,
u(n) = p: prime, p|n
0 otherwise,

where ordp(n) is the largest integer e such that p®|n.
We see that C'(m1, ms) is equal to

(5.6) Z Cr (ma22al> (a1a2)—u1,1+u1,2—1R(m1,m2’ a1, az)

a1,a2>0, az|mza1

where

; mic mabic
R(my,ma,a1,a2) = Z e( 11) Z e( 2(1212)'

a
0<by,c1<a1 1 0<c2<az
b1c1=1 mod a3 ged(ez,a2)=1

By the formula (5.5), we have

mic a
R(m13m2)a17a2) = Z e ( L 1> Z l2[,t (ﬁ) .

a
0<b1,c1<a1 1 0<l2| ged(mab1,a2)
bi1c1=1 mod ay

If aslmoa; and ged(bi,a1) = 1, we see that la| ged(maby,az) is equivalent to lo| ged(mao, az).
Hence, again by the formula (5.5), we have

R(my,my,an,a)= 3 ll”(%> 2 lzﬂ(%)

0<l1| ged(m1,a1) ! 0<l2| ged(ma,a2)

if ag|mga;. Therefore, (5.6) becomes

maay —v1,1+v1,2-1 a1 a2
(5.7) > > Cw( ” )(alaz) L1FVL2 l1lzu<l1)u<l2).

- a1,a2>0 0<ly|ged(mi,a1)
azlmaa1 0<lz|ged(ma,asz)

From this expression, we have C(m1, mg) = sgn(mz)®™C(|m1|, |ms|) and may assume m; >
0,mg > 0.
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Decomposing a; = all; (i = 1,2), (5.7) becomes

l
> X (mﬂ“1)u(aam(aa)(aaa;r"m"l’z—l<zllz>-"1v1+”1’2-

0<lilm1  af,a5>0
0<la|me a’2l2 ]mzaah

By the definition of the Moebius function, it becomes

(5.8) Z Z H Cr (pordp(mzaﬁll/a’zlz))

0<l1|m1 af,a5>0: square-free p: prime
0<lz|me abla|maally

- — dp(a} ) — dp (1!
> (_p v1,14v1,2 1)01‘ p(a1a3) (p V1,1+V1,2)0r p(l1l2)

— H Z Z cr (pordp(m2)+a1+)\1—a2—/\2)

p: prime 0<\;<ordp(m1) a1,02€{0,1}
0§A2§ordp(m2) a2+)\2§0rdp(m2)+a1+)\1

% (_p—V1,1+V1,2—1)°‘1+°‘2 (p—V1,1+V1,2))‘1+>‘2 .

Here we put ord,(0) = +o0.
From (3.7), we obtain the relation

min{n1 ,’ng}

(5.9) cr(P™er (™) = Y en(pmTT)
e=0

for ni,n2 € Z>1 and a prime number p. By using this relation, we have

Z Cr (pordp (m2)-|—a1 +A1 —a2—/\2) (_p_V1,1+V1,2—1 ) al+taz

a1,a2€{0,1} ]
az+Az<ordp(ma)+ar+A;

— (1 _ cﬂ(p)p—(u1,1—v1,2+1) +p—2(u1,1—1/1,2+1)) Cr (pordp(m2)+)\1—)\2)

for 0 < A\; < ordp(m;) (i = 1,2). Therefore, (5.8) becomes

1 dp(ma)+A1—) —v1 14y 2 M HA2
(5_10) ’ H Z Cr (por p(ma)+A1 2) (p 1,1 1,2) .
Ling—ng+1m o 0<hs oty ()
0<A2<ordy(m2)

Now, we consider the case m; = 0. By using the relation (5.9), we have

oo min{X,n}

Z Z ( n+Ap— ) (p—m 1+z/12 e Z z ( n+)\’1—2>\2) (p—V1,1+V1,2))‘I1

A1=0 Jo= =0 A=
o0
=3 ealpen (pY) (pratn)
N =0

for n € Z>o and a prime number p. Therefore, we have

Pimg en(l)l it _ Ly —np,m)
C(O m ) L(I/l,l - 1/1,2 -+ ]., 7T) C,r(mz) - L(I/l’l - 1/1’2 + 1, F)cw(mz).
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Finally, we prove the case m; # 0. By (3.8), for n1,n2 € Z>¢ and a prime number p, we

have

(er(p)p™* = Br(p)p™") (Bx(P)p™* — p"*) (P = ax (p)p™")
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ni n2

% Z Z cr (pn2+)\1—)\2) (p—V1,1+1/1,2)>\1+)\2
A1=0X2=0
= —Otw(Jo)ﬁw(p)p?”“'l(ﬂw(1.”')‘1,'@9"’1’1+”1’2 — 1)(ax(p)~tp7rrrtrz — 1)
% Z Z n2+>\1—)\2+1 _ ﬂw(p)n2+/\1—)\2+1) (p—u1,1+1/1,2))\1+)\2 )
=0 Xo=0

Since B (p) = ax (p)‘ , it becomes
(5.11) p3V1 1( (p)p—v1,1+u1,2 _ 1)(a7r(p)~1p—1/1,1+u1,2 _ 1)

ni na
X {om(p)nz'H Z (C\(ﬂ.(p)p"’l,l-l-lflﬂ))‘l Z (Ozﬂ»(p)_lp—'/l’l-"'/l’z)h

)\1=0 )\2=O
ny
e 3 (sl ) 3 ot
' A2=0
— _p31/1,1{aﬂ(p)nz-ﬂ((aﬂ(p)pvm,ﬁm,z)nﬁl _ 1) ((a,r(p)_lp""l’l"'"l’z)"?“ _ 1)

— a, (p)—fn2—1 ((aﬂ(p)—lp—u1,1+1/1,2)n1+1 _ 1) ((Otw(p)p"yl’l"'”l’z)m“ _ 1)}

Here we use the equality (z — 1) Y %_gz* = 2"*! — 1. We can check that (5.11) is equal to

1 (%(P)p’“’l)"l“ (aﬂ(p)pV1,1)n1+n2+2
p_(2"1+n2)1/1,1 1 (ﬂ?T( )le‘l)n],-i-l (ﬂn(p)plfl,l)n1+n2+2

1 (pr2)ml (p12)matnz+2
by direct computation. Hence we have
Z Z (i) ()R < g, (o () B ()P ).
=0 2= - .
Applymg this equality to (5.10), we obtain the assertion for ml # 0. O
From the above arguments, we have the following theorem.

Theorem 5.6. The Fourier- Whittaker coefficients Ep,, m, (F(];1 T v);g) of the Eisenstein se-

ries E(F(lyl,mq,v); g) are expressed in terms of the Jacquet integrals as follows:
. ,
Emyms (F(Vl migw)3 9 )
(0 ifmy=0,mzs =0,
C7|- (ml)lmll_i}ﬂ Wm1,0 (wl, F(OV070'7r;q,'U); g) Zf mi # 07 ma = 0’

= < L(Vl,l —_— 1/1,2,71-)

L(l/171 - V1,2 + 1, i

C s (ml? m2)|m1|—'2”1,1 Imzl_’/l,l—i}ﬂ .
(v1,m) Ly —vi2+1,7) Wiy ma (ws, F(O,/O,(,—,,;q,v); g) ifmy #0,my #0,

)cﬂ'(mZ)'in_ﬁﬂ WO,m2 (w5? F(Oyoya'ﬂ.;q,'u); g) ’l'f ml = 0’ m2 # 0’

for mi1,my € Z. Here we take C(,, r(m1,mz) as in Lemma 5.5 and vy = (v11 + Un,v1,1 —
UryV1,2)-

Remark 5.7. In adelic setting, this theorem is not essentially new except for the archimedean
- part. For the unramified non-archimedean places, there exist the explicit formulas of the non-
degenerate Fourier-Whittaker coefficients and the constant terms of the Eisenstein series in
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more general situation. See [19] and its references for details. Here we remark that the sum

Z Eml’ (I/1,7T,q,’0)’ )’ 1esp. Z EO’mZ(F(:Ejlvﬂ';q,v);g)

mi1€EZ mao€Z

of the degenerate terms is the constant term of the Eisenstein series with respect to the
unipotent radical N1 (resp. N2 = ws6(N1)w; ') of the maximal parabolic subgroup P (resp.
P, = w59(P1)w5_1).

6. EVALUATIONS OF THE JACQUET INTEGRALS

6.1. The radial parts of Whittaker functions. After some computation, by inspection we
find that it is convenient to introduce a system {vy}nes, of generators of V‘s V; with

2 3
V(ny,nang) = eP'xy?zy® mod r*-Vi_g, S ={(n1,n2,n3) € Z3, | n1 4+ ng +mng =1}

Here {vn }nes, is closed under the action of the Weyl group up to sign, i.e.

7'la(wl)v(nl,nz,ns) = (_1)n27’(n2,n15n3)’ 716(w2)v(n1,n2,n3) = (_1)n3U(n1,n3,nz)'

Of course, when [ > 2, it is not linearly independent and is not a basis.
For a K-homomorphism V;’ 3 v —~ W(v;g) € Ce(No\G; ), we have

W (v; 9) = ¥ (no(g))W (7 (o(9))v; a0(g)), g € G.

Here g = no(g)ao(g)ko(g) is the Iwasawa decomposition of g € G with ng(g) € Np,ao(g) € Ao
and ko(g9) € K. Hence v — W (v;g) is characterized by {W (vn;aly1,y2,y3]) }nes,. We call
W (vn; aly1, Y2, y3]) the n-component of the K-homomorphism v — W (v;g).

The purpose of this section is to evaluate the n-component of

0 .
V= Wcl,cz (wi’F(Vo,(fw;q,v)’g)

corresponding to the minimal K-type of I, (7).

6.2. The minimal K. -type. For a K-module H, we denote by H|[7/] the 7/-isotypic compo-
nent of H. From the arguments in §4.2 and §4.3, we have the following.

Lemma 6.1. (i) The set of K-types of I, (7)) is given by {ru{r|1>2} forveC
and 0 = o500y (6 € {0,1}). Then the minimal K-type 79 occurs with multiplicity one in
L, (7(3,0)) and the image of Iyl(’fl'(,;,d))[Tg] under ®; ;) is given by

{F oo |0 € V2

v0,030,v)

where vy = (v1,1 + D, v1,1 — U, v12). Here @54): Ly, (7(5,0)) — I(vo,0) is the homomorphism
defined in §4.3.

(ii) The set of K-types of I, (D(x,s)) is given by {2 11>k} fork € Z>2 and o = 0(0,6,0) Such
that k = § mod 2. Then the minimal K-type 7 occurs with multiplicity one in I, (D q))
and the image of I, (D(k,,))[T,g] under @(k%l’o,) is given by

{F&Oya;kav) l ve Vk?}
k

k—1 -1
where vg = (V1,1 + S5, V1,1 — 5, V1,2)-
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6.3. Some preparation. In order to evaluate the Jacquet integrals, we prepare the following
lemmas. '

Lemma 6.2. For n = n[z1,z2,73] (z1,72,73 € R), the Iwasawa decomposition wsn =
no(wsn)ag(wsn)ke(wsn) is described as follows:

[—(z122 — x3)z1 — 22 —T1 — T2T3 I3
nolwsn) =n —| € N,
0( ’5 ) [ D ) D ’ D, 05

ao(wsn) = a [\/171/1?2, v/ Da/ Dy, \/D_1] € Ao,

K11 K12 K13
/-co(w5n) = (Hij) = K21 K22 ko3 € 50(3) CK
K31 K32 K33

where

Dy =1+2?+23, Dy=1+22+ (z122 — 23)%, D3 =1+ 22,

k11 = (1122 — 23)/\/D2, k12 = —22/v/Da, k13 =1/\/Da, ka1 = (z1+ z923)//D1Ds,
ko2 = {23(2122 — 23) — 1}/v/D1Da, ka3 = {~ (2172 — 73)31 — 72}//D1 D3,

kst =1/y/D1, ks2=x1//D1, K33 =uz3/y/D1.

Proof. By direct computation, we obtain the assertion. 0O

We denote by d;; the Kronecker delta, i.e.

s 1 ifi=j,
“J 71 0, otherwise.

Lemma 6.3. (i) For § € {0,1} and n = (n1,n2,n3) € Ss, the value of
k = (kij) € SO(3) is given by

0
F(Vo,a(s,o,o) ;0,Un) at

0 o, n1,Mm2, N3
F(VO,U(S,o,o);O,Un)(ﬁ) - 2"531'4‘.’32 K33-

(ii) For k € Z>o, n = (n1,n2,n3) € Sk and § € {0,1} such that § = k mod 2, the value of
wa) L K= (kij)ij € SO(3) is given by

' 3
F(OVO"’(o,s,O);k»vn)(") =27 Z {H(/’vu + E\/—_1H2i)m} )

ee{£1} \i=1

F(Vo,a(o,s,o) ik

Proof. Because of the definition of the flat section F?°

(v0,030,n)
of the matrix coefficients Fis, 14.,) at £ € SO(3).
At first, we compute the values of the matrix coefficients at 13. Since

, it suffices to compute the values

1 s —/—-1
V(0,0,6) = U(()J)> U(1,0,0) = 5(09) - U(_11)), V(0,1,0) = B (’U§1) + 'U(_11))7
we have
d)*
(6.1) Flo,0,0m)(13) = (08", 0n) = by 6

for 6 € {0,1} and n = (n1,ng,n3) € S;.
By the binomial theorem

62) eror=3 (et ()t

=0
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we have
1 ™M/ "
citah?ay® = {5(2 + 2)} { 5 (z — 2)} z5?
_ _1 no ny n2 .
D Sy () () iy
i=0 j=0 ! J

with 2z =z ++/—1y and Z = z — v/—1y. Since

(- l)mzvﬁ,lfl) iy = 2™ 2™ 2T mod 7% - Vi_g

for (m1,ma,m3) € S, there exists some {cn(q)}—k<q<r such that

k—1
— _1 n2
R S A ¥ C B LS O O

Qni+n2
qg=—k+1

for n = (n1,n9,n3) € Sk. Hence we have

(6.3) Floekum)(13) = (04, 0n) = bny 06™ (—v/=1)"227F.
By direct computation, for I € Z», —I < ¢ <! and n = (n1,n2,n3) € Sy, we have

Fl0.00m)(8) = Flo,q;70(c)va) (13)

3
!
Ty air ,.Q2¢ , .Q3r
= E {I I anTaa g TR1y Kop Ky F(O,q,vn/(aij))(li*')
i €Z0, 1<i,j<3 Lr=1 77
a1;+az;+az;=n;

where n’(a;;) = (nf,nh,n3) with n; = ar; + arz + ar3. Applying (6.1) and (6.3) to this, we
obtain the value of the matrix coefficients at £ which we need. a

6.4. The case of I, (71'(
n-component of

,;,0(6’0)0))). For some (c1,co2,1), we give the explicit formulas of the

V:so SV Wcl,CZ (wi7F(0y07a;0,v);g) € Cl'onog(NO\G7 ¢01,62)
as follows.

Proposition 6.4 ([2],[27]). For 7 € C and v1 = (v1,1,v1,2) € C?, we put vo = (v11+ D,v11 —
P,v12) and assume Re(?) > 0 and Re(v1,1 —vip — ) > 0. We set

[
Wer,es (Wi Flg 50 0a)3 @Y1, 2, 43]) = (—1)°(=1)™ (V=1)" 4192 (yays) >+ T 2WE (1, u0)
where 0 = 0(50,0) (0 € {0,1}). For c1,c3 # 0 and n = (n1,na,n3) € S5, we have

(= 1)54|C1| vy, 1y—l/1 2K,

—_— 2
1+n2,0 T (2 +1)y 2 ( 7T|Cl|y1),

W) (y1,2) =6

o I'r(vi,1 —vig+ €04 6)
WO( ,C2,4 )n(yla y2) =(5n2+n3’0 H (

e FR(Vl,l -2+ 1+ev+ (5)

4|C2l~ Vi —Vi

fmy Yo Kp(27[e2]y2),

Sgn(cl)n2+n3 Sgn(62)6+n1+“2 2|61|—V1,2 162|V1,1+17

I'r(20 + 1) {Hse{il} Ir(—vig+1+ev+ 5)}

= \/_ / / (s1,2) (lealyn) " (Jealye)~**dsadsr,

W) a1, v2) =
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where
Tr(s1 +vi2 +no 4+ n3g)Tr(s2 — vi2 + n1 + ng)
FR(31 + 82 +n1 + n3)

X H Ir(s1+ vi,1+ev+n1)Cr(s2 — Vi1 + v + n3),

ee{£1}
and the paths of integrations [ 5, are the vertical lines from Re(s;) —v/—1oo to Re(s;) ++/—Too
with sufficiently large real parts to keep the poles of the integrand on its left. Here K, (z) is the
K-Bessel function (See for example, [3, p.66 (6.5)]).

Proof. The statement for 6 = 0 is found in [2]. When cico # 0, the explicit formula for
Wei eo (w5,F(°V0y 0(1.00):0,0m)} aly1, y2,y3]) is also found in [27, Proposition 7.2]. Here we slightly

Véd) (819 32) =

modify the normalization by Lemma 6.3 (i). Moreover, we obtain the explicit formula for
We, 0(wr, F(OVO,G(1 0.0)0,0m) aly1,y2,y3)]) from (3.4), Lemma 5.3 (i), Lemma 6.3 (i) and the formula

in [4, p.11 (7)]. As in the proof of Proposition 6.13, modifying the computation in [27, §6], we
obtain the explicit formula of Wy ., (ws, F(OVO 01.0,0)0,m)] aly1, y2,y3))- O

Corollary 6.5. We use the notatzon wn Proposition 6.4. Then forv € V:; , the Jacquet integrals
Wei0 ('wl,F(VOaOv),g) Wo,co (s, F, (Vo,a;O,v)’ g) and W, ¢, (w5,F(Vo’a;o,v), g) have the meromor-
phic continuations to all (¥,v1) € C x C? and satisfy the functional equations

H PR(Vl,l —lVi2+ 1+ev+ 5)

P
FR(Vl,l — 1,2 +ev + 6) WO’Cz (7.U5, (Vo,o’,O,'u)Lg))

WC2 ,0 (w].) F((L(/) ,0';0,’0) ; w5tg_1 ) =
ee{%1}

Wey e1 (w5,F8/6,U;Q’v);w5tg_1) = (—1) sgn(crea)®|erea| 70112 ey [eg|?

H FRI/11-—1/12+1+€I/+5)

X
I'r —I/11+I/12+1+8I/+5)

Wc1,02 (w5’ F(OVo,tT;O:U); g)
ee{+1} l

where vy = (—v1,1 + U, —v11 — U, —V12).

6.5. The Dirac-Schmid elgen-equatlons. Since the values of F(Ouo,a;k,vn
(ii) are complicated, it seems to be difficult to evaluate the corresponding Jacquet integrals,
directly. To avoid this difficulty, we prepare some relation among their n-components, which
comes from (gc, K)-module structure of I, (D4 o ©0.6.0) y)- The arguments in this subsection are
essentially same as those in §4 of Part 2.

We put I3 = E11 + E22 + E33 € g and decompose p = Z, @ po with
Zy = RI3, | po={X €p|tr(X) =0}
Here tr(X) means the trace of X.
If we put K;; = E,J Ej; € & then {K;; | 1 < i < j < 3} is a basis of &. We denote
the differential of (70,V}?) by (7, V}) since the action of £c does not depend on §. By direct
computation, we see that the action of K;; on v, is given by

) in Lemma 6.3

(6‘4) Tl(Kij)Un = —nivn—ei+ej + njvn—ej+ei
for 1 <¢ # j <3 and n = (n1,ng,n3) € S;. Here e; = (1,0,0), e2 = (0,1,0), e3 = (0,0,1)
and v, =0ifn &S

It is known that poc becomes a £c-module via the adjoint action ad. Concerning this, we
have the following lemma.

Lemma 6.6. Let {Xn}nes, be a system of generators of poc defined as follows:
1 1 1
=13, Keive; = 5(Bij + Eji) = Bij — 5 Kij

Xoe; = Eii — 3 5
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for 1 < i # j < 3. Then via the unique tc-isomorphism between Va and poc, we have the
identification vy = Xn (n € S3).

Proof. We define the bijective linear map ¢: Vo — poc by va — Xn (n € S3), which is
well-defined because Y o_; Xoe, = 0. By direct computation, we can check v(1(Kij)vn) =
ad(K;;)Xn for 1 <4 < j <3 and n € S2. Hence ¢ is a Ec-isomorphism and we obtain the
assertion. O

For a tc-module (7, H), we denote by H[7] the 7-isotypic component of H. The tensor
product poc ®c V; ~ Vo ®c V; has the irreducible decomposition

(6.5) Vi Vo @ Vi, ifl=1,

ViedVippeVieViioVig, ifl>2,
Va®cV

Now we take a system of generators of @<,,<2(Pc ®c V))[T1—m] as follows.

Lemma 6.7. Letl € Z>,. We put v(n,i) = Z?=1 Ve;+e; ® Unte; forn € 1 and 1 <4< 3.

Then {v(n,i) | n € S;—1, 1 < i < 3} is a system of generators of o< m<a(Vo®cVI)[71-m]. Here

we put (Va®@cVj)[r] = 0 ifI' < 0. Moreover, there exists a tc-homomorphism @0<m<2(V2 ®c
Vi)[mi—m] = Vi such that v(n,i) — vnqe,-

Proof. We take (7, V}) as in §4.1 and denote the differential of 7; agam by 7. Let ¥;: V; — V; be
the natural surjective éc-homomorphism defined by & — & mod 72-V,_y. If we put U(ny,nams) =

z1txy?zs® and O(n, i) = Z? 1 Uei+e; ® Unte;, then ¥y(n) = vy and ¥o ® ¥y (3(n, 1)) = v(n,i).
Let V(I,2) be the the space spanned by {#(n,) | n € S;_1, 1 <i < 3}. By (6.4), we have

(6.6)  To @ TI(Kgp)0(n, 1) = —negt(n —eq + €p,1) + npt(n — €, + €4, 1)
— 00,i0(n, b) + 6 ;0(n, a)
for1<a#b<3 1<i<3andn=(ng,ng,n3) €S_1. Hence we see that V(l,Z) is a

tc-submodule of Vs ®¢ V. 3 5
Since Ker(¥s ® ¥;) = {(r? - Vo) ®c V| + Va ®c (r? - Vi_3)}, we see that

0, ifl € {1,2}
Ker(¥2 ® 1) NV(1,2) = P c Z 3(n +2ej,0) §, ifl>3.
nes;_s J=1

1<i<3
Since Uy @ Uy(V(1,2)) = V(1,2)/(Ker(¥s ® T;) N V(1,2)), we have
dim Uy ® ¥y(V(1,2)) = dim V ({, 2) — dim(Ker(¥, ® ¥;) NV (1,2)) = 61 — 3.

From (6.5), we see that a (6/—3)-dimensional ¢c-submodule of Vo®cV; must be ®0§m§2(v2 Rc
Vi) m] Hence @Py<,pca(Ve ®c V1) [11-m] c01nc1des with ¥y ® U;(V(1,2)) and is spanned by
{v(n,i) |n€ Sy, 1 <i< 3}

We define a surjective linear map @(1’2): V(l,2) = V; by 9(n,i) — ¥nte;. By (6.6), we
note that &)(1,2) is a tc-homomorphism. Since ‘5(,,2)(Ker(‘112 ® ;) NV (1,2)) C Ker ¥;, we can
define a £c-homomorphism ®(;4y: V(1,2) = V by @9y = ¥; 0 é(l’g) o (¥y ® ¥;)~L. From the
construction of ®(; 5), we have @ 9y(v(n, 1)) = vnt2e;- O
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Lemma 6.8. We set v; = (v11,v12) € C?, k € Z>3 and 0 = 0(g50) such that k = mod 2.
Then for 1 <1< 3 and n € Sy_1, it holds that )

Vi1 — V12 O Z R
3 (Vo,tf knte;) et+ea uo,a k,vn+te;)

k-1

k—1
where vg = (v11 + 5=, 01,1 — 5, V1)

Proof. We note that pc ®c Vi 2 X Qv — R(X)F(?/0 k) € I(vg,0) is a c-homomorphism.

Therefore, by Lemma 6.1 and 6.7, there exists some constant C' such that

3
0
CF(Vo,a;k,vn+ei) = E R(Xei+3j)F8/0,a;k,vn+ej)
Jj=1

for any 1 <4 <3 and n € S;_1. In order to determine the constant C, we evaluate

3

(6.7) CF(OVO,C’;k,v(k,o,O)) (13) = Z R(Xel+ej )F(()V0a0'§k»v(k—l,0,0)+ej ) (15)-
j=1

By Lemma 6.3 (ii), the left hand side of (6.7) is equal to C27%*1. By the definition of the

space I(vp,0), we have

vy —V k+1
R(Xzel)F<13)=( S )F(13>,

R(Xere,)F(1s) = R(Ey)F(1s) - 3 R(Ky)F(1s) = ~5 R(Kij) F(1s),

for F € I(vp,0) and 1 <i < j < 3. Moreover, by (6.4), we have
0
R(Kij)Fg/O,o;k,vn) = _niF(OVO:O';kyvn—ei+ej) + njF(VOaa;k)vn—ej+ei)

for 1 <i# j <3 and n = (n1,ne,ng) € Sk. Therefore, by Lemma 6.3 (ii), we see that the
right hand side of (6.7) is equal to 27¥+1(v1 1 — v15)/3. Comparing the both sides of (6.7), we
haveC=(V11—1/12)/3. ) O

Lemma 6.9. For W € C32 (No\G; v, c,), we have
R(X2e,)W (a) = (al - g<93)W(a),
1
R(X2e,)W (@) = (=01 + 8 — 30 ) W (a),

R(X20) W (@) = (=8 + 285 W (v; ),
R(Eii11)W (a) = 2nv/~1ciyiW (a) (i € {1,2}), R(E13)W(a) =0,

0
where a = aly1, Y2, y3] and 0; = yig‘—-
Yi
Proof. By the definition of Cif(No\G; 9c, ;) and easy computation, we obtain the assertion.

O

Proposition 6.10. We set v1 = (v11,v12) € C? ke Z>y and 0 = 0(g50) such that k =4
mod 2. We define the function Wc(ﬁ;ég,n(yl,yz) by

2, + +1 k;
Weea (Wi, Fy i onys Al 92, 11) = (=1)™ (V=) "2y 2 W) (01, 90).
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Then Wélk, ;cig,n(yl, y2) satisfy the following system of partial differential equations:
(i) For (ni,ng,n3) € Sk_1,
(20 — 2011 — k + )W

C1,C2 a(n1+1’n2 777'3)

+ 47rc1y1W( i) 0.

c1,e2,(n1,ma+1,m3) —

(”) For (nlanQan?:) € Sk‘—l;
(=201 + 209 + 2v1) +2v19 + 1y — n3)W(k i) 47rcly1W( i)

c1,¢2,(n1,m2+1,n3) c1,¢2,(n1+1,n2,n3)

+ 47T02y2W( i) ) + nQW(k i) n2W(k’z) =0.

c1,c2,(n1,n2,n3+1 c1,¢2,(n1+2,n2—1,n3) c1,c2,(n1,m2—1,n3+2)

(111) For (ny,m2,n3) € Sg_1,

57 (k31) (Ks3)
(=209 — 2v11+k - I)Wcl,C2,(n1,n2,n3+1) - 47T62y2Wcl’02’(n1,n2+1’n3) 0.
(iv) For (n1,ng,n3) € Sk_o,
57 (ksd) 57 (Ks) (ksi)
c1,62,(n1+2,m2,m3) WC1,62,(n1,n2+2,n3) + WC1,C27(R1,n2,n3+2) 0.
Proof. From the relation Zl<z<3 Un+2e; = 0, we obtain the statement (iv).
Since I(10,0) 3 F = Wy o, (wi, F; ) € Cp(No\G; ey ) s a homomorphlsm of (gc, K)-

modules, for 1 <¢ < 3 and n € S_;, we have

3
Vi1 — V12 0 0 .
3 WCI ,C2 (w'“ F(VOaa';k,'Un—i-ei ); g) = Z R(Xez+e] )Wcl ,C2 (wl’ F(yo,a';k,vn+ej )’ g)
i=1

(6.8)

from Lemma 6.8. By the statement (iv), (6.8), Lemma 6.9 and

WCl,Cz ('w'ia F; a[yl, Y2, y3]) = y3 P, 2W61,62 (wia F; a‘[yla Y2, 1])

= (-1 (VD) g2 (y2e) W v, ),
we have the statements (i), (ii) and (iii). O

6.6. The case of I, (D(k,a(o s 0))). In the evaluation of the Jacquet integral, prepare the fol-
lowing formulas play key role.

Lemma 6.11. (i) For a,b,Re(v) € R4,
bV

a’ = W/R “exp(—ab€)¢”

€
'
(i) For a € R4 and c € R,

1 2.2
2 — _ E 3 _7rc
/Rexp( az® — 2my/—1lex)dz (a) exp( — )
(i1i) For y, A€ R4 and v € C,

'/R.‘. exp <—(7ry)2t - %) t”% 471_\/—/ == 1/) (my)*dz.
(iv) For z € C,
I(z)T (z + %) = 21722, /7T (22),

(v) For z € C and n € Z>q,
L(z4+mn) n T(1=2)
(2)n :—F(z) = (-1) r(1 —’Z _ n)
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Here (2), = [[7=0 (2 +1).

- (vi) For a,b,c, dEC

F(a+c)l'(a+ d)'(b+ c)['(b + d)
2m/ F'la+b+c+d) '

Here the paths of integrations [, are the vertical lines from Re(z) —+/—1co to Re(z) ++/—1co
with sufficiently large real parts to keep the poles of the integrand on its left.

I'(a+ 2)['(b+ 2)T(c— 2)T'(d — 2)dz =

Proof. The statement (i) is obtained from the definition of the Gamma, function. The statement
(ii) is found in [4, p.15 (11)]. The statement (iii) is obtained from the two kinds of integral
expressions of the K-Bessel function in [3, p.66 (6.5) and Lemma 1.9,1]:

= o (4 ) - gt [ (552 (52) )

for y > 0 and v € C. The statements (iv) and (v) are found in [36, Appendix II.3 and IL.2].
The statement (vi) is Barnes’ lemma, which is found in [48, §14.52]. O

Moreover, we use the following formulas of the generalized Gauss hypergeometric function

ag, a1, "+ ,0an = (a0)m(a1)m - (an)m 2™
nt1d; 12 ) = —_
e (bla b2a e ,bn z) mz=:0 (bl)m(bQ)m e (bn)m m!

Lemma 6.12 ([36, §7.3.5.2 and §7.4.4.114]). (1) For Re(c —a — b) > 0,

a, b \ T(c)T(c—a—-0b)
2F1< c ’1) = Te—a)T(c=0b)

(it) For n € Z>o and a,b,c € C,

B TN ) @220 Da@b4n -1,
2\, 34a-b-n’ On(b-—a-1)

Proposition 6.13. For k € Z>, and vy = (v1,1,11,2) € C2, we put vy = (vi1+ %,l/m -

k21 v19) and assume Re(vyy — v12) > (k — 1)/2. We set

Wes,ca (Wis Flly giponi oyt v2: y8]) = (=1)™ (V1) 512 (y2y0) 2 H 2 W m (y1, 12)
where 0 = 0(q5,0) such that 6 =k mod 2. For c1,ca2 # 0 and n = (n1,n2,n3) € Sk, we have

/__1 ks n(c d+n2 c k—1 +.ﬂ —
& gni(;c) = y T gy ™ exp(—2re ),

sgn(co)™I'c I/11—I/12+k1 C|k1 —v 55t
gn(cz) ( = )| yl"l*2y2 YL exp(—27|ez|y2)
Tc(vin — vig + 54)Tr(2K)

W (Y1, 92) =6ng0

Wékcf ) (y1,92) =60

Sgn(cl)6+n2+n3 Sgn(CQ)"1+"2|cl| V1,2 |02|V1 i 2
FC vi,1 — vi + L) Tr(2Kk)

(s1,52)(le1ly1) ™ (|e2ly2) ~**ds1ds:
47r\/ /52 /sl ’

Wc(1 ,Ez),n (yl ) y2)

where
I'r(s1 + v+ n1)Tr(s2 — v+ ng)
FR(Sl + 89+ mn1 + ’ng)

k-1 k-1
xI'c 31+V1,1+T I'c 32—V1,1+T

Vrsk) (s1,82) =
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and the paths of integrations fSi are the vertical lines from Re(s;) —v/—1oo to Re(s;) ++/—1oo
with sufficiently large real parts to keep the poles of the integrand on its left.

Proof. We obtain the explicit formula for Wc( ’O)n from (3.4), Lemma 5.3 (i), (6.3) and the
formula
@rnv=-1)F 4 .
/ (u— T)_ke(uv)du _ ——————(k —1)! v*"re(vr), ifv >0,
R 0, if v <0,
forv € R, k € Z>3 and 7 € C such that Re(r) > 0. Here the above formula is obtained by
the residue theorem.
Next, we evaluate

WS a1, 92) = (~1)™ (—V/7T)™ (1)~ (ags) 210722
X La F?”Oya;k,vn)(w‘sn[xl? ‘/E27 w3]a’[y1, y2’ y3])e(—61.’1,'1 —_ szz)dwldxzde'

We change the variable by (z1,z2,z3) — (y1x1,y2x2,y1y2x3). It implies the replacement

n[z1, x2, z3)aly1, y2,y3] — alyi, y2, y3Inlz1, T2, 3). By wsalyr,y2,us] = alyz ', u1 ", viveyslws
and the definition of the space I(vg, o), we have

k=1

~ k; , p— R —_——
Wi a1, 52) =(=1)™ (—V/ =12y 2y, 2
X / , F(Oyo,mk’vn)(w5n[a:1, xg,wg])e(—clylazl — ngzxz)dmldwgdl'g.
R

By using the equations in Proposition 6.10, for c1,co # 0, {Wélfgz5 L}nesk and {Wc(lk, Z’,n}nesk
are determined from {W(k ’)(1 0k—1)? Wékci)o 0 k)} and W, éliz,)(o 0,k)’ respectively. Moreover, by
Lemma 6.2 and 6.3, we see that

F?/oa'kv _ ('LU57’L[.’I?1,.’L‘2,{L‘3])dx3
R ( »05K,V(1,0,k 1))

is an odd function of x;. This implies Wélzf’)(l 0k—1) (y1,y2) = 0. Hence it suffices to evaluate

~c(1k,f;),(0,o,k) (y1,y2) for c1,co € R such that ¢y # 0.

By Lemma 6.2 and 6.3, for n = n[z1, z2, z3], we have

0 _ + 0
F(Vo,ff;k,v(o,,o k))(w5n) = ao(wsn)” poF(Vo,C’ k,0(0,0,k)) (50 (wsn))

“12-V11 | k=3 &
=D, °? +* D2 22 (D1D5) —§ Z (\/ —ev—-1((z122 — iBg)wl + m2)> .

ee{%1}

By the binomial theorem (6.2), it becomes

v1,27¥1,1 V1 1 k k—21 ) .
D TR iy B () (V) 1 (- e + )
0<2i<k ! ‘
- Since ((z122 — x3)x1 + 22)2 = —D; + D2 D3, again by the binomial theorem, it becomes
v1,2— V1 1 k—21 . i 3 R .
+552 4 2 —k+1 —k k D —1) t —D\I(DsD2)?
; pifeoinyt () (vVE) e S () oo mnmn

3 k i PL27VLL k=3 g s
ey Ly (9O o,

0<2j<k | 2j<2i<k
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By Lemma 6.11 (iv), (v) and Lemma 6.12 (i), we have

> (3)0) - e (82 )
. . - 1 . ;
2j<zick 21) \J 'k+1-24)T (23+1) J+%

~ DPE+ITG+ Tk - ) _ 2F1UED(k - )
S D(k+1-25)02 + DD (E)  T(k+1-2)L(G+1)

Therefore, we have
Jkl“(k ) v1,2;u1,1 +k4;3_jD2_k+ng_
4T k+ 1-25)(j+1)

0
F(Vo,a;k,v(o,o’k)) (w5n[x17 Z2, .’L‘3

0<2j<k
By the above computation, we see that

k—1
- (b 1T (k — )y 2y, 0 2
6.9 (:5) = -
(6.9) Wer ea (0,0, (15 92) Ogj,;k GT(k+1- 29)1“(] +1)
. X e Dl_)‘_jD;kH'Dge(—clylml — Ccoyazo)dx1drodxs

where A = (2 1 —2v1 2 —k+3)/4. We apply Lemma 6.11 (i ) to (6.9) with (a,v) = (D1/Ds, \+
7), (D2,k —j) and b = 7|ca|ys:

A 7|c Aty D xti d
Dl)\ J— (m| 2|312)' / exp (_W|02|y2D_1§1> (5_1> a6
R4

(A +7) Ds &
D; k+i _ %/}h exp(— 7r|02|y2D2§2)§2 J 6522

Moreover, we change the variable by 2 — z2 + z123/D3. It implies
2
Dy — 1+ L5 + D3$%
Ds
and we have
Ak

k;5
Wc(l ,Cz),(o 0,k) (yl ? y2)

_ k-1
> (=1) k25" % (n]calye)
ook YTrk+1- ZJ)F(] + 1)T(A + 5)

. _ . _ x
X / / §i\+J§§ JD3 e (—clylml — C2Y2 <:c2 + D—1x3)>
R3 J(R4)2 3

X €xp ( 7lealys (51 + & + = § 52 23 + D3z 262)) dél s

We integrate with respect to z9 and z3 by using Lemma 6.11 (ii) to find that

dxldwzd{l}3

_k=1
> (—1)ikmyy 2y, ™7 T (wlealyz) M hL
4T (k +1 —v2j)1“(j + 1T(A + )

Wc(ici),(o 0,k) (y1,92) =

0<2j<k

X// &EHel I DM (G + &)} e (—aym)
RJ(R4)?-

| 2 dé1 d
X exp (—77|62|y2 (51 + &+ D;& + D3(§T1+ 52))) €§11 522 1

Changing variables from (£1,&2) to (u1,us) by
f _ U2D3 f _ 1
! —ul(l + U2D3), 2 ur(l+ u2D3)’
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we have

37 (k;5) _
Wclacz,(O,O,k) (y1,92) =

_k=1
y & 1)ikry!?yy ™77 (r|calyg) R

oS HT+1-2))T(G + DT(x+7)

X// (1+U2D3)—)‘~k+%u1_x_k+1u%‘(UQD3)j
R4)?

! dui du
e ('77|62Iy2(u1(1 +ug) + _) - 27T\/—c1y1x1> —11u_22da:1.
Since
(U j . J 1 . . .
(U2D3)-7 ( 1+1+ U2D3 = Z < ) 1)]—l(1 + 'U/2D3)z,
=0
. it becomes

= (k;5 Lokt )
Wc(1,c2),(0 0 k)(yl,yz) = kmy My, na=tg (]calya) M1

(=1’ 1
Z i! { Z 4JI‘(k+1—2J)F(>\+])(j—z) }

0<2i<k 2i<2j<k

x// (1+u2D3)—/\—k+i+%u1—A—k+1ug
RJ(R4)?

1 duy du
X exp <—7T|02|y2(u1(1 + ug) + ) 2m/— C1y1x1) —;u—;d:cl.

By Lemma 6.11 (iv), (v) and Lemma 6.12 (i), we see that

1 471 ik k1
Z = 2F1( o2 ;1)
2i<25<k GT(k+1-25)0(A+4)(5 —)! F()\+i)1_‘(k+ 1—29) A+

3 47 TN+ k—i—3) | 2PHRRRAD(N 4k — i — 1)
T+ 1-20TO+ BT+ AL T Val(k+1-20T2A+ k- 1)

Therefore, we have

77 (k35)
Wq ,¢2,(0,0,k) (y1, y2)

. o v k k=1
5 (—1)fky/aT A+ k —i— 1)y 2y, ' 7 (wlealy) M r1

2—k—2X+2i4]| _ _
oG 2 Wh(k+1-20T(2A+ k — 1)

% / / (1 +u2D3)—/\—k+i+%u1—)\—k+1u%
R J(R4)2

1 duq du
X exp (—71'|c2|y2(u1(1 +ug) + ) — 2/ — cly1x1> _Tl_afdxl'

We apply Lemma 6.11 (i) with (a,b,v) = (1 + u2Ds3, 1,)\ +k—-i-1/2):

LA+ kl— i—3) /R exp(—(1 +u2D3)&3)¢s

Ak—i— 2df3

&

(1+ u2D3)—)\—k+i+% —

Then we have

Wc(lk,c:,(o 0,k) (y1,92)

k=1
_ Z ( )lk\/_-yljl2 R (7T|C2|y2 >\+k 1// ,\ k+1 )‘§A+k z—_
(R4)3

o 2'\+2?z!1"(k F1-2)T@A+k—-1

69
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du1 dU2 d§3

——dz1.
ur uz &3

X exp <—U2§3x% —2nv-layiz — (1 +ug)és — 7F|C2|y2(’u1(1 +ug) + u_1))

We integrate with respect to z; by using Lemma 6.11 (ii) to find that
(k;5)
Wc1 ,¢2,(0,0,k) (y1,92)

_k=1
. ( ) kﬂ_ym 2, V1,175 (ﬂ.lc2|y2))\+k—1 / u_)\_k_i_lu)\—%é.)\_,_k_i_l
22—k~ 2A+2mr(k +1-20T2A+k—1) Jim,ye ' 2

0<2i<k
(mler|y1)? dui dus d§3
_HEY _ 1 M1 B2 U3

X exp( ol (1 + u2)és — 7|ca|ya(ur (1 + ug) + u1) 0w 6

We change the variables from (up, ug,£3) to (u,t1,t2) by

(u1,u2, &3) — (m|calyata, u/ti,u™t).
Then it becomes

(6.10) WS ’(OOk)<y1,y2)

C1,C2,

k-1
(=1)kmypt iy, / s By Akt 1 kit
22—k— 2’\+2ZZ'F(I€ +1- 22)F(2>\ + k- ].) (Ry)3 1 2
t 1 1 1\ dudt; dt
x exp( —(mlealyn)?2u — = — (wlerlyn)*t — = — (wlealye) 2 — — 122
i wu t1 t2

When ¢; # 0, we apply Lemma 6.11 (iii) for the integration with respect to u, t1, t2,
successively:

0<2:<k

u tl tz'

k=1

i (k:5) ( S (=D)lkmy 2y, T
e1,02,(0,0,k) (Y1:92) oSk 22-k=22+204IT(k + 1 — 2z)F(2A +k-1)

<@ [ L LR ()

1 s1— 2 1 sh+ 2/
B - = -1
XF( +k—1 2>F< 5 + A 2>F< 5 +A+k

x (ler|yr) ~ (wlealyz) ~*2 % d2'dsidsh.

We change the variables from (s}, 2') to (s2,2) = (sh + 2/,2'/2), and apply Barne’s.lemma in
Lemma 6.11 (vi). Then it becomes

kw22 t+k—2 V1,2 ”Vl,l—l‘cg‘l
4 Y1 Ya

F@AX+Ek—1) (4ny/=1)2
/32/81 z) ( +>\_%>P(%)F(8§2+>\+k—1)
X{Z (—1.)ZP(%L+>\+k—1—i)F(i22+k_%_)i)}

2 .' _ . S +s _ s
oSTick 2240k +1 - 20)T (22 + X+ kb —1 -4

(611) Wc(lk,ci),(O 0,k) (y17 y2)

X (mle1]y1) "5 (7| ea|y2) " 2ds1dss.
By Lemma 6.11 (iv), (v) and Lemma 6.12 (i), we see that
(-1)T($+A+k-1-)0($ +k— % 1)
Z 2%40(k+1 - 20)0(232 4+ A+ k — 1 —+)

(6.12)
0<2i<k
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T3 +2+k-1)T(2+k-1) (75 T 2o A k- g
B r(k+1)r(ﬂﬁz+A+k—1) s 2(2 —k-%, 3 k-2 ;1)
_T(FHA+E-P(F+k—5)4 (52 - )iB =22 -k —s1)x
P+DT (22 +X+k-1)(2-2-k— ), (272,
27225 (g + | — 1)D(sp + 2X + k — 2)
CD(k+DT(2)D(F+A-)r(2E2 4 x+k-1)
Applying (6.12) to (6.11), we have

k-1
. 29—k+3 vi2, “VLIT T
Wc(kc) 0,0 k)(yl,?n) il : bt
L2 C(E)LCA+Ek—1) (4ny/=1)2
// JT(s1+2X+k—2T (3 +A+k—1)I(s2+k—1)
s Js1 F(%-ﬁ-)\ﬁ-k—l)

x (27|e1|y1) "5 (27| ca|y2) "2 ds1dss.

By substituting (s1,s2) = (s1 +v1,2,82 — v1,1 — (K — 1)/2), we obtain the explicit formula of
77 (k35)
01,02,(0,0 k)
)

Finally, we evaluate Wékcs,(o 06" We apply Lemma 6.11 (iii) for the integration with respect
to u, to successively, and substitute t; — tl_l. Then we have

k-1
< (k;5) (—1)tkmy, Py, 2

02,006 (V1 ¥2) ‘ 0<222<k 22-k=22+201D(k + 1 — 22)I‘(2)\ +k—-1)

vy ), LT (3)r(Frr-i-3)

x T <_§ +A- 5) r <82 ;_ 2 +A+k- 1> (mlealyz) =% d2'ds}.

We change the variables from (s,2’) to (sg,2) = (s + 2/,2'/2), and apply Barne’s lemma in
Lemma 6.11 (vi). Then it becomes

20+k—2 vi,2 —Vi,1— ——
(k;5) kw2 T ()\ —_ —) Y1 Yo 3—2 B
i S T o)
(-)T(A+k-1-4)T 372 +k—1-14) B
X i T (s (m|calyz) "2 dss.
{ngz;gk 2240k +1 - 20T (2 +A+k—1—1)

By (6.12) for s; = 0, we have

k—1
2 —k+3 Vi, 2 V15
= (k;5) 275 T2A+k—2) y; ys r L 1)2 .y
W0, (0,0.) (U1, ¥2) = T(HTA+ k= 1) my=1 J, (s2 + & — 1)(2m|caly2) "2 ds2.
By the substitution s — s3 — k + 1 and the Mellin-inversion formula, we obtain the explicit
formula of WUc 5) 0

0,¢2,(0,0,k)"
Corollary 6.14. We use the notation in Proposition 6.13. Then for v € V,?, the Jacquet inte-
grals We, o(w1, F(O,jo,g;k,v); 9); Woc, (ws, F(Oyo’g;k,fv); g) and We, ¢, (ws, F(O,,O,a;k,v); g) have the mero-
morphic continuation to all vy € C? and satisfy the functional equations
pPe(vy — v + 551)

We, o(wr, FY, . :wslg™!) =sgn(c O(—y/=1
02,0( Ly 2 ,o5k0) 59 ) g (2) ( ) FC(Vl,l_V1,2+k_51‘)

WO,C2 (w5’ F(Oyo,g;k’y); g)?
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- _ k=1
Wey 1 (ws, F(OV(’],a;k,v); ws'g 1) =(_1)k sgn(clc2)5|0102| vi,14v1,2 lc1/cal 2

Tc(vin —vip +524)

| Po(-vin+v + 52

where vy = (—vi11 + (k—1)/2,—v11 — (k= 1)/2, —v1,2).

) Wcl sC2 (w57 F(?/Q,O';O,’U); g)

Remark 6.15. In Part 2, by solving the system of partial differential equations, we obtain

the explicit formula of the Whittaker function We, , (ws,F(O,,o, oik0) g) up to scalar multiple.

- Moreover, we also obtain the power series expressions of Whittaker functions for I, (D(k,o . 0)))
which do not satisfy the moderate growth property in it. '

6.7. The Fourier-Whittaker coefficients of the Eisenstein series. Now, for a Hecke-
eigen cuspidal representation (w,H;) of M;, we give the explicit formula of the Fourier-
Whittaker coefficients of E(F(1 ) at the minimal K-type. Put

Vi ,ﬂ';q,’U) ; g

; ‘ _ (5,0,1) ifﬂ'=7‘r(,;
(7I')q7l'7a'7l')_ (k,k,O) ifﬁ=D(

10(5,0,0))?

k,0(0,0,0))

Then 7 is the minimal K-type of I, () and
IV1 (7T) [Tl?r] = {F(lyl,w;q,,,v)|v € W?r}
Moreover, for n = (n1,n9,n3) € Sj,, we define (;;(n), Cri(n) (i € {1,2}) by
(C?T,l (n)’ C7r,2 (n))

(ri(n) = Cri(na,na,n1) (i € {1,2}).

We define the normalized Eisenstein series E’(F(IV1 P g) by

{ (n2 + ng, —ng — n3) %fij- = 7.r(i)aa'(é,O,O))’
(n1,0) if 7 = D(’CaU(o,o,o))’

E(F(lyl,mq,,,v);g) =2""TR(207 + 1 + gr)A(v11 —v12 + 1, W)E(F(lyl,ﬂ;q,,,v);g)'
From Theorem 5.6, Proposition 6.4, 6.13, we obtain the following.

Theorem 6.16. Forv € Vl?r, we give the explicit formula of the Fourier- Whittaker coefficients

- (F(lum; gn)39) Of the normalized Eisenstein series E(F(1 ) as follows:

vi,mign ) 9

Eml’m2 (F(llq T3gn ) 9) =

(0 if my = 0,mz = 0,

ex(vi,1 — v1g + Lm)en(Ima ) |ma | W) (g) if my # 0,ma = 0,
) A = w12, m)ex(Imal) mal 1 WA (9) if m1 = 0,my #0,
| Clonmy(Imal, [mal) [ma| "2 =02 W 00m) (g) if my #0,mg # 0,

where V0 3 v — W,%Iﬁ)z;v € Coo/(No\G; ¥my,m,) is a K-homomorphism whose n-component
s given by

wiem o (alyn, ye, ys]) = (=1)° (=1)™ (v TT)™ gy (yays) 2 TR W) (1, v2).-

Here the function ~7(nyf,’77,?2,n(y1,y2) is given as follows:
—v1,2 ‘
%, (v1,7) s notns Y2 —81
m1,0n(Y15Y2) = 54",1(,1),0 sgn(m1)"™? 3“"'47“/—“'_1 o Loo(s1+v11 + Gra(n), ) (fmafyr) " dsy,
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V1,2

Wo(,;{;) (y1,92) = 0¢r1(n),0 sgn(mg)™ 72 473:1/_ ( sg—v11+ fﬂ,g(n), 77)(|m2ly2)_52d32,

Wt n (v, v2)
_sgn(mq)™ 78 sgn(mg)m1 N2 Tr(s1+v12 + Cri(n )TR(s2 —v12 + éﬂ,l(n))
B (4mv/-1)2 /52 /sl Tr(s1 + 82 + 11 + n3)
X Loo (51 + 11,1 + Cr2(n), ™) Loo (82 — 1,1 + g:,r,z(n), ) (|maly1) "5 (|maly2) ~2ds1dss
for m1,ma # 0. The paths of integrations [ s, are the vertical lines from Re(s;) — V—1o0 to
Re(s;) + v/—1oo with sufficiently large real parts to keep the poles of the integrand on its left.

Corollary 6.17. For v € VEO, E(F} (v1,mige )’ 9

and satisfies the functional equation E(F(V1 .

) has the analytic continuation to all v; € C?
9) = (~1)~E(F} it

,Qwﬂ))’ (—V1,7T;Qm’v)’

Proof. By Theorem 6.16, we see that Em, m,(9) = Emyms (F(1 g) has the analytic

f- By . it 0)
continuation to all vy € C, and the series

~ (0]
S e x 3 mn((i%))
m1=-—00 Y€T2\I'2 (m1,m2)€Z2? ’

ma>0

is absolutely convergent for any v;. This implies that E(F? g) has the analytic contin-

(v1,mgn0) 9
uation to all v; € C2.
For ¢ € A(T'\G), the Fourier-Whittaker coefficient ¢}, ., of ¢*(9) = ¢(*g™") € A(T'\G) is

| given by
Prmy,me (9) = /R3 o(*(nfér, &2, &5]9) "H)e(—mi&y — male)dérdéadEs.

Substituting {5 — —&3 + £1€2, we have ¢, 1, (9) = Smymy (wstg™!) because of the left I'-
invariance of ¢ and

ws'n¢1, 52,53]_1 = n[é2, &1, 182 — E3lws.
3 wstg™h) = (=1)" By gy (F,

(v1,m57 ,0)°

We can check E,m, (F( g g) by Theorem 6.16,
(3.9) and
Sm,nz( _17 ﬁ_l _1) = Snymy (e, B,7)(aBy) ™7

Hence we obtain the functional equation of E (F(V1 RS 9)-
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